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On the space of metrics with invertible Dirac operator

Mattias Dahl

Abstract. On a compact spin manifold we study the space of Riemannian metrics for which
the Dirac operator is invertible. The first main result is a surgery theorem stating that such
a metric can be extended over the trace of a surgery of codimension at least three. We then
prove that, if non-empty, the space of metrics with invertible Dirac operators is disconnected
in dimensions n ≡ 0, 1, 3, 7 mod 8, n ≥ 5. As corollaries follow results on the existence
of metrics with harmonic spinors by Hitchin and Bär. Finally we use computations of the eta
invariant by Botvinnik and Gilkey to find metrics with harmonic spinors on simply connected
manifolds with a cyclic group action. In particular this applies to spheres of all dimensions
n ≥ 5.
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1. Introduction

Let (M, g) be a Riemannian spin manifold, we will always assume that such a mani-
fold comes equipped with an orientation and a spin structure. We denote by M− the
same manifold with the opposite orientation. The Dirac operator Dg is a first order
elliptic differential operator acting on smooth sections of the spinor bundle �M . If
M has a boundary we will only consider Riemannian metrics on M which have a
product structure in a neighbourhood of the boundary.

For a Riemannian manifold (M, g)with boundary ∂M we denote by (M∞, g) the
same manifold with the half-infinite cylinder ([0,∞) × ∂M, dx2 + g|∂M) attached
along the boundary (here we abuse notation slightly by using the same symbol g for
the metric on M and the metric on M∞). If M is closed, that is compact with no
boundary, we set (M∞, g) = (M, g).

We denote by C∞
0 (�M) the space of compactly supported smooth sections of

�M . On a complete Riemannian manifold (M, g) we denote by L2(�M) and
H 1(�M) the completions ofC∞

0 (�M)with respect to theL2-norm ‖ · ‖ and the first
Sobolev norm.
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If (M, g) is compact without boundary the operator Dg has a self-adjoint exten-
sion to L2(�M) with domain H 1(�M). This is a Fredholm operator with discrete
spectrum [13, Chapter 3, §5]. If (M, g) is compact with non-empty boundary we
consider the Dirac operator Dg on the manifold (M∞, g) with cylindrical ends. In
this case we also have a self-adjoint extension toL2(�M∞)with domainH 1(�M∞),
see [6, Section 3.6.2].

Now suppose (M, g) is compact, possibly with boundary. The operator Dg is
invertible with a bounded inverse if and only if it has a spectral gap around 0, that is
if there is an ε > 0 such that ‖Dgϕ‖2 ≥ ε‖ϕ‖2 for all ϕ ∈ L2(�M∞).

Definition. Let M be a compact spin manifold. We define Rinv(M) to be the set
of Riemannian metrics g on M for which Dg is invertible with a bounded inverse.
By Rpsc(M) we denote the set of Riemannian metrics on M with positive scalar
curvature.

Let R(M) be set of all Riemannian metrics on M . If M is a closed spin mani-
fold, then Rinv(M) is an open subset of R(M) in the C1-topology, and if Rinv(M)

is non-empty, then it is dense in R(M) in the Ck-topology for all k ≥ 1, see [4,
Proposition 3.2].

Proposition 1.1. If g ∈ Rinv(M) then g|∂M ∈ Rinv(∂M).

Proof. Suppose that the Dirac operator for g|∂M is not invertible. Then there is a
ϕ �= 0 such that Dg|∂Mϕ = 0. If we extend ϕ to the cylindrical end of (M∞, g) by
parallel transport in the normal direction and then multiply with a cut-off function
having small gradient we can construct compactly supported ψ on M∞ for which
‖Dgψ‖2/‖ψ‖2 is arbitrarily small. �

Definition 1.2. Let M , N be compact spin manifolds without boundary.

(1) Metrics g0, g1 ∈ Rinv(M) are called isotopic if there is a smooth path of metrics
gt ∈ Rinv(M), t ∈ R, such that gt = g0 for t ≤ 0 and gt = g1 for t ≥ 1.

(2) Metrics g0, g1 ∈ Rinv(M) are called concordant if there is a metric g ∈
Rinv([0, 1] ×M) such that g|{i}×M = gi , i = 0, 1.

(3) Metrics g0 ∈ Rinv(M), g1 ∈ Rinv(N), are called bordant if there is a manifold
W and a metric gW ∈ Rinv(W) so that ∂(W, gW) = (M, g0) 	 (N−, g1).

It is immediate that isotopy is an equivalence relation, that concordance and bor-
dance also are equivalence relations will follow from Proposition 2.1.

The Dirac operator is intimately related to the scalar curvature. From the Lich-
nerowicz formula (Dg)2 = (∇g)∗∇g + 1

4 scalg it follows that Rpsc(M) ⊂ Rinv(M).
There are corresponding relations psc-isotopic/psc-concordant/psc-bordant for met-
rics in Rpsc(M). The Lichnerowicz formula implies that if two metrics are psc-
isotopic/psc-concordant/psc-bordant then they are isotopic/concordant/bordant.
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The principal idea of this paper is to study the space Rinv(M) using techniques
from the study of Rpsc(M). In Section 2 we will look at ways of constructing Rie-
mannian manifolds with invertible Dirac operator, the most powerful of which will
be the extension of a metric with invertible Dirac operator to the trace of a surgery
of codimension at least 3. The main result of the paper is in Section 3 where we
use the Index Theorem to detect non-concordant metrics in Rinv(M) in dimensions
n ≡ 0, 1, 3, 7 mod 8, n ≥ 5. The construction of these non-concordant metrics
uses known examples of “exotic” metrics in Rpsc(Sn) which do not bound metrics in
Rpsc(Dn+1). This result shows that if Rinv(M) is non-empty, then it is disconnected,
which unifies and strengthens results by Hitchin and Bär on the existence of metrics
with non-trivial harmonic spinors.

Several questions concerning the relationship betweenRpsc(M) andRinv(M) can
be formulated. For simply-connected manifolds the solution of the Gromov–Lawson
conjecture tells that these spaces are non-empty at the same time, is it further true
that the inclusion Rpsc(M) → Rinv(M) is surjective on π0? Is the inclusion even a
homotopy equivalence? To formulate these questions for manifolds with non-trivial
fundamental group π the space Rinv(M) should be defined as the set of metrics for
which all Dirac operators with coefficients in flatC∗π -bundles overM are invertible.
Since the Gromov–Lawson–Rosenberg conjecture is known to fail for some groups
it seems unclear what to expect of the inclusion Rpsc(M) → Rinv(M) in general.

In Section 4 we leave the study of Rinv(M). Instead we use computations of the
eta invariant by Botvinnik and Gilkey to find metrics with harmonic spinors on simply
connected manifolds with a cyclic group action. In particular we find metrics with
harmonic spinors on spheres of all dimensions n ≥ 5.

2. Constructions

In this section we will study three constructions of new Riemannian manifolds with
invertible Dirac operators from old ones.

2.1. Attaching isometric boundary components. LetM be a manifold with bound-
ary ∂M . Suppose that the boundary is a disjoint union ∂M = ∂+M 	 ∂−M 	 ∂0M

where ∂+M ∼= N and ∂−M ∼= N− for some compact spin manifold N and where
∂0M might be empty.

Suppose g ∈ Rinv(M) is such that g|∂+M = g|∂−M = h for some metric h on N .
For t > 0 let (M ′, g′

t ) be (M, g) with the cylinder ([0, t] ×N, dx2 + h) attached by
{0} ×N along ∂+M and by {t} ×N along ∂−M . The manifoldsM ′ depend on t but
are all diffeomorphic so we identify them.
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Proposition 2.1. Let (M ′, g′
t ) be constructed from (M, g) as above. Then there is

T > 0 so that g′
t ∈ Rinv(M ′) for all t > T .

Note that the manifold M is not assumed to be connected.

Proof. Since g ∈ Rinv(M) there is εg > 0 so that ‖Dgϕ‖2 ≥ εg‖ϕ‖2 for all ϕ ∈
L2(�M∞). Set ε = εg

8 and choose T > 0 so that t > T implies 6
t2

≤ εg

8 .
Let t > T and take ϕ ∈ C∞

0 (�M
′∞). Let χ : [0, t] × N → [0, 1] be a smooth

function such that χ = 1 near {0} × N , χ = 0 near {t} × N , and | grad χ | ≤ 2
t
. A

straight-forward computation shows that

|Dϕ|2 ≥ 1
2 |D(χϕ)|2 + 1

2 |D((1 − χ)ϕ)|2 − 3
2 | grad χ |2|ϕ|2

so

‖Dϕ‖2[0,t]×N ≥ 1
2‖D(χϕ)‖2[0,t]×N + 1

2‖D((1 − χ)ϕ)‖2[0,t]×N − 6
t2

‖ϕ‖2[0,t]×N.

We define the spinor field ψ ∈ C∞
0 (M∞) as follows. On M and on [0,∞) × ∂0M

we set ψ = ϕ. At ∂+M we first attach ([0, t] × N, dx2 + h) along {0} × N and set
ψ = χϕ on this piece, followed byψ = 0 on the half-infinite cylinder attached along
{t} ×N . In the same way we attach ([0, t] ×N, dx2 + h) at ∂−M along {t} ×N and
there we set ψ = (1 − χ)ϕ followed by ψ = 0 on the half-infinite cylinder attached
along {0} ×N . Using the above estimate we get

‖Dϕ‖2
M ′∞ = ‖Dϕ‖2

M + ‖Dϕ‖2
[0,∞)×∂0M

+ ‖Dϕ‖2[0,t]×N
≥ ‖Dϕ‖2

M + ‖Dϕ‖2
[0,∞)×∂0M

+ 1
2‖D(χϕ)‖2[0,t]×N + 1

2‖D((1 − χ)ϕ)‖2[0,t]×N − 6
t2

‖ϕ‖2[0,t]×N
≥ 1

2

(‖Dϕ‖2
M + ‖Dϕ‖2

[0,∞)×∂0M

+ ‖D(χϕ)‖2[0,t]×N + ‖D((1 − χ)ϕ)‖2[0,t]×N
) − 6

t2
‖ϕ‖2

M ′∞
= 1

2‖Dψ‖2
M∞ − 6

t2
‖ϕ‖2

M ′∞
≥ εg

2 ‖ψ‖2
M∞ − 6

t2
‖ϕ‖2

M ′∞
= εg

2

(‖ϕ‖2
M + ‖ϕ‖2

[0,∞)×∂0M
+ ‖χϕ‖2[0,t]×N + ‖(1 − χ)ϕ‖2[0,t]×N

)
− 6

t2
‖ϕ‖2

M ′∞
≥ εg

2

(‖ϕ‖2
M + ‖ϕ‖2

[0,∞)×∂0M
+ 1

2‖ϕ‖2[0,t]×N
) − 6

t2
‖ϕ‖2

M ′∞
≥ (

εg

4 − 6
t2

)‖ϕ‖2
M ′∞

≥ ε‖ϕ‖2
M ′∞ .

Since C∞
0 (�M

′∞) is dense in L2(�M ′∞) this shows that g′
t ∈ Rinv(M ′). �
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Proposition 2.1 has the following corollary.

Corollary 2.2. Concordance and bordance are equivalence relations.

2.2. Generalized cylinders. Let M be a compact spin manifold of dimension n
and let gτ be a smooth curve of metrics on M parametrized by τ ∈ I , where I is
an interval. The product M = I × M equipped with the metric g = dτ 2 + gτ is
called a generalized cylinder over M . We are going to recall some facts about the
spinor bundle and the Dirac operator on a generalized cylinder. All these facts are
conveniently collected in [5].

The spin structure onM induces in a unique way a spin structure onM . The spinor
bundle on (M, g) is related to the spinor bundle on (M, gτ ) by�(τ,x)M = �xM if n
is even and�±

(τ,x)M = �xM if n is odd. Denote Clifford multiplication on�M by ·
and Clifford multiplication on �M by •τ . If n is even we have X •τ ϕ = ν · X · ϕ
and if n is odd X •τ ϕ = ±ν · X · ϕ for ϕ ∈ �±M . Here ν = ∂τ is the normal of
{τ } ×M in (M, g).

Let ϕ be a section of �M . The Dirac operators on M and M are related by

ν ·Dgϕ = (
Dgτ + n

2H − ∇g
ν

)
ϕ. (1)

Here H is the mean curvature of {τ } ×M in (M, g),

H = − 1
2n trgτ (ġτ ) , (2)

and ifn is odd the operatorDgτ acts on sections of�M by
(
Dgτ 0

0 −Dgτ
)
. Let ġτ = ∂τ gτ

and define the operator Dġτ by Dġτ ϕ = ∑n
i,j=1 ġτ (ei, ej )ei•τ∇gτ

ej ϕwhere e1, . . . , en

is an orthonormal basis of TM . The commutator of ∇g
ν and Dgτ is given by [5,

Equation (23)][∇g
ν ,D

gτ
]
ϕ = − 1

2Dġτ ϕ + 1
4 gradgτ (trgτ (ġτ )) •τ ϕ − 1

4 divgτ (ġt ) •τ ϕ. (3)

Now suppose gτ , τ ∈ [0, 1], is a smooth curve of metrics inRinv(M)with gτ = g0

for τ near 0 and gτ = g1 for τ near 1. Define metrics gt on Mt = [0, t] × M by
gt = dτ 2 + gτ/t for t > 0. Since the Mt are all diffeomorphic we identify them

as M .

Proposition 2.3. Suppose (M, gt ) is constructed from M and gτ as above. Then
there exists T > 0 such that gt ∈ Rinv(M) for all t > T .

Proof. Since gτ is defined for τ in a compact interval and since gτ ∈ Rinv(M) there
is a constant C > 0 so that

1
C

∫
M

|ϕ|2 dvgτ ≤
∫
M

|Dgτ ϕ|2 dvgτ , (4)
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4 trgτ (ġτ )

∣∣2 ≤ C, (5)

|gτ (∂τ dvgτ , dvgτ )| ≤ C, (6)∣∣〈 − 1
2Dġτ ϕ + 1

4 gradgτ (trgτ (ġτ )) •τ ϕ − 1
4 divgτ (ġτ ) •τ ϕ, ϕ

〉∣∣
≤ C(|∇gτ ϕ|2 + |ϕ|2), (7)

∣∣1
4 scalgτ

∣∣ ≤ C. (8)

Set ε = 1
4C and choose T > 0 so that

1

4C
≥ 2C2 + 2C + 3

4t
+ C

t2
(9)

for t > T .
Take t > T . We extend gτ to τ ∈ R by setting gτ = g0 for τ < 0 and gτ = g1

for τ > 1. Then (M∞, gt ) = (R ×M,dτ 2 + gτ/t ). Take ϕ ∈ C∞
0 (�M∞). From

(1) we get ∣∣Dgτ/t ϕ∣∣2 + ∣∣∇gt
ν ϕ

∣∣2 = ∣∣(ν ·Dgt − n
2H

)
ϕ
∣∣2

+ 〈Dgτ/t ϕ,∇gt
ν ϕ〉 + 〈∇gt

ν ϕ,D
gτ/t ϕ〉.

When we integrate over M∞ this gives

‖Dgτ/t ϕ‖2 ≤ 2‖Dgt ϕ‖2 + 2‖n2Hϕ‖2

+
∫
M∞

(〈Dgτ/t ϕ,∇gt
ν ϕ〉 + 〈∇gt

ν ϕ,D
gτ/t ϕ〉) dvgt . (10)

We are going to estimate the terms on the left-hand side of this inequality. Define the
function θτ = gτ (∂τ dv

gτ , dvgτ ). Then ∂τ dvgτ/t = 1
t
θτ/tdv

gτ/t . For the last term in
(10) we have∫

M∞

(〈Dgτ/t ϕ,∇gt
ν ϕ〉 + 〈∇gt

ν ϕ,D
gτ/t ϕ〉) dvgt

=
∫

R

∫
{τ }×M

(
∂τ 〈Dgτ/t ϕ, ϕ〉 − 〈[∇gt

ν ,D
gτ/t ]ϕ, ϕ〉) dvgτ/t dτ

=
∫

R

(
∂τ

∫
{τ }×M

〈Dgτ/t ϕ, ϕ〉 dvgτ/t −
∫

{τ }×M
〈Dgτ/t ϕ, ϕ〉∂τ dvgτ/t

)
dτ

−
∫
M∞

〈[∇gt
ν ,D

gτ/t ]ϕ, ϕ〉 dvgt

= −
∫
M∞

(1
t
〈Dgτ/t ϕ, ϕ〉θτ/t + 〈[∇gt

ν ,D
gτ/t ]ϕ, ϕ〉) dvgt ,
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so (10) becomes

‖Dgτ/t ϕ‖2 ≤ 2‖Dgt ϕ‖2 + 2
∥∥n

2Hϕ
∥∥2

−
∫
M∞

(1
t
〈Dgτ/t ϕ, ϕ〉θτ/t + 〈[∇gt

ν ,D
gτ/t ]ϕ, ϕ〉) dvgt . (11)

Since ∂τ (gτ/t ) = 1
t
ġτ/t it follows from (6), (3) and (7) that∣∣∣∣

∫
M∞

(1
t
〈Dgτ/t ϕ, ϕ〉θτ/t + 〈[∇gt

ν ,D
gτ/t ]ϕ, ϕ〉) dvgt ∣∣∣∣

≤ C

2t

(‖Dgτ/t ϕ‖2 + ‖ϕ‖2) + C

t

(‖∇gτ/t ϕ‖2 + ‖ϕ‖2) . (12)

By (8) and the Lichnerowicz formula on (M, gτ ) we have

‖∇gτ/t ϕ‖2 =
∫

R

∫
{τ }×M

|∇gτ/t ϕ|2 dvgτ/t dt

=
∫

R

∫
{τ }×M

(|Dgτ/t ϕ|2 − 1
4 scalgτ/t |ϕ|2) dvgτ/t dt

≤ ‖Dgτ/t ϕ‖2 + C‖ϕ‖2.

(13)

From (2) and (5) we get
∣∣n

2H
∣∣2 ≤ C

t2
so∥∥∥∥n2Hϕ
∥∥∥∥2

≤ C

t2
‖ϕ‖2. (14)

Inserting (12), (13) and (14) into (11) we get

‖Dgτ/t ϕ‖2 ≤ 2‖Dgt ϕ‖2 + 2
C

t2
‖ϕ‖2

+ C

2t

(‖Dgτ/t ϕ‖2 + ‖ϕ‖2)
+ C

t

(‖Dgτ/t ϕ‖2 + C‖ϕ‖2 + ‖ϕ‖2)
or

‖Dgt ϕ‖2 ≥ 1
2

(
1 − 3C

2t

)
‖Dgτ/t ϕ‖2 −

(
C

t2
+ C2 + C

2t

)
‖ϕ‖2.

From (9) we get 1 − 3C
2t > 0 so (4) tells us that

‖Dgt ϕ‖2 ≥
(

1

2

(
1 − 3C

2t

)
1

C
−

(
C

t2
+ C2 + C

2t

))
‖ϕ‖2

=
(

1

2C
− 2C2 + 2C + 3

4t
− C

t2

)
‖ϕ‖2

≥ ε‖ϕ‖2.
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Since C∞
0 (�M∞) is dense in L2(�M∞) we conclude that gt ∈ Rinv(M). �

The following corollary is immediate.

Corollary 2.4. Isotopic metrics are concordant.

2.3. Surgery. We are now going to construct a metric with invertible Dirac operator
on the trace of a surgery of codimension ≥ 3 given such a metric on the original
manifold.

LetM be a closed spin manifold of dimension n and let Sn−m ×Dm → M be an
embedding. Let � be the image of Sn−m × {0}. LetW be the trace of the surgery on
M along�, this is constructed by attachingDn−m+1 ×Dm toM×[0, 1] at the image
of Sn−m×Dm× {1} → M × {1} and then smoothing the corner where the attaching
takes place. The trace W is a spin manifold with boundary M 	 (M̃)− where M̃ is
the spin manifold obtained from M by surgery along �.

Proposition 2.5. Assume thatW has been constructed fromM as above withm ≥ 3.
Suppose g ∈ Rinv(M). Then there is a metric gW ∈ Rinv(W) such that gW |M = g.

The proof is similar to the proof of Theorem 1.2 in [4]. We need to introduce
some notation. Suppose X is a submanifold of a Riemannian manifold Y . For 0 < r

define the distance sphere and the distance tube around X as SX(r) = {x ∈ Y |
dist(x,X) = r} and UX(r) = {x ∈ Y | dist(x,X) ≤ r}. For 0 < r1 < r2 define the
annular region around X as AX(r1, r2) = {x ∈ Y | r1 ≤ dist(x,X) ≤ r2}. Let ν be
the outward pointing unit normal of S�(r) and let dA be the volume form of S�(r).
In [4, Lemma 2.4] the following lemma is proved in the case where X is compact,
the proof also works in the formulation here.

Lemma 2.6. Let Y be a Riemannian spin manifold and let X ⊂ Y be a complete
submanifold of codimension ≥ 3 which has a uniform lower bound on the injectivity
radius of its normal exponential map and for which the second fundamental form of
SX(r) is bounded for fixed r .

Then there exists 0 < R < 1 so that for any 0 < r < 1
2R

11 and any smooth
spinor field ϕ defined on AX(r, (2r)1/11) satisfying

•
∫
SX(ρ)

|ϕ|2 dA is finite for all ρ ∈ [r, (2r)1/11] and defines a differentiable
function of ρ,

•
∫
SX(ρ)

Re〈∇νϕ, ϕ〉 dA is finite and non-negative for all ρ ∈ [r, (2r)1/11],
it holds that

‖ϕ‖2
AX(r,2r) ≤ 10r5/2‖ϕ‖2

AX(r,(2r)1/11)
.
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Proof of Proposition 2.5. Since g ∈ Rinv(M) there is an εg > 0 so that

‖Dgϕ‖2 > εg‖ϕ‖2 (15)

for all ϕ ∈ L2(�M). Proposition 2.1 of [4] tells us that there is a constant S0 < 0 so
that for every S1 > 0 there is a metric g′ on M which is conformal to g and has the
following properties:

• g′ is arbitrarily close to g in theC1-topology on the space of Riemannian metrics,

• scalg
′ ≥ S0 on all of M ,

• scalg
′ ≥ 2S1 on a neighbourhood U0 of �.

The eigenvalues of Dg depend continuously on the Riemannian metric with respect
to the C1-topology, see for example [3, Proposition 7.1]. We can therefore find a
metric g′ satisfying the above properties with S1 = −8S0 while (15) holds with the
same value of εg . Since g and g′ are conformal and the dimension of the kernel of the
Dirac operator is a conformal invariant we get that g and g′ are isotopic and bordant.
So if we prove the theorem for g′ we will also prove it for g. We replace our original
g with g′.

Let r > 0 be a constant so small that

• U�(2r) ⊂ U0,

• (2r)1/11 < R, where R comes from Lemma 2.6 applied to � ⊂ M ,

• (2r)1/11 < R, where R comes from Lemma 2.6 applied to R ×� ⊂ R ×M ,

• 45r1/4 ≤ εg .

Let V be the trace of the surgery along � ⊂ U�(r), this trace is a manifold with
boundary and codimension 2 corners. We divide the boundary ofV into a “horizontal”
part and a “vertical” part. The horizontal part consists of U�(r) 	 (Ũ)− where Ũ
is U�(r) after surgery along �. The vertical part is the cylinder [0, 1] × ∂U�(r).
The vertical and horizontal parts meet in the two corners, which are diffeomorphic to
∂U�(r). From [10] we know that we can extend the metric g onM to a metric gV on
V without decreasing scalar curvature too much. This construction can be performed
close to the surgery sphere and we get a metric on V with the following properties:

• gV is a product metric near the horizontal part of the boundary,

• gV restricts to g on the horizontal part U�(r) of the boundary,

• gV restricts to dx2 + g on a neighbourhood ∼= [0, 1] × A�(r − δ, r) of the
vertical part of the boundary,

• scalg
V ≥ S1 on V .
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Define (W, gW) = ([0, 1] × (M − U�(r)), dx
2 + g) ∪ (V , gV ) where the union is

taken along the common boundary [0, 1] × ∂U�(r).
We first prove that g̃ = gW |M̃ ∈ Rinv(M̃). For a contradiction assume that there

is a non-trivial harmonic spinor field ϕ on (M̃, g̃). Let χ : M → [0, 1] be a cut-
off function with χ = 0 on U�(r), χ = 1 on M − U�(2r), and | grad χ | ≤ 2

r
.

We can consider χ also a cut-off function on M̃ since it has support contained in

M − U = M̃ − Ũ . Set ψ = χϕ. The spinor field ψ is supported in M̃ − Ũ where
g̃ = g and can be considered a spinor field also for (M, g).

Since scalg̃ = scalg
V ≥ S1 on Ũ and scalg̃ = scalg ≥ 2S1 on A�(r, 2r), most

of the norm of ϕ will be concentrated away from these sets. Lemma 2.2 of [4] (a
straight-forward application of the Lichnerowicz formula) tells us that

‖ϕ‖2
Ũ∪A�(r,2r) ≤ −S0

S1 − S0
‖ϕ‖2

M̃
= 1

9
‖ϕ‖2

M̃
,

and it follows that

‖ψ‖2
M ≥ ‖ψ‖2

M−U�(2r) = ‖ϕ‖2
M̃−(Ũ∪A�(r,2r)) ≥ 8

9‖ϕ‖2
M̃
. (16)

Next we are going to show that ϕ has even less norm concentrated in the annular
region A�(r, 2r) when compared to the larger annular region A�(r, (2r)1/11). This
will follow from Lemma 2.6 and the fact that ϕ is harmonic. To apply this lemma we
need to show that

Re
∫
S�(ρ)

〈∇ g̃
ν ϕ, ϕ〉 dA ≥ 0 (17)

for all ρ ∈ [r, (2r)1/11]. Choose such a ρ and set M̂ = Ũ ∪ A�(r, ρ). Then M̂ is a
manifold with boundary ∂M̂ = S�(ρ) and scalg̃ ≥ S1 on M̂ . From the Lichnerowicz
formula we get

0 =
∫
M̂

〈(Dg̃)2ϕ, ϕ〉 dvg̃

=
∫
M̂

〈(∇ g̃)∗∇ g̃ϕ, ϕ〉 dvg̃ + 1
4

∫
M̂

scalg̃ |ϕ|2 dvg̃

≥ ‖∇ g̃ϕ‖2
M̂

−
∫
∂M̂

〈∇ g̃
ν ϕ, ϕ〉 dA+ 1

4S1‖ϕ‖2
M̂
,

so

Re
∫
∂M̂

〈∇ g̃
ν ϕ, ϕ〉 dA =

∫
∂M̂

〈∇ g̃
ν ϕ, ϕ〉 dA ≥ 1

4S1‖ϕ‖2
M̂

and (17) follows since S1 > 0. We now apply Lemma 2.6, which tells us that

‖ϕ‖2
A�(r,2r) ≤ 10r5/2‖ϕ‖2

A�(r,(2r)1/11)
.
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Using this estimate we compute

‖Dgψ‖2
M = ‖Dg̃(χϕ)‖2

M̃
= ‖ grad χ · ϕ‖2

M̃

≤ 4

r2 ‖ϕ‖2
A�(r,2r) ≤ 40r1/4‖ϕ‖2

A�(r,(2r)1/11)

≤ 40r1/4‖ϕ‖2
M̃

which together with (16) and the assumption on r tells us that

‖Dgψ‖2
M ≤ 45r1/4‖ψ‖2

M ≤ εg‖ψ‖2
M,

and this contradicts (15).
Let (W∞, gW ) be (W, gW) with half-infinite cylindrical ends attached. SinceDg

andDg̃ are both invertible we conclude that the essential spectrum ofDg
W

onW∞ has
a gap around 0, see for example [6, Proposition 3.24]. To prove that gW ∈ Rinv(W)

it thus remains to show that 0 is not an eigenvalue of Dg
W

on W∞, that is to show
that there are no harmonic spinors in L2(�W∞).

To get a contradiction assume that ϕ ∈ L2(�W∞) is a non-trivial harmonic
spinor field. Then ϕ is smooth and the pointwise norm decays exponentially on the
cylindrical ends, see for example [6, Lemma 3.21].

Let V∞ be V with the horizontal part of the boundary extended by half-infinite
cylinders. Then (W∞, gW ) = (R × (M − U�(r)), dx

2 + g) ∪ (V∞, gV ) where the
union is taken along the common boundary R × ∂U�(r). Set ψ = (χ � π)ϕ where
χ is the cut-off function on M defined above and π : R × M → M is the natural
projection. The spinor field ψ is supported inW∞ −V∞ = R× (M−U�(r))where
gW = dx2 + g so we can consider ψ to be a spinor field on (R ×M,dx2 + g).

From [4, Lemma 2.2] applied to V∞ ∪ AR×�(r, 2r) ⊂ W∞ it follows that

‖ψ‖2
R×M ≥ 8

9‖ϕ‖2
W∞ . (18)

We now apply Lemma 2.6 to R × � ⊂ R ×M . This can be done since |ϕ| decays
exponentially and since the positive scalar curvature on V∞ makes the computation
for Equation (17) work also in this case. The conclusion is that

‖ϕ‖2
AR×�(r,2r) ≤ 10r5/2‖ϕ‖2

AR×�(r,(2r)1/11)
.

Using this, (18) and the assumption on r we compute

‖Ddx2+gψ‖2
R×M = ‖DgW (χϕ)‖2

W∞ = ‖ grad χ · ϕ‖2
W∞

≤ 4

r2 ‖ϕ‖2
AR×�(r,2r) ≤ 40r1/4‖ϕ‖2

AR×�(r,(2r)1/11)

≤ 40r1/4‖ϕ‖2
W∞ ≤ 45r1/4‖ψ‖2

R×M
≤ εg‖ψ‖2

R×M
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which is a contradiction since the lower bound (15) holds also for the product Dirac
operator Ddx

2+g . We conclude that the spectrum of Dg
W

has a gap around 0, and
this finishes the proof of the proposition. �

3. Detecting components of Rinv(M) using the index

The alpha invariant of an n-dimensional compact spin manifoldM without boundary
is an element α(M) ∈ KOn(R) which only depends on the spin bordism class ofM .
The Index Theorem of Atiyah and Singer relates the alpha invariant ofM to an index-
quantity defined using the kernel of the Dirac operator defined with respect to some
metric. In particular we have the following

Proposition 3.1. SupposeM is a closed spin manifold with a metric g for whichDg

is invertible. Then α(M) = 0.

The first and obvious conclusion is that Rinv(M) is empty if α(M) �= 0. We are
going to use the alpha invariant to distinguish non-bordant metrics in Rinv(M), for
this we need some specific manifolds with non-zero alpha invariant specified in the
following theorem.

Theorem 3.2. For n = 4k+ 3, k ≥ 1, there are (n+ 1)-dimensional spin manifolds
Y i , i ∈ Z, with boundary ∂Y i = Sn, and metrics gY

i ∈ Rpsc(Y i), i ∈ Z, so that
α(Y i ∪Sn (Y j )−) = cn(i − j) where cn �= 0.

For n = 8k or n = 8k + 1, k ≥ 1, there are (n+ 1)-dimensional spin manifolds
Y i , i = 0, 1, with boundary ∂Y i = Sn, and metrics gY

i ∈ Rpsc(Y i), i = 0, 1, so that
α(Y 1 ∪Sn (Y 0)−) �= 0.

Proof. In dimensions n = 4k + 3, manifolds (Y i, gY
i
) with the required properties

are constructed in [13, Example 7.6, p. 328] using methods of [9].

For n = 8k and n = 8k + 1 let Y 0 be the disc Dn+1 and let gY
0

be a positive
scalar curvature metric on Y 0 which is equal to the standard metric gS

n
on the bound-

ary Sn and is product in a neighbourhood of the boundary. Let � be a homotopy
(n+ 1)-sphere with non-vanishing α-invariant, see [13, Theorem 2.18, p. 93], and let
f0, f1 : Dn+1 → � be two disjoint embedded discs. LetW be� with the interiors of
f0(D

n+1) and f1(D
n+1) removed, then W is a simply connected h-cobordism with

boundary consisting of two components ∂0W = f0(S
n) and ∂1W = f1(S

n). By the
h-Cobordism Theorem there is a diffeomorphism

(F, id, f ) : ([0, 1] × ∂0W, {0} × ∂0W, {1} × ∂0W) → (W, ∂0W, ∂1W).
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Define Y 1 to be � with the interior of f1(D
n+1) removed and identify ∂Y 1 with

Sn using f1. Then Y 1 = W ∪∂0W f0(D
n+1). On W we set gY

1 = (F−1)∗(dx2 +
(f−1

0 )∗gSn) and on f0(D
n+1)we set gY

1 = (f−1
0 )∗gY 0

. Since gY
0

restricts to gS
n

on

Sn the definitions of gY
1

fit together to a smooth metric of positive scalar curvature
on Y 1. Finally

α(Y 1 ∪Sn (Y 0)−) = α((Z − int f1(D
n+1)) ∪f1(Sn) f1(D

n+1)−) = α(Z) �= 0

and we are done. �

Define hi ∈ Rpsc(Sn) by hi = gY
i |Sn .

Theorem 3.3. Let M be a compact spin manifold of dimension n and suppose g ∈
Rinv(M). Then

• if n = 4k + 3, k ≥ 1, there are metrics gi ∈ Rinv(M), i ∈ Z, such that gi is
bordant to g and gi is not concordant to gj for i �= j ,

• if n = 8k or n = 8k + 1, k ≥ 1, there is a metric g1 ∈ Rinv(M) such that g1 is
bordant but not concordant to g.

Proof. We prove the theorem in the case n = 4k+ 3, the other cases are similar. Fix
i ∈ Z. By Proposition 2.5 there is a metric gi on M # Sn = M which is bordant to
g 	 hi onM 	 Sn. Since the metric hi on Sn is bordant to the empty manifold by the
bordism (Y i, gY

i
) we conclude from Corollary 2.2 that gi is bordant to g.

Denote by (Wi, gW
i
) the bordism between (M, gi) and (M, g) we have just

constructed. The manifold Wi is diffeomorphic to the boundary connected sum of
[0, 1] ×M with Y i .

Take i, j ∈ Z and suppose the metrics gi and gj are concordant. By Proposi-
tion 2.1 we can then find a metric with invertible Dirac operator on Wi ∪ (Wj )−,
where the union is obtained by attaching the isometric boundary components (M, g)
to each other and by attaching (M, gi) to (M, gj ) through a concordance of the met-
rics. Proposition 3.1 then tells us that α(Wi ∪ (Wj )−) = 0. Since Wi ∪ (Wj )−
is diffeomorphic to the connected sum of S1 × M and Y i ∪Sn (Y j )− we get 0 =
α(Wi ∪ (Wj )−) = α(S1 ×M)+ α(Y i ∪Sn (Y j )−) = α(Y i ∪Sn (Y j )−) = cn(i − j)
so i = j . �

By Corollary 2.4 this result implies in dimensions n = 4k + 3 that if Rinv(M)

is non-empty, then it has infinitely many path-components. In dimensions n = 8k,
8k + 1 the result implies that if Rinv(M) is non-empty, then it has at least two path-
components. We conclude that in these dimensions every closed spin manifold has
a metric with non-trivial kernel of the Dirac operator, which reproves theorems by
Hitchin [12, Theorem 4.5] and Bär [3, Theorem A].
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4. Cyclic group actions and metrics with harmonic spinors

LetM be a compact simply connected spin manifold and supposeM → N is a finite
covering with covering group G. We do not assume that the quotient N is spin or
orientable. Our goal is to find metrics on M with non-trivial harmonic spinors. The
idea is to use the eta-invariant to show that N has metrics with non-trivial harmonic
spinors for generalized spin structures, and then pull such a metric back to M . This
works under certain conditions on G and dimM , in particular we find metrics with
harmonic spinors on spheres in all dimensions.

Theorem 4.1. Let M be a compact simply connected spin manifold of dimension
n ≥ 5 and suppose M → N is a finite covering with covering group π1(N) = Z/l.

(1) If n is odd assume that N is orientable.

(2) If n = 2k is even assume that l = 2 and that N is non-orientable with a Pin+
structure if k is even or with a Pin− structure if k is odd.

Then M has a Z/l-invariant metric with harmonic spinors.

The proof relies on work of Botvinnik and Gilkey [7]. Using results of [11] and
[2] the argument can also be made to work with other groups and other assumptions on
generalized spin structure on N . The proof will be given through a series of lemmas
in the rest of this section.

Corollary 4.2. For n ≥ 5 there is a metric with harmonic spinors on the sphere Sn.

Proof. We obtain a metric with harmonic spinors on Sn by applying Theorem 4.1 to
the covering Sn → Pn where Pn is real projective space of dimension n. In odd
dimension Pn is orientable, in even dimension Pn is non-orientable and has a Pin±
structure as required. �

4.1. Twisted spin structures and Pin structures. Following [7] we discuss twisted
spin structures and Pin structures.

4.1.1. Twisted spin groups and twisted spin structures. Let Z/2 be the group of
two elements written multiplicatively, Z/2 = {±1}. Let

1 → Z/2 → G
μ−→ G → 1 (19)

be a central extension of a finite groupG, this gives an action of Z/2 on G. The group
Spin(n) is a double cover SO(n), identifying Z/2 with the kernel of the covering
homomorphism gives an action of Z/2 on Spin(n). Define the twisted spin group
J(G, μ,G) = Spin(n)×Z/2 G where we identify (θ, λ) = (−θ,−λ) for θ ∈ Spin(n)
and λ ∈ G. The twisted spin group J(G, μ,G) is a double cover of SO(n)×G.
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Let N be an n-dimensional oriented Riemannian manifold with oriented frame
bundle SO(N). A J(G, μ,G)-structure on N is a principal J(G, μ,G)-bundle
J(G, μ,G)(N) and an equivariant covering J(G, μ,G)(N) → SO(N) which over
open setsU in a suitable open cover ofN trivializes as J(G, μ,G)×U → SO(n)×U .
A manifold equipped with a J(G, μ,G)-structure is called a J(G, μ,G)-manifold.
The map μ gives an extension

1 → Spin(n) → J(G, μ,G)
μ−→ G → 1,

through this a J(G, μ,G)-structure J(G, μ,G)(N) on N defines a homomorphism
μ̌ : π1(N) → G as the composition of the holonomy of J(G, μ,G)(N) with μ. If
μ̌ is the trivial homomorphism then there is a spin structure Spin(N) on N so that
J(G, μ,G)(N) = Spin(N)×Z/2 G.

Suppose M is a compact simply connected spin manifold such that M is an
oriented covering space of an oriented manifold N . Let G = π1(N) be the covering
group. In [7, Theorem 1.1] a canonical J(G, μ,G)-structure on N with the property
that the map μ̌ is an isomorphism is constructed. The extension (G, μ,G) is given
by the lift of the action ofG on the frame bundle SO(M) to the spin bundle Spin(M)
and is split if and only if N is spin. The J(G, μ,G)-structure on N is given by the
quotient of Spin(M)×Z/2 G by G.

4.1.2. Spinor bundles and Dirac operators for twisted spin structures. Let N
be a compact oriented n-dimensional with a J(G, μ,G)-structure J(N). Let h be a
Riemannian metric on N . Let α be a unitary representation of G which is odd with
respect to the action of Z/2, that is α(−λ) = −α(λ) for all λ ∈ G. We denote by
Repodd(G) the semi-ring of odd unitary representations of G. Let � be the spinor
representation of Spin(n), it holds that �(−θ) = −�(θ) for all θ ∈ Spin(n). Since
�(θ)⊗α(λ) = �(−θ)⊗α(−λ) the tensor product�⊗α gives a unitary representation
of J. Let �αN be the unitary vector bundle associated to J(N) via � ⊗ α, this is
a bundle of twisted spinors. As with ordinary spinors there is a Clifford action by
tangent vectors on �αN , and the Levi-Civita connection lifts to a connection on
�αN . The Dirac operator Dh,α acting on sections of �αN is defined as usual.

4.1.3. Pin groups and Pin structures. The Clifford algebras Clif±(n) are defined
as the universal algebra with unit generated by R

n with the relations v ·w +w · v =
±2(v,w), for v,w ∈ R

n. The groups Pin±(n) are defined as the multiplicative
subgroups of Clif±(n) generated by the unit vectors in R

n. Define χ : Pin±(n) →
Z/2 by χ(v1 . . . vk) = (−1)k and �± : Pin±(n) → O(n) by �±(x) : v �→ χ(x)x ·
v ·x−1. Then�± are two double coverings of O(n)which both restrict to Spin(n) →
SO(n).

Let N be an n-dimensional Riemannian manifold with frame bundle O(N). A
Pin±-structure onN is a principal Pin±-bundle Pin±(N) together with an equivariant
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covering Pin±(N) → O(N), which over open sets U in a suitable open cover of N
trivializes as Pin± ×U → O(n) × U . A manifold equipped with a Pin±-structure
is called a Pin±-manifold. If the set of Pin±-structures on N is non-empty, then the
cohomology group H 1(N; Z/2) acts simply and transitively on this set. So on a
simply connected spin manifold there are unique Pin±-structures given as extensions
of the unique spin structure.

4.1.4. Spinor bundles and Dirac operators for Pin structures. LetN be a compact
n-dimensional Riemannian manifold with a Pin±-structure Pin±(N). Let � be the
spinor representation of Pin±(n), and let�N be the unitary vector bundle associated
to Pin±(N) via �, this is sometimes called a pinor bundle. As with ordinary spinors
there is a Clifford action by tangent vectors on �N , and the Levi-Civita connection
lifts to a connection on �N . The Dirac operator Dh acting on sections of �N is
defined as usual.

4.1.5. Pullback to the universal covering space. LetN be a compact Riemannian
manifold with universal covering space M . Assume that M is spin and that N has a
J-structure J(N)where J = J(G, μ,G) or J = Pin±. The pullback of J(N) toM is
given by an extension of the spin bundle overM . In case J = J(G, μ,G) the pullback
of �αN is given by �M ⊗ C

d where d is the dimension of the representation α. In
case J = Pin± the pullback of �N is given by �M . In both cases the pullback of
the Dirac operator on N defined using some metric is given by the Dirac operator on
M with the pullback metric.

Let M and N be as in Theorem 4.1. If n is odd N has a J(G, μ,G)-structure
for G = Z/l, and we say that (N, h) has harmonic spinors if Dh,α has a non-trivial
kernel for some α ∈ Repodd(G). If n is even we say that (N, h) has harmonic spinors
if the Dirac operatorDh associated to the Pin±-structure has a non-trivial kernel. The
following lemma is now obvious.

Lemma 4.3. Let M and N be as in Theorem 4.1. If (N, h) has harmonic spinors
then the pullback of h to M is a Z/l-invariant metric with harmonic spinors.

4.2. Positive scalar curvature onN . Using known results on the Gromov–Lawson–
Rosenberg conjecture we can prove the following lemma.

Lemma 4.4. Let M and N be as in Theorem 4.1. If M has no Z/l-invariant metric
with harmonic spinors then N has a metric of positive scalar curvature.

Proof. The Gromov–Lawson–Rosenberg conjecture for compact manifolds with fi-
nite fundamental group states the following [14, Conjecture 5.1]: A closed manifold
of dimension n ≥ 5 with finite fundamental group admits a metric with positive scalar
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curvature if and only if all index obstructions associated to Dirac operators with coef-
ficients in flat bundles onN and its covers vanish. This conjecture is known to be true
in the situation at hand; for orientable manifolds with cyclic fundamental group by [8,
Theorem 1.1] and [15, Theorem A], for non-orientable manifolds with fundamental
group Z/2 by [14, Theorem 5.3]. So ifN did not have any metric with positive scalar
curvature then the index and the kernel of some Dirac operator on a cover ofN would
be non-zero. We could then take the pullback of a metric from N to M to produce a
Z/l-invariant metric with harmonic spinors on M , a contradiction. �

4.3. The eta invariant. Let M be a closed Riemannian manifold and let V be a
smooth vector bundle overM . Let P be an operator of Dirac type acting on the space
of smooth sections of V . For complex numbers z with large real part the eta function
of Atiyah, Patodi, and Singer [1] is defined as η(z, P ) = TrL2(P (P 2)−(z+1)/2). This
function has a meromorphic extension to C for which z = 0 is a regular value, and
the eta invariant of P is defined as η(P ) = 1

2 (η(0, P )+ dim ker P).
For a closed Riemannian J(G, μ,G)-manifold (N, h) and for α ∈ Repodd(G) we

define η(N, h, α) as η(Dh,α). Let Rodd(G) be the representation ring associated to
Repodd(G) and let Rodd

0 (G) be the augmentation ideal consisting of virtual represen-
tations of virtual dimension 0. The eta invariant η(N, h, α) is additive in α so we
may extend its definition to α ∈ Rodd(G).

For a closed Pin±-manifold (N, h) we define η(N, h) as η(Dh).

Lemma 4.5. Let M and N be as in Theorem 4.1. Let h0, h1 be two metrics on N
and assume that M has no Z/l-invariant metric with harmonic spinors.

(1) If dimM is odd and N carries a J(G, μ,G)-structure then η(N, h0, α) =
η(N, h1, α) for all α ∈ Rodd

0 (G).

(2) If dimM is even and N carries a Pin±-structure then η(N, h0) = η(N, h1).

Proof. Let hτ , τ ∈ [0, 1], be a smooth curve of metrics on N with hτ = h0 for τ
near 0 and hτ = h1 for τ near 1. Lemma 4.3 tells us that the Dirac operator of hτ
is invertible for all τ . Define metrics ht on Nt = [0, t] × N by ht = dτ 2 + hτ/t
for t > 0. Using the same computation as in Proposition 2.3 we conclude that
(Nt , ht ) has invertible Dirac operator for t large enough when half-infinite cylinders
are attached at the boundary.

First suppose that dimM is odd and that N has a J(G, μ,G)-structure. Let α ∈
Rodd

0 (G) be the formal difference of α+, α− ∈ Repodd(G) where dim α+ = dim α−.
The Atiyah–Patodi–Singer index theorem [1] tells us that

ind(Dht ,α
±
) = (dim α±)

∫
Nt

Â(ght )− ε(η(N, h1, α±)− η(N, h0, α±)).
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Here ind(Dht ,α
±
) is the index ofDht ,α

±
acting on the space of sections of the positive

half spinor bundle satisfying the Atiyah–Patodi–Singer boundary condition, Â(ht ) is
the Â differential form computed using the metric ht , and ε = ±1 is a constant
depending only on the dimension. Any harmonic spinor field satisfying the Atiyah–
Patodi–Singer boundary conditions extends to an L2 harmonic spinor field when
half-infinite cylindrical ends are attached. Since ht has invertible Dirac operator we
conclude that the index is zero. We get

η(N, h1, α)− η(N, h0, α) = η(N, h1, α+)− η(N, h1, α−)
− η(N, h0, α+)+ η(N, h1, α−)

= ε(dim α+ − dim α−)
∫
Nt

Â(ght )

= 0,

which proves (1).
Next suppose that dimM is even and that N has a Pin±-structure. Since Nt is

then odd-dimensional there is no integral of a local index density in the index formula
for (Nt , ht ), and we have

ind(Dht ) = ε(η(N, h1)− η(N, h0)),

where ε = ±1 is a constant depending only on the dimension. Again the index
vanishes since ht has invertible Dirac operator and we have proven (2). �

4.4. Proof of Theorem 4.1. In the work [7] of Botvinnik and Gilkey the space
Rpsc(N) is studied for a compact manifold N which is either odd-dimensional with
a J(G, μ,G)-structure and a finite fundamental group satisfying a certain condition
or even-dimensional with fundamental group Z/2 and a Pin±-structure. The authors
construct metrics in Rpsc(N) with different values of the eta invariant as follows.
Assume h ∈ Rpsc(N). First a (disconnected) manifold (N ′, h′) is found which
represents zero in an appropriate bordism group and has positive scalar curvature
and non-zero eta invariant. The disjoint union N 	 N ′ is then bordant to N and the
metric h 	 h′ of positive scalar curvature can be extended over the bordism to give
a metric h1 ∈ Rpsc(N). The eta invariant is the same for psc-bordant metrics so
η(N, h1) = η(N, h)+ η(N, h′) �= η(N, h).

Proof of Theorem 4.1. Assume that M has no Z/l-invariant metric with harmonic
spinors. From Lemma 4.4 we know thatN has a metric with positive scalar curvature.
As discussed above, the proof of Theorem 3.1 of [7] gives us two metrics on N with
different η-invariant, which by Lemma 4.5 is impossible. �
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