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A quasi-periodic minimal surface
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Abstract. We construct a properly embedded minimal surface in the flat product R
2 ×S

1 which
is quasi-periodic but not periodic.
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1. Introduction

Quasi-periodicity is a popular subject in both mathematics and physics. Probably
the most famous examples are Penrose’s quasi-periodic tiling, and quasi-periodic
crystals.

Recall that a planar tiling T is quasi-periodic if any finite part of the tiling repeats
infinitely many often. In other words, for arbitrary R > 0, the tiling T contains an
infinite number of translation copies of T ∩ B(0, R) where B(0, R) is the ball of
radius R centered at 0.

Of course, for minimal surfaces, it is too much to ask that a part of the surface
repeats exactly, because then by analytic continuation the whole surface would be
periodic. We are thus led to the following definition, which was suggested to the
authors by H. Rosenberg.

Definition 1. A complete minimal surfaceM in R
3 is quasi-periodic if there exists a

diverging sequence of translations (Tn)n∈N, such that Tn(M) converges smoothly to
M on compact subsets of R

3.

While writing this paper, the authors discovered that the same notion had been
introduced by Meeks, Perez and Ros in recent papers ([11], Theorem 1, [12], Defini-
tion 1, [13], Definition 1.5).

Of course a periodic minimal surface is quasi-periodic. A natural, and open, ques-
tion is whether there exists quasi-periodic minimal surfaces which are not periodic. In
this paper we answer this question when the ambient space is the flat product R

2 ×S
1

instead of R
3. The definition of quasi-periodicity is exactly the same in this case.
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Theorem 1. There exists a complete embedded minimal surface in R
2 × S

1 which is
quasi-periodic but is not periodic. This surface has bounded curvature, infinite total
curvature, infinite genus, infinitely many ends and two limit ends.

Let us now explain informally how this surface is constructed. H. Karcher has
constructed a family of doubly periodic minimal surfaces in R

3 which he called the
“toroidal halfplane layers” [4]. They were the first complete, properly embedded,
doubly periodic minimal surfaces to be found since H. Scherk’s classical example.
The toroidal halfplane layers have two periods: a horizontal period T and a vertical
period (0, 0, 1). We may identify the quotient of R

3 by the vertical period (0, 0, 1)
with R

2 × S
1. So the toroidal halfplane layers project to simply periodic minimal

surfaces in R
2 × S

1, with period T . They have genus zero.
A very successful heuristic to construct new examples of minimal surfaces is

to start from a simple example, and to complicate it by adding handles. One can
start from a very symmetric example and break the symmetries by adding handles at
suitable places.

Several people have added handles to H. Karcher’s toroidal halfplane layers. The
first one was F. Wei [18]. He was able to add one handle per fundamental piece in a

Figure 1. Left: one of Karcher’s toroidal halfplane layers. Right: one of the Wei surfaces. A
fundamental domain is highlighted for each. Both surfaces extend periodically vertically and
horizontally. The fundamental domains of these two surfaces are the basic building blocks for
the surface we construct: we assemble them in a quasi periodic, non periodic way. Computer
images made by the authors using J. Hoffman’s MESH software.

periodic way. The resulting surfaces have infinite genus in R
2 × S

1 and are periodic.
W. Rossman, E. Thayer and M. Wolgemuth [16] have added handles in various ways
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to the toroidal halfplane layers, still requiring periodicity. Recently, the first author
was able to add one single handle to the toroidal halfplane layers, without requiring
horizontal periodicity. The resulting surfaces in R

2 × S
1 have genus one and are not

periodic anymore.
In this paper we add an infinite number of handles to the toroidal halfplane layers,

so the resulting surface have infinite genus, but without requiring horizontal period-
icity. In fact the placement of the handles will be prescribed by a sequence of integers
(pi)i∈Z. If this sequence if quasi-periodic but not periodic, the resulting surface will
be quasi-periodic but not periodic.

To construct our surface, we follow the main lines of H. Karcher’s conjugate
Plateau construction. The principle is to first construct a minimal surface with bound-
ary made of straight edges. Typically this surface is constructed by solving a Dirichlet
boundary value problem on a polygonal domain with piecewise linear boundary data.
(The boundary data may take on infinite values, in which case this is called a Jenkins–
Serrin type problem.) Then one considers the conjugate minimal surface which is
bounded by planar geodesics. If the polygonal boundary of the first surface is well
chosen, the conjugate surface will extend by symmetry to an embedded, complete
minimal surface. Adjusting the lengths of the edges so that this is the case is called
the Period Problem. The difficulty of solving this problem is the main limitation of
the method.

We add one more step to this construction. We first solve a Dirichlet boundary
value problem for the maximal graph equation, with piecewise linear boundary data.
Then we consider the conjugate function, whose graph is minimal. Then as above
we consider the conjugate minimal surface, solve the Period Problem and extend by
symmetry. So there are two consecutive conjugations, although of a different nature.
The advantage of this approach is that part of the Period Problem (namely the vertical
part) will be automatically solved. More details on maximal surfaces will be given
in Section 2.

In our case, since we add infinitely many handles in a non-periodic way, we are
faced with an infinite dimensional Period Problem. We begin by adding a finite num-
berN of handles. We solve the Period Problem using the Poincaré–Miranda Theorem,
which is a naturalN -dimensional extension of the intermediate value theorem. Then
we let N → ∞.

2. Preliminaries

2.1. Minimal and maximal graphs. Let u be a function on a domain� ⊂ R
2. The

graph of u is a minimal surface if u satisfies the minimal graph equation

div

( ∇u√
1 + |∇u|2

)
= 0. (1)
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This equation is equivalent to the fact that the conjugate 1-form

d�u = ux√
1 + |∇u|2 dy − uy√

1 + |∇u|2 dx

is closed. Locally, d�u is then the differential of a function �u called the conjugate
function. Then v = �u is a solution of the maximal graph equation

div

( ∇v√
1 − |∇v|2

)
= 0. (2)

This is called the maximal graph equation because v satisfies (2) if its graph is a
maximal surface in the Lorentzian space L

3, namely a space-like surface which is a
critical point for the area functional.

Conversely, let v be a solution of (2). Then the conjugate 1-form

d�v = vy√
1 − |∇v|2 dx − vx√

1 − |∇v|2 dy

is closed. Hence locally d�v is the differential of a function u = �v which solves
the minimal graph equation (1). Moreover up to a constant, ��u = u.

2.2. The Dirichlet boundary value problem. Let � ⊂ R
2 be a bounded domain.

Let v : � → R be a smooth function satisfying (2). Then |∇v| < 1 hence v is
Lipschitz and extends continuously to ∂�, so we can talk about the boundary values
of v. (For this to be true, we need some regularity of the boundary of �. All the
domains we consider will have piecewise smooth boundary.)

We need to construct solutions v of the maximal graph equation (2) in �, with
prescribed boundary values, and with singularities at some prescribed points inside
�. For this we use the following theorem, which is a consequence of Theorem 1 in
[5] and Theorem 4.1 in [2]:

Theorem 2. Let � ⊂ R
2 be a bounded domain. Let S ⊂ � be a finite set (the

singular set). Let ϕ : ∂� ∪ S → R be a given function such that

|ϕ(p)− ϕ(p′)| ≤ d�(p, p
′) for all p, p′ ∈ ∂� ∪ S, p �= p′, (3)

where the inequality is strict whenever the segment [p, p′] is not contained in ∂�.
Then there exists a function v : � → R which satisfies the maximal graph equation (2)
in � \ S, with boundary data v = ϕ on ∂� ∪ S. This function is smooth in � \ S.
(Here d� is the intrinsic distance of�, so if� is convex, it agrees with the Euclidean
distance.)
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2.3. Some complements on the correspondence v ↔ �v . Since we obtain solu-
tions v to the Dirichlet problem for (2), we need to understand the behaviour of the
conjugate function �v near the boundary. The first result describes the behaviour
near the boundary of the domain �.

Lemma 1 ([3] and [9]). Let v be a solution of (2) on � and T ⊂ ∂� be an open
straight segment oriented as ∂�. Then

∫
T
dv = |T | if and only if�v diverges to +∞

on T .

Now we shall describe the behaviour near a singularity in the domain. Let v be a
solution of (2) on a punctured disk D

∗ (with D = {(x, y) ∈ R
2| x2 +y2 < r2}). Then

the conjugate function u = �v is not well defined on D
∗; actually, u is multivalued

in the sense that when we turn around the origin we need to add a constant to u: this
constant is given by

∫
γ
d�v where γ generates π1(D

∗). If this constant vanishes, u
is well defined and so extends smoothly to the whole disk; v then also extends to D

and the origin is a removable singularity for v.
In the case

∫
γ
d�v �= 0, the graph of the multivalued function u has then the shape

of a half-helicoid. On the boundary of the cylinder D × R the graph is bounded by a
helix-like looking curve. It is bounded by a vertical straight line above the origin.

In fact in the paper, we are always in the case where v is positive and vanishes at
the origin. This first implies that

∫
γ
d�v �= 0. Besides, Theorem 4.2 in [9] proves

that the graph of u is bounded by a vertical straight line above the origin.

2.4. Convergence of sequences of solutions. We shall study many times the con-
vergence or the divergence of sequences of solutions to (2). In this subsection, we
expose some results that we will use. Actually, these results were developed by the
first author in [7], [9] for solutions of (1); the correspondence u ↔ �u and v ↔ �v
translates them to solutions of (2). Here the convergence that we shall consider is the
Ck convergence on compact subsets of the domain for every k.

So let us consider a sequence (vn)n∈N of solutions to (2) which are defined on
a domain �. We first notice that since each vn is Lipschitz continuous there exists
a subsequence of (vn − vn(q)) (where q ∈ � is a fixed point) that converges to a
Lipschitz function v on �; but the convergence is only C0 and v is a priori not a
solution to (2). However, since we have convergence on �, we can talk about the
boundary value of the limit.

To study the smooth convergence, we first define the convergence domain of the
sequence by

B((vn)n∈N) = {p ∈ � | sup
n

{|∇vn|(p)} < 1}.

B((vn)n∈N) is an open subset of � and on each component �′ of it, there is
a subsequence of (vn − vn(q))n∈N converging Ck on compact subsets of �′ to a
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solution v of (2), where q is some fixed point in �′. We notice that all solutions
of (2) that we shall consider are bounded by 1; thus we do not need to use the
vertical translation by vn(q) to ensure the convergence. Besides � \ B((vn)n∈N) is
the union of straight lines ∪iLi , where each Li is a component of the intersection of
a straight line with �. The Li are called divergence lines of the sequence (vn)n∈N

since supn{|∇vn|(p)} = 1 for p ∈ Li ; more precisely we have

Lemma 2. Letp be a point in a divergence lineL, then a subsequence of (∇vn(p))n∈N

converges to one of the two unit generating vectors of L.
Besides, if T is a segment in L, it holds that

∫
T
dvn → ±|T | for a subsequence.

To ensure the convergence of a subsequence of (vn)n∈N on � it then suffices to
prove there are no divergence line. The above lemma is one tool in that direction.
The following one is another.

Lemma 3. Let us assume that one part of the boundary of � is a segment [a, b]. If
for every n |vn(a)− vn(b)| = |a− b|, then no divergence line can end in the interior
of [a, b].

Actually in this paper, the solutions are not defined on the same domain �: we
have in fact a sequence of domains (�n)n∈N and each solution vn is defined on �n.
So to make sense to the above definition we need to introduce the limit domain �∞:

�∞ =
⋃
p∈N

Int
( ⋂
k≥p

�k

)
.

A point is then in �∞ if a neighborhood of this point is included in all �k for k
great enough. With this definition, we have anew the convergence domain and the
divergence lines by replacing � by �∞.

We notice that when (�n)n∈N is an increasing sequence, �∞ is simply the union
of all the �n. In this paper, the sequence �n is often � \ Sn where Sn is a locally
finite set of points. If (Sn) converges on compact subsets to a locally finite subset S∞
then �∞ = � \ S∞.

3. The fundamental piece

3.1. The Dirichlet boundary value problem. In this section we solve a Dirichlet
boundary value problem for the maximal graph equation (2) in an infinite strip. The
solution v will have singularities at some prescribed points. The position of these
singularities are the parameters of our construction. (Each singularity is responsible
for one handle of the minimal surface we are constructing. In later sections, we will
adjust these parameters so that the Period Problem is solved.)
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Fix some 	 > 0 and let � be the strip R × (−	, 	). Let us define the boundary
data ϕ on ∂� as follows: for k ∈ Z, let a+

k = (k, 	) and a−
k = (k,−	). Define ϕ

on the segment [a±
2k−1, a

±
2k+1] by ϕ(p) = |p − a±

2k|. In other words ϕ is piecewise
affine on ∂�, with value 0 at a±

2k and 1 at a±
2k+1 (see Figure 2).

Let S be a closed, discrete subset of the horizontal line y = 0. It will be convenient
to identify the x-axis with R and see S as a subset of R. When S is finite, we write
S = {q1, . . . , qN } and assume that q1 < q2 < · · · < qN . When S is infinite, we may
write S = {qi : i ∈ I }, with qi < qi+1, where I is either N, −N or Z, depending
on whether S is bounded from below, bounded from above, or neither. Finally, we
define ϕ = 0 on S.

a+
2k

a−
2k+1

a−
2k

a+
2k+1

qi qi+1

�

0 1 0 1 0

0 0

0 1 0 1 0

Figure 2. The Dirichlet boundary value problem.

Proposition 1. Let � and S be as above. Assume that

|q − a+
2k+1| > 1 for all q ∈ S, k ∈ Z. (4)

Then there exists a function v on � which solves (2) in � \ S, with boundary data
v = ϕ on ∂� ∪ S. Moreover, 0 ≤ v ≤ 1 in �. The function v is unique.

We call the function v the solution to the Dirichlet problem in � \ S. When
needed, we will write v = v[S].
Remark 1. The condition (4) is automatically satisfied when 	 > 1. We are however
mostly interested in the case 	 < 1, as this is the only case where we know how to
solve the Period Problem.

Proof of the proposition. For n ∈ N
∗, consider the box �n = (−2n, 2n)× (−	, 	).

We first solve the Dirichlet problem on �n and then let n → ∞. Let Sn = S ∩�n.
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Define ϕn on ∂�n∪Sn by ϕn = ϕ on the horizontal edges [−2n, 2n]× {±	}, ϕn = 0
on the vertical edges {±2n} × [−	, 	], and ϕn = 0 on the singular set Sn.

Claim 1. The function ϕn on ∂�n ∪ Sn satisfies the condition (3) of Theorem 2.

Proof. Consider p, p′ ∈ ∂�n ∪ Sn, p �= p′.
• If p and p′ are both on the line y = 	, then clearly |ϕn(p)−ϕn(p′)| ≤ |p−p′|.
• If p and p′ are on ∂�n, let p̃ and p̃′ be the projections of p and p′ on the line
y = 	. Then

|ϕn(p)− ϕn(p
′)| = |ϕn(p̃)− ϕn(p̃

′)| ≤ |p̃ − p̃′| ≤ |p − p′|.
Moreover, if the segment [p, p′] is not horizontal, the last inequality is strict. If
the segment [p, p′] is horizontal, and is not included in ∂�n, then p and p′ are
both on the vertical edges, so |ϕn(p)− ϕn(p

′)| = 0 < |p − p′| as required.

• If p is on ∂�n and p′ = q ∈ S: if p is on a vertical edge, then ϕn(p) = ϕn(q) =
0. If p is on the segment [a+

2k, a
+
2k+1], we have

|ϕn(p)−ϕn(q)| = |p−a+
2k| = 1−|p−a+

2k+1| ≤ 1+|q−p|−|q−a+
2k+1| < |p−q|

where we have used the triangle inequality and the hypothesis of Proposition 1.
The case where p is on the segment [a+

2k−1, a
+
2k] is similar, and the case where

p is on the line y = −	 follows by symmetry of ϕn.

• If p, p′ are both in S, then ϕn(p) = ϕn(p
′) = 0. �

By Theorem 2, there exists a solution vn of the maximal graph equation (2) on
�n \ Sn with boundary data ϕn. Since vn extends continuously to the compact set
�n, vn is bounded. By the maximum principle for the maximal graph equation, vn
reaches its maximum and its minimum at a boundary point or a singular point, so
0 ≤ vn ≤ 1 in �n. Consider now the sequence (vn)n. Let L be a divergence line.
Let T ⊂ L be a segment, then lim

∫
T
dvn = ±|T |. Since vn is bounded, this implies

that L has finite length so L is a segment connecting two points p and p′ on ∂�∪ S.
Then

|ϕ(p)− ϕ(p′)| =
∣∣∣∣
∫ p′

p

dvn

∣∣∣∣ → |p − p′| ⇒ |ϕ(p)− ϕ(p′)| = |p − p′|

which contradicts claim 1 since L ⊂ �. Hence there are no divergence lines, so
passing to a subsequence, (vn)n converges on compact subsets of � to a function v,
which is a solution of (2) in � \ S with boundary data ϕ on ∂� ∪ S. Uniqueness
follows from Theorem 2 in [10]. �
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3.2. The minimal graph. In this subsection and the following one, we assume that
S = {q1, . . . , qN } with q1 < · · · < qN . Let v be the solution of the Dirichlet problem
on� \S, given by Proposition 1. Let�+ be the strip R × (0, 	). Since�+ is simply
connected and v is smooth in �+, the conjugate function u is well defined (up to a
constant) in �+. The graph of u is a minimal surface. In this section we describe
geometrically its boundary.

By uniqueness, v satisfies v(x,−y) = v(x, y) in �. Hence on the x-axis, away
from the singular points q1, . . . , qN , we have vy = 0. From the definition of�v , this
gives ux = 0. Hence u is locally constant on the x-axis minus the singular points,
with a finite number of jumps at the points q1, . . . , qN . On the line y = 	, u goes to
+∞ on the segments (a+

2k−1, a
+
2k) and to −∞ on the segments (a+

2k, a
+
2k+1), k ∈ Z

(see Lemma 1).
LetM be the graph ofu on the strip�+. The minimal surfaceM is bounded by ver-

tical linesAk above the points a+
k , k ∈ Z, byN vertical segments Bi above the points

qi , i = 1, . . . , N , by N − 1 horizontal segments Ci above the segments (qi, qi+1),
i = 1, . . . , N − 1 and by two horizontal half-lines C0 and CN above (−∞, q1)

and (qN,+∞) (see Figure 3). The heights of the horizontal pieces C0, . . . , CN are
unknown.

�+
a+

2k a+
2k+1

qi qi+1

+∞−∞+∞−∞

Figure 3. The minimal graph.

3.3. The conjugate minimal surface. Let M∗ be the conjugate minimal surface
to M . The third coordinate of M∗ (seen as an immersion of the strip �+) is the
function v, so M∗ lies in the slab 0 ≤ z ≤ 1. Let A∗

k , B
∗
i and C∗

i denote the
corresponding conjugate curves on M∗ (see Figure 4). Then the A∗

k , k ∈ Z, and B∗
i ,

i = 1, . . . , N , are horizontal geodesics. From the boundary values of v, A∗
2k and B∗

i

lie in the plane z = 0, while A∗
2k+1 lies in the plane z = 1. Each C∗

i , i = 0, . . . , N
is a geodesic contained in a vertical plane parallel to the plane x = 0. There is no
reason however that all C∗

i are in the same vertical plane: this is the Period Problem,
which we will consider in the next section.

Remark 2. The function u is the solution of a Jenkins–Serrin type problem on the
strip �+. One possible way to construct M would be to directly solve this Jenkins–
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in plane z = 0

in plane z = 1

in vertical plane

A∗
2k

A∗
2k+1

Fi

C∗
i

B∗
i

Figure 4. The conjugate minimal surface, Period Problem not solved.

Serrin problem, with the jumps of u at each point qi as parameters. Then we would
have to adjust these parameters to guarantee that the conjugate curvesB∗

i all lie in the
plane z = 0. This means another Period Problem to solve. It is automatically solved
in our maximal graph approach.

4. The Period Problem

In this section, we first formulate the Period Problem in general. Then we solve it
provided that 	 < 1 and there is a finite number of singularities q1, . . . , qN , which
are not too close from each other. Our solution to the Period Problem is based on the
Poincaré–Miranda Theorem:

Theorem 3 (Poincaré–Miranda). Let F = (F1, . . . , FN) be a continuous map from
[0, 1]N to R

N . Write x = (x1, . . . , xN). Assume that for each i, Fi(x) is negative
on the face xi = 0, while Fi(x) is positive on the face xi = 1. Then there exists
x0 ∈ [0, 1]N such that F(x0) = 0.

4.1. Formulation of the Period Problem. Let � and S be as in Proposition 1, and
let v be the solution of the Dirichlet problem in�\S. Let u be the conjugate function
of v and X∗ = (X∗

1, X
∗
2, X

∗
3) be the conjugate minimal surface to the graph of u.

Both u and X∗ are only locally well defined, but their differentials are well defined
in � \ S. Explicitly, dX∗ is given by

dX∗
1 = uxuydx + (1 + (uy)

2)dy√
1 + |∇u|2 , (5)
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dX∗
2 = −(1 + (ux)

2)dx − uxuydy√
1 + |∇u|2 , (6)

dX∗
3 = dv.

The Period Problem asks that X∗ is well defined in � \ S. This is equivalent to∫
γ
dX∗ = 0, where γ is a small circle around any point of the singular set S.

Proposition 2. X∗
2 and X∗

3 are well defined in � \ S.

Proof. This is clear for X∗
3. For X∗

2, we use the following symmetry argument. Let
τ(x, y) = (x,−y). By uniqueness and symmetry of the boundary data, v � τ = v.
Hence τ ∗dv = dv, so vx � τ = vx and vy � τ = −vy . This gives ux � τ = −ux
and uy � τ = uy . Hence using (6), τ ∗dX∗

2 = dX∗
2. Let γ be a small circle around a

singularity q ∈ S. Since τ(γ ) is homologous to −γ , this gives
∫
γ
dX∗

2 = 0, so X∗
2

is well defined in � \ S. This also gives τ ∗dX∗
1 = −dX∗

1, so X∗
1 is locally constant

on the x-axis. �

By Proposition 2, we only have to worry about the periods of dX∗
1.

From now on, we assume that S = {q1, . . . , qN } is finite. Let γi be a small circle
around the point qi and let

Fi(q1, . . . , qN) =
∫
γi

dX∗
1 .

The Period Problem asks that Fi = 0 for 1 ≤ i ≤ N . Note that by symmetry, Fi is
equal to twice the integral of dX∗

1 on a half circle from qi + ε to qi − ε, so Fi = 0
means that the curves C∗

i and C∗
i−1 are in the same vertical plane as required (see

Figure 4).

4.2. Continuity of the periods. To apply the Poincaré–Miranda Theorem, we need
the continuity of the periods with respect to the parameters.

Proposition 3. The periods Fi depend continuously on (q1, . . . , qN).

Proof. Consider an admissible value (q1, . . . , qN) of the parameters (namely, all qj
satisfy equation (4)). Consider a sequence (qn1 , . . . , q

n
N) converging to (q1, . . . , qN).

Let Sn = {qn1 , . . . , qnN } and S = {q1, . . . , qN }. Let vn and v be the solutions of the
Dirichlet problem in � \ Sn and � \ S, respectively. Assume the sequence (vn)n
has a divergence line. Then arguing as in the proof of Proposition 1, L has finite
length so is a segment connecting two points of ∂� \ S, which contradicts in the
same way the fact that the points qj satisfy (4). Hence there are no divergence lines,
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so a subsequence of (vn)n converges on compact subsets of � to a solution to the
Dirichlet problem on�\S. By uniqueness of the solution to this problem, the whole
sequence (vn)n converges to v on compact subsets of �, and converges smoothly to
v on compact subsets of � \ S. This implies that dun converges to du and dX∗

1,n
converges to dX∗

1 on compact subsets of � \ S. Integrating on γi which encloses qni
for big n, we obtain that Fi(qn1 , . . . , q

n
N) → Fi(q1, . . . , qN). �

4.3. Local property of the period. From now on we assume that 	 < 1. Let us
define for the rest of the paper

η = 1 −
√

1 − 	2.

In this section, we prove that some properties of the period Fi(q1, . . . , qN) depends
only on the position of qi if the other qj are not too close from qi .

Let us denote by �L the box (−L,L)× (−	, 	) and consider q ∈ (−η, η) and a
finite set of points S in (−2,−2 +η)∪ (2 −η, 2). Let v be a solution of the maximal
graph equation (2) on�2\({q}∪S), with boundary value v = φ on (−2, 2)×{−	, 	},
v(q) = 0 and v(S) = 0. The boundary value of v on the vertical edges is free,
although we require 0 ≤ v ≤ 1. Let us study the divergence lines of a sequence of
such solutions v.

Lemma 4. For every n ∈ N, let qn, Sn and vn be as above. We assume that lim qn = q

exists. Then

• if q ∈ (−η, η), there is no divergence line in �1 \ {q};
• if q = η, the only divergence lines meeting �1 \ {η} are [η, a−

1 ] and [η, a+
1 ].

Proof. The two segments [η, a+
1 ] and [η, a−

1 ] have length one. Since vn(qn) = 0 and
vn(a

+
1 ) = 1 = vn(a

−
1 ), both segments are divergence lines for (vn)n∈N in the second

case.
Let us now prove that there is no other divergence line in�1 for both cases. Since

0 ≤ vn ≤ 1 every divergence line is a segment of length at most one. Hence a
divergence line L which intersects �1 must have an end point in �1. Because of
Lemma 3 these end points needs to be a±

0 , a±
−1, a±

1 or q. Let us assume that a+
0 is one

end point of L. The distance from a+
0 to �2 \ �1 is one, hence the other end point

is in �1. It can not be a−
0 or q since vn(a

+
0 ) = vn(a

−
0 ) = lim vn(q). It is not a−

±1

since the distance from a+
0 to these points is

√
1 + 4	2 > 1. Then a+

0 is not an end
point of L; by symmetry, this is also true for a−

0 . Let us assume that a+
−1 is an end

point ofL then the other end point is either q or a−
1 but the distance from a+

−1 to these
two points is strictly larger than one since q ∈ (−η, η]; then a+

−1 is not an end point
for L. By symmetry, this is also true for a−

−1 and a±
1 unless q = η and L = [η, a±

1 ]
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which is the case we studied first. Then we can assume that q is an end point of L
and the other one is in �2 \�1. By Lemma 3, if L is not horizontal, the second end
point is on the vertical edges of �2 but the distance from q to these edges is larger
than 2 − η > 1. So L is horizontal; we assume, for example, that L is on the left
of q. Since the length of L is less than 1, the other end point of L needs to be in the
interior of�2 and Sn∩ (2−η, 2] �= ∅. Let sn = min Sn∩ (2−η, 2]. We assume that
(sn) converges to s in [2 − η, 2], then L is the segment [q, s]. We have vn(sn) = 0.
Since L is a divergence line |L| = lim |vn(q)− vn(s)| = lim |vn(qn)− vn(sn)| = 0
this gives a contradiction and the lemma is proved. �

Let v be a solution of the maximal graph equation (2) on �2\({q} ∪ S) as above,
besides we assume now the symmetry v(x, y) = v(x,−y). In applications, v will be
the restriction of some v[q1, . . . , qn] to a box around one qi . Let γ be a small circle
around q then we define the period F(v) by

∫
γ
dX∗

1 where dX∗
1 is given by equation

(5) with u the conjugate function to v. We then have some control on the behaviour
of the period.

Proposition 4. There exists η0 ∈ (0, η) which depends only on 	 such that for any
solution v of the above Dirichlet problem on �2\({q} ∪ S) we have:

• if η0 ≤ q < η, F(v) ≥ 1;

• if −η < q ≤ −η0, F(v) ≤ −1.

Proof. Let σ(x, y) = −(x, y) and v be a solution of the above Dirichlet problem on
�2\({q}∪S) thenv′ = v�σ is a solution of this Dirichlet problem on�2\({−q}∪−S).
From the definition of du = d�v and du′ = d�v′ , we obtain σ ∗du = du′. From
equation (5), we get σ ∗dX∗

1 = −dX∗
1
′ where dX∗

1 and dX∗
1
′ are respectively associ-

ated to v and v′. Since σ preserves orientation, integrating on a small circle around
q gives F(v) = −F(v′). Thus the second item of the proposition is a consequence
of the first one.

If the first item is wrong there exists a sequence qn → η and for each n a set
Sn and a solution vn of the above Dirichlet problem on �2 \ ({qn} ∪ Sn) such that
F(vn) < 1. Let us prove that, actually, lim F(vn) = ∞.

By Lemma 4 the two segments L+ = [η, a+
1 ] and L− = [η, a−

1 ] are divergence

lines for (vn)n∈N. On L+, (∇vn)n∈N converges to
−−→
ηa+

1 = (
√

1 − 	2, 	). Let �−
be the connected component of �1\(L+ ∪ L−) containing the origin. Because of
Lemma 4, �− is included in the convergence domain of (vn)n∈N

Then we can assume that the sequence (vn)n∈N converges on �− to a solution v
which takes on the boundary the value φ on ∂�∩�− and |p− η| for p ∈ L+ ∪L−.
For every n, let un be the conjugate function�vn which is defined on�−\[qn, η]. The
limit domain of (�−\[qn, η])n∈N is �− and (un)n∈N converges to u = �v . Because
of the boundary value of v, u takes the value +∞ along L+. We are interested in
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what happens near the middle point ((1 + η)/2, 	/2) of L+. Because of Lemma 1 in
[3] we have

uy√
1 + |∇u|2

(
1 + η

2
, y

)
−→ −

√
1 − 	2 (7)

when y → 	/2 with y > 	/2. Lemma 1 in [3] implies also that

uy

(
1 + η

2
, y

)
≤ − C

|y − 	/2| , C > 0 (8)

for y > 	/2 near 	/2.
Consider the following path �: it is the union of the segment [((1 + η)/2, 0),

((1 + η)/2, 3	/4)] with a curve �3 in �− ∩ {y > 0} that joins ((1 + η)/2, 3	/4) to
(0, 0). For t ∈ (	/2, 3	/4), let �1(t) be the segment [((1 + η)/2, 0), ((1 + η)/2, t)]
and �2(t) be the segment [((1 + η)/2, t), ((1 + η)/2, 3	/4)].

�3

�2(t)

�1(t)

a+
−1 a+

0 a+
1

a−
1a−

0a−
−1

η0

L+

L−
�−

Figure 5

Because of the symmetry vn(x, y) = vn(x − y), for large n, the period F(vn)
is given by 2

∫
�
dX∗

1 ,n where dX∗
1 ,n is associated to un. Because of Equation (5),∫

�1(t)
dX∗

1 ,n ≥ 0. Hence

F(vn) ≥ 2
∫
�2(t)∪�3

dX∗
1 ,n. (9)

Since the convergence un → u is smooth on compact subsets of �−,∫
�2(t)∪�3

dX∗
1 ,n −→

∫
�2(t)∪�3

dX∗
1 (10)

with dX∗
1 associated to u. By (7) and (8), we have∫

�2(t)

dX∗
1 −−−→
t→ 	

2
+ +∞. (11)
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Equations (9), (10) and (11) imply that lim F(vn) = +∞. The lemma is proved. �

4.4. Solution of the Period Problem. In this section, we go back to the N -dimen-
sional Period Problem. Consider N integers p1 < · · · < pN (these will specify
“where” we want to put the handles). Recall that 	 < 1 and η = 1 − √

1 − 	2 and
that Lemma 4 gives us a number η0 < η. Equation (4) means that each singular point
qi must be at distance less than η from an even integer. We require that |qi−2pi | < η

for i = 1, . . . , N . The next proposition solves the Period Problem with this setting.

Proposition 5. For any N and for any choice of p1, . . . , pN satisfying p1 < p2 <

· · · < pN , there exists (q1, . . . , qN) satisfying |qi−2pi | < η0 and Fi(q1, . . . , qN) =
0 for i = 1, . . . , N .

Proof. Consider any p1, . . . , pN such that p1 < · · · < pN . Consider any value of
the parameters (q1, . . . , qN) in the cubic box defined by qi ∈ [2pi − η0, 2pi + η0].
Consider some i, 1 ≤ i ≤ N . Translating by −2pi , Proposition 4 tells us that if
qi = 2pi + η0, Fi(q1, . . . , qN) ≥ 1 while if qi = 2pi − η0, Fi(q1, . . . , qN) ≤
−1. The result then follows from the Poincaré–Miranda Theorem since Fi depends
continuously in the qj . �

Remark 3. We do not know if the solution to the Period Problem is unique. Since we
do not know how to compute derivatives of the periods with respect to the parameters,
its seems hard to obtain uniqueness.

5. Finite genus

Proposition 5 implies the following

Corollary 1. For each N ≥ 1, there exists a complete, properly embedded minimal
surface in R

2 × S
1 which has genus N , infinite total curvature, infinitely many ends,

and two limit ends.

Proof. Consider integers p1 < · · · < pN . Let (q1, . . . , qN) be the solution to the
Period Problem given by Proposition 5. Let v = v[q1, . . . , qN ], u = u[q1, . . . , qN ]
and X∗ = X∗[q1, . . . , qN ]. Then X∗ is well defined in � \ {q1, . . . , qN }. To see
that the image of X∗ is embedded we argue as follows. Let M be the graph of u
on the strip �+ = R × (0, 	) and M∗ be the conjugate minimal surface to M , so
M∗ = X∗(�+). Since �+ is convex, M∗ is a graph over a planar domain by the
Theorem of R. Krust, so is embedded.

Since the Period Problem is solved, all segments (qi, qi+1), i = 1, . . . , N − 1,
as well as the half lines (−∞, q1) and (qN,+∞), are mapped onto geodesics in the
vertical plane x = 0 (after a suitable translation). Consider now some (x, y) ∈ �+
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such that x �= qi for all i. From the formula (5) we see that
∫ (x,y)
(x,0) dX

∗
1 > 0. Hence

the pointX∗(x, y) lies in x > 0. By continuity this is true for all points of�+, soM∗
is an embedded minimal surface in x > 0, 0 < z < 1. Extending by symmetry with
respect to the plane x = 0 and the horizontal planes at integer heights we obtain an
embedded, periodic minimal surface in R

3 with period T = (0, 0, 2). The quotient
by this period is an embedded minimal surface MN in R

2 × S
1 of genus N (now

and in the following, we identify S
1 with R/2Z). We will see in Section 7 that it

has bounded curvature. By a theorem of Meeks - Rosenberg, theorem 2.1 in [14],
a complete embedded minimal surface in R

3 with bounded curvature is properly
embedded. Hence MN is properly embedded. �

In the following, when (q1, . . . , qN) is given by Proposition 5, the associated
minimal surface given by the above corollary will be denoted by M[q1, . . . , qN ].
This surface is normalized so that the conjugate to the point (−1, 0, u(−1, 0)) is the
point (0, 0, v(−1, 0)).

in vertical plane

in plane z = 1

in plane z = 0

Figure 6. The conjugate surface, Period Problem solved.

Remark 4. In Proposition 5, if the singularity set S is empty, the period Problem is
solved. Then a surface M[∅] of genus zero exists; in fact this surface is a Karcher’s
toroidal halfplane layer.

6. Infinite genus

In this section, we consider the case where we have an infinite number of singularities.

Proposition 6. Let 	 and η0 be as in Proposition 5. Consider a strictly increas-
ing sequence of integers (pi)i∈Z. Then there exists a sequence (qi)i∈Z, such that
|qi − 2pi | ≤ η0, which solves the Period Problem Fj (qi : i ∈ Z) = 0 for all j ∈ Z.
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Proof. Consider some n ∈ N. We apply Proposition 5 with N = 2n + 1 and the
N integers p−n, . . . , pn, and we obtain N real numbers q−n,n, . . . , qn,n such that
|qi,n − 2pi | ≤ η0 for all |i| ≤ n, and Fj (qi,n : |i| ≤ n) = 0 for all |j | ≤ n.
Using a diagonal process, we can find a subsequence (which we will still denote
by n) such that qi = limn→∞ qi,n exists for all for all i ∈ Z. The limit domain of
(� \ {qi,n : |i| ≤ n})n∈N is � \ {qi : i ∈ Z}. Let vn = v[qi,n : |i| ≤ n] and v∞ =
v[qi : i ∈ Z]. Arguing as usual, the sequence (vn)n∈N has no divergence line, so up to
a subsequence, it converges on compact subsets of � to a solution v of the Dirichlet
problem on � \ {qi : i ∈ Z}. By uniqueness, v = v∞. Then dX∗

1[qi,n : |i| ≤ n]
converges to dX∗

1[qi : i ∈ Z] on compact subsets of � \ {qi : i ∈ Z}. Integrating on
γj gives

Fj (qi : i ∈ Z) = lim
n→∞Fj (qi,n : |i| ≤ n) = 0. �

In the following when a sequence (pi)i∈Z satisfies the hypotheses of the above
proposition and (qi)i∈Z is a sequence such that |qi − 2pi | ≤ η0 for all i ∈ Z and
Fj (qi : i ∈ Z) = 0 for all j ∈ Z, we shall say that (qi)i∈Z solves the Period Problem
for the data (pi)i∈Z.

Corollary 2. For any strictly increasing sequence of integers (pi)i∈Z, there exists a
properly embedded minimal surface M in R

2 × S
1 which has infinite genus, infinite

total curvature, infinitely many ends, and two limit ends. Moreover, if the sequence
(pi+1 − pi)i∈Z is not periodic, then M is not periodic.

Proof. Same as proof of Corollary 1. �

As above when (qi)i∈Z solves the Period Problem for the data (pi)i∈Z, the asso-
ciated surface is denoted by M[qi : i ∈ Z] and is normalized as in the finite genus
case.

Using the notation of the proof of Proposition 6, we define MN = M[qi,N :
−N ≤ i ≤ N ] and M = M[qi : i ∈ Z].

Proposition 7. A subsequence of (MN)N converges smoothly on compact subsets of
R

2 × S
1 to M.

Proof. Since a subsequence of (vn)n converges to v, the result seems to be obvious.
This is not immediate for the following reason: the convergence of the conjugate
functions (un)n to u only holds on compact subsets of� \ {qi : i ∈ Z}. In particular,
this convergence does not tell us anything for the graph of u above the singular points
and the vertices a+

k , k ∈ Z. Since these correspond to the horizontal symmetry curves
on the conjugate minimal surface, we see that the convergence of (vn)n to v is not
enough to conclude.
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One way around this difficulty is as follows: we will see in the next section that the
curvature of MN is bounded by a constant independent ofN . By the Regular Neigh-
borhood Theorem, or “Rolling Lemma” (firstly proven by A. Ros [15], Lemma 4,
for properly embedded minimal surfaces in R

3 with finite total curvature, and gen-
eralized to properly embedded minimal surfaces with bounded curvature by Meeks
and Rosenberg [14], Theorem 5.3), each MN has an embedded tubular neighborhood
of radius 1/

√
c. In particular, we have local area bounds, namely the area of MN

inside a ball of radius 1/
√
c is bounded by some constant. By standard results, a

subsequence of (MN)N converges smoothly on compact subsets of R
2 ×S

1 to a limit
minimal surface M∞. Since (vn)n converges to v, the limit M∞ needs to be M. �

Here is another result in the same spirit, which will be useful in Section 8. For
every n ∈ N, let (pi,n)i∈Z be a sequence as in Proposition 6, namely (pi,n)i∈Z is a
strictly increasing sequence of integers. Let (qi,n)i∈Z be a sequence that solves the
Period Problem for the data (pi,n)i∈Z.

Proposition 8. Let (pi,n)i∈Z and (qi,n)i∈Z be defined as above. Let us assume that
for every i ∈ Z, limn pi,n = pi,∞ and limn qi,n = qi,∞. Then (qi,∞)i∈Z solves the
Period Problem for the data (pi,∞)i∈Z and (M[qi,n : i ∈ Z])n∈N converges smoothly
on compact subsets of R

2 × S
1 to M[qi,∞ : i ∈ Z].

Proof. Let vn be v[qi,n : i ∈ Z]. First we notice that the convergence of (qi,n)n∈Z

implies the convergence of (pi,n)n ∈ Z. Since we have pi+1,n − pi,n ≥ 1 and
|qi,n−2pi,n| ≤ η0 for all i and n, we getpi+1,∞−pi,∞ ≥ 1 and |qi,∞−2pi,∞| ≤ η0.

Since all the (qi,n)n∈N converge, the limit domain of (�\{qi,n : i ∈ Z})n∈N is
�\{qi,∞ : i ∈ Z}. As in the preceding, the sequences (vn)n∈N has no divergence
line and converges to a solution v∞ of the Dirichlet problem on the limit domain
�\{qi,∞ : i ∈ Z}. By uniqueness, v∞ = v[qi,∞ : i ∈ Z]. As in the proof of
Proposition 6,

Fj (qi,∞ : i ∈ Z) = lim
n→∞Fj (qi,n : i ∈ Z) = 0.

Then (qi,∞)i∈Z solves the Period Problem.
Now as in the proof of Proposition 7, since the curvature of the surfaces M[qi,n :

i ∈ Z] is uniformly bounded (see Proposition 10), the sequence (M[qi,n : i ∈ Z])n∈N

converges smoothly on compact subsets of R
2 × S

1 to a limit minimal surface M∞.
Since (vn)n∈N converges to v[qi,∞ : i ∈ Z], the surfaces M∞ needs to be M[qi,∞ :
i ∈ Z]. �
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7. Bounded curvature

In this section we prove that the curvature of the surfaces M given by Corollaries 1
and 2 are bounded by a constant C depending only on 	. Actually, because of
Proposition 7, it suffices to prove it in the finite genus case.

7.1. Size of the handles. Suppose that v is the solution of the Dirichlet problem
on � \ {q1, . . . , qN }. The multi-valuation of its conjugate function u around the
singularity qi is

∫
γi
du. This is equal to twice the length of the vertical segment Bi ,

which is equal to the length of the geodesic B∗
i . So the multi-valuation of u may be

understood as the “size” of the handle. In this section we give a uniform lower bound
for this multi-valuation, which prevents the handles from getting too small.

We use the notation �L = (−L,L)× (−	, 	).
Proposition 9. Consider some 	 < 1 and some η0 < η. There exists κ > 0
(depending on 	 and η0) such that the following is true: Let q ∈ (−η0, η0) and
S ⊂ (−2,−2+η)∪ (2−η, 2). Let v be a solution of the maximal graph equation (2)
in �2 \ ({q} ∪ S) with boundary value ϕ on [−2, 2] × {−	, 	} and 0 at {q} ∪ S.
As in Lemma 4 the boundary value on the vertical edges is free, but we require v to
be between 0 and 1. Let u be the conjugate function of v. Let γ be a small circle
around q. Then

∣∣ ∫
γ
du

∣∣ ≥ κ .

Proof. Assume by contradiction that the proposition is not true. Then there exists
sequences (qn)n and (Sn)n and a sequence (vn)n such that

∫
γ
dun → 0. Passing to

a subsequence, qn converges to some q ∈ [−η0, η0] ⊂ (−η, η). By Lemma 4, the
sequence (vn)n, restricted to �1 \ {q}, does not have any divergence line, so passing
to a subsequence, it converges to a solution v on �1. Then the conjugate differential
dun of vn converges on compact subsets of �1 \ {q} to the conjugate differential du
of v. This implies that

∫
γ
du = 0, so u is in fact well defined in �1 \ {q}. Since

it satisfies the minimal graph equation, the point q is a removable singularity, so u
extends smoothly to q. But then v itself also extends smoothly to q. Since v(q) = 0
and 0 ≤ v ≤ 1, the maximum principle for maximal surfaces gives us that v = 0 in
�1; this contradicts v = ϕ on the boundary. �

7.2. Gradient estimates. Recall that the graph of u is bounded by a vertical segment
above each singularityqi . Along this segment, the normal is horizontal. The following
lemma ensures that the normal remains close to the horizontal on the disk D(qi, δ),
where δ is a number we can control in function of the length of the vertical segment.

Lemma 5. For any C > 0, for any κ > 0, there exists δ > 0 such that the following
is true: let v be any solution of the maximal graph equation (2) on the punctured disk
D(0, 1) \ {0} with a singularity at the origin. Assume that v(0) = 0 and 0 ≤ v ≤ 1.
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Let du be the conjugate differential of v. Assume that
∣∣ ∫
γ
du

∣∣ ≥ κ . Then |∇u| ≥ C

in D(0, δ) \ {0}.
Proof. Assume by contradiction that the lemma is false. Then there exists C > 0,
κ > 0, and sequences (vn)n, (pn)n, such that vn is a solution of (2) in D(0, 1) \ {0},
pn → 0,

∫
γ
dun ≥ κ and |∇un(pn)| ≤ C. Let λn = |pn|. Let ṽn(p) = vn(λnp)/λn

(so the graph of ṽn is the graph of vn scaled by 1/λn). Let p̃n = pn/λn; by rotation
we may assume that p̃n = (1, 0). Then ṽn solves (2) in the punctured disk of radius
1/λn. This domain converges to the plane punctured at the origin.

Let us study the convergence of the sequence (ṽn)n. If there are no divergence
lines, then the sequence (ṽn)n converges on compact subsets of the punctured plane to
a solution ṽ. Then the conjugate differentials dũn converge to dũ = d�ṽ . However,∣∣∣∣

∫
γ

dũn

∣∣∣∣ = 1

λn

∣∣∣∣
∫
γ

dun

∣∣∣∣ ≥ κ

λn
→ ∞,

so
∫
γ
dũ = ∞, which is absurd. So there must be divergence lines.

Observe that

|∇ṽn(1, 0)| = |∇ṽn(p̃n)| = |∇vn(pn)| = |∇un(pn)|√
1 + |∇un(pn)|2

≤ C√
1 + C2

< 1.

Hence the point (1, 0) is in the convergence domain of the sequence ṽn. Let U be
the component of the convergence domain containing the point (1, 0). Since ṽn ≥ 0,
a divergence line cannot extend infinitely in both directions, so must be a half-line
ending at the origin. If there are at least two divergence lines thenU is a sector defined
in polar coordinates by 0 < r < ∞, α1 < θ < α2. The conjugate functions ũn are
well defined in U and converge to ũ. Then ũ takes the values ±∞ on the half-lines
θ = α1 and θ = α2. Since ṽ(0) = 0 and ṽ ≥ 0, ũ takes the values +∞ on θ = α1 and
−∞ on θ = α2. It is proven in [8], Proposition 2, that this Jenkins–Serrin problem
has no solution.

If there is only one divergence line, then U is a sector of angle 2π defined in
polar coordinates by 0 < r < ∞, α < θ < α + 2π . Then ũ solves the following
Jenkins–Serrin problem: u = +∞ on the half-line θ = α (approaching this line
with θ > α) and u = −∞ on θ = α + 2π (approaching with θ < α + 2π . It is
proven in [8], Proposition 4, that this Jenkins– Serrin problem has no solution. This
contradiction proves the lemma. �

The following lemma provides a similar estimate in a neighborhood of the bound-
ary points a+

k , k ∈ Z. It is proven in [6], Lemma 6.

Lemma 6. Given C > 0, there exists δ > 0 such that the following is true: let u
be a solution of the minimal graph equation (1) in the half disk D(0, 1) ∩ {y > 0},
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with boundary values +∞ on the segment (0, 1) × {0} and −∞ on the segment
(−1, 0)×{0}. Let v be the conjugate function of u. Assume that v(0) = 0 and v ≥ 0.
Then |∇u| ≥ C in D(0, δ) ∩ {y > 0}.

7.3. Curvature estimate. Let M be a minimal surface given by Corollary 1.

Proposition 10. There exists a constant C (depending only on 	) such that the Gauss
curvature K of the surface M is bounded by C.

Proof. Since M∗ and M are locally isometric, it suffices to bound the curvature of
M . The proof is based on stability arguments. In what follows, all constants involved
only depend on 	.

Recall that M is the graph of u on �+ = R × (0, 	). Let q1, . . . , qN be given
by Proposition 5. By Proposition 9, there exists κ such that | ∫

γi
du| ≥ κ for

i = 1, . . . , N . We apply Lemma 5 with C = 100 and obtain a δ1 < 	 such that
|∇u| ≥ 100 inD(qi, δ1), i = 1, . . . , N . We apply Lemma 6 with againC = 100 and
obtain a δ2 < 	 such that |∇u| ≥ 100 inD(a+

k , δ2), k ∈ Z. We take δ = min{δ1, δ2}.
Fix some i = 1, . . . , N . Let U be the graph of u above the half disk D(qi, δ) ∩�+.
Since |∇u| ≥ 100, the Gauss image of U is included in the spherical domain
S

2 ∩ {|z| ≤ 1/100}. The boundary of U consists of a vertical segment, two hori-
zontal segments and a helix-like looking curve which is a graph on S

1(qi, δ) ∩ �+.
Completing by all symmetries, we obtain a minimal surface � which is bounded by
two helix-like looking curves, and which is complete in the cylinder D(qi, δ) × R.
The surface � is of course not a graph anymore. However its Gauss image is still
included in S

2 ∩ {|z| < 1/100}. As the spherical area of this domain is less than
2π , � is stable by the theorem of Barbosa Do Carmo [1]. Consider now a point
(x, y) ∈ D(qi, δ/2) and let p = (x, y, u(x, y)) be the corresponding point on M .
Since p ∈ � is at distance more than δ/2 from the boundary of �, the theorem
of Schoen [17] ensures that the Gauss curvature at p is bounded by c/(δ/2)2 for
some universal constant c. The same argument gives the same estimate for the Gauss
curvature when (x, y) ∈ D(a+

k , δ/2), k ∈ Z.
Assume now that (x, y) ∈ �+ is at distance more than δ/2 from all points qi and

all points a+
k . Let again p = (x, y, u(x, y)). If y > δ/4, then the distance of p to

the boundary of M is greater than δ/4 (because u = ±∞ on the top edges). Since
M is a graph, it is stable, so the Gauss curvature at p is bounded by c/(δ/4)2.

It remains to understand the case 0 < y < δ/4. There exists i such that qi <
x < qi+1 (with the convention that q0 = −∞ and qN+1 = +∞). Consider the box
(qi, qi+1)×(−δ/2, δ/2). As this is a simply connected domain of�, u is well defined
on it. Let V be the graph of u on this box. The distance of p = (x, y, u(x, y)) to
the boundary of V is greater than δ/4. Since V is stable, we conclude again that the
Gauss curvature at p is bounded by c/(δ/4)2. �
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8. Quasi-periodicity

In this section, we prove that if the sequence (pi − pi−1)i∈Z is quasi-periodic but
not periodic, then we can find a solution (qi)i∈Z to the Period Problem such that
the associated minimal surface M[qi : i ∈ Z] is quasi-periodic but not periodic in
R

2 × S
1.

8.1. Preliminaries. First we need to fix some notation. In the following, an element
of R

Z will be denoted as a function: x ∈ R
Z denotes the sequence (x(i))i∈Z. We

consider on R
Z the topology of the pointwise convergence, i.e., the sequence (xn)n∈N

converges to x∞ if for every i: limn x
n(i) = x∞(i).

We notice that, for everyA ∈ R+, the subset [−A,A]Z ⊂ R
Z is compact. Besides,

on [−A,A]Z, the pointwise convergence is metrizable: if x, y ∈ [−A,A]Z, we define
a distance by d(x, y) = ∑

i∈Z

1
2|i| |x(i)− y(i)|.

Let ϕ : N → N be a function. In the following we say that ϕ is an extraction if ϕ is
strictly increasing. The group Z acts on the set R

Z by shift: if x ∈ R
Z and n ∈ Z, we

denote by n ·x the sequence (x(n+ i))i∈Z. Then if ϕ is an extraction and x ∈ R
Z, we

define the sequence ϕ · x = (ϕ(n) · x)n∈N in R
Z. We have the following definitions.

Definition 2. Let x be in R
Z, this sequence is said to be quasi-periodic if there exists

an extraction ϕ such that the sequence ϕ · x converges pointwise to x (namely, for
all i, limn x(i + ϕ(n)) = x(i)).

Let x ∈ R
Z be an increasing sequence, we say that x has quasi-periodic gaps if

the sequence (x(i)− x(i − 1))i∈Z is quasi-periodic.

Let us give two examples:

(1) let α be an irrational number, let x(i) = [αi] be the integer part of αi and let
g(i) = x(i) − x(i − 1). Then the sequence (g(i))i∈Z is quasi-periodic and is
not periodic. Moreover, for any extraction ϕ, if limn→∞ ϕ(n) · g exists, then it
is not periodic.

(2) (the counting sequence) consider the infinite word on the alphabet {0, . . . , 9}
formed by writing in order all natural integers:

0123456789101112131415161718192021 . . . .

For i ≥ 1, let x(i) be the ith digit in this word. For i ≤ 0, let x(i) = 0.
The sequence (x(i))i∈Z is quasi-periodic but not periodic. However, if ϕ is an
extraction, the limit of ϕ(n) · x can very well be periodic (in fact it can be any
sequence of integers between 0 and 9).
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8.2. Why are we not yet done? Let us assume that the sequence (p(i))i∈Z has
quasi-periodic gaps, and let (q(i))i∈Z be a sequence that solves the Period Problem
for the data (p(i))i∈Z. We expect the surface M[q(i) : i ∈ Z] to be quasi-periodic, but
unfortunately we cannot prove that. What we can prove is that there exists a sequence
of translations Tn such that Tn(M[q(i) : i ∈ Z]) converges to M[q ′(i) : i ∈ Z], where
(q ′(i))i∈Z is another solution to the Period Problem for the same data (p(i))i∈Z. Since
we do not know whether the Period Problem has a unique solution, we cannot ensure
that q ′(i) = q(i). (If the reader knows that the solution to the Period Problem is
unique, he may omit what follows. He should also inform the authors).

Our strategy is to prove, using Zorn’s lemma, that amongst all the solutions
(q(i))i∈Z to the Period Problem, at least one of them yields a quasi-periodic minimal
surface.

8.3. Quasi-periodic surfaces. Let us consider 	 and η0 as in Proposition 5.
Let us now explain how we shall construct a quasi-periodic minimal surface. Let

p = (p(i))i∈Z be a strictly increasing sequence with quasi-periodic gaps. In the
following, we always assume that p(0) = 0. The sequence g = (p(i)−p(i−1))i∈Z

is quasi-periodic, we then denote by A the non-empty set of all extractions ϕ : N → N

such that limn→∞ ϕ(n) · g = g.
Let us fix a sequence q = (q(i))i∈Z that solves the Period Problem for the data

(p(i))i∈Z. The problem consists in building from q a sequence (q ′(i))i∈Z that solve
the Period Problem for the data (p(i))i∈Z and such that M[q ′(i) : i ∈ Z] is quasi-
periodic.

Let us denote by r the sequence q − 2p: r(i) = q(i)− 2p(i) for all i ∈ Z. Let ϕ
be in A; ϕ · r is a sequence of elements of [−η0, η0]Z. This set is compact so there
exists a subsequence of (ϕ(n) · r)n∈N that converges in [−η0, η0]Z. Thus there exists
an extractionψ : N → N such that (ϕ �ψ) ·r converges. We notice that, since ϕ ∈ A,
ϕ � ψ ∈ A. The following result describes such a situation.

Proposition 11. With the above notation, let ϕ ∈ A such that limn→∞ ϕ(n) · r = r ′.
Then 2p+ r ′ = (2p(i)+ r ′(i))i∈Z solves the Period Problem for the data (p(i))i∈Z.

Proof. For every n ∈ N, let us define the sequence qn by qn(i) = q(i + ϕ(n)) −
2p(ϕ(n)) for all i ∈ Z. We also define pn by pn(i) = p(i + ϕ(n))− p(ϕ(n)) for all
i ∈ Z.

Claim 2. We have lim pn = p and lim qn = 2p + r ′.

Proof. Let us fix i ∈ Z then, if i ≥ 1:

pn(i) = p(i + ϕ(n))− p(ϕ(n)) =
i+ϕ(n)∑
l=1+ϕ(n)

p(l)− p(l − 1) =
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=
i+ϕ(n)∑
l=1+ϕ(n)

g(l) =
i∑
l=1

ϕ(n) · g(l).

Since limn→∞ ϕ(n) · g = g, the right-hand term converges to
∑i
l=1 g(l) = p(i).

When i < 1 we have:

pn(i) = p(i+ ϕ(n))−p(ϕ(n)) =
ϕ(n)∑

l=i+ϕ(n)+1

p(l− 1)−p(l) = −
0∑

l=i+1

ϕ(n) · g(l).

The right-hand term converges again to p(i). Then lim pn = p.
We have qn(i) = r(i+ϕ(n))+ 2p(i+ϕ(n))− 2p(ϕ(n)) = ϕ(n) · r(i)+ 2pn(i)

for all i ∈ Z. Since limn→∞ ϕ(n) · r = r ′, lim qn = 2p + r . �

By definition of qn, the uniqueness of the solution to the Dirichlet problem implies
that we have

v[qn(i) : i ∈ Z](x, y) = v[q(i) : i ∈ Z](x + 2p(ϕ(n)), y). (12)

This implies that (qn(i))i∈Z solves the Period Problem: Fj (qn(i) : i ∈ Z) = 0 for
every j ∈ Z.

Then by Proposition 8 and Claim 2, 2p + r ′ solves the Period Problem for the
data (p(i))i∈Z. �

Proposition 6 does not give us the uniqueness of the sequence (q(i))i∈Z that solves
the Period Problem for the data (p(i))i∈Z, so, as we said in the preceding subsection,
we cannot ensure that the sequences r and r ′ are equal. Such an affirmation would
be interesting because of the following proposition.

Proposition 12. With the above notations, if there exists an extraction ϕ ∈ A such
that limn→∞ ϕ(n) · r = r , the surface M[q(i) : i ∈ Z] is quasi-periodic.

Proof. We use the notations of the proof of Proposition 11. We have the sequences
qn, pn. Now Claim 2 says us that lim qn = q. Let us recall that when (a(i))i∈Z

solves the Period Problem, the surface M[a(i) : i ∈ Z] is normalized such that the
conjugate to the point in the graph above (−1, 0) is the point (0, 0, v(−1, 0)) where
v = v[a(i) : i ∈ Z].

As above, (12) is true. So our normalization for the surfaces M implies that
M[qn(i) : i ∈ Z] is the image of M[q(i) : i ∈ Z] by an horizontal translation Tn.
The vector of the translation is (0,−X∗

2(2p(ϕ(n))−1))whereX∗
2 isX∗

2[q(i) : i ∈ Z].
Then by Proposition 8 and Claim 2, the sequence of minimal surfaces (M[qn(i) :

i ∈ Z])n∈N = (Tn(M[q(i) : i ∈ Z]))n∈N converges to M[q(i) : i ∈ Z] smoothly
on compact subsets of R

2 × S
1. Since M[q(i) : i ∈ Z] is properly embedded,
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lim |X∗
2(2p(ϕ(n))− 1)| = ∞; thus (Tn)n∈N is a diverging sequence of translations.

This proves that M[q(i) : i ∈ Z] is quasi-periodic. �

By using a proposition that will be proved in the next subsection we then can
prove our main theorem.

Theorem 4. Let (p(i))i∈Z be a sequence with quasi-periodic gaps that satisfies the
hypotheses of Proposition 6. Then there exists a sequence (q(i))i∈Z which solves
the Period Problem for the data (p(i))i∈Z and such that M[q(i) : i ∈ Z] is quasi-
periodic. Moreover if (p(i + 1) − p(i))i∈Z is not periodic, M[q(i) : i ∈ Z] is not
periodic.

Proof. By Proposition 6, there exists a sequence (q(i))i∈Z that solves the Period
Problem for the data (p(i))i∈Z.

The sequence (g(i))i∈Z = (p(i) − p(i − 1))i∈Z is quasi-periodic so we have
the set A. Let r denotes the sequence q − 2p, we recall that r ∈ [−η0, η0]Z. By
Proposition 13, there exists ϕ and ψ ∈ A such that

lim ϕ · r = r ′, (13)

limψ · r ′ = r ′. (14)

By Proposition 11, equation (13) implies that the sequence 2p + r ′ solves the
Period Problem for the data (p(i))i∈Z. Equation (14) gives us by Proposition 12 that
M[2p(i)+ r ′(i) : i ∈ Z] is quasi-periodic. �

8.4. A dynamical result. Let X be a topological space with a countable basis. In
the following, we shall denote by (Vn(x))n∈N a countable decreasing basis of open
neighborhoods of x ∈ X. Let F : X → X be a continuous map. Let g be in X. We
assume that there exists an extraction ϕ such that limn F

ϕ(n)(g) = g. As above we
denote by A the set of extractions ϕ such that limn F

ϕ(n)(g) = g. The aim of this
section is to prove the following proposition.

Proposition 13. LetK be a compact subset ofX such thatF(K) ⊂ K . Let x be inK .
Then there exists two extractions ϕ ∈ A and ψ ∈ A such that limn F

ϕ(n)(x) = x′
and limn F

ψ(n)(x′) = x′.

In the proof of Theorem 4, we use this result with X = R
Z with its pointwise

convergence topology,K is [−η0, η0]Z, F is the shift map and g is the quasi-periodic
sequence g.

Before proving the above proposition, let us fix some notations. Let x be as in the
proposition and ϕ ∈ A; the sequence Fϕ(n)(x) is a sequence inK which is compact.
Thus there exists a subsequence that converges. As said above this implies that there
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exists an extraction ψ such that Fϕ(ψ(n))(x) converges. We notice that ϕ � ψ ∈ A.
Hence we define

Asymp(x) = {y ∈ K | y = limn F
ϕ(n)(x) for some ϕ ∈ A}.

We know that Asymp(x) is non-empty. In fact Proposition 13 consists in proving
that there exists x′ ∈ Asymp(x) such that x′ ∈ Asymp(x′). Then Proposition 13 is a
consequence of the following three lemmas.

Lemma 7. Let x ∈ K . Then Asymp(x) is a closed subset of K .

Proof. Let (yk)k∈N be a sequence in Asymp(x) that converges to y ∈ K . For each
k, we choose ϕk ∈ A such that yk = limn F

ϕk(n)(x). We are going to construct by
induction ψ ∈ A such that y = limn F

ψ(n)(x).
Let n be in N

∗, we assume that ψ(q) is constructed for q < n such that, for every
q < n,

Fψ(q)(g) ∈ Vq(g) and Fψ(q)(x) ∈ Vq(y).
Since lim yk = y, there exists k0 such that yk0 ∈ Vn(y); hence Vn(y) is an open
neighborhood of yk0 . Since ϕk0 ∈ A, there exists q0 such that ϕk0(q0) > ψ(n− 1),
and

Fϕk0 (q0)(g) ∈ Vn(g) and Fϕk0 (q0)(x) ∈ Vn(y).
Then if we take ψ(n) = ϕk0(q0) we get

Fψ(n)(g) ∈ Vn(g), (15)

Fψ(n)(x) ∈ Vn(y). (16)

This finishes our construction.
Equation (15) implies that ψ ∈ A and (16) implies that limn F

ψ(n)(x) = y thus
y ∈ Asymp(x). �

Lemma 8. Let x ∈ K and let y ∈ Asymp(x). Then Asymp(y) ⊂ Asymp(x).

Proof. Let z be in Asymp(y). Let ϕ and ψ ∈ A such that limn F
ϕ(n)(x) = y and

limn F
ψ(n)(y) = z. Let us build by induction χ ∈ A such that limn F

χ(n)(x) = z.
Let n be in N

∗. We assume that χ(q) is constructed for q < n such that, for every
q < n,

Fχ(q)(g) ∈ Vq(g) and Fχ(q)(x) ∈ Vq(z).
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Since limn F
ψ(n)(y) = z, there exists k0 such that

Fψ(k0)(g) ∈ Vn(g) and Fψ(k0)(y) ∈ Vn(z).

Then (Fψ(k0))−1
(
Vn(g)

)
is an open neighborhood of g and (Fψ(k0))−1

(
Vn(z)

)
is

an open neighborhood of y. Since limn F
ϕ(n)(x) = y, there exists l0 such that

ψ(k0)+ ϕ(l0) > χ(n− 1), and

Fϕ(l0)(g) ∈ (Fψ(k0))−1(Vn(g)) and Fϕ(l0)(x) ∈ (Fψ(k0))−1(Vn(z))
Hence if we take χ(n) = ψ(k0)+ ϕ(l0), we have:

Fχ(n)(g) ∈ Vn(g), (17)

Fχ(n)(x) ∈ Vn(z). (18)

This finishes our construction.
Equation (17) implies that χ is in A and (18) gives us that limn F

χ(n)(x) = z,
hence z ∈ Asymp(x). �

Lemma 9. Let K be a compact set and T : K → P (K) a map such that:

(1) for all x ∈ K , T (x) is closed and non-empty;

(2) for all x ∈ K and all y ∈ T (x), T (y) ⊂ T (x).

Let x ∈ K , then there exists y ∈ T (x) such that y ∈ T (y).

Proposition 13 is then a consequence of this lemma with T = Asymp.

Proof of Lemma 9. The proof of this lemma is given by Zorn’s lemma. Let x be in
K , we denote by B the set {T (y), y ∈ T (x)}. B is ordered by the inclusion. Let
(Ti)i∈I be a totally ordered family of B. Let us define T∞ = ⋂

i∈I Ti . If T∞ is
empty, since each Ti is closed and K is compact there exists a finite subset I0 ⊂ I

such that
⋂
i∈I0 Ti = ∅. Since (Ti)i∈I0 is totally ordered there exists i0 ∈ I0 such that

Ti0 = ⋂
i∈I0 Ti , but Ti0 is non-empty thus T∞ �= ∅.

Let y be in T∞, then y ∈ Ti for all i ∈ I . This implies by the second hypothesis
that y ∈ T (x) and T (y) ∈ B. Besides T (y) ⊂ Ti for all i ∈ I ; then T (y) ⊂ T∞.
We obtain that T (y) is an under-bound for the family (Ti)i∈I .

We have proved that every totally ordered family admits an under-bound. Hence,
by Zorn’s lemma, there exists an element Tm ∈ B which is minimal for the inclusion.
Let y be in Tm (we recall that all elements of B are non-empty subsets of K). We
have y ∈ T (x) by the second hypothesis then T (y) ∈ B and T (y) ⊂ Tm. Since Tm
is minimal in B, T (y) = Tm and y ∈ T (y). �
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