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The rational homotopy Lie algebra of function spaces

Urtzi Buijs and Aniceto Murillo∗

Abstract. In this paper we fully describe the rational homotopy Lie algebra of any component of
a given (free or pointed) function space. Also, we characterize higher order Whitehead products
on these spaces. From this, we deduce the existence ofH -structures on a given component of a
pointed mapping space F∗(X, Y ; f ) between rational spaces, assuming the cone length of X is
smaller than the order of any non trivial generalized Whitehead product in π∗(Y ).
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1. Introduction

Starting with the work of Thom [15] and followed by that of Haefliger [9], the rational
homotopy type of function spaces has been extensively studied. However, there is
no explicit and complete description of the homotopy Lie algebra structure of such
spaces, and only special cases are known.

Denote by F (X, Y ) (resp. F∗(X, Y )) the space of free (resp. based) maps from
X to Y . From now on, X and Y are assumed to be nilpotent complexes with X
finite and Y of finite type over Q. In this way the components of both F (X, Y ) and
F∗(X, Y ) are nilpotent CW-complexes of finite type over Q and can be rationalized
in the classical sense.

If dimX < conn Y (so that F (X, Y ) is connected) M. Vigué [16] showed that
the homotopy Lie algebra π∗F (X, Y )Q (resp. π∗F∗(X, Y )Q) is isomorphic as Lie
algebra to H ∗(X; Q) ⊗ π∗(YQ) (resp. H+(X; Q) ⊗ π∗(YQ)). Later on, Y. Félix [6]
used essential properties of this homotopy Lie algebra to show, among other deep
results, that the Lusternik–Schnirelmann category of the mentioned components is
often infinite. It is also important to remark that in [5], F. Da Silveira describes a
Lie model for any component of the space of sections of a given fibration which, in
particular, yields a Lie model for function spaces.

∗Partially supported by the Ministerio de Ciencia y Tecnología grant MTM2004-60016 and by the Junta de
Andalucía grant FQM-213 and FQM-02863.
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Following the Brown–Szczarba approach [3] to the Haefliger model of function
spaces [9], we first obtain a natural description of its rational homotopy groups in
terms of derivations. Then we give a full and explicit description of the homotopy
Lie algebra structure of F (X, Y )Q and F∗(X, Y )Q. Let us be more precise:

Let (�V, d) be a Sullivan model, not necessarily minimal, of Y , i.e., a cofibrant
replacement of a commutative differential graded algebra (CDGA henceforth) homo-
topy equivalent toC∗(Y ; Q), and letB be a finite dimensional CDGA of the homotopy
type of C∗(X; Q). Then there is a model of F (X;Y ) of the form (�(V ⊗ B∗), d̃)
(see the next section for proper definitions and details). By a model of a non con-
nected space (or a map between non connected spaces), we mean a Z-graded CDGA
(or a CDGA morphism), whose simplicial realization has the homotopy type of the
singular simplicial approximation of the chosen space or map.

Moreover, given a map f : X → Y , there is a standard procedure [13] to pro-
duce a Sullivan model (�Sφ, d̄) (in fact, the Haefliger model) of the nilpotent space
F (X, Y ; f ), the path component of F (X, Y ) containing f .

Our first result is that the space of the indecomposables of this model
(
Sφ,Q(d̄)

)
is isomorphic as differential vector space to (Der(�V,B;φ), δ), the φ-derivations
from �V to B, where φ : �V → B is a model of f . From this, via the classical
characterization of rational homotopy groups in terms of the indecomposables of a
cofibrant model [2, Theorem 12.7], we immediately obtain:

Theorem 1. (i) For n ≥ 2:

πn(F (X, Y ; f )Q) ∼= Hn(Der(�V,B;φ), δ),
πn(F∗(X, Y ; f )Q) ∼= Hn(Der(�V,B+;φ), δ).

(ii) For n = 1:

�
(
π1(F (X, Y ; f )Q

) ∼= H1(Der(�V,B;φ), δ);
�

(
π1(F∗(X, Y ; f )Q

) ∼= H1(Der(�V,B+;φ), δ).

Remark 2. (i) For a given nilpotent space Z, �(π1ZQ) denotes the rational vector
space

m⊕
i=1

�i/�i+1 ⊗ Q,

where
π1Z = �1 ⊃ �2 ⊃ · · · ⊃ �m = {1}

is the lower central series of π1Z. In particular, dim �(π1ZQ) = rk π1Z.
(ii) The extended version of this theorem in Corollary 7 includes as particular

cases the main results in [11, Theorem 2.1] and [12, Theorem 1].
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Then we proceed to fully and explicitly describe the Lie bracket onπ∗F (X, Y ; f )Q
and π∗F∗(X, Y ; f )Q in terms of derivations:

Theorem 3. The differential linear map of degree 1

[ , ] : Der∗(�V,B;φ)⊗ Der∗(�V,B;φ) −→ Der∗(�V,B;φ),
defined by

[ϕ,ψ](v) = (−1)|ϕ|+|ψ |−1
∑(∑

i �=j
ε φ(v1 . . . v̂i . . . v̂j . . . vk)ϕ(vi)ψ(vj )

)
,

in which dv = ∑
v1 . . . vk and ε is the sign defined in Remark 11 below, induces the

Whitehead product in homology. Moreover, the restriction to

[ , ] : Der∗(�V,B+;φ)⊗ Der∗(�V,B+;φ) −→ Der∗(�V,B+;φ),
also induces the Lie bracket in π∗F∗(X, Y ; f )Q.

A similar result gives also an explicit description of higher order Whitehead prod-
ucts (see Theorem 15).

As an immediate application we generalize the result of Vigué stated above: If we
denote by ∗: X → Y the constant map, πn(F (X, Y ; ∗)Q) (resp. πn(F∗(X, Y ; ∗)Q))
is isomorphic as Lie algebras to H ∗(X; Q)⊗ π∗(YQ) (resp. H+(X; Q)⊗ π∗(YQ)).

Finally, from Theorem 3 we may generalize [8] and [10, Theorem 1.2]. For a
given space Y , denote by dl Y the least n (or ∞) for which there is a non trivial
Whitehead product of order n in π∗(YQ) (see Section 3 for more about this invariant).

Theorem 4. If clXQ < dl YQ, then F∗(X, Y ; f )Q is an H -space for all f . Equiva-
lently, its rational cohomology algebra is free.

Here, clX denotes the cone length of the spaceXwhich is a well-known numerical
invariant [4]. It coincides with the strong LS-category, and therefore, it is bounded
by catX and catX + 1.

We thank Professor Barry Jessup for very helpful advise.

2. Basics of rational homotopy theory of function spaces

We shall be using known results on rational homotopy theory for which [7] is a
very good and standard reference. We now recall some specific facts on the rational
homotopy type of a function space F (X, Y ) starting by its Brown–Szczarba model.

Consider A = (�V, d)

−−→ APL(Y ) a Sullivan model, not necessarily minimal, of
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Y and B

−−→ APL(X) a quasi-isomorphism with B a connected finite dimensional

CDGA. Let B∗ = hom(B,Q) be the differential graded coalgebra dual of B, and
consider the Z-graded CDGA�(A⊗B∗)with the natural differential induced by the
one on A and by the dual of the differential of B. Now, consider the differential ideal
I ⊂ �(A⊗ B∗) generated by 1 ⊗ 1∗ − 1 and by the elements of the form

a1a2 ⊗ β −
∑
j

(−1)|a2||βj ′|(a1 ⊗ βj
′)(a2 ⊗ βj

′′),

a1, a2 ∈ A, β ∈ B∗, and �β = ∑
j βj

′ ⊗ βj
′′. Then, the composition

ρ : �(V ⊗ B∗) ⊂ �(A⊗ B∗) � �(A⊗ B∗)/I

is an isomorphism of graded algebras [3, Theorem 1.2], and therefore, considering
on �(V ⊗ B∗) the differential d̃ = ρ−1dρ, ρ is also an isomorphism of CDGA’s.
Then, (�(V ⊗ B∗), d̃) is a model of F (X, YQ) [3, Theorem 1.3]. In other words,
S∗F (X, YQ) and the simplicial realization of (�(V ⊗B∗), d̃) are homotopy equiva-
lent.

In order to explicitly determine d̃ on v ⊗ β ∈ V ⊗ B∗, calculate (dv) ⊗ β +
(−1)|v|v⊗dβ and then use the relations which generate the ideal I to express (dv)⊗β
as an element of �(V ⊗ B∗).

We now explain how to obtain Sullivan models (in fact the Haefliger models) of
the different components of F (X, Y ) [3], [9], [13]. For this we need some algebraic
tools: let (�W, d) be a CDGA in which W is Z-graded, and let u : �W → Q be an
augmentation. Given = α ·�, α ∈ (�+W 0) and� ∈ �(W �=0), we denote by/u
the element u(α)�. Define a linear map ∂ : W 0 → W 1 as follows: given w ∈ W 0,
write dw = 0 + 1 + 2, with 0 ∈ (�+W<0) · (�W), 1 ∈ (�+W 0) · W 1,
2 ∈ W 1, and define ∂(w) = 1/u+2.

Call W 1 a complement of the image of this map, W 1 = ∂W 0 ⊕W 1, and define
the CDGA (�W 1 ⊕W≥2, d̄) as follows:

Given w ∈ �(W 1 ⊕ W≥2) write dw = 0 + 1 + 2 + 3, in which 0 ∈
�+W<0 · �W , 1 ∈ �+(∂W 0) · �W≥0, 2 ∈ (�+W 0) · �(W 1 ⊕ W≥2) and
3 ∈ �(W 1 ⊕W≥2). Define d̄w = 2/u+3.

Note that if we have in W a basis {wi} for which dwi ∈ �W<i , then the image
of this basis in (�W 1 ⊕W≥2, d̄) makes it a Sullivan model. However, even when
d is decomposable in �W , d̄ might not be, i.e., (�W 1 ⊕W≥2, d̄) is not necessarily
minimal. This depends on u. In fact, as we just remarked, for each w ∈ W , 2/u

could contain a linear part.
Next, consider (�(V ⊗ B∗), d̃) the model of the function space F (X, Y ) and let

φ : (�V, d) → B be a model of a given map f : X → Y . The morphism φ clearly
induces a natural augmentation which shall be denoted also by φ : (�(V ⊗B∗), d̃) →
Q. Applying the process above to this particular case yields a CDGA (�Sφ, d̄) =
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(�V ⊗ B
1
∗ ⊕ (V ⊗B∗)≥2, d̄) which turns out to be a Sullivan model of F (X, Y ; f ).

Moreover, the CDGA morphism

ω0 : (�V, d) � (�Sφ, d̄) = (�V ⊗ B
1
∗ ⊕ (V ⊗ B∗)≥2, d̄),

ω0(v) = v ⊗ 1∗ if v ∈ V ≥2, or its projection over V ⊗ B
1
∗ if v ∈ V 1, is a Sullivan

model of the evaluation at the base point ω0 : F (X, Y ; f ) → Y [13, Corollary 22].
While ω0(v) could vanish if |v| = 1, when (�V, d) is 1-connected,

ω0 : (�V, d) � (�Sφ, d̄),

is a KS-extension or a relative Sullivan algebra. The fibre, which is of the form

(�(Sφ/V ), d̄) ∼= (�V ⊗ B
1
+ ⊕ (V ⊗ B+)≥2, d̄),

is a Sullivan model of the fibre of ω0 : F (X, Y ; f ) → Y , i.e., of F∗(X, Y ; f ).
Finally, we set some notation: for any pairV ,B of Z-graded vector spaces, denote

by L(V , B) = {Ln(V , B)}n≥0 the graded vector space of its homomorphisms. In
particular, the dual of a given object (except for B∗) shall be denoted by L(−,Q).
There is a natural isomorphism

� : L(V , B)
∼=� L(V ⊗ B∗,Q), �(θ)(v ⊗ β) = (−1)|β|(|v|+|θ |)β(θ(v)).

Given a CDGA morphism φ : A → B, call (Der(A,B;φ), δ) the differential
graded vector space where Dern(A,B;φ) are the φ-derivations of degree n, i.e.,
linear maps θ : A∗ → B∗−n for which θ(ab) = θ(a)φ(b)+ (−1)n|b|φ(a)θ(b). The
differential is defined as usual δθ = d � θ + (−1)n+1θ � d. Note that when A = �V ,
Der(�V,B;φ) ∼= L(V , B) as graded vector spaces via the identification θ �→ θ |V .
We shall denote also by

� : Der(�V,B;φ) ∼=� L(V ⊗ B∗,Q)

the isomorphism above under this identification.

3. Rational homotopy groups of function spaces

In this section we prove Theorem 1 and extract some consequences. Hereafter, and
to avoid excessive notation, given any nilpotent space Z, whenever we write π1Z we
shall mean �(π1Z) (see (i) of Remark 2).

With this in mind, consider the Sullivan model (�Sφ, d̄) of F (X, Y ; f ) and
recall that [2, Theorem 12.7] πnF (X, Y ; f )Q is naturally isomorphic to the dual of
Hn

(
Sφ,Q(d̄)

)
, n ≥ 1, with Sφ ∼= Q(�Sφ) = �Sφ/(�

+Sφ ·�+Sφ) being the space
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of indecomposables. In other words, the rational homotopy of the f -component of
the function space is encoded in the dual of the homology of the following complex:

0 � V ⊗ B∗
1 Q(d̄)� (V ⊗ B∗)2

Q(d̄)� (V ⊗ B∗)3
Q(d̄)� · · · .

However, as (V ⊗ B∗)1 = ∂(V ⊗ B∗)0 ⊕ V ⊗ B∗
1
, this is exactly the homology

of this slightly different complex:

(V ⊗ B∗)0
∂� (V ⊗ B∗)1

0⊕Q(d̄)� (V ⊗ B∗)2
Q(d̄)� (V ⊗ B∗)3

Q(d̄)� · · · .
Our main result in this section is that the dual of the complex above is isomorphic

to (Der(�V,B;φ), δ) via the map � defined in Section 2. We prove:

Theorem 5. The following diagram commutes:

L0(V ⊗ B∗,Q) �∂
∗

L1(V ⊗ B∗,Q) �(0⊕Q(d̄))∗
L2(V ⊗ B∗,Q) �Q(d̄)

∗ · · ·

Der0(�V,B;φ)
∼= �

�

�δ Der1(�V,B;φ)
∼= �

�

� δ
Der2(�V,B;φ)

∼= �
�

�δ · · · .
Proof. Here, for simplicity in the notation, we write Q(d̄)∗ instead of L(Q(d̄),Q).
For the same purpose we shall omit signs and write just ±. However, a careful use
of Koszul convention leads to proper sign adjustments.

We first show that, for n ≥ 2, the square

Ln(V ⊗ B∗,Q) � Q(d̄)∗
Ln+1(V ⊗ B∗,Q)

Dern(�V,B;φ)

∼=
�
�

� δ
Dern+1(�V,B;φ)

∼=
�
�

commutes. On one hand, given θ ∈ Dern+1(�V,B;φ) and v ⊗ β ∈ (V ⊗ B∗)n,

(�δθ)(v ⊗ β) = ±β(δθ(v)) = ±β(d(θ(v)))± β(θ(dv)). (∗)
On the other hand,

(Q(d̄)∗�θ)(v ⊗ β) = ±�θ(Q(d̄)(v ⊗ β)) = ±�θ({dv ⊗ β} ± v ⊗ dβ)

= ±�θ({dv ⊗ β})± (dβ)(θ(v)) = ±�θ({dv ⊗ β})± β(d(θ(v))).
(∗∗)

Here {dv ⊗ β} denotes the indecomposable part of the image of [dv ⊗ β] through
the morphism

A⊗ B∗/I
ρ−1

∼=
� �(V ⊗ B∗) → �(V ⊗ B∗

1 ⊕ (V ⊗ B∗)≥2) = �Sφ.
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To effectively compute {dv ⊗ β} use first the relations which generates I to write
[dv ⊗ β] as an element of �(V ⊗ B∗). Then, cancel all elements of negative degree
and their derivatives, and replace any element of degree zero by the corresponding
scalar via φ. Finally, keep the linear part.

At the sight of (∗) and (∗∗), it will be enough to prove:

Lemma 6. Given  ∈ �V , β ∈ B∗ and θ ∈ Der∗(�V,B;φ), (�θ)({ ⊗ β}) =
(−1)|β|(|θ |+||)β(θ()).

Proof. Denote by FB : B ⊗ B∗ → Q and FB⊗B : (B ⊗ B) ⊗ (B∗ ⊗ B∗) → Q the
maps defined respectively byFB(b⊗β) = (−1)|b|β(b) andFB⊗B(b⊗b′⊗β⊗β ′) =
(−1)|b||b′|+|b|+|b′|β(b)β ′(b′). Then, if μ is multiplication in B, it is easy to see that
the following diagram commutes:

(B ⊗ B)⊗ B∗
μ⊗1B∗ � B ⊗ B∗

(B ⊗ B)⊗ (B∗ ⊗ B∗)

1B⊗B⊗�
�

FB⊗B � Q.
�
FB

To prove the lemma, assume that = �kV and argue by induction on k. For k = 1,
 = v ∈ V and {v ⊗ β} = v ⊗ β for which the lemma holds by definition of �.
Assume now  = � · v with � ∈ �k−1V . Again, to avoid excessive notation, we
shall omit signs:

β
(
θ(� · v)) = β

(
θ(�)φ(v)± φ(�)θ(v)

)
= ±FB(θ(�)φ(v)⊗ β)± FB(φ(�)θ(v)⊗ β)

= ±FB⊗B(θ(�)⊗ φ(v)⊗ �β)± FB⊗B(φ(�)⊗ θ(v)⊗ �β)
= (a)+ (b).

On the other hand,

(�θ){� · v ⊗ β} = (�θ)
{ ∑

j

±(� ⊗ β ′
j )(v ⊗ β ′′

j )
}

with �β = ∑
j β

′
j ⊗ β ′′

j . By definition of { , }, we may keep only those summands
for which one of the factors is of degree zero. Hence, the above equality becomes

(�θ)
{ ∑

|�|+|β ′
j |=0

±(� ⊗ β ′
j )(v ⊗ β ′′

j )
}

+ (�θ)
{ ∑

|v|+|β ′′
j |=0

±(� ⊗ β ′
j )(v ⊗ β ′′

j )
}

= (e)+ (f ).
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Using definition and induction hypothesis we get

(f ) =
∑

|v|+|β ′′
j |=0

±(�θ){� ⊗ β ′
j }φ(v ⊗ β ′′

j )

=
∑

|v|+|β ′′
j |=0

±β ′
j

(
θ(�)

)
β ′′
j

(
φ(v)

)

=
∑

|v|+|β ′′
j |=0

±FB⊗B(θ(�)⊗ φ(v)⊗ β ′
j ⊗ β ′′

j )

= ±FB⊗B(θ(�)⊗ φ(v)⊗ �β) = (a).

Using repeatedly a similar argument one checks that (b) = (e) and the proof is
complete. �

Finally, we see that

L0(V ⊗ B∗,Q) �∂∗
L1(V ⊗ B∗,Q) �(0⊕Q(d̄))∗

L2(V ⊗ B∗,Q)

Der0(�V,B;φ)

∼=
�
�

�δ
Der1(�V,B;φ)

∼=
�
�

� δ
Der2(�V,B;φ)

∼=
�
�

commutes. For it note that given v ⊗ β ∈ (V ⊗ B∗)0, ∂(v ⊗ β) = {dv ⊗ β} +
(−1)|v|v ⊗ dβ. Hence, using Lemma 6, and following exactly the above argument:

(∂∗ ��)(θ)(v⊗β) = (−1)|θ |+1�θ({dv⊗β}+ (−1)|v|v⊗dβ) = (��δ)(θ)(v⊗β),
which gives the commutativity of the left square. For the right square, write w ∈
(V ⊗ B∗)1 as a sum x + v ⊗ β, x ∈ ∂(V ⊗ B∗)0, v ⊗ β ∈ V ⊗ B∗

1
. Then,((

0 ⊕Q(d̄)
)∗ ��)

(θ)(w) = (−1)|θ |+1(�θ)
(
Q(d̄)(v ⊗ β)

)
= (−1)|θ |+1(�θ)({dv ⊗ β} + (−1)|v|v ⊗ dβ)

= (� � δ)(θ)(w).
and the proof of Theorem 5 is completed. �

Proof of Theorem 1. The free case of (i) and (ii) is immediate from Theorem 5. For
the based case consider the Sullivan model (�(Sφ/V ), d̄) of F∗(X, Y ; f ) recalled
in the past section, and observe that �

(
π1(F∗(X, Y ; f )Q

)
and πn

(
F∗(X, Y ; f )Q

)
,

n ≥ 2, are then isomorphic to the dual of the homology of the following complex:

0 � V ⊗ B+
1 Q(d̄)� (V ⊗ B+)2

Q(d̄)� (V ⊗ B+)3
Q(d̄)� · · · .

To finish, restrict Theorem 5 to the dual of this complex. �
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We now check that the above isomorphism is natural and respects the evaluation
map at the base point. Fix a map f : X → Y between nilpotent complexes of finite

type over Q and let Z be a finite nilpotent complex. Let A = (�W, d)
ϕ−→
 APL(X)

and (�V, d)
ϕ−→
 APL(Y ) be Sullivan models (again not necessarily minimal!) of

X and Y respectively, let C
ν−→
 APL(Z) be a quasi-isomorphism with C connected

finite dimensional, and let ζ : (�V, d) → (�W, d) be a Sullivan model for f . Define

ξ : (�(V ⊗ C∗), d̃) � (�(W ⊗ C∗), d̃), ξ(v ⊗ c) = ρ−1[ζ(v)⊗ c],
(�(V ⊗ C∗), d̃) and (�(W ⊗ C∗), d̃) being the models of F (Z, Y ) and F (Z,X)

respectively, andρ : (�(W⊗C∗), d̃)
∼=−−→ (�(A⊗C∗), d)/I the CDGA isomorphism

described in Section 2. In other words, to compute effectively ξ(v⊗c)use the relations
which define I to express ζ(v) ⊗ c as an element of �(V ⊗ C∗). For instance, if
ζ(v) = w1w2 and �c = ∑

i c
′
i ⊗ c′′j , ξ(v⊗ c) = ∑

i (−1)|w2||c′i |(w1 ⊗ c′i )(w2 ⊗ c′′i ).
Finally, let φ : (�W, d) → C and φ � ζ : (�V, d) → C be models of g : Z → X

and f � g : Z → Y respectively. Then [13, Theorem 24], the diagram

(�Sφ/W, d̄) � ξ̄
(�Sφ�ζ /V, d̄)

(�Sφ, d̄)

�

� ξ̄
(�Sφ�ζ , d̄)

�

(�W, d)

ω0

�

� ζ
(�V, d)

�
ω0

is a Sullivan model of

F∗(Z,X; g) (f )∗ � F∗(Z, Y ; f � g)

F (Z,X; g)
�

(f )∗ � F (Z, Y ; f � g)
�

X

ω0

�
f � Y.

�
ω0

Hence in view of Theorem 1, the following corollary, which includes in particular
the main results in [11, Theorem 2.1] and [12, Theorem 1], is an easy exercise:
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Corollary 7. (1) For n ≥ 1, πn(f∗)Q : πnF (Z,X; g)Q → πnF (Z, Y ; f � g)Q is
naturally equivalent to

H(ζ∗) : HnDer∗(�W,C;φ) � HnDer∗(�V,C;φ � ζ ).
(2) Moreover,

πnF∗(Z,X; g)Q πn(f∗)Q� πnF∗(Z, Y ; f � g)Q

πnF (Z,X; g)Q
�

πn(f∗)Q � πnF (Z, Y ; f � g)Q
�

πn(X)Q

πn(ω0)Q
�

πn(f )Q � πn(Y )Q

�
πn(ω0)Q

is equivalent to

Hn(Der∗(�W,C+;φ)) H(ζ∗) � Hn(Der∗(�V,C+;φ � ζ ))

Hn(Der∗(�W,C;φ))
�

H(ζ∗) � Hn(Der∗(�V,C;φ � ζ ))
�

Hn(Der∗(�W,Q; ε))
H(ε∗)

�
H(ζ) � Hn(Der∗(�V,Q; ε)).

�
H(ε∗)

�

Remark 8. Note that (Der∗(�V,Q; ε), δ) ∼= (
(L(V ,Q),Q(d)∗

)
and therefore

Hn(Der∗(�V,Q; ε)) is isomorphic to the dual of H ∗(V ,Q(d)).

4. The Lie algebra structure

This section is devoted to the proof of Theorem 3 and its consequences. For that, the
following remark is essential:

Remark 9. Let (�V, d) be a Sullivan model of a nilpotent spaceX. Recall that d can
be written as the sum d = ∑

i≥1 di , with di(V ) ⊂ �iV . The linear part d1 = Q(d)

induces a differential on �V . The differential d ′ induced by d on H ∗(�V, d1) =
�H ∗(V , d1) has no linear term and (�H ∗(V , d1), d

′) is the minimal model of X.
The quadratic part, d ′

2 is then a differential which can be identified as the Lie bracket
on π∗(XQ) [14, II.6.(16)]. More precisely, given the natural isomorphism π∗(XQ) ∼=
L∗

(
H ∗(�V, d1),Q

)
and the multilinear map

〈 ; , 〉 : ∧2 H ∗(�V, d1)× π∗(XQ)× π∗(XQ) � Q,
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〈α ∧ β; γ0, γ1〉 = γ1(α)γ0(β)+ (−1)|β||γ0|γ0(α)γ1(β),

it turns out that [
γ0, γ1

]
(α) = (−1)p+q−1〈d ′

2α; γ0, γ1〉,
in which α ∈ H ∗(�V, d1), γ0 ∈ πp(XQ), γ1 ∈ πq(XQ).

In the same way, given the multilinear map

〈 ; , . . . , 〉 : ∧j V × V ∗ × · · · × V ∗ � Q,

〈v1 . . . vj ; γ0, . . . , γj 〉 =
∑
i1,...,ij

δi1...ij γ1(vi1) . . . γj (vij ),

where δi1...ij is the expected sign induced by the Koszul convention, the higher order
Whitehead products on π∗(XQ) can be identified with the j -th part of d, via

[γ1, . . . , γj ](v) = (−1)p1+···+pj−1〈djv; γ1, . . . , γj 〉,
each γi being of degree pi [1, Theorem 5.4] or [14, V.7(3)].

Consider now the component F (X, Y ; f ) of a given function space and let
(�Sφ, d̄) be its Sullivan model defined in Section 2. We shall need a “quadratic"
analogue of Lemma 6. Given  ∈ �V and β ∈ B∗, denote by { ⊗ β}2 the
quadratic part of the image of [⊗ β] through the morphism

A⊗ B∗/I
ρ−1

∼=
� �(V ⊗ B∗) → �V ⊗ B∗

1 ⊕ (V ⊗ B∗)≥2.

To effectively compute { ⊗ β}2 use first the relations which generates I to write
[⊗ β] as an element of �(V ⊗ B∗). Then, cancel all elements of negative degree
and their derivatives, and replace any element of degree zero by the corresponding
scalar via φ. Finally, keep the quadratic part.

Lemma 10. Let  = v1 . . . vk ∈ �kV , β ∈ B∗ and ϕ,ψ ∈ Der∗(�V,B;φ) of
strictly positive degrees. Then,〈{⊗ β}2;�ϕ,�ψ

〉
= (−1)|β|(|ϕ|+|ψ |+||)∑

i �=j
ε β

(
φ(v1 . . . v̂i . . . v̂j . . . vk)ϕ(vi)ψ(vj )

)
,

where ε is the sign produced by the Koszul convention and, for completeness, it is
explicitly given in Remark 11 below.

Proof. As in Lemma 6, to be clear in presenting our argument, we shall write ± instead
of proper signs, and leave to the reader the straightforward task that the equality above
holds with the given signs.
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We proceed by induction on k. Let  = v1v2, assume �β = ∑
r β

′
r ⊗ β ′′

r and
denote by � the sum of all terms of

∑
r (−1)|β ′

r ||v2|(v1 ⊗ β ′
r )(v2 ⊗ β ′′

r ) in which at
least one of the two factors is of degree 0. Then

〈{v1v2 ⊗ β}2;�ϕ,�ψ〉 =
〈 ∑
r

±(v1 ⊗ β ′
r )(v2 ⊗ β ′′

r )− �;�ϕ,�ψ
〉
.

However, as ϕ,ψ are of positive degree, 〈�;�ϕ,�ψ〉 = 0 and the formula above
becomes∑

r

±〈(v1 ⊗ β ′
r )(v2 ⊗ β ′′

r );�ϕ,�ψ〉

=
∑
r

±�ϕ(v1 ⊗ β ′
r )�ψ(v2 ⊗ β ′′

r )±�ψ(v1 ⊗ β ′
r )�ϕ(v2 ⊗ β ′′

r )

=
∑
r

±β ′
r (ϕ(v1))β

′′
r (ψ(v2))± β ′

r (ψ(v1))β
′′
r (ϕ(v2))

= ±FB⊗B
(
ϕ(v1)⊗ ψ(v2)⊗�β

) ± FB⊗B
(
ψ(v1)⊗ ϕ(v2)⊗�β

)
= ±β(

ϕ(v1)ψ(v2)
) ± β

(
ψ(v1)ϕ(v2)

)
which is the expected expression for k = 2.

Assume the lemma holds for k − 1 and let  = v1 . . . vk . On the one hand,∑
i �=j

±β(
φ(v1 . . . v̂i . . . v̂j . . . vk)ϕ(vi)ψ(vj )

)

=
[∑
j �=k

±β(
φ(v1 . . . v̂j . . . vk−1)ϕ(vk)ψ(vj )

+
∑
i �=k

±β(
φ(v1 . . . v̂i . . . vk−1)ϕ(vi)ψ(vk)

)]

+
∑
i �=j
i,j �=k

±β(
φ(v1 . . . v̂i . . . v̂j . . . vk)ϕ(vi)ψ(vj )

) = (I)+ (II).

On the other hand,

〈{v1 . . . vk ⊗ β}2;�ϕ,�ψ〉 =
∑
r

±〈{(v1 . . . vk−1 ⊗ β ′
r )(vk ⊗ β ′′

r )}2;�ϕ,�ψ〉.

In this formula, whenever vk ⊗ β ′′
r is of degree 0, we can replace it by the scalar

φ(vk ⊗ β ′′
r ) resulting in∑

|vk⊗β ′′
r |=0

±φ(vk ⊗ β ′′
r )〈{v1 . . . vk−1 ⊗ β ′

r )}2;�ϕ,�ψ〉

+
∑

|vk⊗β ′′
r |>0

±〈{v1 · · · vk−1 ⊗ β ′
r}(vk ⊗ β ′′

r );�ϕ,�ψ〉 = (II′)+ (I′).
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Applying induction we get

(II′) =
∑
i �=j,r

±β ′
r

(
φ(v1 . . . v̂i . . . v̂j . . . vk−1)ϕ(vi)ψ(vj )

)
β ′′
r (φ(vk))

=
∑
i �=j,r

±FB⊗B
(
φ(v1 . . . v̂i . . . v̂j . . . vk−1)ϕ(vi)ψ(vj )⊗ φ(vk)⊗ β ′

r ⊗ β ′′
r

)

=
∑
i �=j

±FB⊗B
(
φ(v1 . . . v̂i . . . v̂j . . . vk−1)ϕ(vi)ψ(vj )⊗ φ(vk)⊗�β

)

=
∑
i �=j

±FB
(
φ(v1 . . . v̂i . . . v̂j . . . vk−1)ϕ(vi)ψ(vj )φ(vk))⊗ β

)

=
∑
i �=j
i,j �=k

±β(
φ(v1 . . . v̂i . . . v̂j . . . vk−1)φ(vk)ϕ(vi)ψ(vj )

) = (II).

On the other hand,

(I′) =
∑
r

±�ϕ({v1 . . . vk−1 ⊗ β ′
r})�ψ(vk ⊗ β ′′

r )

+
∑
r

±�ψ({v1 . . . vk−1 ⊗ β ′
r})�ϕ(vk ⊗ β ′′

r ).

Applying Lemma 6 to this formula gives the following:

=
∑
r

±β ′
r

(
ϕ(v1 . . . vk−1)

)
β ′′
r

(
ψ(vk)

) +
∑
r

±β ′
r

(
ψ(v1 . . . vk−1)

)
β ′′
r

(
ϕ(vk)

)

=
∑
r

±FB⊗B
(
ϕ(v1 . . . vk−1)⊗ ψ(vk)⊗ β ′

r ⊗ β ′′
r

)

± FB⊗B
(
ψ(v1 . . . vk−1)⊗ ϕ(vk)⊗ β ′

r ⊗ β ′′
r

)
= ±FB⊗B

(
ϕ(v1 . . . vk−1)⊗ ψ(vk)⊗�β

)
± FB⊗B

(
ψ(v1 . . . vk−1)⊗ ϕ(vk)⊗�β

)
= ±β(

ϕ(v1 · · · vk−1)ψ(vk)
) ± β

(
ψ(v1 · · · vk−1)ϕ(vk)

)
.

Finally, as ϕ and ψ are φ-derivations, this last equation results in
∑
i �=k

±β(
φ(v1 . . . v̂i . . . vk−1)ϕ(vi)ψ(vk)

)

+
∑
j �=k

±β(
φ(v1 . . . v̂j . . . vk−1)ψ(vj )ϕ(vk)

) = (I)

and the proof is complete. �
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Remark 11. The sign ε of Lemma 10 clearly depends on i, j, ϕ, ψ, v1, . . . , vk . To
make it explicit consider the following notation: for each set of indices� ⊂ {1, . . . , k}
write

ρ� =
∑
n�∈�

|vn|.

For instance, ρ≤i,j denotes |vi+1|+· · ·+|̂vj |+· · ·+|vk| if i < j or |vi+1|+· · ·+|vk|
if i ≥ j . Then,

ε = (−1)ρi,j |ϕ|+ρj |ψ |+ρ≤i,j |vi |+ρi,≤j |vj |.

Proof of Theorem 3. Letϕ,ψ ∈ Der(�V,B;φ) be homogeneous derivations of pos-
itive degrees p and q respectively. In view of Theorem 1 and Remark 9, it is enough
to show that, for any v ⊗ β ∈ Sφ ,

�[ϕ,ψ](v ⊗ β) = (−1)p+q−1〈d̄2(v ⊗ β);�ϕ,�ψ〉,
where, as always, d̄2 denotes the quadratic part of the differential in (�Sφ, d̄). But
this holds by noting that ϕ and ψ are of positive degree, and applying Lemma 10.
Indeed:

(−1)p+q−1〈d̄2(v ⊗ β);�ϕ,�ψ〉
= (−1)p+q−1〈{dv ⊗ β}2;�ϕ,�ψ〉
= (−1)p+q−1

∑
〈{v1 . . . vk ⊗ β}2;�ϕ,�ψ〉

= (−1)p+q−1
∑

(−1)|β|(p+q+|v|+1)
∑
i �=j

ε β
(
φ(v1 . . . v̂i . . . v̂j . . . vk)ϕ(vi)ψ(vj )

)

= (−1)|β|(p+q+|v|+1)β
([ϕ,ψ](v)) = �[ϕ,ψ](v ⊗ β).

Exactly the same argument can be used to conclude that the suitable restriction of the
bracket induces the Lie structure on πn(F∗(X, Y ; f )Q). �

Remark 12. (i) To show that the restriction to

[ , ] : Der∗(�V,B+;φ)⊗ Der∗(�V,B+;φ) −→ Der∗(�V,B+;φ),
also induces the Lie bracket inπn(F∗(X, Y ; ∗)Q), when choosing the path component
of the constant map, one may also proceed as follows: as the fibration

F∗(X, Y ; ∗) −→ F (X, Y ; ∗) ω0−−→ Y

has a section, the exact sequence on rational homotopy induces an extension of Lie
algebras

0 −→ π∗F∗(X, Y ; ∗)Q −→ π∗F (X, Y ; ∗)Q −→ π∗YQ −→ 0.
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Hence, the Lie bracket on π∗F∗(X, Y ; ∗)Q = H∗
(
Der(�V,B+;φ)) is the restriction

of the one in π∗F (X, Y ; ∗)Q = H∗
(
Der(�V,B;φ)).

(ii) At the sight of the proof above, which heavily relies on Remark 9, the fact that

[ , ] : Der∗(�V,B;φ)⊗ Der∗(�V,B;φ) −→ Der∗(�V,B;φ)
commutes with differential automatically holds. This is far from trivial if one uses
only differential homological algebra tools.

As a first and immediate application of Theorem 3 we describe the Lie algebra
structure on π∗F (X, Y ; ∗)Q and π∗F∗(X, Y ; ∗)Q when considering the constant map
∗: X → Y , recovering in particular Vigué’s result [16] stated in the introduction.

Theorem 13. πn(F (X, Y ; ∗)Q) (resp. πn(F∗(X, Y ; ∗)Q)) is isomorphic as Lie al-
gebra to H ∗(X; Q)⊗ π∗(YQ) (resp. H+(X; Q)⊗ π∗(YQ)).

Proof. In this case, φ : (�V, d) → B annihilates V . In view of Theorem 3,

[ϕ,ψ](v) = (−1)|ϕ|+|ψ |−1
∑
i

(−1)|ψ ||v′
i |ϕ(v′

i )ψ(v
′′
i )+(−1)|ϕ|(|v′′

i |+|ψ |)ϕ(v′′
i )ψ(v

′
i ),

with d2v = ∑
i v

′
iv

′′
i . Via the isomorphism � of Theorem 5, this is taken to the Lie

bracket induced by d̄2 onH ∗(V ⊗B∗, d̄1). However, this is precisely the V ⊗H ∗(B)
with the usual Lie bracket. �

We may extend Lemma 6 to calculate inH∗
(
Der(�V,B;φ)) Whitehead products

of higher order.

Definition 14. Given ϕ1, . . . , ϕj ∈ Der∗(�V,B;φ), of strictly positive degrees
p1, . . . , pj , define [ϕ1, . . . , ϕj ] ∈ Der(�V,B;φ) by

[ϕ1, . . . , ϕj ](v)
= (−1)p1+···+pj−1

∑( ∑
i1,...,ij

ε φ(v1 . . . v̂i1 . . . v̂ij . . . vk)ϕ1(vi1) . . . ϕj (vij )
)
,

dv = ∑
v1 . . . vk and ε being the suitable sign given by the Koszul convention which,

with the notation of Remark 11, can be explicitly described as (−1)α where

α = ρi1...ij |ϕ1| + ρi2...ij |ϕ2| + · · · + ρij |ϕj |
+ ρ≤i1,i2,...,ij |vi1 | + ρ≤i2,i3,...,ij |vi2 | + · · · + ρ≤ij |vij |.
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Then, the exact analogue of the proof of Lemma 6 shows that given = v1 . . . vk ∈
�kV and β ∈ B∗,

〈{⊗ β}j ;�ϕ1, . . . , �ϕj 〉
= (−1)|β|(p1+···+pj+||)∑

i1,...,ij

ε β
(
φ(v1 . . . v̂i1 . . . v̂ij . . . vk)ϕ1(vi1)ϕ2(vi2) . . . ϕj (vij )

)
.

Again, { ⊗ β}j is defined as the j -th part of the image of [ ⊗ β] through the
morphism

A⊗ B∗/I
ρ−1

∼=
� �(V ⊗ B∗) → �(V ⊗ B∗)1 ⊕ (V ⊗ B∗)≥2.

Thus, as in the proof of Theorem 3, we get the following which, in view of Remark 9,
describes j -order Whitehead products on π∗F (X, Y ; f )Q and π∗F∗(X, Y ; f )Q.

Theorem 15. �[ϕ1, . . . , ϕj ](v⊗β) = (−1)p1+···+pj−1〈d̄j (v⊗β);�ϕ1, . . . , �ϕj 〉.
�

From this, we immediately deduce Theorem 4. For a given a space X, recall that
dlX (dl stands for differential length) is the least n, or ∞, for which there is a non
trivial Whitehead product of order n on π∗(XQ). This coincides with the least n for
which dn, the n-th part of the differential of the minimal model of X is non trivial.
Another geometric description of this invariant is given in [8] in terms of the Ganea
spaces of X.

Proof of Theorem 4. Assume clXQ = m. Then, by a deep result of Cornea [4], X
has a finite dimensional model B for which any product of length greater than m of
elements of B+ vanishes. Hence, for j > m and for all v ⊗ β, given ϕ1, . . . , ϕj ∈
Der(�V,B+;φ), [ϕ1, . . . , ϕj ](v ⊗ β) ∈ B>m = 0. However, as dl YQ > m, in
view of Theorem 15, this implies that d̄j vanishes for all j ≥ 2. This means that the
differential on the minimal model vanishes and the theorem follows. �
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