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Irreducibly represented groups

Bachir Bekka and Pierre de la Harpe�

Abstract. A group is irreducibly represented if it has a faithful irreducible unitary representation.
For countable groups, a criterion for irreducible representability is given, which generalises a
result obtained for finite groups by W. Gaschütz in 1954. In particular, torsionfree groups and
infinite conjugacy class groups are irreducibly represented.

We indicate some consequences of this for operator algebras. In particular, we characterise
up to isomorphism the countable subgroups � of the unitary group of a separable infinite
dimensional Hilbert space H of which the bicommutants �00 (in the sense of the theory of von
Neumann algebras) coincide with the algebra of all bounded linear operators on H .
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1. Gaschütz Theorem for infinite groups, and consequences

Define a group to be irreducibly represented if it has a faithful irreducible unitary
representation and irreducibly underrepresented1 if not. For example, a finite abelian
group is irreducibly represented if and only if it is cyclic (because finite subgroups of
multiplicative groups of fields, in particular finite subgroups of C

�, are cyclic). It is a
straightforward consequence of Schur’s lemma that a group of which the centre con-
tains a non-cyclic finite subgroup is irreducibly underrepresented. For finite groups,
there are also standard examples of groups without centre which are irreducibly un-
derrepresented (see Note F in [Burns11]); moreover, there exists a criterion due to
Gaschütz who states for finite dimensional representations over algebraically closed
fields of characteristic zero the equivalence of Properties (i), (iv), and (v) in Theorem 2
below (see [Gasch54], as well as [Hupp98], § 42, and [Pálfy79]).

�The authors are grateful to the Swiss National Science Foundation for its support.
1 On the day of writing, Google shows 29 000 000 entries for represented groups, 2 390 000 for underrep-

resented groups, 641 000 for “represented groups”, 670 000 for “underrepresented groups”, and zero entry for
“irreducibly underrepresented groups”. In some sense at least, what we have to say is new.
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The purpose of the present paper is to extend Gaschütz’result to infinite groups and
unitary representations; for the particular case of finite groups, our arguments provide
a new proof of the main result of [Gasch54] (at least for complex representations).
For a generalisation of Gachütz’ result of a rather different kind, see [Tushe93].

Since our arguments use measure theory, it is convenient to avoid the difficulties
connected with non-standard spaces, so that we assume systematically that the groups
involved are countable (see also ExampleVII in Subsection 5.1 below). Moreover and
from now on, we write “representation” for “unitary representation” and, similarly,
“character” for “unitary character”.

To formulate our results, we need the following preliminaries. Let � be a group.
LetN be a normal subgroup of � . A representation � ofN is said to be �-faithful

if
T

�2� ker.�� / D feg, where e denotes the unit element of the group and where
�� denotes the representation n 7! �.�n��1), namely the conjugate of � by � . For
example, if V denotes the normal subgroup of order 4 in the symmetric group Sym.4/
on four letters, any character of V distinct from the unit character is Sym.4/-faithful
(even though V does not have any faithful character).

If fSigi2I is a family of subsets of � , we denote by hfSigi2I i the subgroup of �
generated by

S
i2I Si . Following [Remak30], we define a foot of � to be a minimal

normal subgroup of � , namely a normal subgroup M in � such that M ¤ feg, and
any normal subgroup of � contained in M is either M or feg. We denote by F� the
set of finite feet of � . The minisocle of � is the subgroup MS.�/ of � generated
by the union of its finite feet; it is a characteristic subgroup of � . Let A� denote the
subset of F� of abelian groups, and let H� be the complement of A� in F� . We
define MA.�/ and MH.�/ to be the subgroups of � generated by

S
A2A�

A andS
H2H�

H respectively; both are characteristic subgroups of� contained inMS.�/.
By the usual convention, MS.�/ D feg if F� is empty, and similarly for MA.�/
and MH.�/.

Proposition 1. Let � be a group, and let the notation be as above.

(i) EachA 2 A� is isomorphic to .Fp/
n for some primep and some positive integer

n (depending on A).

(ii) There exists a subset fAigi2I of A� such thatMA.�/ D L
i2I Ai . In particular,

the group MA.�/ is abelian.

(iii) For each H 2 H� , the feet S1; : : : ; Sk of H are conjugate in � , and simple.
Moreover H D S1 ˚ � � � ˚ Sk .

(iv) We have MH.�/ D L
H2H�

H .

(v) We have MS.�/ D MA.�/˚MH.�/.

For some examples of minisocles, see Section 5.1. Here is our first main result.
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Theorem 2. Let � be a countable group. Let MA.�/ D L
i2I Ai and MS.�/ D

MA.�/˚MH.�/ be as above. The following properties are equivalent:

(i) � is irreducibly represented;

(ii) MA.�/ has a �-faithful character;

(iii) MS.�/ has a �-faithful irreducible representation;

(iv) for every finite subset E of I , there exists an element xE in MAE .�/ +L
i2E Ai such that the �-conjugacy class of xE generates MAE .�/;

(v) for every pair of finite subsets E � I and F � H� , there exists an element
zE;F in MSE;F .�/ +

�L
i2E Ai

� ˚ �L
H2F H

�
such that the �-conjugacy

class of zE;F generates MSE;F .�/.

In particular, a countable group � has a faithful irreducible representation as soon
as MA.�/ D feg, and a fortiori as soon as MS.�/ D feg.

The next corollary is a straightforward consequence of Theorem 2. Recall that a
group is icc if it is not reduced to one element and if all its conjugacy classes distinct
from feg are infinite.

Corollary 3. For a countable group to be irreducibly represented, any of the three
following conditions is sufficient: (i) the group is torsionfree, (ii) the group is icc,
(iii) the group has a faithful primitive action on an infinite set.

The case of icc groups is well known, sometimes with a different proof. Indeed, a
group is icc if and only if its von Neumann algebra is a factor of type II1 (Lemma 5.3.4
of [ROIV]); it is then a standard fact that the reduced C�-algebra of an icc group has
a faithful irreducible representation, so that a fortiori the group itself has a faithful
irreducible representation (see for example Proposition 21 of [Harpe07]).

For a group � which has a faithful primitive action on an infinite set X (see
[GelGl08]), observe that any normal subgroup of � not reduced to feg is transitive
on X and therefore infinite, so that MS.�/ D feg.

Theorem 2 does not state anything on the dimensions of the representations which
can occur in (i). Before providing some information, let us recall that a group is
virtually abelian if it has an abelian subgroup of finite index.

Theorem 4. For a countable group � , the two following properties are equivalent:

(i) � has an infinite dimensional faithful irreducible representation;

(ii) � has the properties of Theorem 2 and is not virtually abelian.

In other words, the following properties are equivalent:

(iii) � has a faithful irreducible representation, and all its faithful irreducible rep-
resentations are finite dimensional;
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(iv) � has the properties of Theorem 2 and is virtually abelian.

Let M be a von Neumann algebra. We denote by U.M/ the unitary group
fX 2 M j X�X D XX� D 1g ofM and by S 00 the double commutant of a subset S
ofM . Recall thatM is a factor if its centre is reduced to C, a factor of type I if there
exists a Hilbert space H such that M D L.H /, and a factor of type I1 in case H

is infinite dimensional (moreover, we assume here that Hilbert spaces are separable).
For factors of type I, we write U.H / instead of U.M/.

Corollary 5. Let M D L.H / be a factor of type I1. For a countable group � , the
following two properties are equivalent:

– there is a subgroup � of U.H / isomorphic to � such that �00 D M ;

– � has the properties of Theorem 2 and is not virtually abelian.

It would be interesting to have some information of this kind for other factors. In
particular, we do not know any analogue of Theorem 4 for any given finite dimen-
sion n � 2, nor of Corollary 5 for the finite dimensional factor L.Cn/. We do not
know any solution to the a priori easier problem to characterise the countable groups
which have at least one finite dimensional faithful irreducible representation.

The proof of Proposition 1 uses standard arguments (compare with Section 4.3
of [DixMo96]). For the convenience of the reader, we give details in Section 2.
Theorem 2 is proved in Section 3. Theorem 4 and Corollary 5 are proved in Section 4.
We formulate a few remarks in Section 5: on examples of socles and minisocles,
on the comparison between minisocles and periodic FC-kernels, on a theorem of
Gelfand and Raikov, on tensor products of faithful representations, and on countable
groups with primitive maximal C�-algebras. The final Section 6 is devoted to a
generalisation of Theorem 2 concerning a countable group � given together with a
group of automorphisms G which contains the group of inner automorphisms.

Understanding groups of a given class includes understanding their faithful actions
of various kinds, and the setting of linear (or unitary) actions is only one among several
others. For example, in the case of finite groups, the questions of classifying multiply
transitive actions and primitive actions which are faithful have been central in group
theory for more than hundred years; faithful primitive actions for infinite groups have
been addressed in [GelGl08]. Faithful amenable actions are the subject of [GlaMo07].
Our initial motivation has been to ask some of the corresponding questions for linear
actions.

We are most grateful to Yair Glasner for explaining us his work [GelGl08] and
for his contribution to the setting out of the present work, to Yehuda Shalom for a
useful observation, and to Yves de Cornulier and John Wilson for their remarks on a
preliminary version of this paper.
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2. Proof of Proposition 1

We prepare the proof of Proposition 1 by recalling two lemmas.

Lemma 6. Let � be a group. Let M be a minimal normal subgroup of � and N a
normal subgroup of � . Then either M � N or hM;N i D M ˚N .

Proof. We can assumeN ¤ feg. SinceM \N is both inM and normal in � , either
M \N D M , and M � N , or M \N D feg, and hM;N i D M ˚N . �

Lemma 7. LetA be a group and let .Si /i2I be a family of nonabelian simple groups;
set S D A˚ �L

i2I Si

�
. Let M be a minimal normal subgroup of S .

Then either M D S` for some ` 2 I , or M � A.

Proof. Assume that M ¤ S` for all ` 2 I . Choose i 2 I ; by Lemma 6 applied to
M and N D Si , the groups M and Si commute. It follows that M is a subgroup of
the centraliser of

L
i2I Si in S , namely a subgroup of A. �

Proof of Proposition 1. (i) Let A 2 A� . By the structure theory of finite abelian
groups, there exist a prime p and an element a 2 A of order p. Let A� denote the
set of elements of order p in A. Then A� [ feg is a characteristic subgroup of A, and
therefore a normal subgroup of � . By minimality of A, we have A� [ feg D A, so
that A is isomorphic to .Fp/

n for some n � 1, as claimed.
(ii) Let L be the set of subsets fA`g`2L of A� such that hfA`g`2Li D L

`2LA`;
we order L by inclusion. The crucial observation is that the ordered set L is inductive,
so that we can choose a maximal element, say fAigi2I . Suppose that

L
i2I Ai is

strictly contained in MA.�/; we will arrive at a contradiction.
Choose B 2 A� such that B is not contained in

L
i2I Ai . By Lemma 6 applied

to M D B and N D L
i2I Ai , we have either B � L

i2I Ai , which is ruled out
by the choice of B , or hB; fAigi2I i D B ˚ �L

i2I Ai

�
, which is ruled out by the

maximality of I . This is the announced contradiction.
(iii) Let H 2 H� . Choose a minimal normal subgroup S in H (this is pos-

sible since H is finite). For each x 2 � , the subgroup xSx�1 is minimal nor-
mal in H . Choose a set S1; : : : ; Sk of such conjugates of S in � which is such
that hS1; : : : ; Ski D S1 ˚ � � � ˚ Sk and which is maximal for this property. Set
N D hS1; : : : ; Ski; it is a normal subgroup of H .

We claim that xSs�1 � N for each x 2 � , so that N is normal in � . Indeed,
by Lemma 6 applied to M D xSx�1 and N in H , either hxSx�1; S1; : : : ; Ski D
xSx�1 ˚S1 ˚� � �˚Sk , but this is ruled out by the maximality of the set fS1; : : : ; Skg,
or xSx�1 � N , and this establishes the claim.

Since N is normal in � and N � H , we have N D H by minimality of H .
Observe that, for each i 2 f1; : : : ; kg, any normal subgroup of Si is normal in H ; it
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follows that Si is a simple group. Finally, the set fS1; : : : ; Skg coincides with the set
of all minimal normal subgroups of H by Lemma 7.

(iv) The same argument as for (ii) shows that there exists a subset fHkgk2K of
H� such that

L
k2K Hk D MH.�/, and Lemma 7 implies that fHkgk2K D H� .

(v) Again by the same argument as for (ii), there exists a subset fM`g`2L of F�

such that
L

`2LM` D MS.�/, and Lemma 7 implies that fM`g`2L contains H� .
�

3. Proof of Theorem 2

We will prove successively that

(i) H) (ii) & (iii) (see Lemma 9),

(iii) H) (i) (Lemma 10),

(ii) ” (iii) (Lemma 13),

(ii) ” (iv) (Lemma 14).

The equivalence (iv) ” (v) is straightforward, since nonabelian feet are direct
products of simple groups. Recall that we write “representation” for “unitary repre-
sentation”.

Given a representation � of a countable group � in a Hilbert space H , there
exist a standard Borel space �, a bounded positive measure � on �, a measurable
field ! 7! �! of irreducible representations of � in a measurable field ! 7! H! of
Hilbert spaces on�, and an isomorphism of H with

R ˚
�

H!d�.!/which implements
a unitary equivalence

�.�/ �
Z ˚

�

�!.�/d�.!/

for all � 2 � . See [Dix69C�, Sections 8.5 and 18.7.6]. (Such decompositions in irre-
ducible representations carry over to continuous representations of separable locally
compact groups, and more generally of separable C�-algebras. They are applica-
tions of the reduction theory for von Neumann algebras [Dix69vN, Chapter II]). The
following lemma is standard, but we haven’t found any appropriate reference.

Lemma 8. Let � be a countable group. Let � be a measure space with a positive
measure�. Let! 7! �! be a measurable field of representations of� in a measurable
field of Hilbert spaces ! 7! H! over � and let � 2 � .

Then f! 2 � j �!.�/ D I g is a measurable subset of �.

Proof. Let .	.1/; 	.2/; : : : / be a fundamental sequence of measurable vector fields
(see [Dix69vN, Chapter II, Number 1.3]). For i; j � 1, consider the set

�i;j D f! 2 � j h�!.�/	
.i/.!/; 	.j /.!/i D h	.i/.!/; 	.j /.!/ig:
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Observe that
f! 2 � j �!.�/ D I g D

\
i;j �1

�i;j :

Therefore it suffices to show that each set �i;j is measurable.
For fixed i; j � 1; the functions

! 7�! h	.i/.!/; 	.j /.!/i and ! 7�! h�!.�/	
.i/.!/; 	.j /.!/i

are measurable, by definition of a measurable vector field and of a measurable field
of representations. Hence �i;j is measurable and the proof is complete. �

Let us now recall a general fact which can be seen as a weak form of Clifford
theorem for infinite dimensional representations. (For a version of Clifford theo-
rem concerning finite dimensional representations but possibly infinite groups, see
Theorem 2.2 in [Dixon71].)

Lemma 9. Let � be a countable group, N a normal subgroup, � an irreducible
representation of � in a Hilbert space H , and � the restriction of � to N . Identify
� to a direct integral of irreducible representations

� D �jN D
Z ˚

�

�!d�.!/

as above.
If the representation � is faithful, then the representation �! is �-faithful for

almost all ! 2 �.

Proof. If N D feg, there is nothing to prove. We assume from now on that N is not
reduced to one element.

Denote by
˚
Cj

�
j 2J

the family of �-conjugacy classes inN distinct from feg. For
each j 2 J , denote by Nj the subgroup of N generated by Cj ; observe that each
Nj is normal in � , and that the family

˚
Nj

�
j 2J

is countable (possibly finite) and
nonempty. Set

�j D
n
! 2 � j Nj � ker

� M
�2�

��
!

�o
and z� D

[
j 2J

�j :

For ! 2 �, observe that �! is not �-faithful if and only if the kernel of
L

�2� �
�
!

contains one of the Nj ; thus z� is the subset of � of the points ! such that �! is
not �-faithful. Each �j is measurable in � as a consequence of Lemma 8; as J is
countable, z� is also measurable.

To end the proof, we assume that �. z�/ > 0 and we will arrive at a contradiction.
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As the family J is countable, there exists ` 2 J such that �.�`/ > 0. Hence
the unit representation 1N`

of the group N` is strongly contained in the restriction
of � to N`, so that the subspace of H of N`-invariant vectors is not reduced to f0g.
Since N` is normal in � , this subspace is invariant by �.�/; by irreducibility of � ,
this subspace is the whole of H . In other words, the restriction of � to N` is the unit
representation. The last statement is a contradiction, since � is faithful. �

The particular case of Lemma 9 for which N D MA.�/ [respectively N D
MS.�/] shows that (i) implies (ii) [respectively (iii)] in Theorem 2. The implication
(iii) H) (i) follows from the next lemma applied toN D MS.�/ since, by definition,
there does not exist any finite foot M of � such that M \MS.�/ D feg.

Lemma 10. Let � be a countable group, N a normal subgroup, � an irreducible
representation of N in a Hilbert space K , and � D Ind�

N .�/ the corresponding

induced representation. Let � D R ˚
�
�!d�.!/ be a direct integral decomposition

of � into irreducible representations. Assume that there does not exist any finite foot
M in � such that M \N D feg.

If the representation � is �-faithful, then the representation �! is faithful for
almost all ! in �.

Proof. In the model we choose for induced representations, � acts on the Hilbert
space H of mappings f W � ! K with the two following properties:

.1/ f .�n/ D �.n�1/f .�/ for all � 2 � and n 2 N;

.2/
X
�=N

kf .�/k2 < 1:

(The notation of (2) indicates a summation over one representative � 2 � of each
class in �=N .) Then .�.x/f / .�/ D f .x�1�/ for all x; � 2 � .

Denote this time by fCj gj 2J the family of conjugacy classes of � distinct from
feg. For each j 2 J , denote by �j the subgroup generated by Cj , which is a normal
subgroup of � not reduced to feg; set

�j D ˚
! 2 � j �j � ker .�!/

�
and z� D

[
j 2J

�j :

As in the proof of Lemma 9, z� is the set of points ! such that �! is not faithful, and
it is measurable. To end the proof, we assume that �. z�/ > 0, so that there exists
` 2 J for which �.�`/ > 0, and we will arrive at a contradiction.

Continuing as in the proof of Lemma 9, we observe that there exists a nonzero
vector f W � ! K in H D R ˚

�
H!d�.!/which is supported in�` (as a measurable
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section of the field of Hilbert spaces ! 7! H! underlying the field of representations
! 7! �!), and which is such that �.x/f D f for all x 2 �`.

Let �0 2 � be such that f .��1
0 / ¤ 0; set 	 D f .��1

0 /. Using (1), we find

.3/ 	 D f .��1
0 / D f .x�1��1

0 / D f
�
��1

0 .�0x
�1��1

0 /
� D �.�0x�

�1
0 /	 D ��0.x/	

for all x 2 �` \N .

Claim 1. �` \N D feg. Denote by K�`\N the subspace of K of vectors invariant
by ��0.�` \ N/. This is a ��0.N /-invariant subspace of K , since �` \ N is a
normal subgroup of N . Now K�`\N ¤ f0g by (3) and K�`\N D K because ��0

is irreducible. Thus �` \ N is inside the kernel of the representation ��0 of N ; as
�` \N is normal in � , the group �` \N is also inside the kernel of the representation
�� of N for all � 2 � . As � is �-faithful, �` \N D feg, as claimed.

Claim 2. The subgroup �` of � is finite. Consider the function

' W � �! RC; � 7�! kf .�/k:
We have

.4/ '.��1
0 / ¤ 0;

.5/ ' is constant under right translations by elements of N;

.6/
X
�=N

j'.�/j2 < 1;

.7/ ' is invariant under left translations by elements of �`:

It follows from (4) to (7) that the image of �`�0 in �=N is finite. The image of
��1

0 �`�0 D �` in �=N is also finite, so that the index ofN in �`N is finite. Claim 2
follows since �`N is isomorphic to the direct sum �` ˚N by Claim 1.

Any subgroup M of �` which is normal in � and minimal for this property is a
finite foot of � , and M \N D feg by Claim 1. This is in contradiction with one of
the hypotheses of the lemma. �

The particular case N D feg is of independent interest.

Proposition 11. Let � be a countable infinite group which does not contain any finite
foot, and let 
� D R ˚

�
�!d�.!/ be a direct integral decomposition of the left regular

representation 
� into irreducible representations. Then �! is faithful for almost all
! 2 �.

Next, we show that (ii) ” (iii) in Theorem 2. This will be a consequence of
Lemma 13, for the proof of which we will call upon the following lemma.

For a Hilbert space H , we denote by L.H / its algebra of bounded linear operators.
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Lemma 12. Let H1;H2 be two Hilbert spaces. Let S1 2 L.H1/; S2 2 L.H2/ be
such that S1 ˝ S2 2 L.H1 ˝ H2/ is a non-zero multiple of the identity operator.

Then S1 and S2 are multiples of the identity.

Proof. Let 
 2 C
� be such that S1 ˝ S2 D 
I . Let f	igi2I be a Hilbert space basis

of H1. Since S2 ¤ 0, there exist �1; �2 2 H2 such that

hS2.�1/; �2i ¤ 0:

For every 	 2 H1; we have

h.S1 ˝ S2/.	 ˝ �1/; 	i ˝ �2i D hS1.	/; 	i ihS2.�1/; �2i

and hence

hS1.	/; 	i i D 1

hS2.�1/; �2ih.S1 ˝ S2/.	 ˝ �1/; 	i ˝ �2i

D 


hS2.�1/; �2ih	 ˝ �1; 	i ˝ �2i

D 
h�1; �2i
hS2.�1/; �2ih	; 	i i

for all i 2 I: It follows that

S1.	/ D
X
i2I

hS1.	/; 	i i	i

D 
h�1; �2i
hS2.�1/; �2i

X
i2I

h	; 	i i	i

D 
h�1; �2i
hS2.�1/; �2i	

for every 	 2 H1; showing that S1 is a multiple of the identity. A similar argument
applies to S2. �

Lemma 13. Let � be a group and let N be a normal subgroup of � . Assume that
N D A˚ S , where A is an abelian normal subgroup of � and where S is the direct
sum of a family .Si /i2I of finite simple nonabelian normal subgroups of S . The
following properties are equivalent:

(i) N has a �-faithful irreducible representation;

(ii) A has a �-faithful character.
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Proof. Assume first that there exists a �-faithful irreducible representation � of N .
Since the factor A of N D A˚ S is abelian, and in particular a type I group, there
exist a character � ofA and an irreducible representation 
 of S such that � D �˝


[Dix69C�, Proposition 13.1.8]. Since ker.�� / D ker ..�� /jA/ for all � 2 � , the
character � of A is �-faithful.

Assume now that there exists a �-faithful character � of A. We claim that there
exists an irreducible representation 
 of S such that, for every � 2 S , � ¤ e, the
operator 
.�/ is not a multiple of the identity operator. Lemma 12 will then imply
that the exterior tensor product �˝ 
 is a �-faithful representation of N D A˚ S .

For every i 2 I , let 
i be an irreducible representation of Si distinct from the unit
representation, in some Hilbert space Hi . Choose a unit vector �i 2 Hi . Consider
the infinite tensor product 
 D N

i2I 
i of the family .
i /i2I with respect to the
family .�i /i2I . Recall that 
 is the representation of S defined on the infinite tensor
product H D ˝i2I .Hi ; �i / of the family of Hilbert spaces .Hi /i2I with respect to
the family .�i /i2I by



�
.�i /i2I

��� O
f 2F

	f
� ˝ � O

i2InF

�i

�� D � O
f 2F


i .�i /	f
� ˝ � O

i2InF

�i

�
;

for every finite subset F of I , element .�i /i2I 2 S with �i D 1 whenever i 2 I nF ,
and decomposable vector .	f /f 2F 2 N

f 2F Hf . The representation 
 is irreducible,
since the 
i ’s are irreducible. For all this, see for example [Guich66], in particular
Corollary 2.1.

Let us check that, for � D .�i /i2I 2 S , � ¤ e, the operator 
.�/ is not a multiple
of the identity operator. Choose j 2 I such that �j ¤ e. Observe that the set

fı 2 Sj W 
j .ı/ is a multiple of the identity operatorg
is an abelian normal subgroup of Sj and is therefore reduced to feg since Sj is
simple and nonabelian. The operator 
j .�j / is therefore not a multiple of the identity
operator. Denote by 
0

j the tensor product of the family .
`/`2Infj g, defined on
H 0

j D N
`2Infj g.H`; �`/. We can then write

H D Hj ˝ H 0
j and 
 D 
j ˝ 
0

j :

Lemma 12 implies that 
.�/ is not a multiple of the identity operator. �

It remains to show that (ii) ” (iv) in Theorem 2. This will be a consequence
of the following lemma.

We are most grateful to Roland Lötscher, who pointed out a mistake at this point
in a first version of our paper; we are also grateful to Jacques Thévenaz for a helpful
discussion on modular representations.
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Lemma 14. Let � be a countable group; set A D MA.�/. Let fAigi2I be a set of
finite abelian feet of � as in Proposition 1, so that A D L

i2I Ai . For each finite
subsetE of I , setAE D L

i2E Ai , which is a finite abelian group. Let yA, yAE denote
the dual group of A, AE respectively. The following properties are equivalent:

(i) A has a �-faithful character;

(ii) there exists a character � 2 yA such that the subgroup generated by �� + f�� j
� 2 �g is dense in yA;

(iii) for every finite subset E of I , the finite group yAE has a �-faithful character;

(iv) for every finite subset E of I , there exists � 2 yAE such that yAE is generated by
the �-orbit of �;

(v) for every finite subset E of I , there exists xE 2 AE such that AE is generated
by the �-conjugacy class of xE .

Proof. Equivalence of (i) and (ii) and equivalence of (iii) and (iv). Let N be a
normal abelian subgroup of � . Let � 2 yN . Denote by H the closed subgroup of
yN generated by �� . By Pontrjagin duality, the unitary dual of the compact abelian

group yN=H can be identified with the subgroup

H? D fa 2 N W  .a/ D 1 for all  2 H gI
observe that

H? D fa 2 N W  .a/ D 1 for all  2 ��g D
\
�2�

ker.�� /:

Thus �� is dense in yN if and only ifH? D feg, namely if and only if � is �-faithful.

Equivalence of (ii) and (iii). It is clear that (ii) implies (iii). Let us assume that
(iii) holds; we have to check that this implies (ii). For every finite subset E of I ,
denote by pE W yA ! yAE the canonical projection. Consider the subset

XE D f� 2 yA j the �-orbit of pE .�/ generates yAE g:
Since the group yAE is finite, the subset XE of yA is closed. For a finite fam-
ily E1; : : : ; Ek of finite subsets of I , the intersection XE1

\ � � � \ XEk
contains

XE1[���[Ek
. By Condition (iii), XE is non empty for any finite subset E of I . Since

yA is compact, it follows that \
E

XE ¤ ;;

where E runs over all finite subsets of I . Let � 2 T
E XE . It is easily checked that

� is �-faithful.
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Equivalence of (iv) and (v). Consider a finite subset E of I . Recall that each
Ai is a finite dimensional vector space over a prime field Fpi

, for a prime number
pi . For each prime p, denote by Vp the direct sum of those Ai with i 2 E which
are vector spaces over Fp , and denote by P the set of primes p such that Vp ¤ f0g.
We have AE D L

p2P Vp . Since the Vp’s are subgroups of AE of pairwise coprime
orders, every subgroup H of AE is a direct sum

L
p2P .H \ Vp/. The dual group

yVp of Vp can be identified with the dual vector space V �
p ; as before, each subgroup

H� of yAE is a direct sum
L

p2P .H
� \ V �

p /. It follows that, in order to prove the
equivalence of (iv) and (v), we can assume that P consists of a single element p. We
can also assume that � is a subgroup of GL.Vp/.

Let FpŒ�� denote the group algebra of � over Fp . Observe that Vp is a semi-
simple FpŒ��-module, since Vp is a direct sum of minimal normal subgroups of � .
(A module is semi-simple if it is a direct sum of simple modules; other authors use
the terminology completely reducible.)

Under the identification of yVp with V �
p , the �-action on yVp corresponds to the

dual (or contragredient) action of � on V �
p . Observe that V �

p is a semi-simple FpŒ��-
module. Indeed, ifW is submodule of V �

p , then its annihilatorW ? has a complement
Z inVp andZ? is a complement ofW inV �

p (compare with Lemma 6.2 in [Landr83]).
Observe also that there exists x 2 Vp such thatVp is generated by the�-conjugacy

class of x (respectively, there exists � 2 yVp such that yVp is generated by the �-orbit
of �) if and only if Vp (respectively V �

p ) is isomorphic, as FpŒ��-module, to a quotient
of the left regular module FpŒ��. To conclude the proof, we show thatVp is isomorphic
to a quotient of FpŒ�� if and only if V �

p is isomorphic to a quotient of FpŒ��.
We first show that every semi-simple submodule of FpŒ�� is isomorphic to a

quotient of FpŒ��. Indeed, let FpŒ�� D L
j 2J Pj be a direct sum decomposition

of FpŒ�� into indecomposable submodules Pj . Every Pj contains a unique simple
module Sj . Moreover, Sj is isomorphic to a quotient of Pj and M D L

j 2J Sj is
the sum of all simple submodules of FpŒ��. For the standard facts on representation
theory of finite groups, see for example [Landr83], in particular Theorem 6.8. LetN
be a semi-simple submodule of FpŒ��. ThenN is a submodule ofM and is therefore
isomorphic to

L
j 2J 0 Sj for a subset J 0 of J . Hence, N is isomorphic to a quotient

of
L

j 2J 0 Pj . Since
L

j 2J 0 Pj is a direct summand of FpŒ��, it follows that N is
isomorphic to a quotient of FpŒ�� and this proves our claim.

Assume that Vp is isomorphic to a quotient of FpŒ��. Then V �
p is isomorphic

to a submodule of FpŒ��
�. Now, it is standard that FpŒ��

� is isomorphic to FpŒ��

as a FpŒ��-module (see [Landr83, Theorem 6.3]). Hence, V �
p is isomorphic to a

submodule of FpŒ��. By what we have seen above, it follows that V �
p is isomorphic

to a quotient of FpŒ��. Similarly, if V �
p is isomorphic to a quotient of FpŒ��, then Vp

is isomorphic to a quotient of FpŒ��. �
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4. Finite and infinite dimensional representations

Our proof of Theorem 4 uses the following elementary lemma, which is well known.
To our surprise, we haven’t been able to find a convenient reference.

Lemma 15. Let� a standard Borel space and � a bounded positive measure on�.

(i) Let A be a separable C�-algebra, � a representation of A, and

� D
Z ˚

�

�!d�.!/

a direct integral decomposition of � with respect to a measurable field ! 7! �!

of representations ofA. Then �! is weakly contained in � for almost all! in�.

(ii) Let � be a countable group, � a representation of � , and

� D
Z ˚

�

�!d�.!/

a direct integral decomposition of � with respect to a measurable field ! 7! �!

of representations of � . Then �! is weakly contained in � for almost all ! 2 �.

Proof. (i) By definition of “weak containment”, we have to show that ker.�/ �
ker.�!/ for almost all ! 2 �. Since A is separable, so is ker.�/, and we can choose
in this kernel a countable dense subset, say C . For any x 2 A, recall from the theory
of direct integrals that k�.x/k is the essential supremum (on ! 2 �) of the norms
k�!.x/k, so that k�!.x/k � k�.x/k for almost all ! 2 �; in particular, any x 2 C
is in ker.�!/ for almost all ! 2 �. SinceC is countable, we have alsoC � ker.�!/

for almost all ! 2 �, and this implies the announced conclusion.
(ii) Any representation � of � corresponds to a representation � of the maximal

C�-algebra A D C �
max.�/ of the group. For two representations �1; �2 of the group,

�1 is weakly contained in �2 if and only if ker.�2/ � ker.�1/; moreover, a direct
integral decomposition � D R ˚

�
�!d�.!/ at the level of � corresponds to a direct

integral decomposition � D R ˚
�
�!d�.!/ at the level of C �

max.�/, with the same
space � and the same measure �. Thus (ii) is a consequence of (i).

[More generally, both (ii) and its proof hold verbatim for representations of sep-
arable locally compact groups.] �

To prove Theorem 4, it is clearly enough to show that Conditions (i) and (ii)
there are equivalent. The implication (i) H) (ii) is a straightforward consequence
of [Thoma64, Korollar 1], according to which every irreducible representation of a
virtually abelian group is finite dimensional.
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End of proof of Theorem 4, namely of (ii) H) (i). We assume that � has Proper-
ty (ii), and we split the proof in two cases.

Assume first that � is not amenable. Let � be a �-faithful irreducible represen-
tation of MS.�/; set � D Ind�

MS.�/ � . By Lemmas 10 and 15, some (in fact almost
every) irreducible representation �0 which occurs in some direct integral decompo-
sition of � is faithful and is weakly contained in � . As MS.�/ is amenable, �
is weakly contained in the left regular representation of � , and therefore the same
holds for �0. As � is not amenable, �0 cannot be finite dimensional, so that � has
Property (i).

Assume now that � is amenable. Assume furthermore, by contradiction, that
� does not have Property (i). Then � has a finite dimensional faithful irreducible
representation, by the first part of (ii). In particular, � can be viewed as a subgroup
of the compact unitary group U.n/, for some integer n � 1. By Tits’ alternative
[Tits79], there exists in � a soluble subgroup � of finite index. Let R denote the
closure of� in U.n/ and letR0 denote its connected component; thenR0 is of finite
index inR (becauseR is a compact Lie group, see for example [Helga62, Chapter II,
Theorem 2.3]) and an abelian group (because a connected compact group is soluble
if and only if it is abelian, see for example [Bourb82, Appendice I]). Thus�\R0 is
an abelian subgroup of finite index in �; but this contradicts the hypothesis that � is
not virtually abelian, and this ends the proof. �

Proposition 16. Let � be a countable group.

(i) If there exists a factorM and an injective homomorphism � W � ! U.M/ such
that �.�/00 D M , then � is irreducibly represented.

(ii) If � is irreducibly represented, then there exists a factor M D L.H / of type I
and a faithful representation � W � ! U.H / such that �.�/00 D L.H /.

Proof. Let � be as in (i). If M is an algebra of operators on some Hilbert space
K , then � is in particular a factorial representation of � in K . It corresponds to a
C�-representation, say � W C �

max.�/ ! L.K/. By a result of Dixmier (Corollary 3,
page 100 of [Dix60]), there exists an irreducible representation 
 of C �

max.�/ such
that � and 
 have the same kernel. The restriction 
 of 
 to � is therefore a faithful
irreducible representation.

In view of Schur’s lemma, (ii) is nothing but a reformulation of the definition of
“irreducibly represented”. �

Corollary 5 is a straightforward consequence of Theorem 4 and Proposition 16.
Short of knowing how to answer the questions which follow Corollary 5, let us

record the following elementary remark.

Observation. If � is a countable group which has a finite dimensional faithful irre-
ducible representation, then MH.�/ is a finite group.
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Proof. Consider the following properties of a group �:

(a) � has a finite dimensional faithful irreducible representation;

(b) MS.�/ has a finite dimensional �-faithful irreducible representation;

(c) MA.�/ has a �-faithful character andMH.�/ has a finite dimensional faithful
irreducible representation;

(d) MA.�/ has a �-faithful character and MH.�/ is a finite group.

Property (a) implies Property (b) by Lemma 9, Properties (b) and (c) are equivalent
because MS.�/ D MA.�/ ˚ MH.�/, and Properties (c) and (d) are equivalent
because MH.�/ is a direct sum of finite simple groups.

[Observe that, however, Property (b) does not imply Property (a): if � is an
icc group which does not have any finite dimensional faithful representation, for
example the group of permutations of finite support of Z, then � has Property (b)
since MS.�/ D feg, but does not have Property (a).] �

About Conditions (ii) and (iv) of Theorem 4, let us moreover recall the following
facts. For countable groups, and more generally for separable locally compact groups
and for separable C�-algebras, there is a notion of being of type I, defined in terms of
the von Neumann algebras generated by the images of appropriate representations.
It is then a theorem of Thoma that a countable group is of type I if and only if it is
virtually abelian, if and only if all its irreducible representations are finite dimensional.
See [Thoma64] and [Glimm61].

5. Remarks

5.1. Minisocles, socles, and examples. The socle of a group � is the subgroup
S.�/ generated by the union of the minimal normal subgroups (finite or infinite).
Here are some examples of socles and minisocles.

(I) For a prime p and an integer n � 1, the socle of the finite cyclic group Z=pn
Z

is isomorphic to Z=pZ. The socle of the finite symmetric group Sym.n/ is the
corresponding alternating group if n D 3 or n � 5, and the Vierergruppe if n D 4.

If � is a 2-transitive subgroup of Sym.n/, then S.�/ is either of the form .Fp/
m or

a finite simple group. More generally and more precisely, if � is a primitive subgroup
of Sym.n/, the O’Nan–Scott Theorem (1980) provides detailed information on the
socle of�; in particular, S.�/ � Sm for some finite simple group S and some integer
m. See for example Chapter 4 in [DixMo96].

(II) Free abelian groups Z
n, n � 1, and nonabelian free groups have socles reduced

to one element.
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(III) For n � 3, the socle of SLn.Z/ is reduced to one element or is of order two,
if n is odd or even respectively (because any noncentral normal subgroup of SLn.Z/

contains a congruence subgroup, and consequently is never minimal).

(IV) Let � be a lattice in a connected semisimple Lie group G with finite center
Z.G/ and without compact factor. It is an easy consequence of the Borel density
theorem that, if the centre of � is feg, then � is icc, so that MS.�/ D feg; more
generally, MS.�/ D � \Z.G/.

The minisocle of a just infinite group is reduced to one element (by definition).
In particular, the minisocle of the Grigorchuk group is reduced to one element.

(V) If � is a direct sum of a family of infinite simple groups, thenMS.�/ D feg
and S.�/ D � . If � is a direct sum of a family of finite simple groups, then
MS.�/ D � .

(VI) The socle of a nilpotent group� is contained in the centreZ.�/ of� , because
N \Z.�/ ¤ feg for any normal subgroup N ¤ feg of � .

(VII) Let � be an abelian torsion-free group with cardinal strictly larger than that
of the real numbers, for example a direct product of copies of Z indexed by R. Then
MS.�/ is reduced to one element, and � does not have any faithful character, so that
the equivalences of Theorem 2 do not hold for � .

(VIII) LetH be a group, p a prime number, U a vector space over the prime field
with p elements, � W H ! GL.U / a faithful representation which is semi-simple
(namely which is a direct sum of irreducible representations), and � D H Ë U the
corresponding semi-direct product. Then U is the socle of � .

Indeed, let N a minimal normal subgroup of � . If N \ U ¤ f0g, then N � U ,
and moreoverN is aH -invariant subspace of U which is irreducible, by minimality;
these N ’s generate U . If one had N \ U D f0g, then N and U would commute
(being two normal subgroups of �), so that N would act trivially on U , and this is
ruled out by the faithfulness of � .

Let U be of the form U D �L
i2I Vi

�˚ � L
j 2J Wj

�
, with each Vi aH -invariant

irreducible finite-dimensional subspace of U , and eachWj aH -invariant irreducible
infinite-dimensional subspace of U . Then the mini-socle of � is

L
i2I Vi .

The construction carries over to the case where each Vi and Wj is a vector space
over a prime field of which the number of elements depends on i and j .

5.2. Minisocles, FC-kernels, and P. Hall’s theorems. The FC-kernel of a group
� is the subset �FC of � of elements which have a finite conjugacy class. It is a
characteristic subgroup of � .

The periodic FC-kernel of � is the subset �per
FC of �FC of elements of finite order.

It is also a subgroup of � , indeed a locally finite subgroup (Dicman’s Lemma, see
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e.g. [Tomki84]). It follows from the definitions and from Dicman’s Lemma that

MS.�/ � �
per
FC

(the inclusion can be strict, as it is for example the case if � is cyclic of order four).
Any subgroup of a restricted direct product of finite groups is a periodic FC-

group which is residually finite, and any quotient of a periodic FC-group is a periodic
FC-group. For countable groups, Philip Hall has established in 1959 the converse
implications:

any countable periodic FC-group which is residually finite can be embedded in
a restricted direct product of finite groups, and any countable periodic FC-group
is isomorphic to a quotient of a subgroup of a restricted direct product of finite
groups

(Theorems 2.5 and 3.2 in [Tomki84]).
A hoof of a group � is a foot of a foot. Thus, with the notation of Proposition 1,

the subgroups Fp and S1 are hooves of � .
Let � be a group which has a finite Jordan–Hölder sequence (for example a finite

group); if a simple group S is a foot of � , then S is isomorphic to a quotient of some
Jordan–Hölder sequence of � (Bourbaki, Algèbre, nouvelle édition, 1970, chap. I,
§ 4, no 7). But the converse does not hold: the group of order 3 is a simple quotient
of a Jordan–Hölder sequence of the alternating group Alt.4/ of order 12, but Alt.4/
has a unique foot which is the Vierergruppe, of order 4.

5.3. Recall of a theorem of Gelfand and Raikov. Recall the following basic result
of the theory of group representations, due to Gelfand and Raikov (see [GelRa42], as
well as Corollary 13.6.6 in [Dix69C�]):

for any � 2 � , � ¤ e, there exists an irreducible representation �� such that
�� .�/ ¤ �� .e/.

This holds for any group� , countable or not; indeed, this holds for any locally compact
group, with �� a continuous representation. There are two main ingredients of the
proof: the group has a faithful representation which is the left-regular representation,
and any representation has some description in terms of irreducible representations
(via functions of positive types and a theorem of the Krein–Milman type).

For a countable group � which has the properties (ii) to (v) of Theorem 2, we
have shown that �� can be chosen independently of � .

5.4. Recall on tensor powers of faithful representations. Let � be a group and
let � be a faithful representation of � . For integers m; n � 0; consider the tensor
power �m;n D �˝m ˝ x�˝n, where x� denotes the representation conjugate to � and
�˝m the tensor product ofm copies of � . Then the left regular representation of � is
weakly contained in the direct sum

L
m;n�0 �m;n (see Example 1.11 in [BeLaS92]).
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This is a generalisation, with weak containment replacing strong containment, of a
well-known fact about finite groups (and compact groups, see [Cheva46], Chapter VI,
§ VII, Proposition 3). Thus, if, in addition, � is amenable, then every representation
of � is weakly contained in

L
m;n�0 �m;n. (All this carries over to locally compact

groups.)
For a countable group � which has the properties (ii) to (v) of Theorem 2, the

representation � can be chosen to be faithful and irreducible.

5.5. Primitive group C�-algebras. Denote byC �
red.�/ the reduced C�-algebra, and

as above byC �
max.�/ the maximal C�-algebra of a group � . A representation of either

one of these algebras is irreducible if and only if its restriction to � is irreducible. It
follows that, if one ofC �

red.�/,C
�
max.�/ is primitive, then� is irreducibly represented.

Many examples of countable groups are known for which C �
red.�/ is simple

[Harpe07], and a fortiori primitive. These groups are in particular irreducibly rep-
resented. Concerning the properties of � and C �

red.�/, consider the three following
conditions:

(NF) � does not have any finite normal subgroup besides feg;

(NA) � does not have any amenable normal subgroup besides feg;

(C�S) C �
red.�/ is simple.

It is straightforward that (NF) is a rephrasing of the conditionMS.�/ D feg, and
that it follows from (NA). It is elementary to check that (NA) follows from (C�S),
but we recall that it is not known whether the converse holds (see [BekHa00] and
[Harpe07]).

If � is amenable, the C�-algebras C �
red.�/ and C �

max.�/ are isomorphic. They are
primitive if and only if � is icc [Murph03].

If � is a nonabelian free group, it is a result of Yoshiwaza that C �
max.�/ is prim-

itive (see [Yoshi51], as well as [Choi80]). See the discussion around Problem 25 in
[Harpe07].

6. A generalisation of Theorem 2

Consider a countable group � and a subgroup G of the automorphism group of �
which contains all inner automorphisms. There is an obvious notion of G-faithful
representation, which coincides with that of �-faithful representation in case G co-
incides with the group of inner automorphisms. Observe that MS.�/, MA.�/, and
MH.�/ are G-invariant subgroups of � , since all three are characteristic.

We define a G-foot to be a minimal G-invariant subgroup of � . Let F G
� denote

the set of finite G-feet of �; it is the union of the set AG
� of abelian finite G-feet and
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of its complement H G
� . The G-minisocle of � is the subgroup MSG.�/ generated

by its G-feet, and we have as in Section 1 subgroups MAG.�/ and MHG.�/.

Proposition 17. Let � and G be as above.

(i) Each B 2 AG
� is isomorphic to .Fp/

n for some prime p and some positive
integer n (depending on B).

(ii) There exists a subset fBigi2I of AG
� such that MAG.�/ D L

i2I Bi . In par-
ticular, the group MAG.�/ is abelian.

(iii) For eachH 2 H G
� , the feet S1; : : : ; Sk ofH are conjugate underG, and simple.

Moreover H D S1 ˚ � � � ˚ Sk .

(iv) We have MHG.�/ D L
H2HG

�
H .

(v) We have MSG.�/ D MAG.�/˚MHG.�/.

Theorem 18. Let � , G, and MAG.�/ D L
i2I Bi be as above. The following

properties are equivalent:

(i) � has a representation which is irreducible and G-faithful;

(ii) MA.�/ has a G-faithful character;

(ii0) MAG.�/ has a G-faithful character;

(iii) MS.�/ has a G-faithful irreducible representation;

(iii0) MSG.�/ has a G-faithful irreducible representation;

(iv) for every finite subset E of I , there exists an element xE in MAG
E .�/ +L

i2E Bi such that the G-orbit of xE generates MAG
E .�/.

In particular, a countable group � has a G-faithful irreducible representation as
soon as MAG.�/ D feg, a fortiori as soon as MSG.�/ D feg.

For example, let � D L
i2N

Ai be a countable infinite direct sum of groups Ai

indexed by the natural numbers, each of them isomorphic to a given finite cyclic
group, and let G be the group of permutations of N, identified in the natural way to
a group of automorphisms of � . Then � is irreducibly underrepresented, but has a
G-faithful irreducible character, for example the projection onto A1 followed by the
natural isomorphisms of A1 with the appropriate group of roots of unity.

Proposition 17 and Theorem 18 can be proved by essentially the same arguments
as in Sections 2 and 3.

Lemmas 9 and 10 should be reformulated for a G-invariant subgroup N of �; in
the new Lemma 9, the G-faithfulness of � implies that �! is G-faithful for almost
all ! 2 �; in the new Lemma 10, if we assume that � is G-faithful and that there
does not exist any finiteG-footM such thatM \N D feg, then �! isG-faithful for
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almost all ! 2 �. In the new Lemma 13, the groups N , A, S should be G-invariant,
but Si normal (not necessarily G-invariant) and simple (not necessarily G-simple);
the conclusion is that N has a G-faithful irreducible representation if and only if
A has a G-faithful character. In the new Lemma 14, both A and the Ai should be
G-invariant, and �� should be replaced by �G . The other (minor) modifications, as
well as the formulation of one more claim analogous to Claim (v) of Theorem 2, are
left to the reader.
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