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On manifolds of small degree
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Abstract. Let X ⊂ P
n be a complex connected projective, non-degenerate, linearly normal

manifold of degree d � n. The main result of this paper is a classification of such manifolds.
As a by-product of the classification it follows that these manifolds are either rational or Fano.
In particular, they are simply connected (hence regular) and of negative Kodaira dimension.
Moreover, easy examples show that d � n is the best possible bound for such properties to hold
true. The proof of our theorem makes essential use of the adjunction mapping and, in particular,
the main result of [15] plays a crucial role in the argument.
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1. Introduction

Let X ⊂ P
n be a complex connected projective manifold of dimension r and degree d.

Assume moreover that X is non-degenerate and d � n. The results contained in this
paper have the following topological consequence:

If X is as above, X is simply connected. (∗)

The bound d � n is optimal for the validity of (∗). Indeed, there exist r-dimensional
elliptic scrolls in P

2r , of degree 2r + 1 (see [14], 5.2); they have b1 = 2.
To the best of our knowledge, (∗) was not even conjectured before. However,

F. L. Zak (unpublished) asked if such manifolds are regular (i.e. if b1 = 0).
We would like to mention two related topological ancestors of (∗). The first one is

(a special case of) the Barth–Larsen theorem (see [3] and, for a singular version, [8])

If 2r � n + 1, then π1(X) = (0). (BL)

The second result is the Fulton–Gaffney–Lazarsfeld theorem about branched cov-
erings of P

r (see [9], [8]):

If X → P
r is a normal finite covering of degree d � r , then π1(X) = (0). (FGL)
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Note that, for d � r , (∗) follows either from (BL) or from (FGL). We refer to [8] for
a very nice discussion of such topological aspects.

To the best of our knowledge, no topological proof of (∗) is known. We are able
to deduce it from the following geometric result:

If X is as above, then either:

(1) b2 = 1 and X is a Fano manifold, or

(2) b2 � 2 and X is rational.

(∗∗)

It is well-known that both rational and Fano manifolds are simply-
connected; see [17] for a far-reaching common generalization. So (∗) follows from
(∗∗). The first case in (∗∗) may be seen as generic, as it includes all complete in-
tersections of dimension at least three. Assuming Hartshorne’s Conjecture for Fano
manifolds, we may describe all cases in (1) which are not complete intersections
(Corollary 11). Moreover, we shall prove:

Manifolds with d � n and b2 � 2 may be classified completely.
There are 6 infinite series (having arbitrarily large dimension and
degree) and 14 “sporadic" examples. All turn out to be rational.

(∗∗∗)

The precise list is given in the statement of the main result, see the next section.
The proof of the main theorem will occupy Section 4. It relies on a very detailed

study of the adjunction mapping (see e.g. [4], Chapters 9–11 for a complete treatment).
Moreover, the main result of [15] plays a key role in the proof. We note that, besides
classical adjunction theory, some nontrivial facts coming from Mori theory are also
used in [15]. Finally, the classification of manifolds of small �-genus (cf. [6], [7],
[13]) is also needed.

The present work is a slightly improved version of a paper with the same title that
was circulated as Preprint no. 17, IMAR, Bucharest, December 2000.

2. Statement of the main result

Our main result is the following:

Theorem. Let X ⊂ P
n be a connected projective manifold over C, of dimension r

and degree d. Assume moreover that X is non-degenerate and linearly normal. If
d � n, then one of the following holds:

(i) X is Fano, b2(X) = 1;

(ii) X is Fano and either:
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(a) 2 � r � 4, 3 � d � 8, X is a classical del Pezzo manifold with b2(X) � 2
(cf. Theorem B below);

(b) r = 3, d = 9, X is the Segre embedding of P
1 ×F1, where F1 is the blow-

ing-up of P
2 in a point, embedded in P

4 as a rational scroll of degree 3;

(c) X is one of the following scrolls over P
2:

(1) r = 4, d = 10, X � P(TP2 ⊕ OP2(1));

(2) r = 4, d = 11, X � P(OP2(1) ⊕ OP2(1) ⊕ OP2(2));

(3) r = 5, d = 10, X is the Segre embedding of P
2 × P

3;

(iii) r � 2, d � r , X is a scroll over P
1 (i.e. a linear section of the Segre embedding

of P
1 × P

m);

(iv) r � 3 and there is a vector bundle E over P
1, of rank r + 1 and of splitting type

e = (e0, . . . , er ), such that, if L denotes the tautological divisor on P(E) and
F denotes a fibre of the projection P(E) → P

1, X embeds in P(E), L|X is the
hyperplane section divisor and either:

(a) n = d = 2r − 1, e = (1, . . . , 1, 0, 0), X ∈ |2L + F |;
(b) n = d = 2r , e = (1, . . . , 1, 0), X ∈ |2L|;
(c) n = d = 2r + 1, e = (1, . . . , 1), X ∈ |2L − F |;
(d) r � 4, n = 2r + 1, d = 2r , e = (1, . . . , 1), X ∈ |2L − 2F |; equivalently,

X is the product of a line and a quadric of dimension r − 1, in its Segre
embedding;

(e) n = d = 2r + 2, e = (1, . . . , 1, 2), X ∈ |2L − 2F |.
Remarks. 1. Except for case (i), all manifolds appearing in the theorem are rational.

2. All cases listed actually occur.
3. Manifolds from case (iv) (b) up to (iv) (e) in the theorem are also Fano.

3. Conventions and prerequisites

We follow the customary notation in algebraic geometry (see e.g. [12]). We denote
by X ⊂ P

n
C

a complex projective connected manifold. We let d be its degree and r

its dimension; s = n − r is the codimension of X in P
n. The irregularity of X is by

definition q := h1(X, OX) and H will denote a hyperplane section of X ⊂ P
n. We

write 〈Y 〉 for the linear span of Y ⊂ P
n. The sectional genus of X, denoted g, is the

genus of the curve X∩H1 ∩· · ·∩Hr−1, where H1, . . . , Hr−1 are generic hyperplanes
in P

n. The adjunction formula reads:

2g − 2 = (K + (r − 1)H) · Hr−1,
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where K is a canonical divisor for X.
The �-genus of X is by definition

� = d + r − h0(X, OX(H))

and is a non-negative integer.
X is said to be a scroll over the manifold Y if X � P(E) for some vector bundle E

on Y , such that OX(H) is the tautological line bundle of P(E). We use Grothendieck’s
notation for P(E).

X is said to be a quadric fibration over the smooth curve C if there is a morphism
π : X → C such that the fibres of π are quadrics with respect to the embedding
induced by OX(H). It turns out that singular fibres of π are ordinary cones (see
[13]). In the sequel, we denote by Qr a quadric of dimension r .

The adjunction mapping of X, denoted below by ϕ, is the rational map on X

associated with the linear system |K + (r − 1)H |. See e.g. [4], Chapters 9–11 for a
complete study of its properties.

We recall two results on the classification of manifolds of small �-genus. The
first one is classical (see e.g. [13], Proposition 2.3).

Theorem A. The following are equivalent:

(i) � = 0;

(ii) g = 0;

(iii) X is either P
r , H ∈ |OPr (1)|, or a quadric Qr ⊂ P

r+1, or P
2, H ∈ |OP2(2)|,

or a scroll over P
1.

The next result is due to del Pezzo if r = 2, to Fano and Iskovskikh for r = 3 and
to Fujita in general (see also [13], Proposition 2.4 for some other characterizations).

Theorem B (Fujita, [6], [7]). Assume that r � 2. The following are equivalent:

(i) � = 1;

(ii) X is either a classical del Pezzo surface (anticanonical embedding of either
P

1 × P
1 or P

2 blown-up at at most six points) or , if r � 3, one of the following:

(a) a cubic hypersurface;

(b) a complete intersection of type (2, 2);

(c) a linear section of the Plücker embedding of the Grassmannian of lines in
P

4;

(d) the Segre embedding of P
2 × P

2;

(e) a hyperplane section of the manifold in (d) (this is P(TP2));

(f) the Segre embedding of P
1 × P

1 × P
1;
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(g) the scroll over P
2, P(OP2(1) ⊕ OP2(2)) (this is P

3 blown-up at a point);

(h) the Veronese embedding v2(P
3).

Recall that X is a Fano manifold if −K is ample. We see that the examples listed
in Theorem B (which were called classical del Pezzo manifolds in [13]) are all Fano
manifolds.

4. Proof of the theorem

We begin with the following simple fact.

Lemma 1. Let C be a smooth projective curve of positive genus and let L ∈ Pic(C)

with deg(L) > 0. Then we have h0(L) � deg(L).

Proof. If L is special, we may apply Clifford’s theorem. If L is non-special, the
result follows from the Riemann–Roch theorem. �

Proposition 2. Let C be a smooth projective curve of positive genus and let E be an
ample and spanned vector bundle on C. Then we have h0(E) � deg(E).

Proof. We proceed by induction on e := rank(E). When e = 1, we may apply
Lemma 1. Assume now e � 2. As E is ample and spanned, it follows that h0(E) > e.
So, for p ∈ C, we may find a non-zero section t ∈ H 0(C, E(−p)) which induces an
exact sequence:

0 −→ L −→ E −→ E ′ −→ 0,

where L ∈ Pic(C), deg(L) := l > 0, and E ′ is ample, spanned and of rank e − 1.
Indeed, L∨ is the image of t∨ : E∨ → OC(−p); as C is a smooth curve, this (non-
trivial) sheaf of ideals is invertible. We have

deg(E) − l = deg(E ′) � h0(E ′) � h0(E) − h0(L)

by the induction hypothesis and the cohomology sequence of the above exact se-
quence. Applying once again Lemma 1 we get deg(E) � h0(E). �

Corollary 3. Let X ⊂ P
n be a scroll over a smooth curve C. Assume that X is

non-degenerate of degree d � n. Then C � P
1.

Proof. Let X � P(E). If g(C) > 0, by Proposition 2 we get

n + 1 � h0(X, OX(H)) = h0(C, E) � deg(E) = d,

a contradiction. �
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Lemma 4. Let X ⊂ P
n be smooth connected non-degenerate of degree d and dimen-

sion r , with d � n. Assume moreover that 2r � n + 1. Then we have:

(i) g � r − 1; and

(ii) d � 2g + 1.

Proof. (i) Let s := n − r and let C ⊂ P
s+1 be a curve section of X. If HC is special,

by Clifford’s theorem we get

s + 2 � h0(C, OC(HC)) � d

2
+ 1 � r + s

2
+ 1,

giving r � s+2. This is a contradiction. So HC is non-special and by Riemann–Roch
we get

s + 2 � h0(C, OC(HC)) = d + 1 − g � r + s + 1 − g,

hence g � r − 1.
(ii) We get by Riemann–Roch and (i):

d � s + 1 + g � r + g � 2g + 1. �

Proposition 5. Let X ⊂ P
n be smooth connected non-degenerate and linearly normal

with d � n. Assume that the adjunction mapping ϕ = ϕ|K+(r−1)H | makes X into a
scroll over a smooth surface S. Then S � P

2 and X is one of the following:

(1) r = 4, d = 10, X � P(TP2 ⊕ OP2(1));

(2) r = 4, d = 11, X � P(OP2(1) ⊕ OP2(1) ⊕ OP2(2));

(3) r = 5, d = 10, X � P(O⊕4
P2 (1)), i.e. X is the Segre embedding of P

2 × P
3.

Proof. Let S′ be the smooth surface X ∩ H1 ∩ · · · ∩ Hr−2, where Hi are generic
hyperplanes in P

n. We first remark that the geometric genus of S′ is zero. This
follows from Lemma 4 (ii) and the adjunction formula for HS′ . The standard exact
sequences

0 −→ OX(K + (r − 2)H) −→ OX(K + (r − 1)H)

−→ OH (KH + (r − 2)HH ) −→ 0

together with Lemma 1.1 from [13] show that h0(X, OX(K + (r − 1)H)) = g −q in
our case. So, we have ϕ : X → S ⊂ P

g−q−1. Let HS be a generic hyperplane section
of S ⊂ P

g−q−1 and let Y := ϕ−1(HS). Note that Y is a scroll of dimension r −1 over
the curve HS ; if we let dY be its degree, we get dY = (K +(r −1)H) ·Hr−1 = 2g−2
by the adjunction formula. Let m be the dimension of the projective space spanned by
Y inside P

n. By Barth’s theorem (see [2]), the Picard group of Y is cyclic whenever
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m < 2(r − 1) − 1. As Y is a scroll, we must have m � 2(r − 1) − 1. We get, using
Lemma 4 (i), that

m � 2r − 3 � 2(r − 2) � 2(g − 1) = dY .

So, by Corollary 3, it follows that HS � P
1. The two-dimensional case of Theorem A

shows that q = 0 and one of the following holds:

1. S = P
2, g = � = 3;

2. S is a scroll over P
1;

3. S is the Veronese embedding v2(P
2), g = 6.

Recalling the definition � = d + r − h0(X, OX(H)), we get

n + r � d + r � n + 1 + �,

giving r � � + 1. Now, if we are in case 1, by Proposition 4.7 from [13], it follows
that we have the following possibilities for X:

r = 4, d = 9, 10 or 11;

r = 5, d = 10, X is the Segre embedding of P
2 × P

3.

Assume that r = 4, so X � P(E) for some very ample vector bundle of rank three
over P

2. If � is a line in P
2, it follows that E |� has degree 4 and is very ample. So,

E |� � O�(1) ⊕ O�(1) ⊕ O�(2), i.e. E is uniform. One may use the classification
from [5]; we find that the case d = 9 is not possible, while for d = 10 we get
E � TP2 ⊕OP2(1) (equivalently X is a hyperplane section of the Segre embedding of
P

2 × P
3) and for d = 11 we get E � OP2(1) ⊕ OP2(1) ⊕ OP2(2) (this is the blow-up

of P
4 with center a line).

To finish the proof we only have to show that cases 2 and 3 cannot occur. We use
the notation from [12], Chapter V, Section 2. If we are in case 2, we have S � Fe,
HS = C0 + bF with b > e � 0.

We look at the (r − 1)-dimensional rational scrolls Y0 = ϕ−1(C0) and Y1 =
ϕ−1(F ). Put di = deg(Yi) for i = 0, 1; we get di � r − 1. By Barth’s theorem
([2]), if mi = dim〈Yi〉, we get as above mi � 2(r − 1) − 1; moreover, since
�(Yi, OYi

(H)) = 0 (see Theorem A) we deduce that

di + r − 1 = h0(Yi, OYi
(H)) � mi + 1 � 2(r − 1),

i.e. di � r − 1. So, we find

2g − 2 = deg(Y ) = d0 + bd1 � d0 + d1 � 2(r − 1),

contradicting part (i) of Lemma 4. Case 3 is ruled out by a similar argument. �

Next we need a general lemma concerning the geometry of quadric fibrations (see
also [14], 6.2).
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Lemma 6. Assume that the adjunction mapping ϕ : X → C ⊂ P
m makes X into a

quadric fibration over a smooth curve C. Then m = g − q − 1 and q coincides with
the genus of C. Moreover, E := ϕ∗OX(H) is a spanned vector bundle of rank r + 1
over C. Denote by π : P(E) → C the projection and by L the tautological divisor on
P(E). Then X is embedded in P(E) in such a way that L|X = H and X ∈ |2L+π∗B|
for some divisor B on C. Finally, if a := deg(E) and b := deg(B), the following
formulae hold:

a = 1 − g + 2(q − 1) + d and b = 2(g − 1) − 4(q − 1) − d.

Proof. From Lemma 1.1 in [13] and the standard exact sequences

0 −→ OX(K + (r − 2)H) −→ OX(K + (r − 1)H)

−→ OH (KH + (r − 2)HH ) −→ 0

it follows that h0(X, OX(K + (r − 1)H)) = g − q. Let S ⊂ X be a surface section
of X, i.e. S = X ∩ H1 ∩ · · · ∩ Hr−2, where Hi are generic hyperplanes in P

n. By
Lefschetz’s theorem on hyperplane sections, X and S have the same irregularity. As
S is a conic fibration over C, it is birationally ruled, so we have q = q(S) = g(C).
For any c ∈ C, let Xc denote the fibre of ϕ over c. Note that Xc is a quadric of
dimension r − 1, hence it is linearly normal in its linear span P

r . In particular, for
any c ∈ C, we have h0(Xc, OXc(H)) = r + 1 and H 1(Xc, OXc(H)) = 0. So E is a
vector bundle by Grauert’s theorem; let Ec be its fibre at the point c. The canonical
diagram

H 0(C, E)
∼ ��

ev
��

H 0(X, OX(H))

res
��

Ec
∼ �� H 0(Xc, OXc(H))

shows that E is spanned by global sections, since the restriction map res is surjective
for any c ∈ C. Consider also the canonical induced diagram

X

ϕ
���

��
��

��
⊂ P(E)

π
����

��
��

�

C

and write X ∼ 2L + π∗B, for some divisor B on C. Let HC be a hyperplane section
of C ⊂ P

g−q−1. We find

ϕ∗(HC) = K + (r − 1)H = (KP(E) + X + (r − 1)L)|X = ϕ∗(KC + det E + B).

By taking degrees, we get g − 1 = 2(q − 1) + a + b. Moreover, a = (Lr+1), so
d = (Lr · X) = 2a + b. The two formulae follow. �



Vol. 83 (2008) On manifolds of small degree 935

Lemma 7. Let X ⊂ P
n be smooth connected non-degenerate with d � n. Assume

that the adjunction mapping ϕ : X → C makes X into a quadric fibration over a
smooth curve C. Then C � P

1.

Proof. Assume that q = g(C) > 0. By Lemma 4 (ii), d � 2g + 1. So, by Lemma 6,
we have b = 2(g − 1) − d − 4(q − 1) < 0.

We show first that E is ample. As E is spanned, OP(E)(L) is spanned. So, if
L is not ample, there is a curve D ⊂ P(E) such that (L · D) = 0. It follows that
(X · D) = (2L + π∗B) · D = αb for some α > 0. As b < 0, we deduce that
(X · D) < 0, so D ⊂ X. But L|X = H , so (D · L) > 0 which is a contradiction. So
E is ample.

Let now S ⊂ X be a surface section of X. We have (HS + KS)2 = 0, giving
d +2(HS ·KS)+ (KS)2 = 0. The adjunction formula yields (HS ·KS) = 2g−2−d.
As S is birationally ruled, it dominates a geometrically ruled model, say S0. So, we
have (KS)2 � (KS0)

2 = 8(1 − q), see e.g. [12], Chapter V, Corollary 2.11 for the
last equality. We deduce, using also Lemma 4 (ii)

4(g − 1) � d + 8(q − 1) � 2g + 1 + 8(q − 1).

So we get 4q � g+1. By Lemma 6, a = 1−g+2(q−1)+d and we find a � d−2q.
Now, since E is ample and spanned, we may apply Proposition 2 to find

a = deg(E) � h0(C, E) = h0(X, OX(H)) � n + 1.

Putting things together, we get

n + 1 � a � d − 2q � n − 2q.

This is a contradiction, so q = 0. �

We shall also need the proposition below which might have an interest in itself.

Proposition 8. Let X ⊂ P
n be smooth connected non-degenerate and linearly nor-

mal. Assume that the adjunction mapping ϕ : X → C makes X into a quadric
fibration over C � P

1. Assume moreover, that d � 2g + 2 and r � g + 1. Then, in
the notation of Lemma 6 and denoting by e = (e0, . . . , er ) the splitting type of E and
by F a fibre of the projection P(E) → P

1, we have one of the following:

(a) r = s, d = 2r , e = (1, . . . , 1, 0), X ∈ |2L|;
(b) r = s − 1, d = 2r + 1, e = (1, . . . , 1), X ∈ |2L − F |;
(c) r = s − 1, d = 2r , e = (1, . . . , 1), X ∈ |2L − 2F | or, equivalently, X �

P
1 × Qr−1 embedded Segre;

(d) r = s − 2, d = 2r + 2, e = (1, . . . , 1, 2), X ∈ |2L − 2F |;
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(e) r = 3, X � P
1 ×F1, embedded Segre, where F1 is embedded in P

4 as a rational
scroll of degree 3.

Moreover, all these cases do occur.

Proof. We first remark that g � 2 (see [13]), so r � 3. Let Q denote a fibre of ϕ.
We have (H − Q) · Hr−1 = d − 2. The standard exact sequence

0 −→ OX(−Q) −→ OX(H − Q) −→ OH (H − Q) −→ 0

and the fact that H 1(X, OX(−Q)) = 0 allow one to prove by induction on r that
|H − Q| is base-point-free. Note that on a curve section of X, the degree of the
restriction of |H − Q| is � 2g, so it is base-point-free. Moreover, |H − Q| is not
composed with a pencil, since r � 3. So, by Bertini’s theorem, there is a smooth
member X′ ∈ |H − Q|. We let

H ′ = H |X′, K ′ = KX′,

r ′ = dim(X′) = r − 1, ϕ′ = ϕ|K ′+(r ′−1)H ′|,
d ′ = deg(X′) = d − 2, g′ = g(H ′),
s′ = h0(X′, OX′(H)) − 1 − r ′.

One finds easily g′ = g − 1, s′ = s − 1 and ϕ′ can be identified with ϕ|X′ . The
statement of the proposition is proved by induction on r (note that we still have
d ′ � 2g′ + 2 and r ′ � g′ + 1). Assume first that g � 3. Since r � g + 1, for r = 4
we get g = 3 and we may use the classification from Theorem 4.3 in [13]. For r � 4
we find inductively the following possible values for the numerical invariants:

(a) r = s, d = 2r , g = r − 1;

(b) r = s − 1, d = 2r + 1, g = r − 1;

(c) r = s − 1, d = 2r , g = r − 2;

(d) r = s − 2, d = 2r + 2, g = r − 1.

It remains to analyze the case g = 2, where one may use the classification theo-
rem 3.4 in [13]. This leads to only one new case, which is (e).

Next we investigate the structure of E in each case.
First we have that E is non-special (since it is spanned by Lemma 6). So the

Riemann–Roch theorem gives

r + s + 1 = h0(E) = a + r + 1,

hence a = s. Now, in case (a), we remark that |H − 2Q| = ∅, since (H − Q)r−1 ·
(H − 2Q) = d − 2r − 2 < 0. By Lemma 6, b = 0, so X ∈ |2L|.
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The exact sequence

0 −→ OP(E)(−L − 2F) −→ OP(E)(L − 2F) −→ OX(H − 2Q) −→ 0

shows that h0(E(−2)) = 0; as E is spanned and a = r , the splitting type of E must
be (1, . . . , 1, 0). The existence follows by the same type of argument as in the proof
of Proposition 3 from [16]. The other cases are similar and simpler. For instance, in
case (b) one gets as above h0(E(−2)) = 0, a = r+1 and b = −1. So e = (1, . . . , 1),
E is very ample and the existence follows now easily. �

Proposition 9. Let X ⊂ P
n be smooth connected non-degenerate and linearly nor-

mal, with d � n. Assume that the adjunction mapping makes X into a quadric
fibration over a smooth curve C. Then X is as in case (ii) (b) or case (iv) of the main
theorem.

Proof. By Lemma 7, C � P
1. We have d � 2g + 1 and g � r − 1 by Lemma 4. If

d � 2g + 2, we may apply Proposition 8, thus leading to cases (ii) (b) and (iv) (b)
up to (iv) (e) of the main theorem. So, assume that d = 2g + 1. As in the proof of
Proposition 8 we deduce that a = s. By Lemma 6 we get a = g, b = 1. It follows
s = g � r − 1. Barth’s theorem ([2]) ensures that s � r − 1, so we must have
s = r − 1. We obtain

g = r − 1, d = 2r − 1, a = r − 1.

As in the proof of Proposition 8, we have |H − 2Q| = ∅, so h0(E(−2)) = 0. It
follows that the splitting type of E is (1, . . . , 1, 0, 0), so we are in case (iv) (a) of the
main theorem. The existence follows from Proposition 3 in [16]. �

We are now ready for the proof of our theorem.
Assume first that r � s + 1. We have

� = d + r − h0(X,OX(H)) � n + r − n − 1 = r − 1.

If � = 0, by Theorem A we get either case (iii) of the main theorem or some special
examples of case (i). Similarly if � = 1, by Theorem B we get either case (ii) (a)
or some special examples of case (i). So, assume � � 2, hence r � 3, from now
on. If r = 3, it follows � = 2, s � 2 and ϕ : X → P

1 is a quadric fibration
by [13], Theorem 3.12 and Corollary 3.3. If r = 4, we get � = 2 or 3, s � 3,
so ϕ is either a quadric fibration over a rational curve or a scroll over P

2 (see [13],
Theorems 3.12, 4.8 and 4.2). Since d � n, it follows that d � r + s � 2s + 1. So,
using the general properties of the adjunction mapping (see e.g. [4], Chapters 9–11,
in particular Theorem 11.2.4) and the above analysis for r � 4, it follows from
Theorem I in [15] that one of the following holds:
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(1) X is a scroll over a (smooth) curve C;

(2) ϕ makes X into a scroll over a smooth surface;

(3) ϕ makes X into a quadric fibration over a smooth curve.

In case (1), from Corollary 3, we get C � P
1, so � = 0. In case (2), by

Proposition 5 we reach case (ii) (c). If we are in case (3), by Proposition 9 we get
case (ii) (b) or case (iv). Assume now that r � s + 2. By Barth’s theorem ([2])
it follows that Pic(X) � Z, generated by the class of OX(H). We show that X is
Fano, so we are in case (i) and the main theorem is completely proved. As we have
Pic(X) � Z, to prove that X is Fano it is enough to see that the geometric genus
of X, denoted by pg , is zero. Here we make use of a theorem of Harris (see [10]),
generalizing Castelnuovo’s bound for the genus of a curve to arbitrary dimension,
which states that

pg �
(

M

r + 1

)
s +

(
M

r

)
ε,

where M = [(d − 1)/s] and ε = d − 1 − Ms.
If s = 1 we find pg = 0 by direct computation. If s � 2 and r � 2 we get

r + s − 1 < rs; our hypothesis d � r + s gives d − 1 < rs, or M < r . So
pg = 0. �

Proposition 10. LetX ⊂ P
n be a connected non-degenerate linearly normal manifold

with d � n. Assume moreover s +2 � r � 2s and � � 2. Then one of the following
holds:

(i) r = 4, d = 6, X is a complete intersection of type (2, 3), or 5 � r � 6, d = 8,
X is a complete intersection of type (2, 2, 2);

(ii) r = 6, d = 10, X = C(G)∩Q9 ⊂ P
10, where G ⊂ P

9 is the Plücker embedding
of the Grassmannian of lines in P

4, C(G) is the cone over G and Q9 ⊂ P
10 is

a quadric;

(iii) 7 � r � 10, d = 12, X is the spinorial variety S10 ⊂ P
15, or one of its linear

sections;

(iv) r = 8, d = 14, X ⊂ P
14 is the Plücker embedding of the Grassmannian of lines

in P
5.

Proof. As above, X is Fano and Pic(X) is generated by the class of OX(H), so we
may write OX(−K) ∼= OX(iH) for some i > 0. The adjunction formula yields

2g − 2 = (r − i − 1)d.

We recall Castelnuovo’s bound g � M(d−((M+1)/2)s−1) where M = [(d−1)/s].
Since d � r + s � 3s, we find M � 2. Assuming r − i − 1 � 2 we reach a
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contradiction; so i � r − 2. But � � 2 gives g � 2, so i = r − 2, X is a Mukai
manifold and the result follows from [18]. �

Let us recall from [11] that the Hartshorne Conjecture predicts that when r > 2s,
X must be a complete intersection.

Corollary 11. Assume that the Hartshorne Conjecture holds for Fano manifolds.
Then, in case (i) of the main theorem, X is either a complete intersection or one of
the varieties described in Theorem A, Theorem B, or Proposition 10.
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