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Kodaira dimension and symplectic sums

Michael Usher

Abstract. Modulo trivial exceptions, we show that symplectic sums of symplectic 4-manifolds
along surfaces of positive genus are never rational or ruled, and we enumerate each case in
which they have Kodaira dimension zero (i.e., are blowups of symplectic 4-manifolds with
torsion canonical class). In particular, a symplectic four-manifold of Kodaira dimension zero
arises by such a surgery only if it is diffeomorphic to a blowup either of the K3 surface, the
Enriques surface, or a member of a particular family of T 2-bundles over T 2 each having b1 D 2.
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1. Introduction

Our understanding of the diversity of the world of symplectic four-manifolds has been
greatly enriched by the introduction in [7] and [18] of the symplectic sum. Given sym-
plectic four-manifolds .X1; !1/; .X2; !2/ containing embedded, two-dimensional
symplectic submanifolds F1 � X1, F2 � X2 of equal area and genus and an
orientation-reversing isomorphism ˆ W NX1

F1 ! NX2
F2 of their normal bundles

(which of course exists if and only if F1 and F2 have opposite self-intersection), the
symplectic sum operation provides a natural isotopy class of symplectic structures
on the normal connect sum

Z D X1 #F1DF2
X2 D .X1 n �1/ [@�1�ˆ@�2

.X2 n �2/;

where the �i are tubular neighborhoods of Fi and we use the restriction of ˆ to the
unit normal circle bundles of the Fi to glue the boundaries of the manifolds Xi n �i .
Using the symplectic sum along surfaces of positive genus, various authors over the
years have constructed symplectic four-manifolds satisfying an impressive array of
properties; see for instance Theorem 6.2 of [7], which for any finitely presented group
G gives a number r.G/ such that whenever aC b � 0 mod 12 and 0 � a � 2.b �
r.G// there is a symplectic 4-manifoldMa;b;G with�1.Ma;b;G/ D G, c2

1.Ma;b;G/ D
a, and c2.Ma;b;G/ D b. While Gompf’s examples were distinguished by their
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classical topological invariants, the symplectic sum also gives rise to infinite families
of mutually homeomorphic but nondiffeomorphic symplectic four-manifolds, since
ifK is a fibered knot the operation of knot surgery withK [3] amounts to a symplectic
sum.

The purpose of this note is to show that, notwithstanding the diversity of symplec-
tic four-manifolds that can be constructed via symplectic sum, there are significant
topological restrictions on the manifolds that can be obtained in this way. Our results
may perhaps best be understood in terms of the notion of (symplectic) Kodaira di-
mension, a notion which dates from [20] and is discussed in some detail in [14]. We
shall recall the definition of Kodaira dimension below. First, recall that a symplec-
tic four-manifold is called minimal if it does not contain any embedded symplectic
spheres of square �1, and that if .X; !/ is any symplectic four-manifold one may
obtain a minimal symplectic four-manifold .X 0; !0/ by blowing down a maximal
disjoint collection of symplectic .�1/-spheres inX ; .X 0; !0/ is then called a minimal
model for .X; !/.

Definition 1.1. Let .X; !/ be a symplectic four-manifold with minimal model
.X 0; !0/, and let �X 0 2 H 2.X 0I Z/ denote the canonical class of .X 0; !0/. Then
the Kodaira dimension of .X; !/ is

�.X; !/ D

8̂ˆ̂<
ˆ̂̂:

�1 if �X 0 � Œ!0� < 0 or �2
X 0 < 0;

0 if �X 0 � Œ!0� D �2
X 0 D 0;

1 if �X 0 � Œ!0� > 0 and �2
X 0 D 0;

2 if �X 0 � Œ!0� > 0 and �2
X 0 > 0:

In Section 2 of [14] and references therein it is shown that �.X; !/ is well defined
for any symplectic four-manifold (in particular it is independent of the choice of
minimal model, and one of the four possibilities listed above always holds); coincides
with the classical notion of Kodaira dimension in cases when X happens to admit
the structure of a complex surface; is equal to �1 if and only if X is a rational or
ruled surface;1 and is equal to zero if and only if the canonical class of the minimal
modelX 0 is torsion. Moreover Theorem 2.6 of [14] shows that the Kodaira dimension
�.M;!/ depends only on the diffeomorphism type of M , and not on the symplectic
form.

A common feature of the numerous interesting new symplectic four-manifolds
that the symplectic sum operation has provided to us is that they have always had
Kodaira dimension 1 or 2. For instance, knot surgery on the K3 surface with a
nontrivial fibered knot as in [3] always yields a symplectic four-manifold of Kodaira

1Here and below we adopt the convention that a ruled surface is a symplectic manifold obtained by (possibly)
blowing up the total space of an S2-bundle over some Riemann surface. When we want to assume that no
blowups have been carried out, we shall refer instead to an “S2-bundle.”
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dimension 1 (even though the result is homeomorphic to the K3 surface, which has
Kodaira dimension zero), and (at least aside from some very trivial cases) Gompf’s
manifolds Ma;b;G have Kodaira dimension 1 if a D 0 and 2 if a > 0. Our main
theorem below will demonstrate that this is not a coincidence. To state it, we make
the following definitions.

Definition 1.2. Let .X1; !1/, .X2; !2/ be symplectic four-manifolds with Fi � Xi

embedded symplectic submanifolds of equal area and genus and opposite square.

(1) The symplectic sum X1 #F1DF2
X2 is called smoothly trivial if, for some

i 2 f1; 2g,Xi the total space of anS2-bundle of whichFi is a section. Otherwise,
the symplectic sum is called smoothly nontrivial.

(2) The symplectic sum X1 #F1DF2
X2 is said to be of blowup type if, for some

i 2 f1; 2g, the pair .Xi ; Fi / may be obtained from a pair .E; F / consisting of
the total spaceE of an S2-bundle of which F is a section by a sequence of zero
or more blowups at points not lying on F .

Remark 1.3. It is stated without proof in [7] that ifX1 #F1DF2
X2 is a smoothly trivial

symplectic sum, say with .X2; F2/ consisting of an S2-bundle and a section, then the
sumX1 #F1DF2

X2 is diffeomorphic toX1. It is not difficult to prove this: simply note
thatX2n�2 will be diffeomorphic to a neighborhood ofF1 inX1, so that for at least one
choice of the gluing mapˆj@�1

the sum will be diffeomorphic toX1; further, the gluing
mapsˆj@�1

W @�1 ! @�2 that we are allowed to use in forming the symplectic sum are
precisely the restrictions of orientation reversing bundle isomorphisms, and so any
two of them differ by precomposing with an orientation preserving diffeomorphism
of @�1 which extends over �1, implying therefore that the diffeomorphism type of
X1 #F1DF2

X2 is independent of the gluing map and so is X1 in any event. Of
course, this argument is dependent on the fact that the gluing map is required to
preserve the fibers of the normal circle bundles, an issue which seems to have caused
a certain amount of confusion in the literature, where one occasionally finds mistaken
claims that symplectic sums with S2-bundles along sections sometimes change the
diffeomorphism type.

At any rate, the above fact justifies our use of the term “smoothly trivial” to describe
such symplectic sums, and by Theorem 2.6 of [14] implies that performing a smoothly
trivial symplectic sum leaves the Kodaira dimension unchanged. Incidentally, while
these sums are trivial from a smooth standpoint, they generally do alter the symplectic
structure in a manner equivalent to the “inflation” technique of [13], a fact which is
exploited in [16].

Definition 1.4. If .X1; !1/, .X2; !2/ are symplectic four-manifolds with Fi � Xi

embedded symplectic submanifolds of equal area and genus and opposite square, the
symplectic sumX1 #F1DF2

X2 is called relatively minimal if for each i D 1; 2, there
are no embedded symplectic spheres of square �1 in Xi n Fi .
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Remark 1.5. If a symplectic sumZ D X1 #F1DF2
X2 is not relatively minimal, then

if we blow down maximal disjoint collections of spheres of square �1 inX1 nF1 and
X2 nF2 to obtain symplectic manifoldsX 0

1; X
0
2, then theFi survive in the blowdowns

and the areas, genera, and self-intersections of the Fi are left unchanged. Hence we
may form a symplectic sum Z0 D X 0

1 #F1DF2
X 0

2, and Z may be recovered from
Z0 by a sequence of blowups. X 0

1 #F1DF2
X 0

2 will be smoothly trivial if and only if
X1 #F1DF2

X2 is of blowup type. Thus any symplectic 4-manifold which arises as a
symplectic sum which is not of blowup type is a blowup of a symplectic 4-manifold
which arises as a smoothly nontrivial, relatively minimal symplectic sum. Moreover,
symplectic sums which are of blowup type are diffeomorphic to blowups of one of
their summands.

Remark 1.6. In this language, the main result of [27] may be rephrased as stating
that any symplectic 4-manifold arising as a smoothly nontrivial, relatively minimal
symplectic sum along surfaces of positive genus is minimal.

Our main result is the following:

Theorem 1.7. Suppose that .X1; !1/, .X2; !2/, F1, and F2 are such that the sym-
plectic sum Z D X1 #F1DF2

X2 is smoothly nontrivial and relatively minimal and
the genus of the Fi is positive. Then:

(a) Z does not have Kodaira dimension �1.

(b) If Z has Kodaira dimension 0, then the diffeomorphism types of X1, X2, and Z
are given by one of the rows in the following table, where the notationM.A;BI Ev/
denotes a T 2-bundle over T 2 as described below or in [24]. Moreover, each
entry in the third column of this table can in fact be constructed as a smoothly
nontrivial, relatively minimal symplectic sum along a torus.

X1 X2 possible diffeomorphism types
of X1 #F1DF2

X2

CP 2 # .18 � k/CP 2 CP 2 # kCP 2 K3 surface

S2 � S2 CP 2 # 17CP 2 K3 surface

CP 2 # .9 � k/CP 2 .S2 � T 2/ # kCP 2 Enriques surface

S2 � S2 .S2 � T 2/ # 8CP 2 Enriques surface

CP 2 # 9CP 2 S2 z� T 2 Enriques surface
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X1 X2 possible diffeomorphism types ofX1 #F1DF2
X2

S2 � T 2 S2 � T 2 M

0
@I;

0
@�1 z

0 �1

1
A I

0
@0
0

1
A

1
A

M

0
@�I;

0
@1 2y

0 1

1
A I

0
@0
0

1
A

1
A

M

0
@I;

0
@�1 2y

0 �1

1
A I

0
@0
1

1
A

1
A

M

0
@�I;

0
@1 2y

0 1

1
A I

0
@0
1

1
A

1
A .y; z 2 Z/

S2 � T 2 S2 z� T 2 M

0
@�I;

0
@1 2y C 1

0 1

1
A I

0
@0
0

1
A

1
A

M

0
@�I;

0
@1 2y C 1

0 1

1
A I

0
@0
1

1
A

1
A .y 2 Z/

S2 z� T 2 S2 z� T 2 M

0
@I;

0
@�1 z

0 �1

1
A I

0
@1
0

1
A

1
A

M

0
@�I;

0
@1 2y

0 1

1
A I

0
@1
0

1
A

1
A

M

0
@I;

0
@�1 2y C 1

0 �1

1
A I

0
@0
1

1
A

1
A .y; z 2 Z/

Here S2 z� T 2 refers to the smoothly nontrivial S2-bundle over the torus. TheK3
surface is, of course, the smooth four-manifold underlying a quartic hypersurface of
CP 3, while the Enriques surface can be realized either as the quotient of aK3 surface
by a free involution which is holomorphic for an appropriate complex structure, or,
equivalently, as the result of performing logarithmic transformations of multiplicity 2
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on two fibers of the rational elliptic surfaceE.1/; pp. 590–599 of [9] provide a concise
description of the complex geometry of these manifolds. The notation M.A;BI Ev/
(A;B 2 SL.2I Z/; Ev 2 Z2; AB D BA) above is as in [24]: identifying T 2 D R2=Z2

and writing the coset of .x; y/ 2 R2 as
�

x
y

�
, we define

M

�
A;BI

�
0

0

��
D R2 � T 2�

s C 1; t;

�
x

y

��
�

�
s; t;

�
A

�
x

y

���
;

�
s; t C 1;

�
x

y

��
�

�
s; t;

�
B

�
x

y

���
;

and let M.A;BI .m; n// be obtained from M.A;BI .0; 0// by removing a neighbor-
hood of a torus fiber of the projection Œs; t; x; y� 7! Œs; t � and regluing it by the
map

@D2 � T 2 ! @D2 � T 2;

.e2�i� ; Œx; y�/ 7! .e2�i� ; Œx Cm��; Œy C n��/:

Since manifolds obtained by general symplectic sums are blowups of those ob-
tained by relatively minimal ones, and since Kodaira dimension is preserved under
blowups, Theorem 1.7 has the following corollary:

Corollary 1.8. No symplectic 4-manifold of Kodaira dimension �1 arises as a
symplectic sum along surfaces of positive genus which is not of blowup type, and
the only symplectic 4-manifolds of Kodaira dimension 0 which arise as symplectic
sums which are not of blowup type along surfaces of positive genus are blowups of
symplectic manifolds diffeomorphic to either the K3 surface, the Enriques surface,
or a T 2-bundle over T 2 having the form M

�
I;

� �1 z
0 �1

	 I Ev	
or M

��I; � 1 z
0 1

	 I Ev	
,

where z 2 Z and Ev 2 f.0; 0/; .0; 1/; .1; 0/g.

Symplectic 4-manifolds of Kodaira dimension �1 are of course well understood
since they are all rational or ruled. In light of Gompf’s manifoldsMa;b;G mentioned
above, the classes of symplectic 4-manifolds of Kodaira dimension either 1 or 2 are
each at least as complicated as the class of all finitely presented groups, which have
been known to be unclassifiable since the 1950s. The classification of symplectic
4-manifolds of Kodaira dimension zero, meanwhile, is a very interesting open prob-
lem. The only presently-known such manifolds are blowups of the K3 surface, the
Enriques surface, or an orientable T 2-bundle over T 2 (all of the latter were proven to
admit symplectic structures in [5]), and a recent striking result independently proven
in [1] and [15] implies that any minimal symplectic 4-manifold of Kodaira dimension
zero necessarily has the same rational homology as one of the known minimal ex-
amples. Theorem 1.7 thus shows that (up to diffeomorphism) if any new symplectic
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4-manifolds of Kodaira dimension zero do exist, then they cannot be found by per-
forming symplectic sums along surfaces of positive genus. Note that since blowing
down a .�1/-sphere amounts to performing a symplectic sum with CP 2 along a line,
any symplectic 4-manifold arises (in a somewhat trivial fashion) as a smoothly non-
trivial symplectic sum along spheres. It would be interesting to know whether or not
new symplectic 4-manifolds of Kodaira dimension zero can arise by symplectic sum
with CP 2 along a quadric (i.e., by blowing down a .�4/-sphere), or more generally
whether or not new symplectic 4-manifolds of Kodaira dimension zero can arise via
the rational blowdown procedure of [2].

Theorem 1.7 pins down the diffeomorphism type of the symplectic sums in ques-
tion; it would be somewhat preferable to have a result specifying the symplectic
deformation type (though it is worth noting that this may be a moot point, since any
two symplectic structures on any of the manifolds in the last column of the table in
Theorem 1.7 have the same canonical class, and there are not currently any known
examples of smooth four-manifolds admitting deformation inequivalent symplectic
structures that have the same canonical class). In the case that the symplectic sum is
a T 2-bundle over T 2, our proof can be seen to imply that the symplectic form will
be positive on the fibers, and so will be deformation equivalent to a form obtained by
the Thurston trick. When the sum is diffeomorphic to theK3 surface or the Enriques
surface, the situation is perhaps more subtle, since in our proofs we use, among other
things, the fact that any orientation-preserving diffeomorphism of the boundary of
the complement of a tubular neighborhood of a fiber in the rational elliptic surface
E.1/ extends to the whole complement, and so since such a diffeomorphism cannot
always be made symplectic we lose control of the symplectic form.

We should mention that, as in Remark 1.3, although the conclusion of Theorem 1.7
only concerns diffeomorphism types the result is sensitive to the fact that the sum
operation is symplectic and so the gluing mapˆ W @�1 ! @�2 is required to be the re-
striction of an anti-isomorphism of complex line bundles (rather than just an arbitrary
diffeomorphism). Of course, ifˆ were replaced by an arbitrary diffeomorphism, the
sum might not admit a symplectic structure; for instance for n 	 2 a degree-zero
logarithmic transformation of a fiber of the elliptic surface E.n/ (which results from
an appropriate gluing of the complement of the symplectic torus fiber of E.n/ to the
complement of a symplectic torus in T 2 �S2) is diffeomorphic to the non-symplectic
manifold .2n�1/CP 2 # .10n�1/CP 2 (Theorem 6.1 of [6]). In other cases, though,
a more general gluing map gives rise to a manifold that happens to admit a symplec-
tic structure, which may even have Kodaira dimension zero: for instance, any of
the T 2-bundles over T 2 given in our notation above as M.I; I I .m; n// may be ob-
tained by an appropriate gluing of the complement of a symplectic torus in T 4 to the
complement of a symplectic torus in T 2 � S2; these all admit symplectic structures
by [5] (or indeed by earlier work; the case .m; n/ D .0; 1/ is the Kodaira–Thurston
manifold) with trivial canonical class and so Kodaira dimension zero. However, for
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.m; n/ ¤ .0; 0/, b1.M.I; I I .m; n/// D 3, whereas all of the T 2-bundles over T 2

appearing in Theorem 1.7 have b1 D 2, so none of the manifolds M.I; I I .m; n//
occur as smoothly nontrivial symplectic sums.

In the next section, we prove part (a) of Theorem 1.7, which might best be seen
as a corollary of the arguments of [27]. The rest of the paper consists of the proof
of part (b), which relies on a result describing the behavior of the canonical class of
a symplectic sum in order to reduce the result to a small number of cases which can
be dispensed with in turn. A useful tool in two of the cases is Lemma 3.3, which
states that if F is a symplectic torus in CP 2 # 9CP 2 Poincaré dual to the first Chern
class, then there is a diffeomorphism of pairs taking .CP 2 # 9CP 2; F / to the pair
consisting of a rational elliptic surface together with one of its regular fibers. This
should be contrasted with various non-isotopy results for symplectic tori Poincaré
dual to multiples of the first Chern class, e.g., in [4].

Acknowledgement. I am grateful for the referee’s corrections and suggestions. This
work was partially supported by an NSF Postdoctoral Fellowship.

2. Rational and ruled surfaces

Part (a) of Theorem 1.7 is an easy consequence of two results proven in [27]. On
the one hand, from Section 2 of that paper, we find (based largely on [12]), that if
Z D X1 #F1DF2

X2 is a symplectic sum, and if A 2 H2.ZI Z/ is any nonzero
homology class having a nontrivial Gromov–Witten invariant counting genus-zero
holomorphic curves, then there are classes A1 2 H2.X1I Z/, A2 2 H2.X2I Z/, each
represented by a union of genus zero stable maps which are pseudoholomorphic for
some almost complex structure Ji on Xi (i D 1; 2) which preserves TFi such that

h�X1
C PDŒF1�; A1i C h�X2

C PDŒF2�; A2i D h�Z ; Ai < 0; (1)

where the final inequality results from the fact that the expected dimension of genus-
zero pseudoholomorphic representatives of A, namely �1 � h�Z ; Ai, must be non-
negative in order for the corresponding Gromov–Witten invariant to be nonvanishing.

On the other hand, Proposition 3.9 of [27], translated into the terminology of
the introduction, states that if the symplectic sum Z D X1 #F1DF2

X2 is smoothly
nontrivial and relatively minimal, and if the Fi have positive genus, then the Fi are
“rationally K-nef,” which is to say, for i D 1; 2, if A 2 H2.Xi I Z/ is represented by
a Ji -holomorphic sphere for some almost complex structure Ji preserving TFi , then
we necessarily have h�Xi

C PDŒFi �; Ai 	 0.
As such, if the symplectic sum is smoothly nontrivial and relatively minimal,

and if the genus of the surfaces involved is positive, then (1) cannot hold, and so Z
cannot admit any nonvanishing genus zero Gromov–Witten invariants in any non-
trivial homology classes. In [27] this was used to conclude that Z is minimal; in
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our present case, we simply note that any rational or ruled surface does admit a non-
vanishing genus-zero Gromov–Witten invariant in a nontrivial homology class (the
proper transform of the hyperplane class for blowups of CP 2, or the class of the fiber
of a ruling for ruled surfaces; see, e.g., [19]). Thus rational and ruled surfaces (i.e.,
symplectic 4-manifolds of Kodaira dimension �1) cannot arise as smoothly non-
trivial, relatively minimal symplectic sums along surfaces of positive genus, proving
part (a) of Theorem 1.7.

3. 4-manifolds of Kodaira dimension zero

The proof of part (b) of Theorem 1.7 depends on the following result.

Theorem 3.1. Let .X1; !1/; .X2; !2/ be symplectic 4-manifolds, Fi � Xi (i D 1; 2)
embedded symplectic submanifolds of equal positive genus, equal area, and opposite
self-intersection, and .Z D X1 #F1DF2

X2; !/ the symplectic sum of the Xi along
the Fi . Assume that the symplectic sum is smoothly nontrivial and that .Z; !/ has
Kodaira dimension zero and is minimal. Then the Fi are both tori, and are Poincaré
dual to ��Xi

.

Proof. According to Theorem 2.1 of [12], there is a symplectic 6-manifold
.Z; �/ equipped with a projection � W Z ! D2 with the property that, for � ¤ 0,
.��1.�/;�j��1.�// is isotopic to the symplectic sum Z, while .��1.0/;�j��1.0//

is the singular symplectic manifold obtained by directly gluing the Xi along the
Fi , so that the two pieces intersect in a copy F of the Fi . As seen in the proof of
Lemma 2.2 of [12], one has (for � ¤ 0) �Zj��1.�/ D ���1.�/, while for i D 1; 2

c1.TZjXi
/ D c1.Xi / � PDXi

ŒFi �.
We claim now that, where i� W ��1.�/ ! Z, ij W Xj ! Z .j D 1; 2) are the

inclusions, i��Œ��1.�/� is equal to i1�ŒX1�C i2�ŒX2� in H4.ZI Z/. This essentially
follows from the description of Z in Section 2 of [12]. Namely, as seen there,
��1.�/ for 0 < � 
 1 may (up to isotopy) be obtained from ��1.0/ D X1 [F X2

as follows: a neighborhood of F � Z is diffeomorphic to a neighborhood U of the
zero section in L ˚ L� ! F where L ! F is a complex line bundle of degree
ŒF1�

2 and L� is its dual; putting a Hermitian metric j � j on L (which then induces
one on L�) and arranging that U D f.˛; v; x/ 2 L ˚ L� j j˛j; jvj � 1g, up to
smooth isotopy ��1.�/ coincides with ��1.0/ outside U and its intersection with U
is given by f.˛; v; x/ 2 L˚ L� j h˛; vi D 	.j˛j C jvj/�g where 	 W Œ0; 1� ! Œ0; 1�

is a bump function supported in Œ0; 2�1=4� and equal to 1 on Œ0; �1=4�. Observe
that X1 is homologous to the chain obtained by replacing X1 \ U by (in hopefully
self-explanatory notation)

f. Nv; v; x/ j jvj � �1=2g C f.˛; v; x/ 2 ��1.�/ j �1=2 � jvj � 1g
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and likewise X2 is homologous to the chain obtained by replacing X2 \ U by

f.˛; N̨ ; x/ j j˛j � �1=2g C f.˛; v; x/ 2 ��1.�/ j �1=2 � j˛j � 1g:
But adding these two chains together and passing to homology just recovers i��ŒZ��

(as the first terms in the two expressions above now cancel), verifying that indeed
i��Œ��1.�/� D i1�ŒX1�C i2�ŒX2� 2 H4.ZI Z/.

As such, we have

h�Z [ Œ!�; ŒZ�i D hi�� .�Z [ Œ��/; Œ��1.�/�i D h�Z [ Œ��; i��Œ��1.�/�i
D h�Z [ Œ��; i1�ŒX1�i C h�Z [ Œ��; i2�ŒX2�i
D h�ZjX1

[ Œ��jX1
; ŒX1�i C h�ZjX2

[ Œ��jX2
; ŒX2�i

D h.�X1
C PDX1

ŒF1�/ [ Œ!1�; ŒX1�i
C h.�X2

C PDX2
ŒF2�/ [ Œ!2�; ŒX2�i

D h�X1
[ Œ!1�; ŒX1�i C h�X2

[ Œ!2�; ŒX2�i C
Z

F1

!1 C
Z

F2

!2:

(2)

Note that nothing that we have done so far makes any use of the assumption that
.Z; !/ is minimal with Kodaira dimension zero. However, when we do implement
that assumption, the left hand side of (2) becomes zero. Hence

�
h�X1

[ Œ!1�; ŒX1�i C
Z

F1

!1

�
C

�
h�X2

[ Œ!2�; ŒX2�i C
Z

F2

!2

�
D 0:

We claim now that each �Xi
is proportional to PDŒFi � inH 2.Xi I R/. Indeed, suppose

that this were not the case, say for i D 1. Then we could find an element ˇ 2
H 2.X1I R/ such that h�X1

[ ˇ; ŒX1�i D 1 but hˇ; ŒF1�i D 0. Moreover, since small
closed perturbations of symplectic forms are still symplectic, for any sufficiently
small " > 0 the cohomology class Œ!1� C "ˇ would admit a symplectic form, say
!"

1, which (assuming " is small enough) would continue to make F1 symplectic, and
would induce the same canonical class �X1

as does !1 by virtue of being deformation
equivalent to !1. We would then have

Z
F1

!"
1 D

Z
F1

!1; h�X1
[ Œ!"

1�; ŒX1�i D h�X1
[ Œ!1�; ŒX1�i C ":

But then we could apply the symplectic sum operation to the symplectic manifolds
.X1; !

"
1/, .X2; !2/ along the Fi to obtain a new symplectic manifold .Z"; !"/, dif-

feomorphic (indeed deformation equivalent) to .Z; !/, and by (2) we would have

h�Z" [ Œ!�; ŒZ"�i D " > 0:
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So .Z"; !"/ is not a minimal symplectic manifold of Kodaira dimension zero. But
by Theorem 2.6 of [14], the Kodaira dimension of a symplectic four-manifold is a
diffeomorphism invariant, so sinceZ" is diffeomorphic toZ (and since the minimality
or nonminimality of Z is also a diffeomorphism invariant; see, e.g., Proposition 2.1
of [14]) this is impossible. This contradiction shows that, for some 
1; 
2 2 R, we
have PD.�Xi

/ D 
i ŒFi � 2 H2.X I R/ for i D 1; 2.
Evidently, since h�Z [ Œ!�; ŒZ�i D 0, we must have

.2C 
1 C 
2/

Z
F1

!1 D
�

h�X1
[ Œ!1�; ŒX1�i C

Z
F1

!1

�

C
�

h�X2
[ Œ!2�; ŒX2�i C

Z
F2

!2

�
D 0;

so since
R

F1
!1 > 0 we have


1 C 
2 D �2:
In particular, at least one of the 
i , say 
1, is negative. Then h�X1

[ Œ!1�; ŒX1�i D

1

R
F1
!1 < 0, so by Theorem B of [17] and results of [26] .X1; !1/ must be either

a rational surface or an irrational ruled surface.
Now ifX1 D CP 2 # kCP 2, then whereH is the hyperplane class andE1; : : : ; Ek

are the classes of the exceptional spheres of the blowups, we have PD.�X1
/ D �3HCPk

iD1Ei . Since PD.�X1
/ is primitive and the embedded surface F1 represents

1
�1
PD.�X1

/, we have 1
�1

2 Z and so 
1 	 �1. Similarly if X1 D S2 � S2 then

PD.�X1
/ D �2�

S2 � fptg� � 2
�fptg � S2

�
, and again our assumptions on F1 force


1 	 �1 (
1 D �2 is ruled out both by the assumption that F1 has positive genus
and by the assumption that the sum is smoothly nontrivial, so that F1 is not a section
of an S2-bundle). Thus if X1 is rational then 
1 	 �1.

Suppose now thatX1 is an irrational ruled surface; sayX1 D .S2 �†h/ # kCP 2

.h 	 1; k 	 0). Then where � is the homology class of the proper transform of a
section of S2 �†h ! †h and f is the class of the proper transform of a generic fiber,
we have PD.�X1

/ D �2�C .2h�2/f C Pk
iD1 ei . If k > 0, then in order for ŒF1� to

be an integral class we necessarily have 
1 	 �1. If k D 0, we have either 
1 	 �1
or
1 D �2, but if
1 D �2 then by Proposition 3.3 of [27] there is a ruling onX1 of
which F1 is a section, which is forbidden by the assumption that the sum is smoothly
nontrivial. Finally, if X1 is a nontrivial S2-bundle S2 z� †h over a surface of genus
h > 0, then where sC, s� are sections of square C1 and �1 respectively, we have
PD.�X / D .2h�3/ŒsC��.2h�1/Œs��, so that since ŒF1� D 1

�1
PD.�X / 2 H2.X1I Z/,

we get j 1
�1

j 	 1, so 
1 	 �1.
Summing up, we have shown that since 
1 < 0, X1 is rational or ruled, and that

(becauseX1 is rational or ruled) by the hypothesis of the theorem we have 
1 	 �1.
But then since 
1 C 
2 D �2, we must have 
2 < 0, which then forces X2 to be
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rational or ruled, and so by the same arguments 
2 	 �1. So since 
1 C 
2 D �2
and 
1; 
2 	 �1, we in fact have 
1 D 
2 D �1, i.e., ŒFi � D �PD.�Xi

/ for
i D 1; 2.

To see that the Fi are tori, simply note that the adjunction formula gives

2g.Fi / � 2 D ŒFi �
2 C h�Xi

; ŒFi �i D �2
Xi

� �2
Xi

D 0: �

Theorem 3.1 and its proof show that, in order for a smoothly nontrivial symplectic
sum X1 #F1DF2

X2 along a surface of positive genus to be minimal and of Kodaira
dimension zero, the Xi necessarily are rational or ruled, and the Fi are tori Poincaré
dual to ��Xi

. The main theorem of [27] shows that the sum will automatically be
minimal provided that the Xi and Fi satisfy the hypotheses of Theorem 1.7. The
problem of determining the diffeomorphism types of such sums now naturally splits
into 3 cases, which we address in turn.

3.1. Case 1: X1 and X2 are rational. Note that, since the Fi are tori, we have
�2

X1#F1DF2
X2

D 3�.X1 #F1DF2
X2/C 2	.X1 #F1DF2

X2/ D �2
X1

C �2
X2

. Now the

rational surfaces have �2

CP 2#kCP 2
D 9 � k and �2

S2�S2 D 8, in light of which, in

order for �2
X1#F1DF2

X2
to be zero, the unordered pair fX1; X2g must be either fCP 2 #

kCP 2;CP 2 # .18�k/CP 2g (0 � k � 9) or fS2 �S2;CP 2 # 17CP 2g. Note that
since ŒFi � D �PD.�Xi

/,Fi has intersection number 1with each embedded symplectic
.�1/-sphere in Xi . Choosing an almost complex structure Ji on Xi generic among
those making Fi pseudoholomorphic, each homology class in Xi that is represented
by an embedded symplectic .�1/-sphere will be represented by a Ji -holomorphic
.�1/-sphere, which will then intersect Fi transversely and once. Blowing down such
a .�1/-sphere will then result in a symplectic manifoldX 0

i together with an embedded
torus F 0

i , with ŒF 0
i �

2 D ŒFi �
2 C 1.

Now according to Lemma 5.1 of [7] (respectively, Proposition 1.6 of [22]), if
.M1; !1/; .M2; !2/ are symplectic 4-manifolds containing surfaces †1; †2 of equal
genus and area such that Œ†1�

2CŒ†2�
2 D 1, and if . zMi ; z†i /denotes the pair consisting

of a symplectic 4-manifold and symplectic surface that results from blowing up Mi

at a point of †i , then zM1 # z†1D†2
M2 is diffeomorphic (respectively, symplectic

deformation equivalent) to M1 #†1D z†2

zM2.
Applying this to the cases under consideration enables us to replace the pair

fCP 2 # kCP 2;CP 2 # .18�k/CP 2g .0 � k � 9) by fCP 2 # .kC1/CP 2;CP 2 #
.18� k � 1/CP 2g (since if X2 D CP 2 # .18� k/ where k � 9, X2 contains .�1/-
spheres meeting F2 transversely once, any one of which may be blown down to give
a torus of square one larger in CP 2 # .18 � k � 1/CP 2, and we may then apply
Gompf’s and McDuff–Symington’s results mentioned above). Repeatedly “trading
blowups” in this fashion enables us to reduce to the case that k D 18 � k D 9.
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Similarly, if X1 D S2 � S2, then X2 D CP 2 # 17CP 2, so “trading blowups”
once reduces us to the case that X1 D .S2 � S2/ # CP 2 D CP 2 # 2CP 2 and
X2 D CP 2 # 16CP 2, and then doing so seven more times reduces to the case that
X1 D X2 D CP 2 # 9CP 2.

So we assume for the rest of this subsection that X1 D X2 D CP 2 # 9CP 2.
The Xi are then both diffeomorphic to the total space of a rational elliptic surface
E.1/, and the Fi are homologous to a fiber of E.1/. In fact, we can make a stronger
statement about the Fi ; we begin with the following lemma.

Lemma 3.2. Let B � C2 be a closed ball around the origin, and let � W B !
C2 be an orientation preserving diffeomorphism onto a closed subset of C2 which
maps f.w; z/ 2 B j z D 0g orientation-preservingly to C � f0g. Then there is a
diffeomorphism �0 W B ! �.B/ which is isotopic to � by an isotopy which is the
identity on a neighborhood of @B , such that �0 maps f.w; z/ 2 B j z D 0g to C �f0g
and is holomorphic on a neighborhood of the origin.

Proof. With respect to the splitting R4 D C2 D R2 � R2, the Jacobian J of � at
the origin has the 2 � 2 block form

�
A M
0 C

	
. The orientation-preserving conditions

ensure that A and J both have positive determinant, in light of which C also has
positive determinant. Let 	 W B ! Œ0; 1� be a smooth function which is equal to 1 on
a neighborhood of the origin and to 0 on a neighborhood of @B . Let V1 be the vector

field on B � R4 whose value at v 2 B is 	.v/

 � log A 0

0 � log C

�
v; by composing �

with the time-1 map of V1 we reduce to the case where the Jacobian at the origin
has form

�
I A�1M
0 I

	
. Then where V2.v/ D 	.v/

�
0 �A�1M
0 0

	
v composing with the

time-1 map of V2 reduces us to the case that the Jacobian of � at the origin is the
identity. (Note that both V1 and V2 are tangent to C � f0g, so the condition that this
set be preserved is not disturbed). But in this case there is a constantC (depending on
the second derivatives of �) such we have j�.w; z/ � .w; z/j � C.jwj2 C jzj2/ and
j.D�/.w;z/�I j � C.jwj2Cjzj2/1=2. Letˇ W Œ0;1/ ! Œ0; 1� be a smooth, monotone
function such that ˇ.r/ D 0 for r � 1=3, ˇ.r/ D 1 for r 	 1, and ˇ0.r/ � 2. Then
if ı > 0 defining

�0.w; z/ D .w; z/C ˇ..jwj2 C jzj2/1=2=ı/.�.w; z/ � .w; z//
yields a smooth map which coincides with � outside the ball of radius ı around the
origin, is holomorphic in the ball of radius ı=3 around the origin, and differs from �

in C 1 norm by at most .3C ı/Cı and therefore is a diffeomorphism as long as ı is
taken small enough. Also, since � preserves fz D 0g, �0 evidently does as well, and
�0 is isotopic to � by the isotopy � C t .�0 � �/. �

Lemma 3.3. Let .M;!/ be a symplectic manifold obtained by blowing up
.CP 2; !F S / at nine distinct points, and let F � M be an embedded symplec-
tic submanifold Poincaré dual to the anticanonical class ��M . Then there exists



70 M. Usher CMH

an elliptic fibration � W E.1/ ! S2 with no multiple fibers and a diffeomorphism
ˆ W M ! E.1/ with the property that ˆ.F / is a fiber of � .

Proof. Let QJ0 be an almost complex structure which makes F pseudoholomorphic.
Provided that QJ0 is chosen generically from among such almost complex struc-
tures, there are unique, embedded QJ0-holomorphic representatives E1; : : : ; E9, re-
spectively, of the homology classes of the nine exceptional divisors of the blowup
M ! CP 2. Each of theEi has a tubular neighborhoodNi modeled (symplectically)
on a neighborhood of the zero section of the holomorphic line bundle O.�1/ over
CP 1; we may shrink the Ni if necessary to make them pairwise disjoint. Now, for
each i , the QJ0-holomorphic curvesF andEi have homological intersection number 1,
so they meet transversely, positively, and in just one point. Hence as in Lemma 2.3
of [7], we may isotope F relM n [Ni by symplectomorphisms to a surface F 0 such
that, for some smaller neighborhoods N 0

i of Ei , F 0 \ N 0
i coincides with a fiber of

the bundle projection O.�1/ ! Ei . Further, during this isotopy, we can change the
almost complex structure QJ0 to an almost complex structure QJ which agrees with QJ0

outsideNi , makes F 0 holomorphic, and coincides onN 0
i with the standard integrable

complex structure on the tautological line bundle O.�1/.
We now symplectically blow down the Ei (see Section 7.1 of [21] for a detailed

description of this process); doing so amounts to symplectically identifying an annular
neighborhood Li D D.ı1;i / n D.ı2;i / � N 0

i � O.�1/ of the zero section Ei with
a spherical shell B.r1;i / n B.r2;i / in C2, and filling in this shell by a standard ball
(centered at a point pi with radius r2;i ) to replace the ı2;i -neighborhood of Ei . This
process is compatible with the complex blowdown in the sense that the annulus fibers
of Li are taken to annuli in the complex lines that they correspond to under the
identification of O.�1/ with the tautological line bundle of C2, so in the blowdown
these annuli may be filled in to form discs by adding in the disc of radius r2;i in
the corresponding complex line. So since F 0 meets each Li in one of these annulus
fibers, filling these annuli in as above gives rise to a compact symplectic surface S
whose intersection with each B.r1;i / coincides with a complex line.

As a result of all this, blowing down theEi results in CP 2 equipped with an almost
complex structure J which is integrable near each of the points pi (and coincides
with QJ outside the blow-up neighborhoods), a J -holomorphic curveS � CP 2 which
coincides with F 0 outside the blow-up neighborhoods, and a symplectic form !0
(induced by ! and the blowdown procedure) which is compatible with J . !0 is easily
seen to be cohomologous to the Fubini–Study form (for instance, the proper transform
of the hyperplane class under the original blowups that were done to obtain M from
CP 2 has a nonvanishing Gromov–Witten invariant, and so may be represented by
a symplectic surface zH which we can arrange to miss the Li and so gives rise to a
symplectic surface in .CP 2; !0/ with the same area as zH has in .M;!/). Hence
by a result of [10] !0 is symplectomorphic to the Fubini–Study form. Also, for
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a similar reason as above, S � CP 2 has degree 3. So by Theorem 3 of [25], S
is symplectically isotopic to some complex cubic curve C . The isotopy extension
theorem then ensures that there is an ambient isotopy �t W CP 2 ! CP 2 such that
�1.S/ D C . Our intention now is to modify �1 to some other diffeomorphism �2

so that (i) �2.S/ D C , (ii) CP 2 carries an elliptic pencil with fiber C and base
locus f�2.p1/; : : : ; �2.p9/g, and (iii) �2 lifts to a diffeomorphism of the appropriate
blowups which takes F 0 to the proper transform of C .

To achieve this, first note that since the sheaf of sections of the holomorphic
normal bundle to C which vanish at the eight points �1.p1/; : : : ; �1.p8/ has de-
gree 1, it admits global nonvanishing sections by Riemann–Roch; perturbing �1 by
composing with a small diffeomorphism which preserves C we can arrange that
�1.p1/; : : : ; �1.p8/ are generic in the sense that none of these sections vanishes to
order 2. Such a section results in another smooth cubicC 0 which meetsC transversely
at the eight points �1.p1/; : : : ; �1.p8/, and also at some other point q9. Now let v be
a vector field onC which vanishes on neighborhoods of the �1.pi / for 1 � i � 8 and
whose time-1 flow maps �1.p9/ to q9. Using a partition of unity subordinate to a set
of local trivializations of the normal bundle to C and a bump function supported on a
tubular neighborhood of C , extend v to a vector field V on CP 2 whose restriction to
C is v; let  be the time-1 flow of V , and let �0 D  B �1. Then �0 W CP 2 ! CP 2

is a diffeomorphism which maps S to C and p1; : : : ; p9 2 S to the 9 intersection
points between C and another smooth cubic C 0.

Now�0 will not lift to a diffeomorphism on blowups, because it is not holomorphic
near the points being blown up and so does not map complex lines to complex lines.
However, around each pi there are complex coordinates .w; z/ in which S is given
by fz D 0g and likewise near each �0.pi / there are complex coordinates in which
C is given by fz D 0g. Hence, in terms of these local holomorphic coordinates, �0

is given in these neighborhoods by a diffeomorphism which satisfies the hypothesis
of Lemma 3.2. So �0 may be modified by an isotopy supported in the union of
these neighborhoods to an orientation-preserving diffeomorphism�2 W CP 2 ! CP 2

which maps S to C and is holomorphic on (smaller) neighborhoods of p1; : : : ; p9.
Consequently, if Y is the (complex) blowup of .CP 2; J / at the 9 points p1; : : : ; p9

(which makes sense because J is integrable near the pi ), and if E.1/ is the complex
blowup of .CP 2; Jstd/ at �2.p1/; : : : ; �2.p9/, �2 lifts to a diffeomorphism Y !
E.1/ taking the proper transform of S to the proper transform of C . If f and f 0
are homogeneous cubic polynomials with vanishing loci C and C 0 respectively, the
vanishing loci CŒ�W�� of �f C 
f 0 .Œ� W 
� 2 CP 1) provide an elliptic pencil on
CP 2 with base locus f�.p1/; : : : ; �.p9/g. Blowing up the base locus to form E.1/

thus gives an elliptic fibration with the proper transform of C as a fiber.
To compare Y to X , note that in order to put a symplectic form on the complex

blowup Y in such a way that the map �2 lifts to Y we need to cut out balls B 0
i

around pi that are smaller than the balls B.r2;i / that were created by the blowdown
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X ! CP 2. X and Y hence cannot be symplectomorphic. However, there is an
obvious diffeomorphism between the blowups corresponding to balls of different
size which simply changes the radius of the disc bundle involved; in particular this
diffeomorphism has a restriction to the neighborhood of the exceptional sphere which
preserves the fibers of the normal bundle O.�1/. Recalling that F 0 coincided with
a fiber of the normal bundle on the neighborhood N 0

i it then follows that the natural
diffeomorphism X ! Y takes F 0 to the proper transform of S in Y .

We hence have a diffeomorphism X ! E.1/ which takes F 0 to the proper trans-
form of C ; precomposing this with a symplectomorphism of X which isotopes F
to F 0 gives us the promised map ˆ W X ! E.1/ taking F to a fiber of an elliptic
fibration. �

Corollary 3.4. If the symplectic sum Z of two rational surfaces along a positive
genus surface is a minimal symplectic four-manifold of Kodaira dimension zero, then
Z is diffeomorphic to the K3 surface.

Proof. Denote the two summands byXi (i D 1; 2) and the surfaces in question byFi .
We have shown that we may assume thatXi D CP 2 # 9CP 2 and that the Fi are tori
Poincaré dual to �PD.�Xi

/. Hence by Lemma 3.3, we have Xi n �Fi Š E.1/ n �F
whereE.1/ is the total space of a rational elliptic fibration having fiber F (and where
“Š” denotes diffeomorphism). Hence

Z Š .E.1/ n �F / [ˆ .E.1/ n �F /
for some orientation-reversing diffeomorphism ˆ of the boundary @.E.1/ n �F / D
T 3. But according to Proposition 1 of Appendice 4 of [11], every orientation preserv-
ing diffeomorphism of @.E.1/ n �F / extends to E.1/ n �F , so the diffeomorphism
type of .E.1/ n �F / [ˆ .E.1/ n �F / is independent of ˆ. So since one choice
of ˆ (namely the one corresponding to taking the standard fiber sum of E.1/ with
itself) gives rise to the K3 surface, Z is evidently diffeomorphic to the K3 surface
independently of ˆ. �

3.2. Case 2: X1 is rational and X2 is irrational and ruled. Assume that X2 is
a ruled surface over a curve C of positive genus; we’ll show shortly that C is a
torus in the cases of interest. Then X2 is symplectomorphic either to the nontrivial
S2-bundle over C , which we denote S2 z� C , or else X2 D .S2 � C/ # kCP 2 for
some k 	 0. Suppose that X1 is rational and Fi � Xi (i D 1; 2) are embedded
symplectic submanifolds with the property that the smoothly nontrivial symplectic
sum X1 #F1DF2

X2 is minimal and of Kodaira dimension zero. Then Theorem 3.1
shows that theFi are tori Poincaré dual to ��Fi

. In particular, ifX2 is nonminimal and
J2 is an almost complex structure preserving TF2, then each member of a maximal
disjoint collection of embedded J2-holomorphic .�1/-spheres meets F2 transversely
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and once; hence the results of [7] and [22] alluded to in the previous subsection
show that, up to deformation equivalence, the symplectic sum is left unchanged if we
simultaneously blow down each member of this maximal collection and blow up X1

at a corresponding number of points on F1. This reduces us to the case that X2 is
minimal, and so is either S2 � C or S2 z� C .

Lemma 3.5. Let � W E ! C be an S2-bundle over a positive-genus surface C with
symplectic form ! 2 �2.E/, and let† � E be an embedded, connected, symplectic
representative of �PD.�E / 2 H2.EI Z/, with tubular neighborhood �†. Then C is
a torus and there is another bundle map � 0 W E ! C whose fibers are symplectic
spheres such that � 0jEn�† defines a fiber bundle with fibers diffeomorphic to the
annulus S1 � I:

Proof. First, note that if J is an almost complex structure compatible with ! with
respect to which † is pseudoholomorphic, and if M is the moduli space of un-
parametrized pseudoholomorphic spheres representing the class of the fiber of � ,
then results of [19] show that the map � 0 W E ! M which takes e 2 E to the point of
M representing the unique J -holomorphic representative of the fiber class on which
e lies is an S2-bundle with fibers homologous to the fibers of � ; fundamental group
considerations then imply that M has the same genus asC . By construction the fibers
of � 0 are J -holomorphic and hence symplectic.

We now claim that † is isotopic to some surface †0 � E such that there is an
almost complex structure J 0 which makes †0 pseudoholomorphic and with respect
to which � 0 W E ! M is a pseudoholomorphic map (with respect to some almost
complex structure on M). Indeed, as in the proof of Lemma 3.2 of [16], using the
parametrized Riemann mapping theorem we can find complex coordinates .z; w/ on
a suitable open set Ui of E centered around any critical point pi of � 0j† in terms
of which the projection � 0 W E ! M is given by .z; w/ 7! w and @ Nz lies in the J -
antiholomorphic tangent space T 0;1

J . The intersection of † with this neighborhood
will then be given by†\Ui D fw D gi .z/g where gi .z/ D ciz

ki CO.jzjki C1/ and
ci ¤ 0; that � 0j† has a critical point at .0; 0/ amounts to the statement that ki > 1.
Note that since † has intersection number 2 with the fibers of � 0 (as Œ†� D ��E

and the fibers are square-zero spheres), we in fact have ki D 2, and moreover there
can only be one critical point of � 0j† in any given fiber of � 0; accordingly we can
and do choose the Ui so that the � 0.Ui / are disjoint as i varies. We can then use a
cutoff function supported inUi and equal to 1 on some smaller neighborhoodU 0

i of the
critical pointpi to isotope† relEnUi to some new surface†0 whose intersection with
U 0

i is given by†0 \U 0
i D fw D ciz

ki g; further, using the same cutoff, we can isotope
J relE nUi to a new almost complex structure J 0 which coincides with the standard
integrable complex structure with holomorphic coordinates .z; w/ on U 0

i , and with
respect to which both †0 and the fibers of � 0 are J 0-holomorphic. Repeating this
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near every critical point of � 0j†,†0 and the fibers of � 0 are now J 0-holomorphic and
� 0 W E ! M restricts to a pseudoholomorphic map on a neighborhood of Crit.� 0j†0/

with respect to J 0 onE and a suitable complex structure on [i�
0.U 0

i / � M. But then
extending this complex structure to all of M, since � 0j†n[i U 0

i
is an unbranched cover

a simple patching argument may be used to further modify J 0 so that it continues to
make†0 pseudoholomorphic and now also makes the whole projection � 0 W E ! M

pseudoholomorphic. This proves the claim at the start of this paragraph.
But now � 0j†0 W †0 ! M is a holomorphic map from a torus to M with degree 2;

we know that M has the same positive genus as C , so it follows that that genus
is one. Hurwitz’s formula then implies that � 0j†0 has no critical points; since the
critical points of � 0j†0 were constructed to be just the same as those of � 0j† it then
follows that � 0j† has no critical points. Thus † meets every fiber of � 0 transversely,
and hence exactly twice by the positivity of intersections of J -holomorphic curves.
Hence

� 0jEn�† W E n �† ! T 2

is a fibration with fiber given by the complement of two discs in S2, i.e., by S1 � I .
�

Consequently, in all cases of interest, we haveX2 D S2 �T 2 orX2 D S2 z� T 2;
these both have c2

1 D 0, and so if X1 #F1DF2
X2 is to be minimal of Kodaira

dimension zero then c2
1.X1/ D 0. Since the only rational surface with c2

1 D 0 is
CP 2 # 9CP 2, evidently X1 D CP 2 # 9CP 2.

The above lemma makes the diffeomorphism classification of annulus bundles
over T 2 relevant to us; specifically we are interested in those annulus bundles with
orientable total space and having just one boundary component. Identify S1 �I with
A D D.2/ nD.1=2/ � C. Any annulus bundle over T 2 is isomorphic to one of the
form M.f; gI fhtg/ where f; g 2 �0.Diff.A// commute, fhtgt2S1 2 �1.Diff.A//,

M.f; gI f1g/ D R2 � A
.x C 1; y; z/ � .x; y; f .z//; .x; y C 1; z/ � .x; y; g.z//

andM.f; gI fhtg/ is obtained fromM.f; gI f1g/ by removing a trivial neighborhood
D2 � A from M.f; gI f1g/ and gluing it back by the map

@D2 � A ! @D2 � A;
.t; z/ ! .t; ht .z//:

Since changing the choice of basis fu; vg of H1.T
2I Z/ to, respectively, fuC v; vg

or fv; ug corresponds to replacing .f; g/ by .f B g; g/ or .g; f /, we can assume that
f maps each respective boundary component of A to itself (if f does not initially,
then either g or f B g does). Now �0.Diff.A// D Z2 ˚ Z2, with generators given
by z 7! z�1 and z 7! Nz.
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We are interested in orientable annulus bundles over T 2 having just one boundary
component. The orientability condition restricts us to the case that the monodromies
f and g preserve the orientation of A D D.2/ nD.1=2/. f is assumed to map each
boundary component to itself, so this forces f to be isotopic to the identity. But
then in order for the bundle to have just one boundary component g must swap the
boundary components of A, forcing g to be isotopic to z 7! z�1.

Now as explained after the statement of Theorem 2.3 in [28], it follows from a
theorem of Smale that the identity component of Diff.A/ retracts to S1 (and indeed
the map Diff0.A/ ! Diff0.S

1/ given by restriction to one boundary component is a
homotopy equivalence), so �1.Diff.A// is generated by the loop of diffeomorphisms
rt W A ! A where for t 2 S1 rt is given by rotation through the angle t . Thus, any
orientable annulus bundle over T 2 with one boundary component has form

Yn D M.I; z 7! z�1I frn
t g/

In fact, arguing exactly as in Lemma 7 of Section 8 of [23], where l; m 2 �1.@D
2�A/

are, respectively, the generators of the images of the inclusion-induced maps�1.A/ !
�1.@D

2 � A/ and �1.@D
2/ ! �1.@D

2 � A/, one finds that for any n 2 Z there is
a fiber preserving diffeomorphism Y0 n D2 � A ! Y0 n D2 � A whose restriction
to the boundary @D2 � A takes a representative of m to a representative of mC 2nl

(an explicit formula for such a diffeomorphism may easily be found by adapting the
proof of Proposition 2(3) of [24] to the case where the fibers of the bundles involved
are annuli rather than tori). Thus, every orientable annulus bundle over the torus
having just one boundary component is isomorphic as a smooth fiber bundle to either
Y0 or Y1.

By definition, we have

Y0 D S1 � R � A
.x C 1; z/ � .x; z�1/

(3)

Meanwhile, we see easily that

Y1 D R � S1 � A
.x C 1; ei� ; z/ � .x; ei� ; ei�z�1/

; (4)

since the right hand side above obviously admits the structure of an annulus bundle
and so by our earlier remarks is isomorphic either to Y0 or to Y1; computation of the
fundamental group then shows that it is distinct from Y0.

Lemma 3.6. Let � W E ! T 2 be an S2-bundle with symplectic form ! 2 �2.E/,
and let† � E be an embedded, connected, symplectic representative of �PD.�E / 2
H2.EI Z/, with tubular neighborhood �†. Then E n �† is diffeomorphic to Y0 if
and only if E is symplectomorphic to S2 � T 2 (with some split symplectic form).
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Proof. By Lemma 3.5, possibly after redefining � we may assume that � has sym-
plectic fibers and that �j†n�† defines an annulus bundle over T 2.

For the forward implication, simply note that the annulus bundle Y0 admits a
section .�; x/ 7! Œ�; x; 1�; if E n �† is diffeomorphic to Y0 this section includes into
E as a torus which intersects the fibers of E ! T 2 once transversely and which
misses †. Now the total space of E is, by results of [19], symplectomorphic by a
fiber-preserving map to the projectivization a complex line bundle over T 2 of degree
either 0 or 1; however, in the projectivization of a line bundle of degree 1 over the
torus there are no homology classes having intersection number 1 with the fibers and
0 with the anticanonical class. Hence E must be the projectivization of the trivial
complex line bundle over T 2, i.e. S2 � T 2.

Conversely, suppose that E is symplectomorphic to S2 � T 2. As in Lemma 3.5,
we can assume that † meets each fiber of � W E ! T 2 transversely twice. Now let
p W M ! S2 be a nontrivial S2-bundle over S2, and let F � M be the disjoint union
of a section of square �1 and a section of square 1 of p, each of which is symplectic
with respect to some symplectic form on F which restricts nondegenerately to the
fibers of � . Then by the pairwise sum construction in [7], the fiber sum E 0 ofM and
E carries a symplectic form and admits a symplectic torus †0 obtained by gluing †
to the section of square �1 in F at one of its intersection points with the fiber and to
the section of square 1 in F at the other. Now the induced S2-fibration � 0 W E 0 ! T 2

on the fiber sum is easily seen to admit sections of odd square (glue a section of even
square inE to a section of odd square inM ), soE 0 is diffeomorphic to the nontrivial
S2-bundle over T 2. Hence by the previous paragraph E 0 n �†0 is not diffeomorphic
to Y0, so it is diffeomorphic to Y1.

Now M is diffeomorphic to CP 2 # CP 2; the complement M n �F of a neigh-
borhood of the disjoint union F of a section of square 1 and a section of square �1
is then diffeomorphic to the complement of a neighborhood of the union of a point
and a line in CP 2, i.e. to a region f.z; w/ 2 C2 j r � jzj2 C jwj2 � Rg in C2.
In these terms, �jMn�F W M n �F ! CP 1 is the Hopf map .z; w/ 7! Œz W w�. This
shows that the annulus fibration pjMn�F W M n �F ! S2 is obtained from the trivial
annulus fibration over S2 by removing the neighborhood of a fiber and regluing it by
the diffeomorphism .ei� ; z/ 7! .ei� ; ei�z/ of @D2 � A.

But the annulus fibration � 0 W E 0 n �†0 ! T 2 is obtained by taking the fiber sum
of � W E n�† ! T 2 with p W M n�F ! S2, so this implies that � 0 W E 0 n�†0 ! T 2

may be constructed from � W E n �† ! T 2 by removing the neighborhood of a
fiber and regluing it by the diffeomorphism .ei� ; z/ 7! .ei� ; ei�z/ of @D2 � A.
Now performing this operation on the annulus bundle Y0 yields Y1, while performing
it on Y1 yields Y2 Š Y0. So since we have already established that E 0 n �†0 is
diffeomorphic to Y1, it must be that E n �† is diffeomorphic to Y0. �
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Theorem 3.7. LetX be anS2-bundle overT 2, letF � X be an embedded symplectic
representative of �PD.�X /, and let F 0 � E.1/ be an embedded symplectic represen-
tative of �PD.�E.1//. Then the symplectic sum E.1/ #F 0DF X is diffeomorphic to
the Enriques surface.

Proof. First, we notice that we can reduce to the case that X is symplectomorphic to
S2 � T 2 (with some split symplectic form). Indeed, if X is instead diffeomorphic
to the nontrivial S2-bundle over T 2, we shall twice apply the result of [7] and [22]
which allows us to “trade blowups” as discussed in Case 1. First, if .M1; F1/ is
the result of blowing down a .�1/-sphere passing once positively and transversely
through F 0 (to find such a sphere, use an almost complex structure preserving TF 0 to
evaluate the Gromov–Witten invariant of one of the classes of the exceptional spheres
of E.1/ D CP 2 # 9CP 2) and if .M2; F2/ D .X; F /, we see that E.1/ #F 0DF X is
deformation equivalent toM1 #F1D zF2

zM2. Now the rulingX ! T 2 induces a genus-

0 (not relatively minimal) Lefschetz fibration � W zM2 ! T 2 each of whose fibers
meets the symplectic square-.�1/ torus zF2 twice; � has just one singular fiber, whose
components C1 and C2 are two embedded .�1/-spheres (one of which, say C1, is the
exceptional sphere of the blowup, and the other of which is the proper transform of
the fiber ofX ! S2 that passes through the blown-up point), each of which intersects
zF2 once. Now blowing downC2 produces a manifold symplectomorphic to S2 �T 2,

and zF2 � M2 is isotopic to the proper transform of a symplectic representative
F 00 of �PD.�S2�T 2/. Hence M1 #F1D zF2

zM2 is in turn deformation equivalent to
zM1 # zF1DF 00 .S

2 � T 2/. Since . zM1; zF1/ is obtained by first blowing down a sphere
passing once positively and transversely through F 0 � E.1/ and then blowing up
a point on the image of F 0 under the blowdown, it follows that zM1 is deformation
equivalent toE.1/ and zF1 represents �PD.� zM1

/. This allows us to hereinafter assume
that X D S2 � T 2.

By Lemma 3.3, E.1/ n �F 0 is diffeomorphic to the manifold with boundary N
obtained by deleting a neighborhood of a regular fiber of an elliptic fibration onE.1/,
while X n �F is, by Lemma 3.6 and our reduction to the case that X D S2 � T 2,
diffeomorphic to Y0.

So the symplectic sum in question is diffeomorphic to

X0 D N [@ Y0I
note that since by Proposition 1 of Appendice 4 of [11] every orientation preserving
diffeomorphism of @N extends to N , the diffeomorphism type of X0 is determined
independently of the boundary gluing maps.

We claim now that X0 is diffeomorphic to the Enriques surface. In fact, this is
essentially a remark on p. 50 of [11]; for a direct proof, recall that Y0 D S1 � Z0

where Z0 D R � A=.x C 1; z/ � .x; z�1/. Now projecting Z0 onto its sec-
ond factor gives Z0 the structure of a Seifert fibration over D2 with two multiple



78 M. Usher CMH

fibers each having multiplicity 2; hence Y0 D S1 � Z0 is the result of performing
two multiplicity two logarithmic transformations on the trivial elliptic fibration
T 2 �D2. Thus X0 D N [@ Y0 is obtained from E.1/ by deleting a neighborhood
of a smooth fiber and replacing that neighborhood with the result of two multiplicity
two logarithmic transformations on T 2 �D2, i.e., X0 is obtained from E.1/ by per-
forming two multiplicity-two logarithmic transformations. But this is precisely the
definition of the Enriques surface. �

3.3. Case 3: X1 and X2 are irrational and ruled. Since a k-fold blowup of an
S2-bundle over a surface of genus h has c2

1 D 8� 8h�k, in order for the symplectic
sum of irrational ruled surfaces X1 and X2 along a torus to have c2

1 D 0, both X1

andX2 must be S2-bundles over T 2. By Theorem 3.1, the surfaces Fi are embedded
symplectic tori representing �PD.�Xi

/. As in the proof of Lemma 3.5, results of [19]
imply that there are projections �i W Xi ! T 2 such that �i jFi

is an unramified double
cover of T 2 by Fi ; the deck transformation of this cover is then a free orientation-
preserving involution i W Fi ! Fi . By considering these involutions, we shall realize
any symplectic sum of the Xi along the Fi as the total space of some torus bundle
over T 2.

Lemma 3.8. Let 1; 2 W T 2 ! T 2 be free orientation-preserving involutions, and
let � W T 2 ! T 2 be any diffeomorphism. Then � is isotopic to a diffeomorphism
�0 W T 2 ! T 2 with the property that

�0�1 B 2 B �0 B 1 is either the identity or a free involution.

Proof. First of all, note that any two free orientation-preserving involutions  and
 0 from T 2 to T 2 are conjugate. Indeed, letting E be the quotient of T 2 by  , E 0
the quotient of T 2 by  0, and � W T 2 ! E, � 0 W T 2 ! E 0 the projections, E and
E 0 are both tori, so that there exists a diffeomorphism  W E ! E 0. The images of
�1.T

2/ in �1.E
0/ by � 0 and  B� are both index 2 lattices in �1.E

0/ Š Z2, so there
is an element A of SL.2I Z/ taking one to the other; hence by composing  with a
diffeomorphism of E 0 that induces A on �1 we can assume that the maps induced
on �1 by � 0 and by  B � have the same image. Hence  B � W T 2 ! E 0 lifts to a
diffeomorphism f W T 2 ! T 2 such that � 0 B f D  B � . Since  (resp.  0) takes
x 2 T 2 to the unique other point in ��1.�.x// (resp. � 0�1.� 0.x//) it follows that
 0 B f D f B  , so  0 and  are indeed conjugate.

In light of this, identifying T 2 D R2=Z2 and conjugating 1; 2; � by some
diffeomorphism, we can assume that 1.Œx; y�/ D Œx C 1=2; y� (where Œx; y� 2 T 2

is the equivalence class of .x; y/ 2 R2 under the relations .xC1; y/ � .x; yC1/ �
.x; y/). By the previous paragraph, since ��1B2B� and 1 are free involutions, there
is some ˛ 2 Diff.T 2/ such that ��1 B2 B� D ˛�1 B1 B˛. Now ˛ is isotopic to some
linear diffeomorphism A D �

a b
c d

	 2 SL.2I Z/; say A D ˛ B f1 where fftgt2Œ0;1� is
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a smooth family of diffeomorphisms such that f0 D 1. Then where �0 D � B f1, �
is isotopic to �0 and we have �0�1 B 2 B �0 D A�1 B 1 B A.

Now since 1.Œx; y�/ D Œx C 1=2; y�, one easily computes

A�1 B 1 B A B 1.Œx; y�/ D
�
x C d C 1

2
; y � c

2

�
;

which defines the identity if c is even (forcing d to be odd since A 2 SL.2I Z/) and
a free involution if c is odd. �

Theorem 3.9. Let �i W Xi ! T 2 .i D 1; 2/ be S2-bundles over T 2, Fi � Xi

embedded tori with the property that �i jFi
is an unramified double cover. Let �i be

tubular neighborhoods of Fi (each identified with D2 � Fi ), and let ˆ W @�1 ! @�2

be a diffeomorphism which (viewing @�i as an S1-bundle over Fi ) covers some
diffeomorphism � W F1 ! F2. Then the normal connect sum

.X1 n �1/ [@�1�ˆ@�2
.X2 n �2/

is diffeomorphic to the total space of a T 2-bundle over T 2.

Proof. First, note that (after performing isotopies which do not change the diffeo-
morphism type of the normal connect sum), we can assume that, for i D 1; 2, the S2-
bundle projection �i is constant on each fiber of the disc bundle projection �i ! Fi ,
and that (using Lemma 3.8) ��1 B 2 B � B 1 is either the identity or a free involu-
tion, where i W Fi ! Fi is the deck transformation induced by the cover �i jFi

. Let
Z D .X1 n �1/ [@�1�ˆ@�2

.X2 n �2/.
Suppose that ��1 B2 B� B1 is the identity. We define a bundle map � W Z ! T 2

as follows. Ifx 2 X1n�1 � Z, put�.x/ D �1.x/. Ifx 2 X2n�2 � Z, then there are
two points x2; 2.x2/ 2 F2 \��1

2 .f�2.x/g/, and since ��1 B 2 B� B 1 is the identity
we have 1.�

�1.x2// D ��1.2.x2//, so that �1.�
�1.x2// D �1.�

�1.2.x2/// and
we set

�.x/ D �1.�
�1.x2// D �1.�

�1.2.x2///:

Since, for each p 2 Fi , the fiber of the circle bundle @�i ! Fi over p is mapped by
�i to�i .p/, our map� is defined consistently on the identified boundary components
@�1; @�2 in Z D .X1 n �1/ [@�1�ˆ@�2

.X2 n �2/. One easily sees that � W Z ! T 2

is a T 2-fibration; the point here is that since ��1 B 2 B � B 1 D 1, � W F1 ! F2

descends to a map f W T 2 ! T 2 such that �2jF2
B � D f B �1jF1

; the fiber of �
over t 2 T 2 is formed by gluing the annulus ��1

1 .ftg/ \ .X1 n �1/ to the annulus
��1

2 .ff .t/g/ \ .X2 n �2/.
It remains to consider the case that ��1 B 2 B � B 1 is a free involution. Then

��1 B2 B� B1 commutes with 1 and their composition (namely ��1 B2 B�) is also a
free involution. LetE D F1=h1; �

�1B2B�B1i and letp W F1 ! E be the projection
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(which is an unramified quadruple covering of a torus by a torus). We shall define a
torus fibration � W Z ! E rather similarly to the previous case, except that here the
fibers will be formed by gluing four annuli rather than two. If x 2 X1 n �1 � Z, set
�.x/ D p.x1/ where x1 2 F1 \ ��1

1 .f�1.x/g/; this is a coherent definition since
the two elements of ��1

1 .f�1.x/g/ are intertwined by 1. If x 2 X2 n �2 � Z, we
intend to set �.x/ D p.��1.x2// where x2 2 F2 \ ��1

2 .f�2.x/g/; we need to see
that the two possible choices of x2 (either of which is taken to the other by 2) give
the same value for p.x/. In other words, we need to check that if x2 2 F2 then
p.��1.x2/// D p.��1.2.x2///. Now since ��1 B 2 B � B 1 has order 2,

��1.2.�.1.�
�1.x2///// D 1.�

�1.2.x2///

so since E is the quotient of F1 by 1 and ��1 B 2 B � B 1 it is indeed the case
that p.��1.x2/// D p.��1.2.x2/// for each x2 2 F2. We have thus defined
� W Z ! E; it is again easily seen to be a torus bundle, with its fibers of the shape

A0

`
A1

`
A2

`
A3

@CAi � @�AiC1 .i 2 Z=4Z/

where A0 and A2 are annulus fibers of �2jX2n�2
and A1 and A3 are annulus fibers of

�1jX1n�1
(the fact that ��1 B 2 B � B 1 is free serves to ensure that, in each of these

torus fibers, A0 and A2 are distinct, as are A1 and A3). �

This shows that any symplectic 4-manifold obtained as the symplectic sum of two
S2-bundles over T 2 along a pair of bi-sections is diffeomorphic to a T 2-bundle over
T 2. In fact, we can be quite specific about which T 2-bundles over T 2 are obtained
in this fashion. T 2-bundles over T 2 were classified in [24]; in particular, Theorem 5
of that paper shows that the total spaces of such bundles are distinguished from one
another up to diffeomorphism by their fundamental groups. As such, finding the
diffeomorphism type of the manifold .X1 n �1/[@�1�ˆ@�2

.X2 n �2/ in Theorem 3.9
is just a matter of applying van Kampen’s theorem.

We know that, for i D 1; 2, the manifold Xi n �i is diffeomorphic to one of the
manifolds Y0 or Y1 of (3), (4); more specifically, if Xi is diffeomorphic to S2 � T 2

then Xi n �i Š Y0, and otherwise Xi n �i Š Y1. Note that

�1.Yj / D h˛; ˇ;mi
˛�1m˛ D m�1; ˇm D mˇ; ˛ˇ˛�1ˇ�1 D mj

.j D 0; 1/; (5)

with @Yj being spanned by the subgroup generated by ˛2; ˇ;m. m here is the gen-
erator of the fundamental group of the annulus fiber of the bundle map Yj ! T 2.
Where F denotes the torus F1 or F2 whose neighborhood we have removed fromX1

orX2 to get Yj , we have a trivial circle bundle pj W @Yj ! F whose action on �1 has
kernel hmi. There is, of course, some flexibility in the choice of the generators: first,
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we get the same presentation if we replace ˇ by ˇmj and then m by m�1; secondly,
if . p q

r s / 2 SL.2;Z/ and q is even (so that p and s are odd; say s D 2t C 1), then we
get the same presentation by replacing ˛ with ˛0 D ˛pˇr and ˇ with ˇ0 D ˛qˇsmjt .

One convenient consequence of this is that if � 2 �1.@Yj / is any element with
the property that .pj /�� is primitive in Z2 D �1.F / then the generators ˛; ˇ in the
presentation (5) may be chosen so that � takes one of the forms

� D ˛2ˇ2cme or � D ˛2aˇme:

We now consider the manifold resulting from gluing two of these manifoldsYj ; Yk

(j; k 2 f0; 1g) together along their boundaries in a way consistent with the symplectic
sum operation. Now in terms of bases f˛2

1 ; ˇ1; m1g, f˛2
2 ; ˇ2; m2g for the fundamental

groups of the boundaries @Yj and @Yk respectively, since the gluing mapˆ is required
to cover an isomorphism of the normal bundles it will identifym1 withm2 (possibly
after replacing one of themi with its inverse, which as mentioned earlier can be done
without affecting the presentation (5) at the cost of possibly multiplying ˇi by mi );
also ˛2

1 , since it projects via pj to a primitive element in �1.F /, will be taken to some
element in the fundamental group of @Yk which likewise projects viapk to a primitive
element. Hence by the remark at the end of the previous paragraph, possibly after
renaming the generators ˛2, ˇ2, and m2 in the presentation of �1.Yk/, the action of
the gluing map on the fundamental groups of the boundaries in terms of the bases
f˛2

i ; ˇi ; mig takes one of the forms

0
@ 1 b 0

2c d 0

e f 1

1
A .d � 2bc D 1/ or

0
@ a b 0

1 d 0

e f 1

1
A .ad � b D 1/:

Hence van Kampen’s theorem gives the fundamental group of the glued manifold
Yj [ˆ Yk as either

�1.Yj [ˆYk/ D h˛1; ˇ1; ˛2; ˇ2; mi
˛�1

1 m˛1 D ˛�1
2 m˛2 D m�1; ˇ1m D mˇ1; ˇ2m D mˇ2;

˛1ˇ1˛
�1
1 ˇ�1

1 D mj ; ˛2ˇ2˛
�1
2 ˇ�1

2 D mk;

˛2
1 D ˛2

2ˇ
2c
2 m

e; ˇ1 D ˛2b
2 ˇd

2m
f

(6)

or

�1.Yj [ˆ Yk/ D h˛1; ˇ1; ˛2; ˇ2; mi
˛�1

1 m˛1 D ˛�1
2 m˛2 D m�1; ˇ1m D mˇ1; ˇ2m D mˇ2;

˛1ˇ1˛
�1
1 ˇ�1

1 D mj ; ˛2ˇ2˛
�1
2 ˇ�1

2 D mk;

˛2
1 D ˛2a

2 ˇ2m
e; ˇ1 D ˛2b

2 ˇd
2m

f

(7)

The reader may verify that the group on the right hand side of (6) may be rewritten,
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by identifying � D ˛�1
1 ˛2ˇ

c
2, as

h˛1; ˇ2; m; �i
m� D �m; ˛1ˇ2˛

�1
1 ˇ�1

2 D mj C2.f �be/; ˛�1
1 m˛1 D m�1;

˛�1
1 �˛1 D mkc�e��1; ˇ�1

2 mˇ2 D m; ˇ�1
2 �ˇ2 D mj �kC2.f �be/�

;

which we recognize as the fundamental group of the T 2-bundle over T 2 given in the
notation of the introduction as

M

���1 kc � e
0 �1

�
;

�
1 j � k C 2.f � be/
0 1

�
I
�
j C 2.f � be/

0

��
:

Similarly, the group on the right hand side of (7) may be identified, by taking � D
˛1˛2˛

�1
1 ˛�1

2 and then using the relations ˛1˛
2
2 D ˛2

2˛1m
j C2.f �de/ and ˛2˛

2
1 D

˛2
1˛2m

2e�k to obtain commutation relations between the ˛i and � , as

h˛1; ˛2; m; �i
m� D �m; ˛1˛2˛

�1
1 ˛�1

2 D �; ˛�1
1 m˛1 D m�1;

˛�1
1 �˛1 D mk�2e��1; ˛�1

2 m˛2 D m�1; ˛�1
2 �˛2 D mj C2.f �de/��1

;

which is precisely the fundamental group of the T 2-bundle over T 2

M

���1 k � 2e
0 �1

�
;

��1 j C 2.f � de/
0 �1

�
I
�
0

1

��
:

Now by changing the basis for the homology of the base by . p q
r s / 2 SL.2I Z/, a

T 2-bundle over T 2 of form M.A;BI Ev/ may be equated with M.ApBr ; AqBsI Ev/;
also, the bundles M.A;BI Ev/ and M.A;BI Ev0/ are equivalent if Ev0 � Ev lies in the
submodule of Z2 spanned by the columns of A � I and B � I (where I is the
identity; these statements are proven in Proposition 2 of [24]). As such, given a
bundle of form

M

���1 ı

0 �1
�
;

�
1 �

0 1

�
I
�
j C 2x

0

��
;

by letting z D gcd.ı; �/, p D �=z, r D ı=z, and (since p and r are then relatively
prime) q and s be such that ps � qr D 1, so that �qı C s� D z, we obtain

M

���1 ı

0 �1
�
;

�
1 �

0 1

�
I
�
j C 2x

0

��
D M

�
.�1/pI; .�1/q

�
1 z

0 1

�
I
�
j

0

��

(note also that p and q cannot both be even since ps � qr D 1, and if p is odd then
a further basis change for the homology of the base identifies M.�I;�AI Ev/ with
M.�I; AI Ev/). This gives rise to the following list of possibilities for the diffeomor-
phism type of Yj [ˆ Yk when its fundamental group is given by (6):
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j k possible diffeomorphism types of Yj [ˆ Yk

0 0 M

�
I;

��1 z

0 �1
�

I
�
0

0

��
; M

�
�I;

�
1 2y

0 1

�
I
�
0

0

��
.y; z 2 Z/

0 1 M

�
�I;

�
1 2y C 1

0 1

�
I
�
0

0

��
.y 2 Z/

1 1 M

�
I;

��1 z

0 �1
�

I
�
1

0

��
; M

�
�I;

�
1 2y

0 1

�
I
�
1

0

��
.y; z 2 Z/

Similarly, a bundle of form

M

���1 ı

0 �1
�
;

��1 �

0 �1
�

I
�
0

1

��

is equivalent to

M

�
.�1/pCrI; .�1/qCs

�
1 z

0 1

�
I
�
0

1

��

(where z D gcd.ı; �/, p D �=z, r D �ı=z, and ps�qr D 1). From this, we deduce
the following list of possibilities for the diffeomorphism type of Yj [ˆ Yk when its
fundamental group is given by (7):

j k possible diffeomorphism types of Yj [ˆ Yk

0 0 M

�
I;

��1 2y

0 �1
�

I
�
0

1

��
; M

�
�I;

�
1 2y

0 1

�
I
�
0

1

��
.y 2 Z/

0 1 M

�
�I;

�
1 2y C 1

0 1

�
I
�
0

1

��
.y 2 Z/

1 1 M

�
I;

��1 2y C 1

0 �1
�

I
�
0

1

��
.y 2 Z/

In both of the above tables, it is easy to see that any of the indicated diffeomorphism
types can in fact be realized by means of an appropriate choice of the gluing map ˆ.
Since if X is a ruled surface over T 2 and F � X is an embedded representative of
�PD.�X /, we have seen that X n �F Š Y0 if X D S2 � T 2 and X n �F Š Y1

if X D S2 z� T 2, this completes the proof that the diffeomorphism types of the
symplectic sums in question are as claimed in the introduction.
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