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Transcendental submanifolds of projective space

Wojciech Kucharz�

Abstract. Given integersm and c satisfyingm�2 � c � 2, we explicitly construct a nonsingular
m-dimensional algebraic subset of P mCc.R/ that is not isotopic to the set of real points of any
nonsingular complex algebraic subset of P mCc.C/ defined over R. The first examples of this
type were obtained by Akbulut and King in a more complicated and nonconstructive way, and
only for certain large integers m and c.
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1. Introduction

Denote by P n.R/ and P n.C/ real and complex projective n-spaces. We regard
P n.R/ as a subset of P n.C/. A smooth (of class C1) submanifold M of P n.R/ is
said to be of algebraic type if it is isotopic in P n.R/ to the set of real points of a
nonsingular complex algebraic subset of P n.C/ defined over R; otherwiseM is said
to be transcendental. It is not at all obvious that transcendental submanifolds exist.
However, Akbulut and King [2] proved the existence of transcendental submanifolds
M of P n.R/ which can even be realized as nonsingular algebraic subsets of P n.R/.
Their examples are obtained in a nonconstructive way, by a method which requires
both m D dimM and n � m to be large integers satisfying 2m � n � 2. In the
present paper we explicitly construct such examples, assuming only n �m � 2 and
2m� n � 2. Moreover, we verify that M is a transcendental submanifold of P n.R/
using only the Barth–Larsen theorem [6, Corollary 6.5] and completely avoiding all
results of [1], [2]. More precisely, denote by Sk the unit k-sphere,

Sk D f.y1; : : : ; ykC1/ 2 RkC1 j y2
1 C � � � C y2

kC1 D 1g:
In Section 3 we prove the following:
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Theorem 1.1. Letm and n be positive integers satisfying n�m � 2 and 2m�n � 2.
Let

' W P 2.R/ � Sm�2 �! P n.R/

be defined by

'..x1 W x2 W x3/; .y1; : : : ; ym�1//

D .x2
1 C x2

2 C x2
3 W x1x2 W x1x3 W x2x3 W �y1 W : : : W �ym�1 W 0 W : : : W 0/;

where 0 is repeated n �m � 2 times and � D x2
1 C 2x2

2 C 3x2
3 . Then:

(i) The imageM D '.P 2.R/�Sm�2/ is anm-dimensional nonsingular algebraic
subset of P n.R/.

(ii) ' W P 2.R/ � Sm�2 ! M is a biregular isomorphism.

(iii) M is a transcendental submanifold of P n.R/.

It follows directly from Theorem 1.1 that for any integers m and c satisfying
m � 2 � c � 2, there is a nonsingular algebraic set M in P mCc.R/ such that
dimM D m and M is a transcendental submanifold. In particular, there are tran-
scendental submanifolds of arbitrary dimension m � 4. The existence of transcen-
dental submanifolds of dimension 2 or 3 remains unsettled at this time. There are no
transcendental submanifolds of dimension 1 or of codimension 1. The last assertion
is a special case of the following well known fact.

Remark 1.2. Let M be a smooth m-dimensional submanifold of P n.R/. If either
n �m D 1 or 2mC 1 � n, then there exists a smooth embedding e W M ! P n.R/,
arbitrarily close in the C1 topology to the inclusion map M ,! P n.R/, such that
e.M/ is the set of real points of a nonsingular complex algebraic subset of P n.C/
defined over R.

If n�m D 1, the claim is explicitly established for example in [3, Theorem 7.1].
For the second case, consider P n.R/ as a subset of P k.R/, where k is a large

integer. By [8], there exists a smooth embedding j W M ! P k.R/, arbitrarily close in
the C1 topology to the inclusion mapM ,! P k.R/, such that j.M/ is a nonsingular
algebraic subset of P k.R/. Increasing k if necessary and making use of Hironaka’s
resolution of singularities theorem [7], we may assume that the Zariski complex
closure of j.M/ in P k.C/ is nonsingular. If 2mC 1 � n, we obtain an embedding
e W M ! P n.R/ with the required properties by composing j with an appropriate
generic projection onto P n.R/.
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2. A criterion for transcendence

First we need some results related to the Picard group. Following the current custom,
we state them in the language of schemes.

Let V be a smooth projective scheme over R. Assume that the set V.R/ of R-
rational points of V is nonempty. We regard V.R/ as a compact smooth manifold.
Every invertible sheaf L on V determines a real line bundle on V.R/, denoted L.R/.
The correspondence which assigns to each invertible sheaf L on V the first Stiefel–
Whitney class w1.L.R// of L.R/ gives rise to a canonical homomorphism

w1 W Pic.V / �! H 1.V .R/;Z=2/;

defined on the Picard group Pic.V / of isomorphism classes of invertible sheaves
on V . We set

H 1
alg.V .R/;Z=2/ D w1.Pic.V //:

It will be convenient to recall another description of Pic.V /. Consider the scheme
VC D V �R C over C and its Picard group Pic.VC/. The Galois group G D
Gal.C=R/ of C over R acts on Pic.VC/. We denote by Pic.VC/

G the subgroup of
Pic.VC/ consisting of the elements fixed byG. Given an invertible sheaf L on V , we
write LC for the corresponding sheaf on VC . The correspondence L ! LC defines
a canonical group homomorphism

˛ W Pic.V / �! Pic.VC/
G :

It follows from the general theory of descent [4] that ˛ is an isomorphism (a simple
treatment of the case under consideration can also be found in [5]).

As usual, we set P n
R D Proj.RŒT0; : : : ; Tn�/ and identify P n

R.R/ with P n.R/.
Thus if V is a subscheme of P n

R, then V.R/ is a subset of P n.R/.

Proposition 2.1. Let V be a closed smooth m-dimensional subscheme of P n
R. If

2m � n � 2, then

H 1
alg.V .R/;Z=2/ D i�.H 1.P n.R/;Z=2//;

where i W V.R/ ,! P n.R/ is the inclusion map.

Proof. Let j W V ,! P n
R and jC W VC ,! P n

C D P n
R�RC be the inclusion morphisms.

By the Barth–Larsen theorem [6, Corollary 6.5], the induced homomorphism

j �
C W Pic.P n

C/ �! Pic.VC/

is an isomorphism. Since j �
C is G-equivariant, the restriction

j �
C W Pic.P n

C/
G �! Pic.VC/

G
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is an isomorphism. We have the following commutative diagram:

Pic.P n
C/

G
j �

C �� Pic.VC/
G

Pic.P n
R/

j �

��

˛

��

w1

��

Pic.V /

˛

��

w1

��
H 1.P n.R/;Z=2/

i�
�� H 1.V .R/;Z=2/.

Since the homomorphisms ˛ are isomorphisms and

H 1.P n.R/;Z=2/ D H 1
alg.P

n.R/;Z=2/;

it follows that
H 1

alg.V .R/;Z=2/ D i�.H 1.P n.R/;Z=2//;

as required. �

Note that a smooth submanifold of P n.R/ is of algebraic type if and only if it
is isotopic in P n.R/ to V.R/ for some closed smooth subscheme V of P n

R. Hence
Proposition 2.1 yields the following criterion for transcendence.

Proposition 2.2. LetM be a compact smoothm-dimensional submanifold of P n.R/.
Assume that the inclusion map e W M ,! P n.R/ induces a trivial homomorphism

e� W H 1.P n.R/;Z=2/ �! H 1.M;Z=2/;

that is, e� D 0. If M is nonorientable and 2m � n � 2, then M is a transcendental
submanifold of P n.R/.

Proof. Suppose to the contrary thatM is of algebraic type. Let V be a closed smooth
subscheme of P n

R with V.R/ isotopic to M in P n.R/. Then the homomorphism

i� W H 1.P n.R/;Z=2/ �! H 1.V .R/;Z=2/;

induced by the inclusion map i W V.R/ ,! P n.R/, is trivial. Since dim V D m and
2m � n � 2, Proposition 2.1 implies

H 1
alg.V .R/;Z=2/ D 0:

On the other hand, the first Stiefel–Whitney class w1.V .R// of V.R/ is nonzero,
V.R/ being a nonorientable manifold. Moreover, w1.V .R// D w1.K.R//, where
K is the canonical invertible sheaf ofV , and hence,w1.V .R// is inH 1

alg.V .R/;Z=2/.
In view of this contradiction, the proof is complete. �
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3. Transcendental submanifolds

We begin with some preliminary observations. Identify Rn with its image under the
map

Rn �! P n.R/; .x1; : : : ; xn/ 7�! .1 W x1 W : : : W xn/I
thus Rn � P n.R/. An algebraic subset X of Rn is said to be projectively closed if
X is also an algebraic subset of P n.R/. One readily checks that X is projectively
closed if and only if it can be defined by a real polynomial equation

f .x1; : : : ; xn/ D 0;

where the homogeneous form of top degree in f vanishes only at 0 in Rn.

Lemma 3.1. Let X be an algebraic subset of Rk contained in the open half-space

H D f.x1; : : : ; xk/ 2 Rk j xk > 0g:
Then the map  W X � S` ! RkC` defined by

 ..x1; : : : ; xk/; .y1; : : : ; y`C1// D .x1; : : : ; xk�1; xky1; : : : ; xky`C1/

is an algebraic embedding, that is, the imageY D  .X�S`/ is an algebraic subset of
RkC` and W X�S` ! Y is a biregular isomorphism. Moreover, ifX is projectively
closed in Rk , then Y is projectively closed in RkC`.

Proof. Let
f .u; v/ D 0

be a real polynomial equation defining X , where u D .x1; : : : ; xk�1/ and v D xk .
Since

X � H; (1)

the subset Y of RkC` is defined by the equation

f .u; �/ D 0; (2)

where
� D .x2

k C x2
kC1 C � � � C x2

kC`/
1
2 :

We will now show that (2) can be replaced by a polynomial equation in x1; : : : ; xk�1;

xk; : : : ; xkC`. To this end we write

f .u; v/ D g.u; v2/C vh.u; v2/; (3)
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where g and h are real polynomials in .u; v/. Then (2) is equivalent to

g.u; �2/C �h.u; �2/ D 0; (4)

and in view of (1) also to

.g.u; �2//2 � �2.h.u; �2//2 D 0; (5)

which is a polynomial equation, as required. Consequently, Y is an algebraic subset
of RkC`.

It is clear that  is injective and � W Y ! X ,

�.x1; : : : ; xk�1; xk; : : : ; xkC`/ D
�
x1; : : : ; xk�1;

xk

�
; : : : ;

xkC`

�

�
;

is the inverse of  W X ! Y . By (4),

� D �g.x1; : : : ; xk�1; x
2
k

C � � � C x2
kC`

/

h.x1; : : : ; xk�1; x
2
k

C � � � C x2
kC`

/

for .x1; : : : ; xk�1; xk; : : : ; xkC`/ inY , and hence� is a regular map. Thus W X ! Y

is a biregular isomorphism.
Assume now that X is projectively closed in Rk . We may also assume that the

homogeneous form of top degree in f , denoted F , vanishes only at 0 in Rk . Note
that F.u; �2/F.u;��2/ is the homogeneous form of top degree in equation (5). This
form vanishes only at 0 in RkC`, and hence Y is projectively closed in RkC`. �

Lemma 3.2. The map g W P 2.C/ ! P 4.C/,

g..x1 W x2 W x3// D .x2
1 C x2

2 C x2
3 W x1x2 W x1x3 W x2x3 W x2

1 C 2x2
2 C 3x2

3/;

is an algebraic embedding. In particular, the restriction f W P 2.R/ ! P 4.R/ of g
is an algebraic embedding.

Proof. One readily checks that g is injective. Moreover, the (complex) differential
of g at each point of P 2.C/ is of rank 2. It follows that g is an algebraic embedding,
and hence f is an algebraic embedding. �

Proof of Theorem 1.1. Let f W P 2.R/ ! P 4.R/ be the algebraic embedding of
Lemma 3.2. Note that the image X D f .P 2.R// is a projectively closed algebraic
subset of R4 � P 4.R/, contained in the open half-space

f.u1; u2; u3; u4/ 2 R4 j u4 > 0g:
Let

 W X � Sm�2 �! R4C.m�2/ D RmC2 � P mC2.R/
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be the algebraic embedding of Lemma 3.1 (with k D 4 and ` D m � 2). Note that
 .X � Sm�2/ is projectively closed in RmC2, and hence is an algebraic subset of
P mC2.R/.

Clearly, if i W Sm�2 ! Sm�2 is the identity map, then

f � i W P 2.R/ � Sm�2 �! X � Sm�2

is a biregular isomorphism. Denoting by j W P mC2.R/ ! P n.R/ the standard em-
bedding,

j..v0 W : : : W vmC2// D .v0 W : : : W vmC2 W 0 W : : : W 0/;
we obtain

' D j B  B .f � i/;
which implies that ' is an algebraic embedding. In other words, conditions (i) and
(ii) are satisfied. Moreover, M � Rn � P n.R/. Since M is nonorientable and
2m � n � 2, condition (iii) follows from Proposition 2.2. �
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