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EG for systolic groups
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Abstract. We prove that if a group G is systolic, i.e., if it acts properly and cocompactly on
a systolic complex X , then an appropriate Rips complex constructed from X is a finite model
for EG.
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1. Introduction

Systolic complexes and systolic groups were introduced by T. Januszkiewicz and
J. Świątkowski in [3] and independently by F. Haglund in [1]. Systolic complexes
are simply-connected simplicial complexes satisfying certain link conditions (which
will be recalled in Definition 2.2). Some of their properties are very similar to the
properties of CAT(0) metric spaces, therefore one calls them complexes of simplicial
nonpositive curvature. In particular it was shown in [3], Theorem 4.1 (1), that they
are contractible. Thus if a group G is systolic, which by definition means that it acts
properly and cocompactly on a systolic complex X , and if G is torsion free, then X

is a finite model for EG.
Similarly, if G acts properly on a CAT(0) space X and if G is torsion free, then

X is a model for EG. If we do not assume that G is torsion free, then the stabilizer
of any point in X is finite and the fixed point set of any finite subgroup of G is
contractible (in particular nonempty). This means that X is the so called model for
EG – the classifying space for finite subgroups [4].

There are other families of groups G, which admit nice models for EG. For
example, if G is word-hyperbolic, and if S is a finite generating set for G, then for
sufficiently large real number d the Rips complex Pd .G; S/ is a model for EG. What
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makes this model attractive for applications is that it is a finite model, i.e. the action
of G on it is cocompact. See [4] for details.

In this paper we give an explicit finite model for EG for a systolic group G. We
prove that an appropriate Rips complex of any systolic complex X on which G acts
properly is a model for EG. We define the Rips complex in our context as follows.

Definition 1.1. Let X be any simplicial complex. For any n � 1, the Rips complex
Xn is a simplicial complex with the same set of vertices as X and with a simplex
spanned on any subset S � X .0/ such that diam.S/ � n in X .1/ (where edges have
length 1). If G acts on X properly (and cocompactly), then the natural extension of
this action to Xn is also proper (and cocompact).

Our main result is the following.

Theorem 1.2. Let X be a finite dimensional systolic complex on which a group G

acts properly. Then for n � 5 the Rips complex Xn is a finite dimensional model for
EG. If additionally G acts cocompactly on X then Xn is a finite model for EG.

Theorem 1.2 extends and its proof is based on the following coarse fixed point
theorem for systolic complexes (which also explains the appearance of the constant 5

in the above formulation).

Theorem 1.3 ([5], Theorem 1.2). Let H be a finite group acting by simplicial auto-
morphisms on a systolic complex X . Then there exists a subcomplex Y � X which
is invariant under the action of H and whose diameter is � 5.

To apply Theorem 1.3, let H be a group acting by automorphisms on a simplicial
complex X . Then the fixed point set of the action of H on X is a subcomplex of
the barycentric subdivision X 0 of X . Denote this subcomplex by FixH X 0. Similarly
denote the fixed point set of the action of H on the Rips complex Xn by FixH X 0

n. It
is a subcomplex of X 0

n. By Theorem 1.3, if X is systolic, H is finite and n � 5, then
FixH X 0

n is nonempty.
Now the proof of Theorem 1.2 reduces to the following.

Proposition 1.4. Let H be any group acting by simplicial automorphisms on a systolic
complex X . Then for any n � 1 the complex FixH X 0

n is either empty or contractible.

The remaining part of this paper is devoted to the proof of Proposition 1.4.
This will be done without using the contractibility of systolic complexes [3], Theo-
rem 4.1 (1). In fact, by applying Proposition 1.4 to the case of H trivial and n D 1, we
reprove the fact that systolic complexes are contractible (since X1 D X by flagness
of systolic complexes). Our proof of this fact may seem more sophisticated than the
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original proof [3], but the reason for this is that we deal at the same time with con-
tractibility of the systolic complex X and with contractibility of its Rips complexes.
In fact, our proof is simpler than the original proof. By using the methods of Section 4
(not present in [3]), we are able to avoid writing down explicit homotopies.

Note that if Theorem 1.3 could be strengthened to guarantee a true fixed point
instead of an invariant subcomplex, then under the hypothesis of Theorem 1.2 we
would get a stronger assertion: Proposition 1.4 would imply that the original complex
X is a model for EG.

The paper is organized as follows. In Section 2 we recall the standard simplicial
nonpositive curvature notions and results from [3]. In Section 3 we introduce the key
notion of the paper, the expansion by projection, and establish its basic properties.
In Section 4 we present two abstract ways of producing homotopies in geometric
realizations of posets, which will be needed later. The proof of Proposition 1.4
occupies Section 5.

I would like to thank Jacek Świątkowski for posing the problem and for advice,
Damian Osajda for discussions, and Jolanta Słomińska for introducing to me the
methods of Section 4.

2. Systolic complexes

Let us recall (from [3]) the definition of a systolic complex and a systolic group.

Definition 2.1. A subcomplex K of a simplicial complex X is called full in X if any
simplex of X spanned by vertices of K is a simplex of K. The span of a subcomplex
K � X is the smallest full subcomplex of X containing K. We will denote it by
span.K/. A simplicial complex X is called flag if any set of vertices, which are
pairwise connected by edges of X , spans a simplex in X . A simplicial complex X is
called k-large, k � 4, if X is flag and there are no embedded cycles of length < k,
which are full subcomplexes of X (i.e., X is flag and every simplicial loop of length
< k and � 4 “has a diagonal”).

Definition 2.2. A simplicial complex X is called systolic if it is connected, simply
connected and links of all simplices in X are 6-large. A group � is called systolic if it
acts cocompactly and properly by simplicial automorphisms on a systolic complex X .
(Properly means X is locally finite and for each compact subcomplex K � X the set
of � 2 � such that �.K/ \ K ¤ ; is finite.)

Recall [3], Proposition 1.4, that systolic complexes are themselves 6-large. In
particular they are flag.

Now we briefly treat the definitions and facts concerning convexity.
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Definition 2.3. For every pair of subcomplexes (usually vertices) A; B in a sim-
plicial complex X denote by jA; Bj (jabj for vertices a; b 2 X ) the combinatorial
distance between A.0/; B.0/ in X .1/, the 1-skeleton of X . The diameter diam.A/ is
the maximum of ja1a2j over vertices a1; a2 in A.

A subcomplex K of a simplicial complex X is called 3-convex if it is a full
subcomplex of X and for every pair of edges ab, bc such that a; c 2 K; jacj D 2,
we have b 2 K. A subcomplex K of a systolic complex X is called convex if it is
connected and links of all simplices in K are 3-convex subcomplexes of links of those
simplices in X .

In Lemma 7.2 of [3] the authors conclude that nonempty convex subcomplexes
of a systolic complex X are contractible, full and 3-convex in X . For a subcomplex
Y � X , n � 0, the combinatorial ball Bn.Y / of radius n around Y is the span of
fp 2 X .0/ W jp; Y j � ng. (Similarly Sn.Y / D spanfp 2 X .0/ W jp; Y j D ng.) If
Y is convex (in particular, if Y is a simplex) then Bn.Y / is also convex, as proved
in [3], Corollary 7.5. The intersection of a family of convex subcomplexes is convex
and we can define the convex hull of any subcomplex Y � X as the intersection of
all convex subcomplexes of X containing Y . We denote the convex hull of Y by
conv.Y /.

We include the proof of the following well-known lemma, since it does not appear
elsewhere.

Lemma 2.4. diam.conv.Y // D diam.Y /.

Proof. If Y is unbounded then there is nothing to prove. Otherwise, denote d D
diam.Y /. The inequality diam.conv.Y // � d is obvious. For the other direction, let
y1; y2 be any two vertices in conv.Y /. We want to prove that jy1y2j � d . Observe
that for any vertex y 2 Y .0/ the ball Bd .y/ is convex and contains Y , hence by the
definition of the convex hull we have conv.Y / � Bd .y/. This means that jyy1j � d .
Thus Y is contained in Bd .y1/ and by convexity of balls we have conv.Y / � Bd .y1/.
We get jy1y2j � d , as desired. �

The paper [2] of F. Haglund and J. Świątkowski contains a proof of the following
proposition (Proposition 4.9 in [2]), which will be used throughout the present paper.

Proposition 2.5. A full subcomplex Y of a systolic complex X is convex if and only
if Y .1/ is geodesically convex in X .1/ (i.e., if all geodesics in X .1/ joining vertices
of Y lie in Y .1/).

We will need a crucial projection lemma ([3], Lemma 7.7). The residue of a sim-
plex � in X is the union of all simplices in X , which contain � .
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Lemma 2.6. Let Y be a convex subcomplex of a systolic complex X and let � be
a simplex in B1.Y / disjoint with Y . Then the intersection of the residue of � and of
the complex Y is a simplex (in particular it is nonempty).

Definition 2.7. The simplex as in Lemma 2.6 is called the projection of � onto Y .

3. Expansion by projection

The proof of contractibility of systolic complexes given by T. Januszkiewicz and
J. Świątkowski in [3] uses Lemma 2.6 and the notion of projection (Definition 2.7).
To be able to deal with the Rips complex we need to extend this notion: we need to
be able to project not only simplices, but all convex subcomplexes. In this section we
give the corresponding definitions and establish the basic properties of the extended
projection.

Definition 3.1. Let Y be a convex subcomplex of a systolic complex X and let �

be a simplex in B1.Y /. The expansion by projection of � (denoted by eY .�/) is a
simplex in B1.Y / defined in the following way. If � � Y then eY .�/ D � . Otherwise
eY .�/ is the join of � \ S1.Y / (which is nonempty) and its projection onto Y (cf.
Definition 2.7).

Remark 3.2. Observe that � � eY .�/. Moreover, by Lemma 2.6, eY .�/ \ Y is
nonempty.

Definition 3.3. Let Y be a convex subcomplex of a systolic complex X and let Z

be a convex subcomplex in B1.Y /. The expansion by projection of Z (denoted
by eY .Z/) is the subcomplex of B1.Y / spanned by the union of eY .�/ over all
maximal (with respect to inclusion) simplices � � Z. Clearly this definition extends
Definition 3.1.

Remark 3.4. Observe that Z � eY .Z/. Moreover eY .Z/ \ Y is nonempty. Note
that eY .Z/ does not have to be convex.

Remark 3.5. Let g be an automorphism of X which leaves Y and Z invariant. Then g

leaves also eY .Z/ invariant.

The following property of the expansion by projection is not at all obvious.

Lemma 3.6. diam.eY .Z// � maxfdiam.Z/; 1g.
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In fact, since by Remark 3.4 we have Z � eY .Z/, this is an equality unless Z is
a single vertex of Y .

Before giving the proof we need to establish some facts about the distance between
maximal simplices in convex subcomplexes.

Lemma 3.7. Let Z be a convex subcomplex in a systolic complex X . Let d be the
diameter of Z. Assume d � 2. Let �; � be any maximal simplices of Z and let v be
any vertex of Z. Then

(1) j�; vj � d � 1;

(2) j�; � j � d � 2:

Proof. First we prove assertion (1). We do this by contradiction. Assume j�; vj D d .
This means that � � Sd .v/, so eBd�1.v/.�/ (the expansion by projection onto
Bd�1.v/, cf. Definition 3.1 and Remark 3.2) is a simplex strictly greater than � .
All vertices in eBd�1.v/.�/ lie on some 1-skeleton geodesics from v to vertices in � .
Hence by Proposition 2.5 and by convexity of Z we have eBd�1.v/.�/ � Z. Thus �

is not maximal in Z, contradiction.
Now we prove assertion (2). We do this again by contradiction. Assume j�; � j >

d � 2. By (1) this implies that j�; vj D d � 1 for all v 2 � . Thus � � Sd�1.�/.
As before, by Proposition 2.5 and by convexity of Z we get eBd�2.�/.�/ � Z.
Since eBd�2.�/.�/ is strictly greater than � , we obtain contradiction with maximality
of � . �

Proof of Lemma 3.6. Denote by d the diameter of Z. Suppose d � 2 (otherwise the
lemma is obvious). Take any vertices v; w 2 eY .Z/. We must prove that jvwj � d .
If v; w 2 Z then there is nothing to prove. Now assume that v 2 Z; w … Z. Thus
there exists a maximal simplex � � Z such that w 2 eY .�/. By Lemma 3.7 (1) we
have j�; vj � d � 1, hence there exists a vertex s 2 � such that jvsj � d � 1. Since
jswj D 1, we are done.

Now assume that both v; w … Z. Thus there exist maximal simplices �; � � Z

such that v 2 eY .�/; w 2 eY .�/. By Lemma 3.7 (2) there exist vertices s 2 �; t 2 �

such that jst j � d � 2. Since jvsj D 1 and jwt j D 1, we are done. �

We end this section with a lemma which though seems technical, nevertheless
lies at the heart of the proof of Proposition 1.4, which will be presented in Section 5.
This lemma states, roughly speaking, that expanding by projection has not too bad
monotonicity properties (although usually it is not true that Z � Z0 implies eY .Z/ �
eY .Z0/ or eY .Z/ � eY .Z0/).
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Lemma 3.8. Let Z1 � Z2 � � � � � Zn � B1.Y / be an increasing sequence of
convex subcomplexes of B1.Y /. Then the intersection

� n\
iD1

eY .Zi /
�

\ Y

is nonempty.

Proof. If Z1 \ Y is nonempty then any vertex v 2 Z1 \ Y belongs to the required
intersection. Otherwise take any maximal (in Z1) simplex �1 � Z1. We define
inductively an increasing sequence of simplices �i � Zi for i D 2; : : : ; n. Namely
choose �i to be any maximal simplex in Zi containing �i�1.

Take any vertex v 2 eY .�n/ \ Y . Since �i do not lie entirely in Y , we have
by definition of eY .�i / that v 2 eY .�i / for all i . Since each �i is maximal in the
corresponding Zi , this implies that v 2 eY .Zi / for all i , hence v belongs to the
required intersection. �

4. Homotopies

Recall the following notions. A partially ordered set (or a poset) is a set with a binary
relation (called the partial order or shortly the order, denoted here by �), which is
reflexive, antisymmetric and transitive. The elements of (the underlying set of) a
poset are called objects. For two different objects c1, c2 satisfying c1 � c2 we write
c1 < c2. A functor is a mapping from one poset into another, which respects the order.
The flag poset C 0 of a poset C is a poset, whose underlying set is the set of chains
c1 < � � � < cn of objects of C , with the order inverse to the inclusion of chains. The
geometric realization of a poset C is the simplicial complex, whose set of vertices is
the set of objects of C and a simplex is spanned on each subset which forms a chain.
The geometric realization of a functor F (or a mapping induced by F ) is a simplicial
mapping between the geometric realizations of the corresponding posets, determined
by the values of F on the set of vertices.

We will use the following well-known results. The proof of the first proposition
can be found, for example, in the paper of G. Segal [6]. However, for completeness,
we give an indication of an argument.

Proposition 4.1 ([6], Proposition 1.2). If C ; D are posets and F0; F1 W C ! D are
functors such that for each object c of C we have F0.c/ � F1.c/, then the maps
induced by F0; F1 on geometric realizations of C ; D are homotopic. Moreover this
homotopy can be chosen to be constant on the geometric realization of the subposet
of C of objects on which F0 and F1 agree.
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Proof. We need to extend the natural homotopy on vertices of geometric realizations
to higher skeleta. This is done by performing the so called prism subdivision of the
cells of the homotopy. Then the homotopy can be realized simplicially, it can be
explicitly written down. �

In the next proposition we will consider the functor F0 W C 0 ! C from the flag
poset C 0 of a poset C into the poset C , assigning to each object of C 0, which is
a chain of objects of C , its minimal element. Geometric realizations of C ; C 0 are
homeomorphic in a canonical way (one is the barycentric subdivision of the other),
which allows us to identify them.

Proposition 4.2. The map induced by F0 on geometric realizations of C 0; C is ho-
motopic to identity.

Proof. We give only a sketch. Take any simplex in the geometric realization of C 0,
suppose it corresponds to a chain c0

1 � � � � � c0
n (c0

i are chains of objects of C ).
This simplex and its image under the map induced by F0 both lie in the simplex of
the image, which corresponds to the chain c0

n. Thus the homotopy can be realized
affinely on each simplex. �

5. Nonempty fixed point sets are contractible

As observed in the Introduction, Theorem 1.2 is implied by Theorem 1.3 and Propo-
sition 1.4. Thus to prove Theorem 1.2 it is enough to prove Proposition 1.4, which
we do in this section.

Let us give an outline of the proof. Suppose the fixed point set we are considering
is nonempty. We define an increasing sequence of subcomplexes exhausting the
Rips complex, with an invariant simplex as the first subcomplex. We then prove
that the intersection of the fixed point set with a subcomplex from our family is
homotopy equivalent to the intersection of the fixed point set with the subsequent
subcomplex. Since we know that the first of those intersections is contractible, it
follows by induction that any of the intersections is contractible. Since we choose an
exhausting family, this means that the whole fixed point set is contractible.

We define now this exhausting family.

Definition 5.1. Let X be any simplicial complex. Let � � Xn be any simplex in the
Rips complex of X for some n � 1. Let A � X

.0/
n D X .0/ be the set of vertices

of � . Recall that Bi .A/ is the combinatorial ball of radius i around A in X . Now
define an increasing sequence of full subcomplexes Di .�/ � X 0

n, where i � 0, in
the following way. Let D2i .�/ be the span of all vertices in X 0

n corresponding to
simplices in Xn, which have all their vertices in Bi .A/ (i.e., D2i .�/ is equal to the
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barycentric subdivision of the span in Xn of vertices in Bi .A/ � X ). Let D2iC1.�/

be the span of those vertices in X 0
n, which correspond to those simplices in Xn that

have all their vertices in BiC1.A/ and at least one vertex in Bi .A/ (where the balls
are taken in X ).

In case of a flag complex X for n D 1 we have X1 D X and the subcomplexes
Di .�/ are combinatorial balls in X 0 around the barycentric subdivision of � .

Remark 5.2. Notice that
S1

iD0 Di .�/ D X 0
n. Moreover, any compact subcomplex

of X 0
n is contained in some Di .�/.

Proof of Proposition 1.4. Assume that FixH X 0
n is nonempty. Let � � Xn be a maxi-

mal H -invariant simplex in Xn. Denote the set of vertices of � in X
.0/
n D X .0/

by A. We claim that the span of A in X is convex. Otherwise, by Lemma 2.4, the
vertices of conv.A/ in X span a simplex in Xn, which is also H -invariant and strictly
greater than � , contradiction. Let Di .�/ � X 0

n be as in Definition 5.1. In the further
discussion we will use an abbreviated notation Di D Di .�/.

We will prove the following three assertions.

(i) D0 \ FixH X 0
n is contractible,

(ii) the inclusion D2i \ FixH X 0
n � D2iC1 \ FixH X 0

n is a homotopy equivalence,

(iii) the identity on D2iC2 \ FixH X 0
n is homotopic to a mapping with image in

D2iC1 \ FixH X 0
n � D2iC2 \ FixH X 0

n.

Suppose for a moment that (i)–(iii) hold. We will show how this implies the
theorem. We will prove by induction on k the following.

Claim. Dk \ FixH X 0
n is contractible.

For k D 0 this is stated in assertion (i). Suppose we have proved the claim for
some k � 0. If k is even, k D 2i � 0, then assertion (ii) implies the claim for
k D 2i C 1. If k is odd, k D 2i C 1, then the identity mapping from assertion (iii) is
homotopic to the mapping with image in a contractible subspace, hence the identity
mapping is homotopically trivial. This proves the claim for k D 2i C 2. We have
thus completed the induction step.

By Remark 5.2, the image of any sphere mapped into FixH X 0
n is contained in

some Di \FixH X 0
n, which is contractible. Thus all homotopy groups of FixH X 0

n are
trivial and since FixH X 0

n is a simplicial complex, it is contractible, by Whitehead’s
Theorem, as desired. To complete the proof we must now prove assertions (i)–(iii).

Assertion (i). Since D0 is the barycentric subdivision of the simplex � � Xn and
the barycenter of � belongs to FixH X 0

n, we have that D0 \ FixH X 0
n is a cone over

the barycenter of � , hence it is contractible.

Assertion (ii). Let C be the poset of H -invariant simplices in Xn with vertices
in BiC1.A/ (ball in X ) and at least one vertex in Bi .A/. Its geometric realization
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is D2iC1 \ FixH X 0
n. Consider a functor F W C ! C assigning to each object of

C , i.e. a simplex in Xn, its subsimplex spanned by vertices in Bi .A/. Notice that
this subsimplex is H -invariant (i.e., it is an object of C ) since A and hence Bi .A/

are H -invariant. By Proposition 4.1 the geometric realization of F is homotopic to
identity (which is the geometric realization of the identity functor). Moreover this
homotopy is constant on D2i \ FixH X 0

n. The image of the geometric realization of
F is contained in D2i \ FixH X 0

n. Hence D2i \ FixH X 0
n is a deformation retract of

D2iC1 \ FixH X 0
n, as desired.

Assertion (iii). Let C be the poset of H -invariant simplices in X 0
n with vertices

in BiC1.A/ and let C 0 be its flag poset, with the partial order inverse to the inclusion.
Let F0 W C 0 ! C be the functor (from Proposition 4.2) assigning to each object of C 0,
which is a chain of objects of C , its minimal element. The geometric realization of
both C and C 0 is equal to D2iC2 \ FixH X 0

n and by Proposition 4.2 the geometric
realization of F0 is homotopic to identity.

Now we define another functor F1 W C 0 ! C . This is the heart of the proof.
First notice that since span.A/ is convex in X , we have that the ball Bi .A/ is also
convex. Hence for any convex subcomplex Z � BiC1.A/ there exists its expansion
by projection (cf. Definition 3.3) eBi .A/.Z/. Now we define F1. For any object
c0 of C 0, which is a chain of objects c1 < c2 < � � � < ck of C , recall that cj

(where 1 � j � k) are some H -invariant simplices in Xn with vertices in BiC1.A/.
Denote the set of vertices of cj by Sj and treat it as a subset of X .0/. Notice that
the subcomplexes conv.Sj / � X are of diameter � n (by Lemma 2.4), they form
an increasing sequence and they are all contained in BiC1.A/ by monotonicity of
taking the convex hull and by convexity of balls. Thus if we define S 0

j to be the set of

vertices in eBi .A/.conv.Sj //, then by Lemma 3.8 the intersection
Tk

j D1 S 0
j contains

at least one vertex in Bi .A/. Also note that this intersection is contained in BiC1.A/.
Moreover, by Lemma 3.6, all the sets S 0

j , and hence their intersection, have diameter

� n. Thus we can treat the set
Tk

j D1 S 0
j as a simplex in Xn with vertices in BiC1.A/.

By Remark 3.5 this simplex is H -invariant, hence it is an object of C . We define
F1.c0/ to be this object. In geometric realization of C , which is D2iC2 \FixH X 0

n, the
object F1.c0/ corresponds to a vertex in D2iC1 \ FixH X 0

n, by our previous remarks.
It is obvious that F1 preserves the partial order (inverse to the inclusion on C 0), since
the greater the chain, the more sets S 0

j we have to intersect.
Now notice that by Remark 3.4 for any object c0 of C 0 we have F0.c0/ � F1.c0/,

hence by Proposition 4.1 the geometric realizations of F0 and F1 are homotopic. But
as observed at the beginning, F0 is homotopic to the identity. On the other hand, F1

has image in D2iC1 \ FixH X 0
n. Thus we are done. �
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