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Abstract. Let M be a compact oriented d -dimensional smooth manifold. Chas and Sulli-
van have defined a structure of Batalin–Vilkovisky algebra on H�.LM/. Extending work of
Cohen, Jones and Yan, we compute this Batalin–Vilkovisky algebra structure when M is a
sphere Sd , d � 1. In particular, we show that H�.LS2I F2/ and the Hochschild cohomology
HH�.H �.S2/I H �.S2// are surprisingly not isomorphic as Batalin–Vilkovisky algebras, al-
though we prove that, as expected, the underlying Gerstenhaber algebras are isomorphic. The
proof requires the knowledge of the Batalin–Vilkovisky algebra H�.�2S3I F2/ that we compute
in the Appendix.
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1. Introduction

Let M be a compact oriented d -dimensional smooth manifold. Denote by LM WD
map.S1; M/ the free loop space on M . In 1999, Chas and Sullivan [2] have shown
that the shifted free loop homology H�.LM/ WD H�Cd .LM/ has a structure of
Batalin–Vilkovisky algebra (Definition 5). In particular, they showed that H�.LM/

is a Gerstenhaber algebra (Definition 8). This Batalin–Vilkovisky algebra has been
computed when M is a complex Stiefel manifold [25] and very recently over Q
when M is a K.�; 1/ [28]. In this paper, we compute the Batalin–Vilkovisky al-
gebra H�.LM I k/ when M is a sphere Sn, n � 1 over any commutative ring k

(Theorems 10, 16, 17, 24 and 25).

�The author was partially supported by the Mathematics Research Center of Stanford University.
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In fact, few calculations of this Batalin–Vilkovisky algebra structure or even of
the underlying Gerstenhaber algebra structure have been done because the following
conjecture has not yet been proved.

Conjecture 1 (due to [2, “dictionary” p. 5] or [7]?). If M is simply connected then
there is an isomorphism of Gerstenhaber algebras H�.LM/ŠHH�.S�.M/I S�.M//

between the free loop space homology and the Hochschild cohomology of the algebra
of singular cochains on M .

In [7], [5], Cohen and Jones proved that there is an isomorphism of graded algebras
over any field

H�.LM/ Š HH�.S�.M/I S�.M//:

Over the reals or over the rationals, two proofs of this isomorphism of graded al-
gebras have been given by Merkulov [23] and Félix, Thomas, Vigué-Poirrier [11].
Motivated by this conjecture, Westerland [30] has computed the Gerstenhaber algebra
HH�.S�.M I F2/I S�.M I F2// when M is a sphere or a projective space.

What about the Batalin–Vilkovisky algebra structure?
Suppose that M is formal over a field, then since the Gerstenhaber algebra struc-

ture on Hochschild cohomology is preserves by quasi-isomorphism of algebras [10,
Theorem 3], we obtain an isomorphism of Gerstenhaber algebras

HH�.S�.M/I S�.M// Š HH�.H �.M/I H �.M//: (2)

Poincaré duality induces an isomorphism of H �.M/-modules

‚ W H �.M/ ! H �.M/_:

Therefore, we obtain the isomorphism

HH�.H �.M/I H �.M// Š HH�.H �.M/I H �.M/_/

and the Gerstenhaber algebra structure on HH�.H �.M/I H �.M// extends to a
Batalin–Vilkovisky algebra [26], [22], [19] (See above Proposition 20 for details).
This Batalin–Vilkovisky algebra structure is further extended in [27], [9], [20], [21]
to a richer algebraic structure. It is natural to conjecture that this Batalin–Vilkovisky
algebra on HH�.H �.M/I H �.M// is isomorphic to the Batalin–Vilkovisky algebra
H�.LM/. We show (Corollary 30) that this is not the case over F2 when M is the
sphere S2. See [6, Comments 2, Chapter 1] or the papers of Tradler and Zeinalian [26],
[27] for a related conjecture when M is not assumed to be necessarily formal. On the
contrary, we prove (Corollary 23) that the above conjecture is satisfied for M D S2

over F2.

Acknowledgment. We wish to thank Ralph Cohen and Stanford Mathematics De-
partment for providing a friendly atmosphere during my six months of “delegation
CNRS”. We would like also to thankYves Félix for a discussion simplifying the proof
of Theorem 10.
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2. The Batalin–Vilkovisky algebra structure on H�.LM/

We recall here the definition of the Batalin–Vilkovisky algebra on H�.LM I k/ given
by Chas and Sullivan [2] over any commutative ring k and deduce that this Batalin–
Vilkovisky algebra H�.LM I k/ behaves well with respect to change of rings.

We first recall the definition of the loop product following Cohen and Jones [7],
[6]. Let M be a closed oriented smooth manifold of dimension d . The inclusion
e W map.S1 _ S1; M/ ,! LM � LM can be viewed as a codimension d embedding
between infinite dimension manifolds [24, Proposition 5.3]. Denote by � its normal
bundle. Let �e W LM � LM � map.S1 _ S1; M/� its Thom–Pontryagin collapse
map. Recall that the umkehr (Gysin) map eŠ is the composite of �e and the Thom
isomorphism:

H�.LM � LM I k/
H�.�e Ik/�������! H�.map.S1 _ S1; M/� I k/

\uk���!Š H��d .map.S1 _ S1; M/I k/:

The Thom isomorphism is given by taking a relative cap product \ with a Thom class
for �, uk 2 H d .map.S1 _ S1; M/� I k/. A Thom class with coefficients in Z, uZ,
gives rise to a Thom class uk with coefficients in k, under the morphism

H d .map.S1 _ S1; M/I Z/ ! H d .map.S1 _ S1; M/I k/

induced by the ring homomorphism Z ! k [16, p. 441]. So we have the commutative
diagram

H�.LM � LM I Z/
eŠ ��

��

H��d .map.S1 _ S1; M/I Z/

��
H�.LM � LM I k/

eŠ �� H��d .map.S1 _ S1; M/I k/.

Let � W map.S1 _ S1; M/ ! LM be the map obtained by composing loops. The
loop product is the composite

H�.LM I k/ ˝ H�.LM I k/ ! H�.LM � LM I k/

eŠ��! H��d .map.S1 _ S1; M/I k/
H��d .� Ik/��������! H��d .LM I k/:

So clearly, we have proved

Lemma 3. The morphism of abelian groups H�.LM I Z/ ! H�.LM I k/ induced
by Z ! k is a morphism of graded rings.
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Suppose that the circle S1 acts on a topological space X . Then we have an action
of the algebra H�.S1/ on H�.X/,

H�.S1/ ˝ H�.X/ ! H�.X/:

Denote by ŒS1� the fundamental class of the circle. Then we define an operator of
degree 1, � W H�.X I k/ ! H�C1.X I k/, which sends x to the image of ŒS1� ˝ x

under the action. Since ŒS1�2 D 0, � B � D 0. The following lemma is obvious.

Lemma 4. Let X be a S1-space. We have the commutative diagram

H�.X I Z/
� ��

��

H�C1.X I Z/

��
H�.X I k/

� �� H�C1.X I k/,

where the vertical maps are induced by the ring homomorphism Z ! k.

The circle S1 acts on the free loop space on M by rotating the loops. Therefore
we have a operator � on H�.LM/. Chas and Sullivan [2] have shown that H�.LM/

equipped with the loop product and the �-operator, is a Batalin–Vilkovisky algebra.

Definition 5. A Batalin–Vilkovisky algebra is a commutative graded algebra A

equipped with an operator � W A ! A of degree 1 such that � B � D 0 and

�.abc/ D �.ab/c C .�1/jaja�.bc/ C .�1/.jaj�1/jbjb�.ac/

� .�a/bc � .�1/jaja.�b/c � .�1/jajCjbjab.�c/:
(6)

Consider the bracket f ; g of degree C1 defined by

fa; bg D .�1/jaj��.ab/ � .�a/b � .�1/jaja.�b/
�

for any a, b 2 A. (6) is equivalent to the following relation called the Poisson relation:

fa; bcg D fa; bgc C .�1/.jajC1/jbjbfa; cg: (7)

Getzler [14, Proposition 1.2] has shown that f ; g is a Lie bracket and therefore that a
Batalin–Vilkovisky algebra is a Gerstenhaber algebra.

Definition 8. A Gerstenhaber algebra is a commutative graded algebra A equipped
with a linear map f�; �gW A ˝ AG ! A of degree 1 such that:

a) the bracket f�; �g gives to A a structure of a graded Lie algebra of degree 1.
This means that for each a, b and c 2 A,

fa; bg D �.�1/.jajC1/.jbjC1/fb; ag;
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and

fa; fb; cgg D ffa; bg; cg C .�1/.jajC1/.jbjC1/fb; fa; cgg:
b) The product and the Lie bracket satisfy the Poisson relation (7).

Using Lemma 3 and Lemma 4, we deduce

Proposition 9. The k-linear map

H�.LM I Z/ ˝Z k ,! H�.LM I k/

is an inclusion of Batalin–Vilkovisky algebras.

In particular, by the universal coefficient theorem,

H�.LM I Z/ ˝Z Q Š H�.LM I Q/:

More generally, this proposition tells us that if TorZ.H�.LM I Z/; k/ D 0 then the
Batalin–Vilkovisky algebra H�.LM I Z/ determines the Batalin–Vilkovisky algebra
H�.LM I k/.

3. The circle and an useful lemma

In this section, we compute the structure of the Batalin–Vilkovisky algebra on the ho-
mology of the free loop space on the circle S1 using a lemma which gives information
on the image of � on elements of lower degree in H�.LM/.

Theorem 10. As a Batalin–Vilkovisky algebra, the homology of the free loop space
on the circle is given by

H�.LS1I k/ Š kŒZ� ˝ ƒa�1:

Denote by x a generator of Z. The operator � is

�.xi ˝ a�1/ D i.xi ˝ 1/; �.xi ˝ 1/ D 0

for all i 2 Z.

Let X be a pointed topological space. Consider the free loop fibration �X
j

,!
LX

ev�� X . Denote by hurX W �n.X/ ! Hn.X/ the Hurewicz map.

Lemma 11. Let n 2 N. Let f 2 �nC1.X/. Denote by Qf 2 �n.�X/ the adjoint
of f . Then

.H�.ev/ B � B H�.j / B hur�X / . Qf / D hurX .f /:
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Proof. Take in homology the image of ŒS1� ˝ ŒSn� in the following commutative
diagram:

S1 � �X
S1�j �� S1 � LX

actLX �� LX

ev

��
S1 � Sn ��

S1� Qf

��

S1 ^ Sn
f

�� X ,

where actLX W S1 � LX ! LX is the action of the circle on LX . �

Proof of Theorem 10. More generally, let G be a compact Lie group. Consider the

homeomorphism ‚G W �G � G
Š��! LG which sends the couple .w; g/ to the free

loop t 7! w.t/g. In fact, ‚G is an isomorphism of fiberwise monoids. Therefore
by [15, Part 2 of Theorem 8.2],

H�.‚G/ W H�.�G/ ˝ H�.G/ ! H�.LG/

is a morphism of graded algebras. Since H�.S1/ has no torsion,

H�.‚S1/ W H�.�S1/ ˝ H�.S1/ Š H�.LS1/

is an isomorphism of algebras. Since � preserves path-connected components,

�.xi ˝ a�1/ D ˛.xi ˝ 1/

where ˛ 2 k. Denote by "kŒZ� the canonical augmentation of the group ring kŒZ�.
Since H�.ev B ‚S1/ D "kŒZ� ˝ H�.S1/,

.H�.ev/ B �/.xi ˝ a�1/ D ˛1:

On the other hand, applying Lemma 11 to the degree i map S1 ! S1, we obtain that
.H�.ev/ B � B H�.j //.xi / D i1. Therefore ˛ D i . �

4. Computations using Hochschild homology

In this section, we compute the Batalin–Vilkovisky algebra H�.LSn/, n � 2, using
the following elementary technique:

The algebra structure has been computed by Cohen, Jones andYan using the Serre
spectral sequence [8]. On the other hand, the action of H�.S1/ on H�.LSn/ can be
computed using Hochschild homology. Using the compatibility between the product
and �, we determine the Batalin–Vilkovisky algebra H�.LSn/ up to isomorphism.
This elementary technique will fail for H�.LS2/.
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Let A be an augmented differential graded algebra. Denote by s NA the suspension
of the augmentation ideal NA, .s NA/i D NAi�1. Let d1 be the differential on the tensor
product of complexes A ˝ T .s NA/. The (normalized) Hochschild chain complex,
denoted C�.AI A/, is the complex (A ˝ T .s NA/; d1 C d2/ where

d2aŒsa1j : : : jsak� D.�1/jajaa1Œsa2j : : : jsak�

C
k�1X
iD1

.�1/"i aŒsa1j : : : jsaiaiC1j : : : jsak�

� .�1/jsak j"k�1akaŒsa1j : : : jsak�1�:

Here "i D jaj C jsa1j C � � � C jsai j.
Connes’ boundary map B is the map of degree C1

B W A ˝ .s NA/˝p ! A ˝ .s NA/˝pC1

defined by

B.aoŒsa1j : : : jsap�/ D
pX

iD0

.�1/jsa0:::sai�1jjsai :::sap jŒsai j : : : jsapjsa0j : : : jsap�1�:

Up to the isomorphism sp.A˝.pC1// ! A ˝ .sA/˝p , sp.a0Œa1j : : : jap�/ 7!
.�1/pja0jC.p�1/ja1jC���Cjap�1ja0Œsa1j : : : jsap�, our signs coincides with those of [29].

The Hochschild homology of A (with coefficient in A) is the homology of the
Hochschild chain complex:

HH�.AI A/ WD H�.C�.AI A//:

The Hochschild cohomology of A (with coefficient in A_) is the homology of the
dual of the Hochschild chain complex:

HH�.AI A_/ WD H�.C�.AI A/_/:

Consider the dual of Connes’boundary map, B_.'/D.�1/j'j'BB . On HH�.AI A_/,
B_ defines an action of H�.S1/.

Example 12. Let n � 2. Let k be any commutative ring. Let A WD H �.Sn/ D ƒx�n

be the exterior algebra on a generator of lower degree �n. Denote by Œsx�k WD
1Œsxj : : : jsx� and xŒsx�k WD xŒsxj : : : jsx� the elements of C�.AI A/ where the term
sx appears k times. These elements form a basis of C�.AI A/. Denote by Œsx�k_,
xŒsx�k_, k � 0, the dual basis. The differential d _ on C�.AI A/_ is given by
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d _.Œsx�k_/ D 0 and d _.xŒsx�k_/ D ˙ �
1 � .�1/k.nC1/

�
Œsx�.kC1/_. The dual of

Connes’ boundary map B_ is given by

B_.Œsx�k_/ D
´

.�1/nC1k xŒsx�.k�1/_ if .k C 1/.n C 1/ is even,

0 if .k C 1/.n C 1/ is odd,

and B_.xŒsx�k_/ D 0. We remark that Œsx�k_ is of (lower) degree k.n � 1/ and
xŒsx�k_ of degree n C k.n � 1/.

Theorem 13 ([17]). Let X be a simply connected space such that H�.X I k/ is of
finite type in each degree. Then there is a natural isomorphism of H�.S1/-modules
between the homology of the free loop space on X and the Hochschild cohomology
of the algebra of singular cochain S�.X I k/:

H�.LX/ Š HH�.S�.X I k/I S�.X I k/_/: (14)

In this paper, when we will apply this theorem, H�.X I k/ is assumed to be k-free
of finite type in each degree and X will be always k-formal: the algebra S�.X I k/

will be linked by quasi-isomorphisms of cochain algebras to H�.X I k/. Therefore

HH�.S�.X I k/I S�.X I k/_/ Š HH�.H �.X I k/I H �.X I k/_/: (15)

Theorem 16. For n > 1 odd, as a Batalin–Vilkovisky algebra,

H�.LSnI k/ D kŒun�1� ˝ ƒa�n;

�.ui
n�1 ˝ a�n/ D i.ui�1

n�1 ˝ 1/;

�.ui
n�1 ˝ 1/ D 0:

Proof. For the algebra structure, Cohen, Jones andYan [8] proved that H�.LSnI Z/ D
kŒun�1� ˝ ƒa�n when k D Z. Their proof works over any k (alternatively, using
Proposition 9, we could assume that k D Z). Computing Connes’ boundary map
on HH�.H �.Sn/I H�.Sn// (Example 12), we see that � on H�.LSnI k/ is null
in even degree and in degree �n, and is an isomorphism in degree �1. Therefore
�.ui

n�1 ˝ 1/ D 0, �.1 ˝ a�n/ D 0 and �.un�1 ˝ a�n/ D ˛1 where ˛ is invertible
in k. Replacing a�n by 1

˛
a�n or un�1 by 1

˛
un�1, we can assume up to isomorphisms

that �.un�1˝a�n/ D 1. Therefore fun�1; a�ng D 1. Using the Poisson relation (7),
fui

n�1; a�ng D iui�1
n�1. Therefore �.ui

n�1 ˝ a�n/ D i.ui�1
n�1 ˝ 1/: �
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Theorem 17. For n � 2 even, there exists a constant "0 2 F2 such that as a Batalin–
Vilkovisky algebra,

H�.LSnI Z/ D ƒb ˝ ZŒa; v�

.a2; ab; 2av/

D
C1M
kD0

Zvk
2.n�1/ ˚

C1M
kD0

Zb�1vk ˚ Za�n ˚
C1M
kD1

Z

2Z
avk;

for all k � 0, �.vk/ D 0, �.avk/ D 0 and

�.bvk/ D
´

.2k C 1/vk C "0avkC1 if n D 2;

.2k C 1/vk if n � 4:

Proof. For the algebra structure, Cohen, Jones andYan [8] proved the equality. Com-
puting Connes’boundary map on HH�.H �.Sn/I H�.Sn// (Example 12), we see that
� on H�.LSnI k/ is null in even degree and is injective in odd degree.

Case n ¤ 2. This case is simple, since all the generators of H�.LSn/, vk , bvk

and avk , k � 0, have different degrees. Using Example 12, we also see that for all
k � 0,

� W H�1C2k.n�1/ D Zb�1vk ,! H2k.n�1/ D Zvk

has cokernel isomorphic to Z
.2kC1/Z . Therefore �.bvk/ D ˙.2k C 1/vk . By replac-

ing b�1 by �b�1, we can assume up to isomorphims that �.b/ D 1. Let k � 1. Let
˛k 2 f�2k �1; 2k C1g such that �.bvk/ D ˛kvk . Using formula (6), we obtain that
�.bvkvk/ D .2˛k � 1/v2k . We know that �.bv2k/ D ˙.4k C 1/v2k . Therefore
˛k must be equal to 2k C 1.

Case n D 2. This case is complicated, since for k � 0, vk and avkC1 have the
same degree. Using Example 12, we also see that

� W H�1C2k D Zb�1vk ,! H2k D Zvk ˚ Z

2Z
avkC1

has cokernel, denoted Coker�, isomorphic to Z
.2kC1/Z ˚ Z

2Z . There exists unique

˛k 2 Z� and "k 2 Z
2Z such that �.bvk/ D ˛kvk C "kavkC1. The injective map �



144 L. Menichi CMH

fits into the commutative diagram of short exact sequences (Noether’s Lemma)

0

��

0

��

0

��
0 �� H�1C2k

id ��

�2

��

H�1C2k
��

��

0 ��

��

0

0 �� H�1C2k
� ��

��

H2k
��

��

Coker� ��

Š
��

0

0 �� Z
2Z

x� ��

��

Z
2˛kZ ˚ Z

2Z
��

��

Coker x� ��

��

0

0 0 0.

The cokernel of x�, denoted Coker x� is of cardinal 2j˛kj. So j˛kj D 2kC1. Therefore
�.bvk/ D ˙.2k C 1/vk C "kavkC1.

By replacing b�1 by �b�1, we can assume up to isomorphims that �.b/ D
1 C "0av. Using formula (6), we obtain that

�.bvkvl/ D .˛k C ˛l � 1/vkCl C ."k C "l � "0/avkClC1:

Therefore

�.bvkvk/ D .2˛k � 1/v2k C "0av2kC1 D ˙.4k C 1/v2k C "2kav2kC1:

So ˛k D 2k C 1, "2k D "0 and "2kC1 D "2k C "1 � "0 D "1.
The map ‚ W H�.LS2/ ! H�.LS2/ given by ‚.b�1vk/ D b�1vk , ‚.vk/ D

vk C kavkC1, ‚.avk/ D avk , k � 0 is an involutive isomorphism of algebras.
Therefore, by replacing v by v C av2, we can assume that "1 D "0. So we have
proved

�.bvk/ D .2k C 1/vk C "0avkC1; k � 0: �

These two cases "0 D 0 and "0 D 1 correspond to two non-isomorphic Batalin–
Vilkovisky algebras whose underlying Gerstenhaber algebras are the same. Therefore
even if we have not yet computed the Batalin–Vilkovisky algebra H�.LS2I Z/, we
have computed its underlying Gerstenhaber algebra. Using the definition of the
bracket, straightforward computations give the following corollary.

Corollary 18. For n � 2 even, as Gerstenhaber algebra

H�.LSnI Z/ D ƒb�1 ˝ ZŒa�n; v2.n�1/�

.a2; ab; 2av/
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with fvk; vlg D 0, fbvk; vlg D �2lvkCl , fbvk; bvlg D 2.k � l/bvkCl , fa; vlg D 0,
favk; bvlg D �.2l C 1/avkCl and favk; avlg D 0 for all k; l � 0.

5. When Hochschild cohomology is a Batalin–Vilkovisky algebra

In this section, we recall the structure of Gerstenhaber algebra on the Hochschild co-
homology of an algebra whose degrees are bounded. We recall from [26], [22], [27],
[19] the Batalin–Vilkovisky algebra on the Hochschild cohomology of the cohomol-
ogy H �.M/ of a closed oriented manifold M . We compute this Batalin–Vilkovisky
algebra HH�.H �.M/I H �.M// when M is a sphere.

Throughout in this section we will work over the prime field F2. Let A be an aug-
mented graded algebra such that the augmentation ideal NA is concentrated in degree
� �2 and bounded below (or concentrated in degree � 0 and bounded above). Then
the (normalized) Hochschild cochain complex, denoted C�.A; A/, is the complex

Hom.T s NA; A/ Š L
p�0 Hom..s NA/˝p; A/

with a differential d2. For an element f in Hom..s NA/˝p; A/, the differential d2f in
Hom..s NA/˝pC1; A/ is given by

.d2f /.Œsa1j : : : jsapC1�/ WD a1f .Œsa2j : : : jsapC1�/

C
pX

iD1

f .Œsa1j : : : js.aiaiC1/j : : : jsapC1�/ C f .Œsa1j : : : jsap�/ap:

The Hochschild cohomology of A with coefficient in A is the homology of the
Hochschild cochain complex:

HH�.AI A/ WD H�.C�.AI A//:

We remark that HH�.AI A/ is bigraded. Our degree is sometimes called the total
degree: sum of the external degree and the internal degree. The Hochschild cochain
complex C�.A; A/ is a differential graded algebra. For f 2 Hom..s NA/˝p; A/ and
g 2 Hom..s NA/˝q; A/, the (cup) product of f and g, f [ g 2 Hom..s NA/˝pCq; A/

is defined by

.f [ g/.Œsa1j : : : jsapCq�/ WD f .Œsa1j : : : jsap�/g.ŒsapC1j : : : jsapCq�/:

The Hochschild cochain complex C�.A; A/ has also a Lie bracket of (lower) de-
gree C1.

.f NB g/.Œsa1j : : : jsapCq�1�/

WD
pX

iD1

f
�
Œsa1j : : : jsai�1jsg.Œsai j : : : jsaiCq�1�/jsaiCqj : : : jsapCq�1�

�
:
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ff; gg D f NB g � g NB f . Our formulas are the same as in the non-graded case [13].
We remark that if A is not assumed to be bounded, the formulas are more complicated.
Gerstenhaber has shown that HH�.AI A/ equipped with the cup product and the Lie
bracket is a Gerstenhaber algebra.

Let M be a closed d -dimensional smooth manifold. Poincaré duality induces an
isomorphism of H �.M I F2/-modules of (lower) degree d :

‚ W H �.M I F2/
\ŒM����! H�.M I F2/ Š H �.M I F2/_: (19)

More generally, let A be a graded algebra equipped with an isomorphism of A-

bimodules of degree d , ‚ W A
Š��! A_. Then we have the isomorphism

HH�.A; ‚/ W HH�.A; A/
Š��! HH�.A; A_/:

Therefore on HH�.A; A/, we have both a Gerstenhaber algebra structure and an
operator � given by the dual of Connes’ boundary map B . Motivated by the Batalin–
Vilkovisky algebra structure of Chas–Sullivan on H�.LM/, Thomas Tradler [26]
proved that HH�.A; A/ is a Batalin–Vilkovisky algebra. See [22, Theorem 1.6] for
an explicit proof. In [19] or [27, Corollary 3.4] or [9, Section 1.4] or [20, Theorem B]
or [21, Section 11.6], this Batalin–Vilkovisky algebra structure on HH�.A; A/ extends
to a structure of algebra on the Hochschild cochain complex C�.A; A/ over various
operads or PROPs: the so-called cyclic Deligne conjecture. Let us compute this
Batalin–Vilkovisky algebra structure when M is a sphere.

Proposition 20 ([30] and [31, Corollary 4.2]). Let d � 2. As Batalin–Vilkovisky
algebra, for the Hochschild cohomology of H �.Sd I F2/ D ƒx�d , we have

HH�.H �.Sd I F2/I H �.Sd I F2// Š ƒg�d ˝ F2Œfd�1�

with �.g�d ˝f k
d�1

/ D k.1˝f k�1
d�1

/ and �.1˝f k
d�1

/ D 0; k � 0. In particular, the
underlying Gerstenhaber algebra is given by ff k; f lg D 0, fgf k; f lg D lf kCl�1

and fgf k; gf lg D .k � l/gf kCl�1 for k, l � 0.

Proof. Denote by A WD H �.Sd I F2/. The differential on C�.AI A/ is null. Let
f 2 Hom.s NA; A/ � C�.AI A/ such that f .Œsx�/ D 1. Let g 2 Hom.F2; A/ D
Hom..s NA/˝0; A/ � C�.AI A/ such that g.Œ�/ D x. The k-th power of f is the
map f k 2 Hom..s NA/˝k; A/ such that f k.Œsxj : : : jsx�/ D 1. The cup product
g[f k 2 Hom..s NA/˝k; A/ sends Œsxj : : : jsx� to x. So we have proved that C�.AI A/

is isomorphic to the tensor product of graded algebras ƒg�d ˝ F2Œfd�1�.
The unit 1 and x�d form a linear basis of H �.Sd /. Denote by 1_ and x_

the dual basis of A_ D H �.Sd /_. Poincaré duality induces the isomorphism

‚ W H �.Sd /
Š��! H �.Sd /_, 1 7! x_ and x 7! 1_. The two families of elements of
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the form 1Œsxj : : : jsx� and of the form xŒsxj : : : jsx� form a basis of C�.AI A/. De-
note by 1Œsxj : : : jsx�_ and xŒsxj : : : jsx�_ the dual basis in C�.AI A/_. The isomor-

phism ‚ induces an isomorphism of complexes of degree d , y‚ W C�.AI A/
C�.AI‚/������!Š

C�.AI A_/
Š��! C�.AI A/_. Explicitly [22, Section 4] this isomorphism sends

f 2 Hom..s NA/˝p; A/ to the linear map y‚.f / 2 .A ˝ .s NA/˝p/_ � C�.AI A/_
defined by

y‚.f /.a0Œsa1j : : : jsap�/ D �
.‚ B f /Œsa1j : : : jsap�

�
.a0/:

Here with A D ƒx, y‚.f k/ D xŒsxj : : : jsx�_ and y‚.g [ f k/ D 1Œsxj : : : jsx�_.
Computing Connes’ boundary map B_ on C�.AI A/_ (Example 12) and using that
y‚ B � D B_ B y‚ by definition of �, we obtain the desired formula for �. �

6. The Gerstenhaber algebra H�.LS 2I F2)

Using the same Hochschild homology technique as in Section 4, we compute, up
to an indeterminacy, the Batalin–Vilkovisky algebra H�.LS2I F2/. Nevertheless,
this will give the complete description of the underlying Gerstenhaber algebra on
H�.LS2I F2/.

Lemma 21. There exists a constant " 2 f0; 1g such that as a Batalin–Vilkovisky
algebra, the homology of the free space loop on the sphere S2 is

H�.LS2I F2/ D ƒa�2 ˝ F2Œu1�;

�.a�2 ˝ uk
1/ D k.1 ˝ uk�1

1 C "a�2 ˝ ukC1
1 / and �.1 ˝ uk

1/ D 0; k � 0:

Proof. In [8], Cohen, Jones andYan proved that the Serre spectral sequence for the free

loop fibration �M
j

,! LM
ev�� M is a spectral sequence of algebras converging

toward the algebra H�.LM/. Using Hochschild homology, we see that there is
an isomorphism of vector spaces H�.LS2I F2/ Š H�.S2I F2/ ˝ H�.�S2I F2/.
Therefore the Serre spectral sequence collapses. Since there is no extension problem,
we have the isomorphism of algebras

H�.LS2I F2/ Š H�.S2I F2/ ˝ H�.�S2I F2/ D ƒ.a�2/ ˝ F2Œu1�:

Computing Connes’ boundary map on HH�.H �.S2I F2/I H�.S2I F2// (see Exam-
ple 12), we see that � on H�.LS2I F2/ is null in even degree and that

� W H2k�1 ! H2k
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is a linear map of rank 1, k � 0. In particular � is injective in degree �1.
Applying Lemma 11 to the identity map id W S2 ! S2, we see that the composite

H1.�S2I F2/
H1.j IF2/������! H1.LS2I F2/

���! H2.LS2I F2/
H2.evIF2/������! H2.S2I F2/

is non-zero. Since H�.ev/ is a morphism of algebras, H0.ev/.a�2u2
1/ D 0. And so

�.a�2u1/ D 1 C "a�2u2
1 with " 2 F2.

We remark that when b D c, formula (6) takes the simple form

�.ab2/ D �.a/b2 C a�.b2/: (22)

Using this formula, we obtain that

�.a�2u2kC1
1 / D �..a�2u1/.uk

1/2/ D u2k
1 C "a�2u2kC2

1 ; k � 0:

Since � W H1 D F2a�2u3
1 ˚ F2u1 ! H2 is of rank 1 and �.a�2u3

1/ ¤ 0, �.u1/ D
	�.a�2u3

1/ with 	 D 0 or 	 D 1. Using again formula (22), we have that

�.u2kC1
1 / D �.u1.uk

1/2/ D 	�.a�2u3
1/u2k

1 D 	�.a�2u2kC3
1 /; k � 0:

So finally

�.a�2uk
1/ D kuk�1

1 C "ka�2ukC1
1 and �.uk

1/ D 	�.a�2ukC2
1 /; k � 0:

The cases 	 D 0 and 	 D 1 correspond to isomorphic Batalin–Vilkovisky algebras:
Let ‚ W H�.LS2I F2/ ! H�.LS2I F2/ be an automorphism of algebras which is
not the identity. Since ‚.a�2/ ¤ 0, ‚.a�2/ D a�2. Since ‚.a�2/ and ‚.u1/

must generate the algebra ƒa�2 ˝ F2Œu1�, ‚.u1/ ¤ a�2u3
1. Since ‚.u1/ ¤ u1,

‚.u1/ D u1 C a�2u3
1. Therefore there is an unique automorphism of algebras

‚ W H�.LS2I F2/ ! H�.LS2I F2/ which is not the identity. Explicitly, ‚ is given
by ‚.uk

1/ D uk
1 C ka�2ukC2

1 , ‚.a�2uk
1/ D a�2uk

1 , k � 0. One can check that
‚ is an involutive isomorphism of Batalin–Vilkovisky algebras who transforms the
cases 	 D 0 into the cases 	 D 1 without changing ". Therefore, by replacing u1 by
u1 C a�2u3

1, we can assume that 	 D 0. �

Consider the Batalin–Vilkovisky algebras ƒa�2 ˝ F2Œu1� with �.a�2 ˝ uk
1/ D

k.1 ˝ uk�1
1 C "a�2 ˝ ukC1

1 /, �.1 ˝ uk
1/ D 	�.a�2ukC2

1 /, k � 0, given by
the different values of ", 	 2 f0; 1g. These four Batalin–Vilkovisky algebras have
only two underlying Gerstenhaber algebras given by fuk

1 ; ul
1g D 0, fa�2uk

1 ; ul
1g D

lukCl�1Cl."�	/a�2ukClC1 and fa�2uk
1 ; a�2ul

1g D .k�l/a�2ukCl�1 for k, l � 0.
Via the above isomorphism ‚, these two Gerstenhaber algebras are isomorphic.

Corollary 23. The free loop space modulo 2 homology H�.LS2I F2/ is isomorphic
as Gerstenhaber algebra to the Hochschild cohomology of H �.S2I F2/,

HH�.H �.S2I F2/I H �.S2I F2//:
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7. The Batalin–Vilkovisky algebra H�.LS 2/

In this section, we complete the calculations of the Batalin–Vilkovisky algebras
H�.LS2I F2/ and H�.LS2I Z/ started respectively in Sections 6 and 4, using a
purely homotopic method.

Theorem 24. As a Batalin–Vilkovisky algebra, the homology of the free loop space
on the sphere S2 with mod 2 coefficients is

H�.LS2I F2/ D ƒa�2 ˝ F2Œu1�;

�.a�2 ˝ uk
1/ D k.1 ˝ uk�1

1 C a�2 ˝ ukC1
1 / and �.1 ˝ uk

1/ D 0; k � 0:

Theorem 25. With integer coefficients, as a Batalin–Vilkovisky algebra,

H�.LS2I Z/ D ƒb ˝ ZŒa; v�

.a2; ab; 2av/

D
C1M
kD0

Zvk
2 ˚

C1M
kD0

Zb�1vk ˚ Za�2 ˚
C1M
kD1

Z

2Z
avk

for all k � 0, �.vk/ D 0, �.avk/ D 0 and �.bvk/ D .2k C 1/vk C avkC1.

Denote by s W X ,! LX the trivial section of the evaluation map ev W LX � X .

Lemma 26. The image of � W H1.LS2I F2/ ! H2.LS2I F2/ is not contained in the
image of H2.sI F2/ W H2.S2I F2/ ,! H2.LS2I F2/.

Lemma 27. The image of � W H1.LS2I Z/ ! H2.LS2I Z/ is not contained in the
image of H2.sI Z/ W H2.S2I Z/ ,! H2.LS2I Z/.

Proof of Lemma 27 assuming Lemma 26. Consider the commutative diagram

H1.LS2I Z/ ˝Z F2
Š ��

�˝ZF2

��

H1.LS2I F2/

�

��
H2.LS2I Z/ ˝Z F2

Š �� H2.LS2I F2/

H2.S2I Z/ ˝Z F2
Š ��

H2.sIZ/˝ZF2

��

H2.S2I F2/.

H2.sIF2/

��

Since H1.LS2I Z/ Š H0.LS2I Z/ Š Z, the horizontal arrows are isomorphisms by
the universal coefficient theorem. The top rectangle commutes according to Lemma 4.



150 L. Menichi CMH

Suppose that the image of � W H1.LS2I Z/ ! H2.LS2I Z/ is included in the
image of H2.sI Z/. Then the image of � ˝Z F2 is included in the image of
H2.sI Z/ ˝Z F2. Using the above diagram, the image of � W H1.LS2I F2/ !
H2.LS2I F2/ is included in the image of H2.sI F2/. This contradicts Lemma 26.

�

Proof of Theorem 24 assuming Lemma 26. It suffices to show that the constant " in
Lemma 21 is not zero. Suppose that " D 0. Then by Lemma 21, �.a�2 ˝ u1/ D 1.

It is well known that H�.s/ W H�.M/ ! H�.LM/ is a morphism of algebras.
In particular, let ŒS2� be the fundamental class of S2, H2.s/.ŒS2�/ is the unit of
H�.LS2/. So �.a�2 ˝ u1/ D H2.s/.ŒS2�/. This contradicts Lemma 26. �

The proof of Theorem 25 assuming Lemma 27 is the same. To complete the
computation of this Batalin–Vilkovisky algebra on the homology of the free loop
space of a manifold, we will relate it to another structure of a Batalin–Vilkovisky
algebra that arises in algebraic topology: the homology of the double loop space.

Let X be a pointed topological space. The circle S1 acts on the sphere S2 by “rotat-
ing the earth”. Hence the circle also acts on �2X D map

�
.S2; North pole/; .X; �/

�
.

So we have an induced operator � W H�.�2X/ ! H�C1.�2X/. With Theorem 32
and the following proposition, we will able to prove Lemma 26.

Proposition 28. Let X be a pointed topological space. There is a natural morphism
r W L�X ! map�.S2; X/ of S1-spaces between the free loop space on the pointed
loops of X and the double pointed loop space of X such that:

	 If we identify S2 and S1 ^ S1, r is a retract up to homotopy of the inclusion
j W �.�X/ ,! L.�X/.

	 The composite r Bs W �X ,! L.�X/ ! map�.S2; X/ is homotopically trivial.

Proof. Let 
 W S2 � S1�S1

S1�� D S1C ^ S1 be the quotient map that identifies the
North pole and the South pole on the earth S2. The circle S1 acts without moving the
based point on S1C ^ S1 by multiplication on the first factor. On the torus S1 � S1,
the circle can act by multiplication on both factors. But when you pinch a circle to
a point in the torus, the circle can act only on one factor. If we make a picture, we
easily see that 
 W S2 � S1C ^ S1 is compatible with the actions of S1. Therefore
r W D map�.
; X/ W L�X ! map�.S2; X/ is a morphism of S1-spaces.

	 Let � W S1C ^S1 � S1 ^S1 D S1
C

^S1

��S1 be the quotient map. The inclusion map
j W �.�X/ ! L.�X/ is map�.�; X/. The composite � B 
 W S2 � S1 ^ S1 is the
quotient map obtained by identifying a meridian with a point in the sphere S2. The
composite � B
 can also be viewed as the quotient map from the non-reduced suspen-
sion of S1 to the reduced suspension of S1. So the composite � B 
 W S2 � S1 ^ S1

is a homotopy equivalence. Let ‚ W S1 ^ S1 Š��! S2 be any given homeomorphism.
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The composite ‚B� B
 W S2 ! S2 is of degree ˙1. The reflection through the equa-
torial plane is a morphism of S1-spaces. By replacing eventually 
 by its composite
with the previous reflection, we can suppose that ‚ B � B 
 W S2 ! S2 is homotopic
to the identity map of S2, i.e. 
 B ‚ is a section of � up to homotopy. Therefore
map�.
 B ‚; X/ D map�.‚; X/ B r is a retract of j up to homotopy.

	 Let � W S1C ^ S1 D S1�S1

S1�� � S1 be the map induced by the projection on

the second factor. Since �2.S1/ D �, the composite � B 
 is homotopically trivial.
Therefore r B s, the composite of r D map�.
; X/ and s D map�.�; X/ W �X !
L.�X/ is also homotopically trivial. �

Proof of Lemma 26. Denote by adSn W Sn ! �SnC1 the adjoint of the identity map
id W SnC1 ! SnC1. The map L.adS2/ W LS2 ! L�S3 is obviously a morphism
of S1-spaces. Therefore using Proposition 28, the composite r B L.adS2/ W LS2 !
L�S3 ! �2S3 is also a morphism of S1-spaces. Therefore H�.r B L.adS2//

commutes with the corresponding operators � in H�.LS2/ and H�.�2S3/.
Consider the commutative diagram up to homotopy:

�S2
j ��

�.ad
S2 /

��

LS2

L.ad
S2 /

��

S2
s��

ad
S2

��
�2S3

j ��

id ����������� L�S3

r

��

�S3
s��

������
��

��
��

�2S3.

(29)

Using the left part of this diagram, we see that �1.r B L.ad// maps the generator of
�1.LS2/ D Z.j B adS1/ to the composite �.adS2/ B adS1 W S1 ! �S2 ! �2S3

which is the generator of �1.�2S3/ Š Z. Therefore �1.rBL.ad// is an isomorphism.
So we have the commutative diagram

�1.LS2/ ˝ F2
hur

Š
��

�1.rBL.ad
S2 //˝F2 Š

��

H1.LS2I F2/
� ��

H1.rBL.ad
S2 /IF2/

��

H2.LS2I F2/

H2.rBL.ad
S2 /IF2/

��
�1.�2S3/ ˝ F2

hur

Š
�� H1.�2S3I F2/

� �� H2.�2S3I F2/.

By Theorem 32, � W H1.�2S3I F2/ ! H2.�2S3I F2/ is non-zero. Therefore us-
ing the above diagram, the composite H2.r B L.adS2// B � is also non-zero. On
the other hand, using the right part of diagram (29), we have that the composite
H2.r B L.adS2// B H2.s/ is null. �
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Corollary 30. The free loop space modulo 2 homology H�.LS2I F2/ is not isomor-
phic as Batalin–Vilkovisky algebra to the Hochschild cohomology of H �.S2I F2/,
HH�.H �.S2I F2/I H �.S2I F2//.

This means exactly that there exists no isomorphism between H�.LS2I F2/ and
HH�.H �.S2I F2/I H �.S2I F2// which at the same time

� is an isomorphism of algebras and

� commutes with the �-operators,

although separately

� there exists (Corollary 23) an isomorphism of algebras between H�.LS2I F2/

and HH�.H �.S2I F2/I H �.S2I F2// and

� there exists also an isomorphism commuting with the �-operators between them.

Proof. By Proposition 20, HH�.H �.S2/I H �.S2// is the Batalin–Vilkovisky algebra
given by " D 0 in Lemma 21. On the contrary, by Theorem 24, H�.LS2I F2/ is the
Batalin–Vilkovisky algebra given by " D 1. At the end of the proof of Lemma 21,
we saw that the two cases " D 0 and " D 1 correspond to two non-isomorphic
Batalin–Vilkovisky algebras. �

More generally, we believe that for any prime p, the free loop space modulo p of
the complex projective space H�.LCP p�1I Fp/1 is not isomorphic as Batalin–Vil-
kovisky algebra to the Hochschild cohomology

HH�.H �.CP p�1I Fp/I H �.CP p�1I Fp//:

Such phenomena for formal manifolds should not appear over a field of characteris-
tic 0.

Recall that by Poincaré duality, we have the isomorphism (cf. Equation (19))

‚ W H �.S2/
Š��! H �.S2/_:

Therefore we have the isomorphism

HH�.H �.S2/I ‚/ W HH�.H �.S2/I H �.S2//
Š��! HH�.H �.S2/I H �.S2/_/:

Consider any isomorphism of graded algebras

H�.LS2/ Š HH�.S�.S2/I S�.S2//: (31)

1Bökstedt and Ottosen [1] have recently announced the computation of the Batalin–Vilkovisky algebra
H�.LCPnI Fp/.
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By Corollary 23, such isomorphism exists. Cohen and Jones ([7, Theorem 3] and [5])
proved that such isomorphism exists for any manifold M . Since S2 is formal, we
have the isomorphism of algebras (cf. Equation (2))

HH�.S�.S2/I S�.S2//
Š��! HH�.H �.S2/I H �.S2//:

By [17], we have the isomorphisms of H�.S1/-modules

H�.LS2/
.14/Š HH�.S�.S2/I S�.S2/_/

.15/Š HH�.H �.S2/I H �.S2/_/:

Corollary 30 implies that the following diagram does not commute over F2:

HH�.S�.S2/I S�.S2/_/
.15/ �� HH�.H �.S2/I H �.S2/_/

H�.LS2/

.14/
����������������

.31/

		��������������

HH�.S�.S2/I S�.S2//
.2/ �� HH�.H �.S2/I H �.S2//.

HH�.H �.S2/I‚/

��

This is surprising because as explained by Cohen and Jones [7, p. 792], the composite
of the isomorphism (14) given by Jones in [17] and an isomorphism induced by
Poincaré duality should give an isomorphism of algebras between H�.LS2/ and
HH�.S�.S2/I S�.S2//.

8. Appendix by Gerald Gaudens and Luc Menichi

Let X be a pointed topological space. Recall that the circle S1 acts on the double
loop space �2X . Consider the induced operator � W H�.�2X/ ! H�C1.�2X/.
Getzler [14] has shown that H�.�2X/ equipped with the Pontryagin product and
this operator � forms a Batalin–Vilkovisky algebra. In [12], Gerald Gaudens and the
author have determined this Batalin–Vilkovisky algebra H�.�2S3I F2/. The key was
the following theorem. In [18, Proposition 7.46], answering to a question of Gerald
Gaudens, Sadok Kallel and Paolo Salvatore give another proof of this theorem.

Theorem 32 ([12]). The operator � W H1.�2S3I F2/ ! H2.�2S3I F2/ is non-tri-
vial.

Both proofs [12] and [18, Proposition 7.46] are unpublished and publicly unavail-
able yet. So the goal of this section is to give a proof of this theorem which is as
simple as possible.
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Denote by � the Pontryagin product in H�.�2X/ and by B the map induced in
homology by the composition map �2X � �2S2 ! �2X . Denote by �2

nS2, the
path-connected component of the degree n maps. Denote by v1 the generator of
H1.�2

0S2I F2/ and by Œ1� the generator of H0.�2
1S2I F2/.

Lemma 33. For x 2 H�.�2X I F2/, �x D x B .v1 � Œ1�/:

Proof. The circle S1 acts on the sphere S2. Therefore we have a morphism of
topological monoids ‚ W .S1; 1/ ! .�2

1S2; idS2/. The action of S1 on �2X is

the composite S1 � �2X
‚��2X�����! �2

1S2 � �2X
B�! �2X . Therefore for x 2

H�.�2X I F2/, �x D x B .H1.‚/ŒS1�/.
Suppose that H1.‚/ŒS1� D 0. Then for any topological space X , the operator

� on H�.�2X I F2/ is null. Therefore, for any x and y 2 H�.�2X I F2/, fx; yg D
�.xy/ � .�x/y � x.�y/ D 0. That is the modulo 2 Browder brackets on any
double loop space are null. This is obviously false. For example, Cohen in [3]
explains that the Gerstenhaber algebra H�.�2†2Y / has in general many non-trivial
Browder brackets. So the assumption H1.‚/ŒS1� D 0 is false.

Since the loop multiplication by idS2 in the H -group �2S2 is a homotopy equiva-

lence, the Pontryagin product by Œ1�, �Œ1� W H�.�2
0S2/

Š��! H�.�2
1S2/ is an isomor-

phism. Therefore v1 � Œ1� is a generator of H1.�2
1S2/, hence H1.‚/ŒS1� D v1 � Œ1�.

So finally
�x D x B .H1.‚/ŒS1�/ D x B .v1 � Œ1�/: �

Recall that v1 denotes the generator of H1.�2
0S2I F2/.

Lemma 34. In the Batalin–Vilkovisky algebra H�.�2S2I F2/, �.v1/ D v1 � v1.

Proof. Recall that Œ1� is the generator of H0.�2
1S2/. By Lemma 33,

�Œ1� D Œ1� B .v1 � Œ1�/ D .v1 � Œ1�/:

Denote by Q W Hq.�2
nS2/ ! H2qC1.�2

2nS2/ the Dyer–Lashof operation. It is well
known that QŒ1� D v1 � Œ2�. So by [4, p. 218, Theorem 1.3 (4)]

fv1 � Œ2�; Œ1�g D fQŒ1�; Œ1�g D fŒ1�; fŒ1�; Œ1�gg:
By [4, p. 215, Theorem 1.2 (3)], fŒ1�; Œ1�g D 0. Therefore on one hand, fv1 � Œ2�; Œ1�g
is null. And on the other hand, using the Poisson relation (7), since fŒ2�; Œ1�g D
fŒ1� � Œ1�; Œ1�g D 2fŒ1�; Œ1�g � Œ1� D 0,

fv1 � Œ2�; Œ1�g D fv1; Œ1�g � Œ2� C v1 � fŒ2�; Œ1�g D fv1; Œ1�g � Œ2�:
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Since �Œ1� W H�.�2S2/
Š��! H�.�2S2/ is an isomorphism, we obtain that the Brow-

der bracket fv1; Œ1�g is null. Therefore,

�.v1 � Œ1�/ D .�v1/ � Œ1� C v1 � .�Œ1�/ D ..�v1/ � v1 � v1/ � Œ1�:

But �.v1 � Œ1�/ D .� B �/.Œ1�/ D 0. Therefore .�v1/ must be equal to v1 � v1. �

Proof of Theorem 32. We remark that since � preserves path-connected components
and since the loop multiplication of two homotopically trivial loops is a homotopically
trivial loop, H�.�2

0S2/ is a sub Batalin–Vilkovisky algebra of H�.�2S2/.

Let S1 ,! S3
	�� S2 be the Hopf fibration. After double looping, the Hopf

fibration gives the fibration �2S1 ,! �2S3
�2	�� �2

0S2 with contractile fiber �2S1

and path-connected base �2
0S2. Therefore �2� W �2S3 '��! �2

0S2 is a homotopy

equivalence. And so H�.�2�/ W H�.�2S3/
'��! H�.�2

0S2/ is an isomorphism of
Batalin–Vilkovisky algebras.

Let u1 be the generator of H1.�2S3/. Lemma 34 implies that �.u1/ D u1 � u1.
Since u1 � u1 is non-zero in H�.�2S3I F2/, �.u1/ is non-trivial. �
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