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Groups with finitely many conjugacy classes and their
automorphisms

Ashot Minasyan�

Abstract. We combine classical methods of combinatorial group theory with the theory of small
cancellation over relatively hyperbolic groups to construct finitely generated torsion-free groups
that have only finitely many classes of conjugate elements. Moreover, we present several results
concerning embeddings into such groups.

As another application of these techniques, we prove that every countable group C can be
realized as a group of outer automorphisms of a groupN , whereN is a finitely generated group
having Kazhdan’s property (T) and containing exactly two conjugacy classes.
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1. Introduction

We shall start with the following definition.

Definition. Suppose that n � 2 is an integer. We will say that a group M has the
property (nCC) if there are exactly n conjugacy classes of elements in M .

Note that a group M has (2CC) if and only if any two non-trivial elements are

conjugate in M . For two elements x; y of some group G, we shall write x
G� y if x

and y are conjugate in G, and x
Gœ y if they are not.

For a groupG, denote by �.G/ the set of all finite orders of elements ofG. A clas-
sical theorem of G. Higman, B. H. Neumann and H. Neumann ([8]) states that every
countable groupG can be embedded into a countable (but infinitely generated) group
M , where any two elements of the same order are conjugate and �.M/ D �.G/.

For any integer n � 2, take G D Z=2n�2Z and embed G into a countable group
M according to the theorem above. Then card.�.M// D card.�.G// D n � 1.
Since, in addition, M will always contain an element of infinite order, the theorem
of Higman–Neumann–Neumann implies that G has (nCC).

�This work was supported by the Swiss National Science Foundation Grant ] PP002-68627.
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Another way to construct infinite groups with finitely many conjugacy classes was
suggested by S. Ivanov [15, Theorem 41.2], who showed that for every sufficiently
large prime p there is an infinite 2-generated group Mp of exponent p possessing
exactly p conjugacy classes. The group Mp is constructed as a direct limit of word
hyperbolic groups, and, as noted in [21], it is impossible to obtain an infinite group
with (2CC) in the same manner.

In the recent paper [21] D. Osin developed a theory of small cancellation over
relatively hyperbolic groups and used it to obtain the following remarkable result:

Theorem 1.1 ([21], Theorem 1.1). Any countable group G can be embedded into a
2-generated groupM such that any two elements of the same order are conjugate in
M and �.M/ D �.G/.

Applying this theorem to the group G D Z=2n�2Z one can show that for each
integer n � 2 there exists a 2-generated group with .nCC/. And when n D 2 we get
a 2-generated torsion-free group that has exactly two conjugacy classes.

The presence of elements of finite orders in the above constructions was important,
because if two elements have different orders, they can never be conjugate. So,
naturally, one can ask the following

Question 1. Do there exist torsion-free (finitely generated) groups with (nCC), for
any integer n � 3?

Note that ifG is the finitely generated group with (2CC) constructed by Osin, then
the m-th direct power Gm of G is also a finitely generated torsion-free group which
satisfies (2mCC). But what if we want to achieve a torsion-free group with (3CC)?
With this purpose one could come up with

Question 2. Suppose that G is a countable torsion-free group and x; y 2 G are
non-conjugate. Is it possible to embed G into a group M , which has (3CC), so that
x and y stay non-conjugate in M ?

Unfortunately, the answer to Question 2 is negative as the following example
shows.

Example 1. Consider the group

G1 D ha; t j tat�1 D a�1i (1.1)

which is isomorphic to the non-trivial semidirect product Z Ì Z. Note that G1 is
torsion-free, and t is not conjugated to t�1 in G1 because t œ t�1 in the infinite
cyclic group hti which is canonically isomorphic to the quotient ofG1 by the normal
closure of a. However, if G1 is embedded into a (3CC)-group M , it is easy to see
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that every element of M will be conjugated to its inverse (indeed, if y 2 M n f1g
and y

Mœ y�1 then y� M� a
M� a�1, for some � 2 f1;�1g, hence y� M� y�� – a

contradiction). In particular, t
M� t�1.

An analog of the above example can be given for each n � 3 – see Section 3. This
example shows that, in order to get a positive result, one would have to strengthen
the assumptions of Question 2.

Let G be a group. Two elements x; y 2 G are said to be commensurable if there

exist k; l 2 Z n f0g such that xk is conjugate to yl . We will use the notation x
G� y if

x and y are commensurable in G. In the case when x is not commensurable with y

we will write x
G

6� y. Observe that commensurability, as well as conjugacy, defines
an equivalence relation on the set of elements of G. It is somewhat surprising that
if one replaces the words “non-conjugate” with the words “non-commensurable” in
Question 2, the answer becomes positive:

Corollary 1.2. Assume that G is a countable torsion-free group, n 2 N, n � 2, and
x1; : : : ; xn�1 2 G n f1g are pairwise non-commensurable. Then there exists a group
M and an injective homomorphism ' W G ! M such that

1. M is torsion-free and generated by two elements;

2. M has (nCC);

3. M is 2-boundedly simple;

4. the elements '.x1/; : : : ; '.xn�1/ are pairwise non-commensurable in M .

Recall that a group G is said to be k-boundedly simple if for any x; y 2 G n
f1g there exist l � k, �1; : : : ; �l 2 f�1; 1g and g1; : : : ; gl 2 G such that x D
g1y

�1g�1
1 � � �gly

�lg�1
l

in G.
A group is called boundedly simple if it is k-boundedly simple for some k 2 N.

Evidently every boundedly simple group is simple; the converse is not true in general.
For example, the infinite alternating group A1 is simple but not boundedly simple
because conjugation preserves the type of the decomposition of a permutation into a
product of cycles. First examples of torsion-free finitely generated boundedly simple
groups were constructed by A. Muranov (see [12, Theorem 2], [13, Theorem 1]).

Corollary 1.2 is an immediate consequence of a more general Theorem 3.5 that
will be proved in Section 3.

Applying Corollary 1.2 to the group G D F.x1; : : : ; xn�1/, which is free on the
set fx1; : : : ; xn�1g, and its non-commensurable elements x1; : : : ; xn�1, we obtain a
positive answer to Question 1:

Corollary 1.3. For every integer n � 3 there exists a torsion-free 2-boundedly simple
group satisfying (nCC) and generated by two elements.
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(In the case when n D 2 the above statement was obtained by Osin in [21,
Corollary 1.3].) In fact, for any (finitely generated) torsion-free group H we can set
G D H � F.x1; : : : ; xn�1/, and then use Corollary 1.2 to embed G into a group
M enjoying the properties 1 � 4 from its claim. Since there is a continuum of pair-
wise non-isomorphic 2-generated torsion-free groups ([4]), and a finitely generated
group can contain at most countably many of different 2-generated subgroups, this
shows that there must be continually many pairwise non-isomorphic groups satisfying
properties 1–3 from Corollary 1.2.

Recall that the rank of a group G, rank.G/, is the minimal number of elements
required to generateG. In Section 4 we show how classical theory of HNN-extensions
allows to construct different embeddings into (infinitely generated) groups that have
finitely many classes of conjugate elements, and in Section 5 we use Osin’s results
(from [21]) regarding quotients of relatively hyperbolic groups to prove

Theorem 1.4. Let H be a torsion-free countable group and let M C H be a non-
trivial normal subgroup. ThenH can be isomorphically embedded into a torsion-free
group Q, possessing a normal subgroup N C Q, such that

� Q D H �N and H \N D M (hence Q=N Š H=M );

� N has (2CC);

� for allx; y 2 Qnf1g, x
Q� y if and only if'.x/

Q=N� '.y/, where' W Q ! Q=N

is the natural homomorphism;

� rank.N / D 2 and rank.Q/ � rank.H=M/C 2.

This theorem implies that ifQ=N Š H=M has exactly .n�1/ conjugacy classes
(e.g., if it is finite), then the groupQwill have (nCC) and will not be simple (if n � 3).
Thus it may be used to build (nCC)-groups in a recursive manner. It also allows to
obtain embeddings of countable torsion-free groups into (nCC)-groups, which we
could not get by using Corollary 1.2. For instance, as we saw in Example 1, the
fundamental group of the Klein bottle G1, given by (1.1), can not be embedded into

a (3CC)-groupM so that t
Mœ t�1. However, with 4 conjugacy classes this is already

possible: see Corollary 5.5 in Section 5. The idea is as follows: the group G1 can
be mapped onto Z=3Z in such a way that the images of the elements t and t�1 are
distinct. LetM be the kernel of this homomorphism. One can apply Theorem 1.4 to
the pair .G1;M/ to obtain the required embedding of G1 into a group Q. And since
Z=3Z has exactly 3 conjugacy classes, the group Q will have (4CC).

An application of Theorem 1.4 to the case whenH D Z andM D 2Z C H also
provides an affirmative answer to a question of A. Izosov from [9, Question 11.42],
asking whether there exists a torsion-free (3CC)-group Q that contains a normal
subgroup N of index 2.
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The goal of the second part of this article is to show that every countable group
can be realized as a group of outer automorphisms of some finitely generated (2CC)-
group. This problem has some historical background: in [11] T. Matumoto proved
that every group is a group of outer automorphisms of some group (in contrast, there
are groups, e.g., Z, that are not full automorphism groups of any group); M. Droste,
M. Giraudet, R. Göbel ([7]) showed that for every groupC there exists a simple group
S such that Out.S/ Š C ; I. Bumagina and D. Wise in [3] proved that each countable
group C is isomorphic to Out.N / whereN is a 2-generated subgroup of a countable
C 0.1=6/-group, and if, in addition, C is finitely presented then one can choose N to
be residually finite.

In Section 6 we establish a few useful statements regarding paths in the Cayley
graph of a relatively hyperbolic groupG, and apply them in Section 7 to obtain small
cancellation quotients of G satisfying certain conditions. Finally, in Section 8 we
prove the following

Theorem 1.5. LetC be an arbitrary countable group. Then for every non-elementary
torsion-free word hyperbolic group F1 there exists a torsion-free group N satisfying
the following properties:

� N is a 2-generated quotient of F1;
� N has (2CC);
� Out.N / Š C .

The principal difference between this theorem and the result of [3] is that our
groupN is torsion-free and simple. Moreover, if one applies Theorem 1.5 to the case
when F1 is a torsion-free hyperbolic group with Kazhdan’s property (T) (and recalls
that every quotient of a group with property (T) also has (T)), one will get

Corollary 1.6. For any countable group C there is a 2-generated groupN such that
N has (2CC) and Kazhdan’s property (T), and Out.N / Š C .

The reason why Kazhdan’s property (T) is interesting in this context is the question
from [6, p. 134] which asked whether there exist groups that satisfy property (T)
and have infinite outer automorphism groups (it can be motivated by a theorem of
F. Paulin [22] which claims that the outer automorphism group is finite for any word
hyperbolic group with property (T)). Positive answers to this question were obtained
(using different methods) by Y. Ollivier and D. Wise [14], Y. de Cornulier [5], and
I. Belegradek and D. Osin [2]. Corollary 1.6 not only shows that the group of outer
automorphisms of a groupN with property (T) can be infinite, but also demonstrates
that there are no restrictions whatsoever on Out.N /.

Acknowledgements. The author would like to thank D. Osin for fruitful discussions
and encouragement.
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2. Relatively hyperbolic groups

Assume that G is a group, fH�g�2ƒ is a fixed collection of subgroups of G (called
peripheral subgroups), and X is a subset of G. The subset X is called a relative
generating set ofG with respect to fH�g�2ƒ ifG is generated by X [ S

�2ƒH�. In
this case G a quotient of the free product

F D .��2ƒH�/ � F.X/;

where F.X/ is the free group with basis X. Let R be a subset of F such that the
kernel of the natural epimorphism F ! G is the normal closure of R in the groupF ;
then we will say that G has relative presentation

hX; fH�g�2ƒ j R D 1; R 2 Ri: (2.1)

If the sets X and R are finite, the relative presentation (2.1) is said to be finite.
Set H D F

�2ƒ.H� n f1g/. A finite relative presentation (2.1) is said to satisfy a
linear relative isoperimetric inequality if there existsC > 0 such that, for every word
w in the alphabet X [ H (for convenience, we will further assume that X�1 D X)
representing the identity in the group G, one has

w
FD

kY
iD1

f �1
i R˙1

i fi ;

with equality in the group F , where Ri 2 R, fi 2 F , for i D 1; : : : ; k, and
k � Ckwk, where kwk is the length of the word w.

The next definition is due to Osin (see [20]):

Definition. The groupG is called hyperbolic relative to (the collection of peripheral
subgroups) fH�g�2ƒ, ifG admits a finite relative presentation (2.1) satisfying a linear
relative isoperimetric inequality.

This definition is independent of the choice of the finite generating set X and the
finite set R in (2.1) (see [20]). We would also like to note that, in general, it does not
require the group G to be finitely generated, which will be important in this paper.
The definition immediately implies the following basic facts:

Remark 2.1 ([20]). (a) Let fH�g�2ƒ be an arbitrary family of groups. Then the free
product G D ��2ƒH� will be hyperbolic relative to fH�g�2ƒ.

(b) Any word hyperbolic group (in the sense of Gromov) is hyperbolic relative to
the family ff1gg, where f1g denotes the trivial subgroup.
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Recall that a group H is called elementary if it has a cyclic subgroup of finite
index. Further in this section we will assume that G is a non-elementary group
hyperbolic relative to a family of proper subgroups fH�g�2ƒ.

An element g 2 G is said to be parabolic if it is conjugated to an element of H�

for some � 2 ƒ. Otherwise g is said to be hyperbolic. Given a subgroup S � G, we
denote by S0 the set of all hyperbolic elements of S of infinite order.

Lemma 2.2 ([17], Theorem 4.3, Corollary 1.7). For every g 2 G0 the following
conditions hold.

1) The element g is contained in a unique maximal elementary subgroup EG.g/

of G, where

EG.g/ D ff 2 G j fgnf �1 D g˙n for some n 2 Ng: (2.2)

2) The group G is hyperbolic relative to the collection fH�g�2ƒ [ fEG.g/g.

Recall that a non-trivial subgroup H � G is called malnormal if for every g 2
G n H , H \ gHg�1 D f1g. The next lemma is a special case of Theorem 1.4
from [20]:

Lemma 2.3. For any � 2 ƒ and any g … H�, the intersection H� \ gH�g
�1 is

finite. If h 2 G, � 2 ƒ and � ¤ �, then the intersection H� \ hH�h
�1 is finite. In

particular, if G is torsion-free then H� is malnormal (provided that H� ¤ f1g).

Lemma 2.4 ([20], Theorem 2.40). Suppose that a group G is hyperbolic relative
to a collection of subgroups fH�g�2ƒ [ fS1; : : : ; Smg, where S1; : : : ; Sm are word
hyperbolic (in the ordinary non-relative sense). Then G is hyperbolic relative to
fH�g�2ƒ.

Lemma 2.5 ([19], Corollary 1.4). Let G be a group which is hyperbolic relative to
a collection of subgroups fH�g�2ƒ [ fKg. Suppose thatK is finitely generated and
there is a monomorphism ˛ W K ! H� for some � 2 ƒ. Then the HNN-extension
hG; t j txt�1 D ˛.x/; x 2 Ki is hyperbolic with respect to fH�g�2ƒ.

In [21] Osin introduced the following notion: a subgroup S � G is suitable if

there exist two elementsg1; g2 2 S0 such thatg1

G

6� g2 andEG.g1/\EG.g2/ D f1g.
For any S � G with S0 ¤ ;, one sets

EG.S/ D
\

g2S0

EG.g/ (2.3)

which is obviously a subgroup of G normalized by S . Note that EG.S/ D f1g if the
subgroup S is suitable inG. As shown in [1, Lemma 3.3], if S is non-elementary and
S0 ¤ ; then EG.S/ is the unique maximal finite subgroup of G normalized by S .
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Lemma 2.6. Let fH g�2ƒ be a family of groups and let F be a torsion-free non-
elementary word hyperbolic group. Then the free product G D .��2ƒH�/ � F is
hyperbolic relative to fH�g�2ƒ and F is a suitable subgroup of G.

Proof. Indeed, G is hyperbolic relative to fH�g�2ƒ by Remark 2.1 and Lemma 2.4.
Since F is non-elementary, there are elements of infinite order x; y 2 F such that

x
F

6� y (see, for example, [16, Lemma 3.2]). Evidently, x and y are hyperbolic
elements of G that are not commensurable with each other, and the subgroups
EG.x/ D EF .x/ � F , EG.y/ D EF .y/ � F are cyclic (as elementary subgroups
of a torsion-free group). Hence EG.x/\EG.y/ D f1g, and thus F is suitable in G.

�

Lemma 2.7 ([21], Lemma 2.3). Suppose that G is a group hyperbolic relative to a
family of subgroups fH�g�2ƒ and S � G is a suitable subgroup. Then one can find
infinitely many pairwise non-commensurable (in G) elements g1; g2; : : : 2 S0 such
that EG.gi / \EG.gj / D f1g for all i ¤ j .

The following theorem was proved by Osin in [21] using the theory of small can-
cellation over relatively hyperbolic groups, and represents our main tool for obtaining
new quotients of such groups having a number of prescribed properties:

Theorem 2.8 ([21], Theorem 2.4). LetG be a torsion-free group hyperbolic relative
to a collection of subgroups fH�g�2ƒ, let S be a suitable subgroup of G, and let T ,
U be arbitrary finite subsets of G. Then there exist a group G1 and an epimorphism
� W G ! G1 such that:

(i) The restriction of � to
S

�2ƒH� [U is injective, and the groupG1 is hyperbolic
relative to the collection f�.H�/g�2ƒ;

(ii) for every t 2 T , we have �.t/ 2 �.S/;
(iii) �.S/ is a suitable subgroup of G1;

(iv) G1 is torsion-free;

(v) the kernel ker.�/ of � is generated (as a normal subgroup of G) by a finite
collection of elements belonging to T � S .

We have slightly changed the original formulation of the above theorem from
[21], demanding the injectivity on V D S

�2ƒH� [ U (instead of just
S

�2ƒH�)
and adding the last statement concerning the generators of the kernel. The latter
follows from the explicit form of the relations, imposed on G (see the proof of
Theorem 2.4 in [21]), and the former from part 2 of Lemma 5.1 in [21] and the
fact that any element from V has length (in the alphabet X [ H ) at most N , where
N D maxfjhjX[H j h 2 U g C 1.
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3. Groups with finitely many conjugacy classes

Lemma 3.1. LetG be a group and let x1; x2; x3; x4 2 G be elements of infinite order

such that x1

G

6� xi , i D 2; 3; 4. LetH D hG; t j tx3t
�1 D x4i be the HNN-extension

of G with associated cyclic subgroups generated by x3 and x4. Then x1

H

6� x2.

Proof. Arguing by contradiction, assume that hxl
1h

�1xm
2 D 1 for some h 2 H ,

l; m 2 Z n f0g. The element h has a reduced presentation of the form

h D g0t
�1g1t

�2 : : : t�kgk

where g0; : : : ; gk 2 G, �1; : : : ; �k 2 Z n f0g, and´
gj … hx3i if 1 � j � k � 1 and �j > 0; �j C1 < 0;

gj … hx4i if 1 � j � k � 1 and �j < 0; �j C1 > 0:

By the assumptions, x1

G

6� x2 hence k � 1, and in the group H we have

hxl
1h

�1xm
2 D g0t

�1g1t
�2 : : : t�kgkx

l
1g

�1
k t��k : : : t��2g�1

1 t��1 Qg0 D 1; (3.1)

where Qg0 D g�1
0 xm

2 2 G. By Britton’s Lemma (see [10, IV.2]), the left-hand side in
(3.1) can not be reduced, and this can happen only ifgkx

l
1g

�1
k

belongs to either hx3i or
hx4i in G, which would contradict the assumptions. Thus the lemma is proved. �

Definition. Suppose thatG is a group andXi 	 G, i 2 I , is a family of subsets. We
shall say that Xi , i 2 I , are independent if no element of Xi is commensurable with
an element of Xj whenever i ¤ j , i; j 2 I .

Lemma 3.2. Assume that G is a countable torsion-free group, n 2 N, n � 2, and
non-empty subsets Xi 	 G n f1g, i D 1; : : : ; n � 1, are independent in G. Then G
can be (isomorphically) embedded into a countable torsion-free group M in such a
way that M has (nCC) and the subsets Xi , i D 1; : : : ; n � 1, remain independent
in M .

Proof. For each i D 1; : : : ; n � 1, fix an element xi 2 Xi . First we embed G into a
countable torsion-free group G1 such that for each non-trivial element g 2 G there
exist j 2 f1; : : : ; n � 1g and t 2 G1 satisfying tgt�1 D xj in G1, and the subsets
Xi , i D 1; : : : ; n � 1, stay independent in G1.

Let g1; g2; : : : be an enumeration of all non-trivial elements ofG. SetG.0/ D G

and suppose that we have already constructed the group G.k/, containing G, so that
for each l 2 f1; : : : ; kg there is j 2 f1; : : : ; n � 1g such that the element gl is
conjugated in G.k/ to xj , and Xi ; i D 1; : : : ; n � 1, are independent in G.k/.
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Suppose, at first, that gkC1 is commensurable in G.k/ with an element of Xj for

some j . Then gkC1

G.k/

6� h for every h 2 Sn�1
iD1;i¤j Xi . Define G.k C 1/ to be the

HNN-extension hG.k/; tkC1 j tkC1gkC1t
�1
kC1

D xj i. By Lemma 3.1 the subsets Xi ,
i D 1; : : : ; n � 1, will remain independent in G.k C 1/.

Thus we can assume that gkC1 is not commensurable with any element fromSn�1
iD1 Xi in G.k/. According to the induction hypotheses one can apply Lemma 3.1

to the HNN-extension

G.k C 1/ D hG.k/; tkC1 j tkC1gkC1t
�1
kC1 D x1i

to see that the subsets Xi 	 G � G.k C 1/, i D 1; : : : ; n � 1, are independent in
G.k C 1/.

Now, set G1 D S1
kD0G.k/. Evidently G1 has the required properties. In the

same manner, one can embed G1 into a countable torsion-free group G2 so that each
non-trivial element ofG1 will be conjugated to xi inG2, for some i 2 f1; : : : ; n�1g,
and the subsets Xi ; i D 1; : : : ; n � 1, continue to be independent in G2.

Proceeding like that we obtain the desired group M D S1
sD1Gs . By the con-

struction,M is a torsion-free countable group which has exactly n conjugacy classes:
Œ1�; Œx1�; : : : ; Œxn�1�. The subsetsXi ; i D 1; : : : ; n�1, are independent inM because
they are independent in Gs for each s 2 N. �

Corollary 3.3. In Lemma 3.2 one can add that the group M is 2-boundedly simple.

Proof. Let a torsion-free countable group G and its non-empty independent subsets
Xi , i D 1; : : : ; n�1, be as in Lemma 3.2. LetF D F.a1; : : : ; an�1; b1; : : : ; bn�1/ be
the free group with the free generating set fa1; : : : ; an�1; b1; : : : ; bn�1g, and consider
the group xG D G � F . For each i D 1; : : : ; n � 1, define

xXi D Xi [ fai ; a
�1
i g [ fŒaj ; bi � j j D 1; : : : ; n � 1; j ¤ ig 	 xG;

where Œaj ; bi � D aj bia
�1
j b�1

i . Using the universal properties of free groups and free

products one can easily see that the subsets xXi , i D 1; : : : ; n � 1, are independent
in xG.

Now we apply Lemma 3.2 to find a countable torsion-free (nCC)-group M , con-
taining xG, such that xXi , i D 1; : : : ; n � 1, are independent in M . Observe that this
implies that for any given i D 1; : : : ; n� 1, any two elements of xXi are conjugate in

M . For arbitrary x; y 2 M n f1g there exist i; j 2 f1; : : : ; n � 1g such that x
M� ai

and y
M� aj . If i D j then x

M� y. Otherwise, y
M� aj

M� a�1
j and x

M� Œaj ; bi �

which is a product of two conjugates of aj , and, hence, of y. Therefore the groupM
is 2-boundedly simple, and since G � xG � M , the corollary is proved. �
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Below is a particular (torsion-free) case of a theorem proved by Osin ([21, Theo-
rem 2.6]):

Lemma 3.4. Any countable torsion-free groupS can be embedded into a 2-generated
group M so that S is malnormal in M and every element of M is conjugated to an
element of S in M .

Proof. Following Osin’s proof of Theorem 2.6 from [21], we see that the required
group M can be constructed as an inductive limit of relatively hyperbolic groups
G.i/, i 2 N. More precisely, one sets G.0/ D S � F2, where F2 is a free group of
rank 2, 	0 D idG.0/ W G.0/ ! G.0/, and for each i 2 N one constructs a group G.i/
and an epimorphism 	i W G.0/ ! G.i/ so that 	i is injective on S , G.i/ is torsion-
free and hyperbolic relative to f	i .S/g, and 	i factors through 	i�1. The group M
is defined to be the direct limit of .G.i/; 	i / as i ! 1, i.e., Q D G.0/=N where
N D S

i2N ker.	i /. By Lemma 2.3, 	i .S/ is malnormal in G.i/, hence the image
of S will also be malnormal in M . �

Theorem 3.5. Let G be a torsion-free countable group, n 2 N, n � 2, and non-
empty subsets Xi 	 G n f1g, i D 1; : : : ; n � 1, be independent in G. Then G can
be embedded into a 2-generated torsion-free group M which has (nCC), so that the
subsets Xi ; i D 1; : : : ; n � 1, stay independent in M . Moreover, one can choose M
to be 2-boundedly simple.

Proof. First, according to Corollary 3.3, we can embed the groupG into a countable
torsion-free group S such that S has (nCC) and is 2-boundedly simple, and Xi ,
i D 1; : : : ; n � 1, are independent in S . Second, we apply Lemma 3.4 to find the
2-generated group M from its claim. Choose any i; j 2 f1; : : : ; n � 1g, i ¤ j ,
and x 2 Xi , y 2 Xj . If x and y were commensurable in M , the malnormality of S
would imply thatx andymust be commensurable inS , contradicting the construction.
Hence Xi , i D 1; : : : ; n � 1, are independent in M . Since each element of M is
conjugated to an element of S , it is evident that M has (nCC), is torsion-free and
2-boundedly simple. �

Remark 3.6. A more direct proof of Theorem 3.5, not using Lemma 3.4, can be
extracted from the proof of Theorem 5.1 (see Section 5), applied to the case when
H D M .

It is easy to see that Theorem 3.5 immediately implies Corollary 1.2 that was
formulated in the Introduction. As promised, we now give a counterexample to
Question 2 (formulated in the Introduction) for any n � 3.

Example 2. LetG2 D ha; t j tat�1 D a2i be the Baumslag–Solitar BS.1; 2/-group.
ThenG2 is torsion-free, and the elements t2; t4; : : : ; t2

n�1
are pairwise non-conjugate
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inG2 (since this holds in the quotient ofG2 by the normal closure of a). Suppose that
G2 is embedded into a group M having (nCC) so that t2; t4; : : : ; t2

n�1
are pairwise

non-conjugate inM . Then t2; : : : ; t2
n�1

is the list of representatives of all non-trivial

conjugacy classes ofM . Therefore there exist k; l 2 f1; : : : ; n�1g such that t
M� t2

k

and a
M� t2

l
. Consequently

t2
M� t2

kC1

and t2
l M� a

M� a2 M� t2
lC1

;

hence k D l D n � 1 according to the assumptions. But this yields

t
M� t2

n�1 M� a
M� a2 M� t2;

implying that t2
M� t4, which contradicts our assumptions.

Thus G2 can not be embedded into a (nCC)-group M in such a way that the
elements t2; : : : ; t2

n�1
remain pairwise non-conjugate in M .

4. Normal subgroups with (nCC)

IfM is a normal subgroup of a groupH , thenH naturally acts onM by conjugation.
We shall say that this action preserves the conjugacy classes of M if for any h 2 H
and a 2 M there exists b 2 M such that hah�1 D bab�1.

Lemma 4.1. Let G be a torsion-free group, N C G and x1; : : : ; xl 2 N n f1g be
pairwise non-commensurable (inG) elements. Then there exists a partitionN nf1g DFl

kD1Xk ofN nf1g into a (disjoint) union ofG-independent subsetsX1; : : : ; Xl such
that xk 2 Xk for every k 2 f1; : : : ; lg. Moreover, each subset Xk will be invariant
under conjugation by elements of G.

Proof. Since
G� is an equivalence relation onG n f1g, one can find the corresponding

decomposition: G n f1g D F
j 2J Yj , where Yj is an equivalence class for each

j 2 J . For each k D 1; : : : ; l , there exists j.k/ 2 J such that xk 2 Yj.k/. Note that

j.k/ ¤ j.m/ if k ¤ m since xk

G

6� xm.
Denote J 0 D J n fj.1/; : : : ; j.l � 1/g,

X1 D Yj.1/ \N; : : : ; Xl�1 D Yj.l�1/ \N; and Xl D
[

j 2J 0

Yj \N:

Evidently N n f1g D Fl
kD1Xk , X1; : : : ; Xl are independent subsets of G and xk 2

Xk for each k D 1; : : : ; l . The final property follows from the construction since for
any a 2 G and j 2 J we have aYja

�1 D Yj and aNa�1 D N . �
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Lemma 4.2. For every countable group C and each n 2 N, n � 2, there exists a
countable torsion-free group H having a normal subgroup M C H such that

(i) M satisfies (nCC);

(ii) M is 2-boundedly simple;

(iii) the natural action of H on M preserves the conjugacy classes of M ;

(iv) H=M Š C .

Proof. LetH 0
0 be the free group of infinite countable rank. ChooseN 0

0 C H 0
0 so that

H 0
0=N

0
0 Š C . Let F D F.x1; : : : ; xn�1/ denote the free group freely generated by

x1; : : : ; xn�1. Define H0 D H 0
0 � F and let N0 be the normal closure of N 0

0 [ F in
H0. Evidently, H0=N0 Š H 0

0=N
0
0 Š C and the elements x1; : : : ; xn�1 2 N0 n f1g

are pairwise non-commensurable in H0.
By Lemma 4.1, one can choose a partition of N0 n f1g into the union of H0-

independent subsets:

N0 n f1g D
n�1G
kD1

X0k;

so that xk 2 X0k for each k D 1; : : : ; n � 1.
By Corollary 3.3 there exists a countable torsion-free 2-boundedly simple group

M1 with the property (nCC) containing a copy of N0, such that the subsets X0k ,
k D 1; 2; : : : ; n � 1, are independent in M1. Denote by H1 D H0 �N0

M1 the
amalgamated product of H0 and M1 along N0, and let N1 be the normal closure of
M1 inH1. Note thatH1 is torsion-free as an amalgamated product of two torsion-free
groups ([10, IV.2.7]).

We need to verify that the elementsx1; : : : ; xn�1 are pairwise non-commensurable
in H1. Indeed, if a 2 X0k and b 2 X0l , k ¤ l , are conjugate in H1 then there must
exist y1; : : : ; yt 2 M1 nN0 and z1; : : : ; zt�1 2 H0 nN0, z0; zt 2 H0 such that

z0y1 : : : zt�1ytztaz
�1
t y�1

t z�1
t�1 : : : y

�1
1 z�1

0

H1D b:

Suppose that t is minimal possible with this property. As conjugation by elements of
H0 preserves X0k and X0l , we can assume that z0; zt D 1. Hence

y1z1 : : : zt�1ytay
�1
t z�1

t�1 : : : z
�1
1 y�1

1 b�1 H1D 1:

By the properties of amalgamated products (see [10, Chapter IV]), the left-hand side
in this equality can not be reduced, consequently ytay

�1
t 2 N0 n f1g D Fn�1

kD1X0k .
But then ytay

�1
t 2 X0k by the properties of M1, contradicting the minimality of t .

Thus, we have shown that xk

H16� xl whenever k ¤ l .
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Assume that the groupHi D Hi�1�Ni�1
Mi , i � 1, has already been constructed,

so that

0) Hi is countable and torsion-free;

1) Ni�1 C Hi�1;

2) Hi�1 D H0 �Ni�1 and H0 \Ni�1 D N0;

3) Mi satisfies (nCC);

4) x1; : : : ; xn�1 are pairwise non-commensurable in Hi .

Let Ni be the normal closure of Mi in Hi . Because of the condition 4) and
Lemma 4.1, one can find a partition of Ni n f1g into a union of Hi -independent
subsets:

Ni n f1g D
n�1G
kD1

Xik;

so that xk 2 Xik for each k D 1; : : : ; n � 1. By Lemma 3.2 there is a countable
group a MiC1, with (nCC), containing a copy of Ni , in which the subsets Xik ,
i D 1; : : : ; n� 1, remain independent. SetHiC1 D Hi �Ni

MiC1. Now, it is easy to
verify that the analogs of the conditions 0)-3) hold for HiC1 and

Ni�1 � Mi � Ni � MiC1: (4.1)

The analog of the condition 4) is true in HiC1 by the same considerations as before
(in the case of H1).

Define the group H D S1
iD1Hi and its subgroup M D S1

iD1Ni . Observe
that the condition 0/ implies that H is torsion-free, condition 1) implies that M
is normal in H , and 2) implies that H D H0 � M and H0 \ M D N0. Hence
H=M Š H0=.H0 \ M/ Š C . Applying (4.1) we get M D S1

iD1Mi , and thus,
by the conditions 3), 4) it enjoys the property (nCC): each element of M will be a
conjugate of xk for some k 2 f1; : : : ; n�1g. Since x1; : : : ; xn�1 2 M1 � M andM1

is 2-boundedly simple, then so will beM . Finally, 4) implies that xk
Hœ xl whenever

k ¤ l , and, consequently, the natural action of H on M preserves its conjugacy
classes. �

Lemma 4.3. Suppose that G is a group, N C G, A;B � G and ' W A ! B is
an isomorphism such that '.a/ 2 aN (i.e., the canonical images of a and '.a/ in
G=N coincide) for each a 2 A. Let L D hG; t j tat�1 D '.a/ for all a 2 Ai be the
HNN-extension of G with associated subgroups A and B , and let K be the normal
closure of hN; ti in L . Then G \K D N .

Proof. This statement easily follows from the universal property of HNN-extensions
and is left as an exercise for the reader. �
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The next lemma will allow us to construct (nCC)-groups that are not simple:

Lemma 4.4. Assume thatH is a torsion-free countable group andM C H is a non-
trivial normal subgroup. Then H can be isomorphically embedded into a countable
torsion-free group G possessing a normal subgroup K C G such that

1) G D HK and H \K D M ;

2) for all x; y 2 G nf1g, '.x/ D '.y/ if and only if there exists an h 2 K such that
x D hyh�1, where ' W G ! G=K is the natural homomorphism; in particular,
K will have (2CC);

3) x
G� y if and only if '.x/

G=K� '.y/ for all x; y 2 G n f1g;

Proof. Choose a set of representatives Z 	 H of cosets of H modulo M , in such a
way that each coset is represented by a unique element from Z and 1 … Z.

Define G.0/ D H and K.0/ D M . Enumerate the elements of G.0/ n f1g:
g1; g2; : : : . First we embed the group G.0/ into a countable torsion-free group G1,
having a normal subgroup K1 C G1, such that G1 D HK1, H \K1 D M and for
every i � 0 there are ti 2 K1 and zi 2 Z satisfying tigi t

�1
i D zi .

Suppose that the (countable torsion-free) groupG.j /, j � 0, andK.j / C G.j /,
have already been constructed so thatH � G.j /,G.j / D HK.j /,H \K.j / D M

and, if j � 1, then tjgj t
�1
j D zj for some tj 2 K.j / and zj 2 Z. The group

G.j C 1/, containing G.j /, is defined as the following HNN-extension:

G.j C 1/ D hG.j /; tj C1 j tj C1gj C1t
�1
j C1 D zj C1i;

where zj C1 2 Z 	 H is the unique representative satisfying gj C1 2 zj C1K.j /

in G.j /. Denote by K.j C 1/ C G.j C 1/ the normal closure of hK.j /; tj C1i in
G.j C1/. Evidently the groupG.j C1/ is countable and torsion-free,H � G.j / �
G.j C 1/, G.j C 1/ D HK.j C 1/ and H \ K.j C 1/ D H \ K.j / D M by
Lemma 4.3.

Now, it is easy to verify that the groupG1 D S1
j D0G.j / and its normal subgroup

K1 D S1
j D0K.j / enjoy the required properties.

In the same way we can embedG1 into a countable torsion-free groupG2, that has
a normal subgroup K2 C G2, so that G2 D HK2, H \K2 D M and each element
of G1 n f1g is conjugated in G2 to a corresponding element of Z. Performing such
a procedure infinitely many times we achieve the group G D S1

iD1Gi and a normal
subgroup K D S1

iD1Ki C G that satisfy the claims 1) and 2) of the lemma. It is
easy to see that the claim 2) implies 3), thus the proof is finished. �
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5. Adding finite generation

Theorem 5.1. Assume that H is a countable torsion-free group and M is a non-
trivial normal subgroup of H . Let F be an arbitrary non-elementary torsion-free
word hyperbolic group. Then there exist a countable torsion-free groupQ, containing
H , and a normal subgroup N C Q with the following properties:

1. H is malnormal in Q;

2. Q D H �N and N \H D M ;

3. N is a quotient of F ;

4. the centralizer CQ.N / of N in Q is trivial;

5. for every q 2 Q there is z 2 H such that q
Q� z.

Proof. The group Q will be constructed as a direct limit of relatively hyperbolic
groups.

Step 0. Set G.0/ D H � F and F.0/ D F ; then G.0/ is hyperbolic relative
to its subgroup H and F.0/ is a suitable subgroup of G.0/ by Lemma 2.6. Let
N.0/ C G.0/ be the normal closure of the subgroup hM;F i in G.0/. Evidently
G.0/ D H � N.0/ and H \ N.0/ D M . Enumerate all the elements of N.0/:
fg0; g1; g2; : : : g, and of G.0/: fq0; q1; q2; : : : g, in such a way that g0 D q0 D 1.

Steps 0–i . Assume the groups G.j /, j D 0; : : : ; i , i � 0, have been already
constructed, so that

1B. for each 1 � j � i there is an epimorphism  j �1 W G.j � 1/ ! G.j / which is
injective on (the image of) H in G.j � 1/. Denote F.j / D  j �1.F.j � 1//,
N.j / D  j �1.N.j � 1//;

2B. G.j / is torsion-free and hyperbolic relative to (the image of) H , and F.j / �
G.j / is a suitable subgroup, j D 0; : : : ; i ;

3B. G.j / D H �N.j /, N.j / C G.j / and H \N.j / D M , j D 0; : : : ; i ;

4B. the natural image Ngj of gj in G.j / belongs to F.j /, j D 0; : : : ; i ;

5B. there exists zj 2 H such that Nqj
G.j /� zj , j D 0; : : : ; i , where Nqj is the image

of qj in G.j /.

Step i C 1. Let OqiC1 2 G.i/, OgiC1 2 N.i/ be the images of qiC1 and giC1 in
G.i/. First we construct the group G.i C 1=2/, its normal subgroup KiC1 and its
element tiC1 as follows.

If for some f 2 G.i/, f OqiC1f
�1 D z 2 H , then set G.i C 1=2/ D G.i/,

KiC1 D N.i/ C G.i C 1=2/ and tiC1 D 1.
Otherwise, OqiC1 is a hyperbolic element of infinite order in G.i/. Since G.i/

is torsion-free, the elementary subgroup EG.i/. OqiC1/ is cyclic, thus EG.i/. OqiC1/ D
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hhxi for some h 2 H and x 2 N.i/ (by 3B), and OqiC1 D .hx/m for some m 2 Z.
Now, by Lemma 2.2, G.i/ is hyperbolic relative to fH; hhxig. Choose y 2 M so
that hy ¤ 1 and let G.i C 1=2/ be the following HNN-extension of G.i/:

G.i C 1=2/ D hG.i/; tiC1 j tiC1.hx/t
�1
iC1 D hyi:

The group G.i C 1=2/ is torsion-free and hyperbolic relative to H by Lemma 2.5.

Let us now verify that the subgroup F.i/ is suitable in G.i C 1=2/. Indeed,
according to Lemma 2.7, there are two hyperbolic elements f1; f2 2 F.i/ of infinite

order in G.i/ such that fl

G.i/

6� hx, fl

G.i/

6� hy, l D 1; 2, and f1

G.i/

6� f2. Then

f1

G.iC1=2/

6� f2 by Lemma 3.1. It remains to check that fl is a hyperbolic element
of G.i C 1=2/ for each l D 1; 2. Choose an arbitrary element w 2 H and observe

that fl

G.i/

6� w (since H is malnormal in G.i/ by Lemma 2.3, a non-trivial power of
fl is conjugated to an element of H if and only if fl is conjugated to an element of
H in G.i/, but the latter is impossible because fl is hyperbolic in G.i/). Applying

Lemma 3.1 again, we get that fl

G.iC1=2/

6� w for anyw 2 H . Hence f1; f2 2 F.i/ are
hyperbolic elements of infinite order inG.iC1=2/. The intersectionEG.iC1=2/.f1/\
EG.iC1=2/.f2/must be finite, since these groups are virtually cyclic (by Lemma 2.2),
and f1 is not commensurable with f2 inG.i C 1=2/. ButG.i C 1=2/ is torsion-free,
therefore EG.iC1=2/.f1/ \ EG.iC1=2/.f2/ D f1g. Thus F.i/ is a suitable subgroup
of G.i C 1=2/.

Lemma 4.3 assures thatH\KiC1 D M whereKiC1 C G.iC1=2/ is the normal
closure of hN.i/; tiC1i in G.i C 1=2/. Finally, note that

tiC1 OqiC1t
�1
iC1 D tiC1.hx/

mt�1
iC1 D .hy/m D z 2 H in G.i C 1=2/:

Now, that the groupG.iC1=2/ has been constructed, set TiC1 D f OgiC1; tiC1g 	
KiC1 and defineG.iC1/ as follows. SinceTiC1 �F.i/ 	 KiC1 C G.iC1=2/, we can
apply Theorem 2.8 to find a groupG.i C 1/ and an epimorphism 'i W G.i C 1=2/ !
G.i C 1/ such that 'i is injective on H , G.i C 1/ is torsion-free and hyperbolic
relative to (the image of)H , f'i . OgiC1/; 'i .tiC1/g 	 'i .F.i//, 'i .F.i// is a suitable
subgroup ofG.iC1/, and ker.'i / � KiC1. Denote by i the restriction of'i onG.i/.
Then  i .G.i// D 'i .G.i// D G.i C 1/ becauseG.i C 1=2/ was generated byG.i/
and tiC1, and according to the construction, tiC1 2 'i .F.i// � 'i .G.i//. Now, after
defining F.iC1/ D  i .F.i//,N.iC1/ D  i .N.i//, NgiC1 D 'i . OgiC1/ 2 F.iC1/

and ziC1 D 'i .z/ 2 H , we see that the conditions 1B, 2B, 4B and 5B hold in the case
when j D i C1. The propertiesG.i C1/ D H �N.i C1/ andN.i C1/ C G.i C1/
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are immediate consequences of their analogs forG.i/ andN.i/. Finally, observe that

'�1
i .H \N.i C 1// D H � ker.'i / \N.i/ � ker.'i /

D �
H \N.i/ � ker.'i /

� � ker.'i /


 �
H \KiC1

� � ker.'i / D M � ker.'i /:

Therefore H \N.i C 1/ D M and the condition 3B holds for G.i C 1/.
Let Q D G.1/ be the direct limit of the sequence .G.i/;  i / as i ! 1, and

let F.1/ and N D N.1/ be the limits of the corresponding subgroups. Then Q is
torsion-free by 2B, N C Q, Q D H � N and H \ N D M by 3B. N � F.1/ by
4B, and 5B implies the condition 5 from the claim.

Since F.0/ � N.0/ we get F.1/ � N . Thus N D F.1/ is a homomorphic
image of F.0/ D F .

For any i; j 2 N [ f1g, i < j , we have a natural epimorphism 
ij W G.i/ !
G.j / such that if i < j < k then 
jk B 
ij D 
ik . Take any g 2 G.0/. Since
F D F.0/ is finitely generated, using the properties of direct limits one can show
that if w D 
01.g/ 2 CQ.F.1// in Q, then 
0j .g/ 2 CG.j /.F.j // for some
j 2 N. But CG.j /.F.j // � EG.j /.F.j // D f1g (by formulas (2.2) and (2.3))
because F.j / is a suitable subgroup of G.j /, hence w D 
j 1

�

0j .g/

� D 1, that is,
CQ.F.1// D CQ.N / D f1g. This concludes the proof. �

The next statement is well known.

Lemma 5.2. Assume G is a group and N C G is a normal subgroup such that
CG.N / 
 N , where CG.N / is the centralizer of N in G. Then the quotient-group
G=N embeds into the outer automorphism group Out.N /.

Proof. The action of G on N by conjugation induces a natural homomorphism '

fromG to the automorphism group Aut.N / ofN . Since '.N / is exactly the group of
inner automorphisms Inn.N / ofN , one can define a new homomorphism x' W G=N !
Out.N / D Aut.N /=Inn.N / in the natural way: x'.gN/ D '.g/Inn.N / for every
gN 2 G=N . It remains to check that x' is injective, i.e., if g 2 GnN then x'.gN/ ¤ 1

in Out.N /; or, equivalently, '.g/ … Inn.N /. Indeed, otherwise there would exist
a 2 N such that ghg�1 D aha�1 for every h 2 N , thus N 63 a�1g 2 CG.N /,
contradicting the assumptions. �

Note that for an arbitrary group N , any subgroup C � Out.N / naturally acts on
the set of conjugacy classes C.N / of the group N .

Theorem 5.3. For any n 2 N, n � 2, and an arbitrary countable group C , C can
be isomorphically embedded into the outer automorphism group Out.N / of a group
N satisfying the following conditions:
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� N is torsion-free;

� N is generated by two elements;

� N has (nCC) and the natural action of C on C.N / is trivial;

� N is 2-boundedly simple.

Proof. By Lemma 4.2 we can find a countable torsion-free group H and its normal
subgroup M enjoying the properties (i)–(iv) from its claim. Now, if F denotes the
free group of rank 2, we can obtain a countable torsion-free groupQ together with its
normal subgroupN that satisfy the conditions 1–5 from the statement of Theorem 5.1.

Then N is torsion-free and generated by two elements (as a quotient of F ). Con-
dition 2 implies that Q=N Š H=M Š C and, by 4 and Lemma 5.2, C embeds into
the group Out.N /.

Using property 5, for each g 2 N we can find u 2 Q and z 2 H such that
ugu�1 D z 2 N \ H D M . Since Q D HN , there are h 2 H and x 2 N

such that u D hx. Since z; h�1zh 2 M and the action of H on M preserves
the conjugacy classes of M , there is r 2 M such that rh�1zhr�1 D z, hence
z D rh�1ugu�1.rh�1/�1 D rxgx�1r�1, where v D rx 2 N . Thus for every
g 2 N there is v 2 N such that vgv�1 2 M . Evidently, this implies that N is also
2-boundedly simple. SinceM has (nCC), the number of conjugacy classes inN will
be at most n.

Suppose x1; x2 2 M and x1
Mœ x2. Then x1

Hœ x2 (by the property (iii) from

the claim of Lemma 4.2), and since H is malnormal in Q we get x1

Qœ x2. Hence

x1
Nœ x2, i.e., N also enjoys (nCC).
The fact that the natural action of C on C.N / is trivial follows from the same

property for the action of H on C.M/ and the malnormality of H in Q. �

Now, let us proceed with the

Proof of Theorem 1.4. First we apply Lemma 4.4 to construct a groupG and a normal
subgroup K C G according to its claim. Now, by Theorem 5.1, there is a group Q,
having a normal subgroup N C Q such that G is malnormal in Q, Q D GN ,
G \ N D K, rank.N / � 2 (if one takes the free group of rank 2 as F ) and every
element q 2 Q is conjugated (inQ) to an element ofG. By claim 2) of Lemma 4.4,K
has (2CC), and an argument, similar to the one used in the proof of Theorem 5.3, shows
that N will also have (2CC). Consequently, rank.N / > 1 because N is torsion-free,
hence rank.N / D 2.

Since G D HK and H \K D M we have Q D HKN D HN and H \N D
H \K D M . Since Q=N Š H=M and N can be generated by two elements, we
can conclude that rank.Q/ � rank.H=M/C 2.
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Consider arbitrary x; y 2 Q n f1g and suppose that '.x/
Q=N� '.y/. By The-

orem 5.1, there are w; z 2 G n f1g such that x
Q� w and y

Q� z. Therefore

'.w/
Q=N� '.z/, hence the images of w and z in G=K are also conjugate. By

claim 3) of Lemma 4.4, w
G� z, implying x

Q� y. �

Theorem 1.4 provides an alternative way of obtaining torsion-free groups that
have finitely many conjugacy classes: for any countable group C we can choose
a free group H of countable rank and a normal subgroup f1g ¤ M C H so that
H=M Š C , and then apply Theorem 1.4 to the pair .H;M/ to get

Corollary 5.4. Assume that n 2 N, n � 2, and C is a countable group that contains
exactly .n � 1/ distinct conjugacy classes. Then there exists a torsion-free group Q
and N C Q such that

� Q=N Š C ;

� N has (2CC) and Q has (nCC);

� rank.N / D 2 and rank.Q/ � rank.C /C 2.

Corollary 5.5. The group G1, given by presentation (1.1), can be isomorphically
embedded into a 2-generated torsion-free group Q satisfying (4CC) in such a way

that t
Qœ t�1.

Proof. Denote by K the kernel of the homomorphism ' W G1 ! Z3, for which
'.a/ D 0 and '.t/ D 1, where Z3 is the group of integers modulo 3. Now, apply
Theorem 1.4 to the pair .G1; K/ to find the group Q, containing G1, and the normal
subgroup N C Q from its claim. Since Q=N Š G1=K Š Z3 has (3CC), the group

Q will have (4CC). We also have t
Qœ t�1 because the images of t and t�1 are not

conjugate in Q=N .
Choose an element q1 2 Q n N . Then q2 D q3

1 2 N n f1g and since N is
2-generated and has (2CC), there is q3 2 N such that N D hq2; q3i in Q. As Q=N
is generated by the image of q1, the group Q will be generated by fq1; q2; q3g, and,
consequently, by fq1; q3g. �

6. Combinatorics of paths in relatively hyperbolic groups

Let G be a group hyperbolic relative to a family of proper subgroups fH�g�2ƒ,
and let X be a finite symmetrized relative generating set of G. Denote H DS

�2ƒ .H� n f1g/.
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For a combinatorial path p in the Cayley graph �.G;X [ H / (of G with respect
to X [ H ) p�, pC, L.p/, and Lab.p/ will denote the initial point, the ending point,
the length (that is, the number of edges) and the label of p respectively. p�1 will
be the path obtained from p by following it in the reverse direction. Further, if � is
a subset of G and g 2 h�i � G, then jgj� will be used to denote the length of a
shortest word in �˙1 representing g.

We will be using the following terminology from [20]. Suppose q is a path in
�.G;X [ H /. A subpath p of q is called an H�-component for some � 2 ƒ (or
simply a component) of q, if the label of p is a word in the alphabet H� n f1g and p
is not contained in a bigger subpath of q with this property.

Two components p1; p2 of a path q in �.G;X [ H / are called connected if they
are H�-components for the same � 2 ƒ and there exists a path c in �.G;X [ H /

connecting a vertex of p1 to a vertex of p2 such that Lab.c/ entirely consists of letters
from H�. In algebraic terms this means that all vertices of p1 and p2 belong to the
same coset gH� for a certain g 2 G. We can always assume c to have length at
most 1, as every nontrivial element of H� is included in the set of generators. An
H�-component p of a path q is called isolated if no other H�-component of q is
connected to p.

The next statement is a particular case of Lemma 2.27 from [20]; we shall formu-
late it in a slightly more general form, as it appears in [18, Lemma 2.7]:

Lemma 6.1. Suppose that a group G is hyperbolic relative to a family of subgroups
fH�g�2ƒ. Then there exists a finite subset � 
 G and a constant K 2 N such
that the following holds. Let q be a cycle in �.G;X [ H /, p1; : : : ; pk be a col-
lection of isolated components of q and g1; : : : ; gk be the elements of G repre-
sented by Lab.p1/; : : : ;Lab.pk/ respectively. Then g1; : : : ; gk belong to the sub-
group h�i � G and the word lengths of gi ’s with respect to � satisfy

kX
iD1

jgi j� � KL.q/:

Definition. Suppose that m 2 N and � is a finite subset of G. Define W.�;m/ to
be the set of all words W over the alphabet X [ H that have the following form:

W � x0h0x1h1 : : : xlhlxlC1;

where l 2 Z, l � �2 (if l D �2 thenW is the empty word; if l D �1 thenW � x0),
hi and xi are considered as single letters and

1) xi 2 X [f1g, i D 0; : : : ; lC1, and for each i D 0; : : : ; l , there exists �.i/ 2 ƒ
such that hi 2 H�.i/;

2) if �.i/ D �.i C 1/ then xiC1 … H�.i/ for each i D 0; : : : ; l � 1;
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3) hi … fh 2 h�i j jhj� � mg, i D 0; : : : ; l .

Choose the finite subset � 	 G and the constant K > 0 according to the claim
of Lemma 6.1.

Recall that a path q in �.G;X [ H / is said to be without backtracking if all of
its components are isolated.

Lemma 6.2. Let q be a path in the Cayley graph �.G;X [ H / with Lab.q/ 2
W.�;m/ and m � 5K. Then q is without backtracking.

Proof. Assume the contrary to the claim. Then one can choose a path q providing
a counterexample of the smallest possible length. Thus if p1; : : : ; pl is the (con-
secutive) list of all components of q then l � 2, p1 and pl must be connected H�0-
components, for some �0 2 ƒ, the components p2; : : : ; pl�1 must be isolated, and q
starts with p1 and ends with pl . Since Lab.q/ 2 W.�;m/ we have L.q/ � 2l � 1.

If l D 2 then the .X [ f1g/-letter between p1 and p2 would belong to H�0

contradicting the property 2) from the definition of W.�;m/.
Therefore l � 3. Sincep1 andpl are connected, there exists a path v in�.G;X [

H / between .pl/� and .p1/C with Lab.v/ 2 H�0 (thus we can assume that L.v/ � 1).
Denote by Oq the subpath of q starting with .p1/C and ending with .pl/�. Note that
L. Oq/ D L.q/�2 � 2l�3, andp2; : : : ; pl�1 is the list of components of Oq, all of which
are isolated. If one of them were connected to v it would imply that it is connected
to p1 contradicting with the minimality of q. Hence the cycle o D Oqv possesses
k D l � 2 � 1 isolated components, which represent elements h1; : : : ; hk 2 H .
Consequently, applying Lemma 6.1 one obtains that hi 2 h�i, i D 1; : : : ; k, and

kX
iD1

jhi j� � KL.o/ � K.L. Oq/C 1/ � K.2l � 2/:

By the condition 3) from the definition of W.�;m/ one has jhi j� > m � 5K for
each i D 1; : : : ; k. Hence

k � 5K �
kX

iD1

jhi j� � K.2l � 2/; or 5 � 2l � 2
k

;

which contradicts the inequality k � l � 2. �

Definition. Consider an arbitrary cycle o D rqr 0q0 in �.G;X [ H /, where Lab.q/
and Lab.q0/ belong to W.�;m/. Let p be a component of q (or q0). We will say
that p is regular if it is not an isolated component of o. If m � 5K, and hence q and
q0 are without backtracking by Lemma 6.2, this means that p is either connected to
some component of q0 (respectively q), or to a component of r or r 0.



Vol. 84 (2009) Groups with finitely many conjugacy classes 281

Lemma 6.3. In the above notations, suppose that m � 7K and denote C D
maxfL.r/;L.r 0/g. Then

(a) if C � 1 then every component of q or q0 is regular;

(b) if C � 2 then each of q and q0 can have at most 4C components which are not
regular.

(c) if l is the number of components of q, then at least .l � 6C / of components of
q are connected to components of q0; and two distinct components of q can not
be connected to the same component of q0. Similarly for q0.

Proof. Assume the contrary to (a). Then one can choose a cycle o D rqr 0q0 with
L.r/;L.r 0/ � 1, having at least one isolated component on q or q0, and such that
L.q/C L.q0/ is minimal. Clearly the latter condition implies that each component of
q or q0 is an isolated component of o. Therefore q and q0 together contain k distinct
isolated components of o, representing elements h1; : : : ; hk 2 H , where k � 1 and
k � .L.q/ � 1/=2 C .L.q0/ � 1/=2. Applying Lemma 6.1 we obtain hi 2 h�i,
i D 1; : : : ; k, and

kX
iD1

jhi j� � KL.o/ � K.L.q/C L.q0/C 2/:

Recall that jhi j� > m � 7K by the property 3) from the definition of W.�;m/.
Therefore

Pk
iD1 jhi j� � k � 7K, implying

7 � 2

k

�
L.q/

2
C L.q0/

2
C 1

�
� 2

k

�
L.q/ � 1

2
C L.q0/ � 1

2
C 2

�
� 6;

which yields a contradiction.
Let us prove (b). Suppose that C � 2 and q contains more than 4C isolated

components of o. We shall consider two cases:

Case 1. No component of q is connected to a component of q0. Then a component
of q or q0 can be regular only if it is connected to a component of r or r 0. Since,
by Lemma 6.2, q and q0 are without backtracking, two distinct components of q
or q0 can not be connected to the same component of r (or r 0). Hence q and q0
together can contain at most 2C regular components. Thus the cycle o has k isolated
components, representing elements h1; : : : ; hk 2 H , where k � 4C > 4 and k �
.L.q/�1/=2C .L.q0/�1/=2�2C . By Lemma 6.1, hi 2 h�i for each i D 1; : : : ; k,
and

Pk
iD1 jhi j� � K.L.q/C L.q0/C 2C /. Once again we can use the property 3)
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from the definition of W.�;m/ to achieve

7 � 2

k

�
L.q/

2
C L.q0/

2
C 2C

2

�
� 2

k

�
L.q/ � 1

2
C L.q0/ � 1

2
� 2C C 1C 3C

�

� 2

k

�
L.q/ � 1

2
C L.q0/ � 1

2
� 2C

�
C 2

k
C 6C

k
� 2C 1

2
C 3

2
D 4;

yielding a contradiction.

Case 2. The path q has at least one component which is connected to a component
of q0. Let p1; : : : ; pl denote the sequence of all components of q. By part (a), if ps

and pt , 1 � s � t � l , are connected to components of q0, then for any j , s � j � t ,
pj is connected to some component of q0 (because q is without backtracking by
Lemma 6.2). We can take s (respectively t ) to be minimal (respectively maximal)
possible. Consequentlyp1; : : : ; ps�1; ptC1; : : : ; pl will contain the set of all isolated
components of o that belong to q, and none of these components will be connected
to a component of q0.

Without loss of generality we may assume that s � 1 � 4C=2 D 2C . Since
ps is connected to some component p0 of q0, there exists a path v in �.G;X [ H /

satisfying v� D .ps/�, vC D p0C, Lab.v/ 2 H [ f1g, L.v/ � 1. Let Nq (respectively
Nq0) denote the subpath of q (respectively q0) from q� to .ps/� (respectively from p0C
to q0C). Consider a new cycle No D r Nqv Nq0. Reasoning as before, one can show that
No possesses k isolated components, where k � 2C � 4 and k � .L. Nq/ � 1/=2 C
.L. Nq0/ � 1/=2 � C � 1. Now, an application of Lemma 6.1 to the cycle No together
with the property 3) from the definition of W.�;m/ will lead to a contradiction as
before.

By the symmetry, the statement (b) of the lemma also holds for q0.
The claim (c) follows from (b) and the estimate L.r/ C L.r 0/ � 2C because if

two different components p and Np of q were connected to the same component of
some path in �.G;X [ H /, then p and Np would also be connected with each other,
which would contradict Lemma 6.2. �

Lemma 6.4. In the previous notations, let m � 7K, C D maxfL.r/;L.r 0/g, and
let p1; : : : ; pl , p0

1; : : : ; p
0
l 0 be the consecutive lists of the components of q and q0�1

respectively. If l � 12maxfC; 1g C 2, then there are indices s; t; s0 2 N such that
1 � s � 6C C 1, l � 6maxfC; 1g � t � l and for every i 2 f0; 1; : : : ; t � sg, the
component psCi of q is connected to the component p0

s0Ci of q0.

Proof. By part (c) of Lemma 6.3, there exists s � 6C C 1 such that the component
ps is connected to a component p0

s0 for some s0 2 f1; : : : ; l 0g. Thus there is a path
r1 between .p0

s0/C and .ps/C with L.r1/ � 1. Consider a new cycle o1 D r1q1r
0q0

1

where q1 is the segment of q from .ps/C to qC D r 0� and q0
1 is the segment of q0

from q0� D r 0C to .p0
s0/C.
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Observe that psC1; : : : ; pl is the list of all components of q1 and l � s � l �
6C � 1 � 6maxf1; C g C 1, hence, according to part (c) of Lemma 6.3 applied to
o1, there is t � l � 6maxf1; C g > s such that pt is connected to p0

t 0 by means of
a path r 0

1, where s0 C 1 � t 0 � l 0, .r 0
1/� D .pt /C, .r 0

1/C D .p0
t 0/C and L.r 0

1/ � 1.
Consider the cycle o2 D r1q2r

0
1q

0
2 in which q2 and q0

2 are the segments of q1 and q0
1

from .ps/C D .r1/C to .pt /C and from .p0
t 0/C to .p0

s0/C D .r1/� respectively (see
Figure 1).

q

r 0
r 0
3

r 0
1r1

q0�1

ps

psCi

pt

r

p0
s0

p0
s0Ci 0 p0

t 0

Figure 1

Note that psC1; : : : ; pt is the list of all components of q2 and p0
s0C1; : : : ; p

0
t 0 is the

list of all components of q0
2

�1. The cycle o2 satisfies the assumptions of part (a) of
Lemma 6.3, therefore for every i 2 f1; : : : ; t�sg there exists i 0 2 f1; : : : ; t 0�s0g such
that psCi is connected to p0

s0Ci 0 (psCi can not be connected to r1 [r 0
1] because in this

case it would be connected to ps [pt ], but q is without backtracking by Lemma 6.2).
It remains to show that i 0 D i for every such i . Indeed, if i 0 < i for some

i 2 f1; : : : ; t�sg then one can consider the cycle o3 D r1q3r
0
3q

0
3, where q3 and q0

3 are
segments of q2 and q0

2 from .q2/� D .r1/C to .psCi /C and from .p0
s0Ci 0/C to .q0

2/C D
.r1/� respectively, and .r 0

3/� D .q3/C, .r 0
3/C D .q0

3/�, L.r 0
3/ � 1. According to part

(a) of Lemma 6.3, each of the components psC1; : : : ; psCi of q3 must be connected
to one of p0

s0C1; : : : ; p
0
s0Ci 0 . Hence, since i 0 < i , two distinct components of q3 will

be connected to the same component of q0
3

�1, which is impossible by part (c) of
Lemma 6.3.

The inequality i 0 > i would lead to a contradiction after an application of a
symmetric argument to q0

3. Therefore i 0 D i and the lemma is proved. �

Lemma 6.5. In the above notations, let m � 7K and C D maxfL.r/;L.r 0/g. For
any positive integerd there exists a constantL D L.C; d/ 2 N such that if L.q/ � L

then there are d consecutive components ps; : : : ; psCd�1 of q and p0
s0 ; : : : ; p

0
s0Cd�1

of q0�1, so that psCi is connected to p0
s0Ci for each i D 0; : : : ; d � 1.
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Proof. Choose the constant L so that .L � 1/=2 � 12maxfC; 1g C 2 C d . Let
p1; : : : ; pl be the consecutive list all components of q. Since Lab.q/ 2 W.�;m/,
we have l � .L � 1/=2 (due to the form of any word from W.�;m/). Thus we can
apply Lemma 6.4 to find indices s; t from its claim. By the choice of s and t , and the
estimate on l , we have t � s � d C 1, yielding the statement of the lemma. �

Corollary 6.6. LetG be a group hyperbolic relative to a family of proper subgroups
fH�g�2ƒ. Suppose that a 2 H�0

, for some �0 2 ƒ, is an element of infinite order,
and x1; x2 2 G n H�0

. Then there exists k 2 N such that g D ak1x1a
k2x2 is a

hyperbolic element of infinite order in G whenever jk1j; jk2j � k.

Proof. Without loss of generality we can assume that x1; x2 2 X, since relative
hyperbolicity does not depend on the choice of the finite relative generating set ([20,
Theorem 2.34]). Choose the finite subset� 	 G and the constantK 2 N according
to the claim of Lemma 6.1, and set m D 7K. As the order of a is infinite, there is
k 2 N such that ak0 … fh 2 h�i j jhj� � mg whenever jk0j � k. Assume that
jk1j; jk2j � k.

Suppose, first, that gl D 1 for some l 2 N. Consider the cycle o D rqr 0q0 in
�.G;X [ H / where q� D qC D 1, Lab.q/ � .ak1x1a

k2x2/
l 2 W.�;m/ (akj are

considered as single letters from the alphabet X [ H ) and r; r 0; q0 are trivial paths
(consisting of a single point). Then, by part (a) of Lemma 6.3, every component of q
must be regular in o, which is impossible since q is without backtracking according
to Lemma 6.2. Hence g has infinite order in G.

Suppose, now, that there exists �0 2 ƒ, u 2 H�0 and y 2 G such that ygy�1 D u.
DenoteC D jyjX[H . Since elementu 2 G has infinite order, there exists l 2 N such
that 2l � 6C C 2 and ul … fh 2 h�i j jhj� � mg. The equality ygly�1u�l D 1

gives rise to the cycleo D rqr 0q0 in�.G;X[H /, where r and r 0 are paths of lengthC
whose labels represent y in G, r� D 1, q� D rC D y, Lab.q/ � .ak1x1a

k2x2/
l 2

W.�;m/, r 0� D qC, q0� D r 0C D y.ak1x1a
k2x2/

ly�1 and Lab.q0/ � u�l 2
W.�;m/, L.q0/ D 1. By part (c) of Lemma 6.3, at least 2l � 6C � 2 distinct
components of q must be connected to distinct components of q0, which is impossible
as q0 has only one component. The contradiction shows that g must be a hyperbolic
element of G. �

Lemma 6.7. Let G be a torsion-free group hyperbolic relative to a family of proper
subgroups fH�g�2ƒ, a 2 H�0

n f1g, for some �0 2 ƒ, and t; u 2 G nH�0
. Suppose

that there exists Ok 2 N such that for every k � Ok the element g1 D aktakt�1

is commensurable with g2 D akuaku�1 in G. Then there are ˇ; 
 2 H�0
and

�; 	 2 f�1; 1g such that u D 
 t�ˇ, ˇaˇ�1 D a� , 
�1a
 D a� .

Proof. Changing the finite relative generating set X ofG, if necessary, we can assume
that t; u; t�1; u�1 2 X. Let the finite subset � 	 G and the constant K 2 N be
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chosen according to Lemma 6.1. Definem D 7K and suppose that k is large enough
to satisfy ak … fh 2 h�i j jhj� � mg.

Since g1 and g2 are commensurable, there exist l; l 0 2 Z n f0g and y 2 G such
that ygl

2y
�1 D gl 0

1 . Let C D jyjX[H , d D 8 and L D L.C; d/ be the constant
from Lemma 6.5. Without loss of generality, assume that 4l � L. Consider the cycle
o D rqr 0q0 in �.G;X [ H / such that r and r 0 are paths of length C whose labels
represent y in G, r� D 1, q� D rC D y, Lab.q/ � .akuaku�1/l 2 W.�;m/,
L.q/ D 4l , r 0� D qC, q0� D r 0C D ygl

2y
�1, Lab.q0/ � .aktakt�1/l

0 2 W.�;m/,
L.q0/ D 4l 0.

Now, by Lemma 6.5, there are subpaths Qq D p1s1p2s2p3s3p4 of q and Qq0 D
p0

1s
0
1p

0
2s

0
2p

0
3s

0
3p

0
4 of q0�1 such that Lab.pi / � ak , Lab.p0

i / � a�k , i D 1; 2; 3; 4,
for some � 2 f�1; 1g (which depends on the sign of l 0), Lab.s1/ � Lab.s3/ � u,
Lab.s2/ � u�1, Lab.s0

1/ � Lab.s0
3/ � t� , Lab.s0

2/ � t�� , for some 	 2 f�1; 1g, and
pi is connected in �.G;X [ H / to p0

i for each i D 1; 2; 3; 4. Therefore there exist
paths Qp1; Qp2; Qp3; Qp4 whose labels represent the elements ˛; ˇ; 
; ı 2 H�0

respec-
tively, such that . Qp1/� D .p1/C, . Qp1/C D .p0

1/C, . Qp2/� D .p0
2/C, . Qp2/C D .p2/C,

. Qp3/� D .p3/�, . Qp3/C D .p0
3/�, . Qp4/� D .p0

4/�, . Qp4/C D .p4/� (see Figure 2).

p1 s1 p2 s2 p3 s3 p4

p0
1 s0

1 p0
2 s0

2 p0
3 p0

4s0
3

Qp1 Qp2 Qp3 Qp4

q

q0�1

ak

˛ 


ak u ak u�1 ak u

a�k

ı

a�ka�ka�k

ˇ

t��t� t�

Figure 2.

The cycles s�1
1 Qp1s

0
1p

0
2 Qp2p

�1
2 , s2 Qp3s

0
2

�1 Qp2 and s�1
3 p�1

3 Qp3p
0
3s

0
3 Qp4 give rise to the

following equalities in the group G:

u D ˛t�a�kˇa�k; u D 
 t�ˇ and u D a�k
a�kt�ı:

Consequently, recalling that H�0
is malnormal (Lemma 2.3) and that t� … H�0

, we
get

ˇakˇ�1a��k D t��
�1˛t� 2 H�0
\ t��H�0

t� D f1g;
and

a��k
�1ak
 D t�ıˇ�1t�� 2 H�0
\ t�H�0

t�� D f1g:
Thus

ˇakˇ�1 D a�k and 
�1ak
 D a�k (6.1)
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for some ˇ D ˇ.k/; 
 D 
.k/ 2 H�0
and � D �.k/; 	 D 	.k/ 2 f�1; 1g. Note that

the proof works for any sufficiently large k, therefore we can find two mutually prime
positive integers k; k0 with the above properties such that �.k/ D �.k0/ D � and
	.k/ D 	.k0/ D 	. Denote ˇ0 D ˇ.k0/ and 
 0 D 
.k0/, then 
 t�ˇ D u D 
 0t�ˇ0,
implying


�1
 0 D t�ˇˇ0�1
t�� 2 H�0

\ t�H�0
t�� D f1g:

Hence ˇ0 D ˇ, 
 0 D 
 ,

ˇak0

ˇ�1 D a�k0

and 
�1ak0


 D a�k0

: (6.2)

It remains to observe that since k and k0 are mutually prime, the formulas (6.1)
and (6.2) together yield

ˇaˇ�1 D a� and 
�1a
 D a�; �

7. Small cancellation over relatively hyperbolic groups

Let G be a group generated by a subset A 
 G and let O be the set of all words in
the alphabet A˙1, that are trivial in G. Then G has a presentation of the following
form:

G D hA j Oi: (7.1)

Given a symmetrized set of words R over the alphabet A, consider the group G1

defined by
G1 D hA j O [ Ri D hG j Ri: (7.2)

During the proof of the main result of this section we use presentations (7.2)
(or, equivalently, the sets of additional relators R) that satisfy the generalized small
cancellation condition C1."; �; �; c; �/. In the case of word hyperbolic groups this
condition was suggested by Ol’shanskii in [16], and was afterwards generalized to
relatively hyperbolic groups by Osin in [21]. For the definition and detailed theory
we refer the reader to the paper [21], as we will only use the properties, that were
already established there. The following observation is an immediate consequence
of the definition:

Remark 7.1. Let the constants "j ; �j ; �; c; �j , j D 1; 2, satisfy 0 < � � 1, 0 �
"1 � "2, c � 0, 0 < �2 � �1, �2 � �1 > 0. If the presentation (7.2) enjoys the
condition C1."2; �2; �; c; �2/ then it also enjoys the condition C1."1; �1; �; c; �1/.

We will also assume that the reader is familiar with the notion of a van Kampen
diagram over the group presentation (7.2) (see [10, Chapter V] or [15, Chapter 4]).
Let � be such a diagram. A cell … of � is called an R-cell if the label of its
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boundary contour @… (i.e., the word written on it starting with some vertex in the
counter-clockwise direction) belongs to R.

Consider a simple closed path o D rqr 0q0 in a diagram � over the presentation
(7.2), such that q is a subpath of the boundary cycle of an R-cell… and q0 is a subpath
of @�. Let � denote the subdiagram of � bounded by o. Assuming that � has no
holes, no R-cells and L.r/;L.r 0/ � ", it will be called an "-contiguity subdiagram
of … to @�. The ratio L.q/=L.@…/ will be called the contiguity degree of … to @�
and denoted .…; �; @�/.

A diagram is said to be reduced if it has a minimal number of R-cells among all
the diagrams with the same boundary label.

If G is a group hyperbolic relative to a family of proper subgroups fHigi2I , with
a finite relative generating set X, thenG is generated by the set A D X [S

i2I .Hi n
f1g/, and the Cayley graph�.G;A/ is a hyperbolic metric space [20, Corollary 2.54].

As for every condition of small cancellation, the main statement of the theory is
the following analogue of Greendlinger’s Lemma, claiming the existence of a cell,
large part of whose contour lies on the boundary of the van Kampen diagram.

Lemma 7.2 ([21], Corollary 4.4). Suppose that the groupG is generated by a subset
A such that the Cayley graph �.G;A/ is hyperbolic. Then for any 0 < � � 1 there
is �0 > 0 such that for any � 2 .0; �0� and c � 0 there are "0 � 0 and �0 > 0 with
the following property.

Let the symmetrized presentation (7.2) satisfy the C1."0; �; �; c; �0/-condition.
Further, let � be a reduced van Kampen diagram over G1 whose boundary contour
is .�; c/-quasigeodesic inG. Then, provided� has an R-cell, there exists an R-cell
… in � and an "0-contiguity subdiagram � of … to @�, such that

.…; �; @�/ > 1 � 23�:
The main application of this particular small cancellation condition is

Lemma 7.3 ([21], Lemmas 5.1 and 6.3). For any 0 < � � 1, c � 0 and N > 0

there exist �1 > 0, "1 � 0 and �1 > 0 such that for any symmetrized set of words R

satisfying C1."1; �1; �; c; �1/-condition the following hold.

1. The group G1 defined by (7.2) is hyperbolic relative to the collection of images
f�.Hi /gi2I under the natural homomorphism � W G ! G1.

2. The restriction of � to the subset of elements having length at most N with
respect to A is injective.

3. Any element that has a finite order inG1 is an image of an element of finite order
in G.

Below is the principal lemma of this section that will later be used to prove
Theorem 1.5.
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Lemma 7.4. Assume thatG is a torsion-free group hyperbolic relative to a family of
proper subgroups fHigi2I , X is a finite relative generating set of G, S is a suitable
subgroup of G and U 	 G is a finite subset. Suppose that i0 2 I , a 2 Hi0 n f1g
and v1; v2 2 G are hyperbolic elements which are not commensurable to each other.
Then there exists a word W.x; y/ over the alphabet fx; yg such that the following is
true.

Denote w1 D W.a; v1/ 2 G, w2 D W.a; v2/ 2 G, and let hhw2ii be the normal
closure of w2 in G, G1 D G=hhw2ii and � W G ! G1 be the natural epimorphism.
Then

� � is injective on fH�g�2ƒ [ U and G1 is hyperbolic relative to the family
f�.H�/g�2ƒ;

� �.S/ is a suitable subgroup of G1;
� G1 is torsion-free;
� �.w1/ ¤ 1.

Proof. By Lemma 2.7 there are hyperbolic elements v3; v4 2 S such that vi

G

6� vj if
1 � i < j � 4. Then by Lemma 2.2, the group G is hyperbolic relative to the finite
collection of subgroups fHigi2I [ S4

j D1fEG.vj /g, and generated by the set

A D X [
� [

i2I

Hi [
4[

j D1

EG.vj /
�

n f1g:

Let � 	 G and K 2 N denote the finite subset and the constant achieved after an
application of Lemma 6.1 to this new collection of peripheral subgroups.

Define m D 7K, � D 1=3, c D 2 and N D maxfjujA j u 2 U g C 1. Choose
�j > 0, "j � 0 and �j > 0, j D 0; 1, according to the claims of Lemmas 7.2
and 7.3. Let " D maxf"0; "1g, and let L D L.C; d/ > 0 be the constant given by
Lemma 6.5 where C D "0 and d D 2. Evidently there exists n 2 N such that, for
� D .3"C 11/=n, one has

0 < � � minf�0; �1g; 2n.1 � 23�/ > L; and 2n > maxf�0; �1g:
Set

F ."/ D ˚
h 2 h�i j jhj � maxfK.32"C 70/;mg�:

Since the subset F ."/ is finite, we can find k 2 N such that ak0

; vk0

1 ; v
k0

2 … F ."/

whenever k0 � k. Consider the word

W.x; y/ � xkykxkC1ykC1 : : : xkCn�1ykCn�1:

Let wj 2 G be the element represented by the word W.a; vj / in G, j D 1; 2, and
let R be the set of all cyclic shifts of W.a; v2/ and their inverses. By Lemma 2.3,
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Hi0 \ EG.v2/ D f1g because G is torsion-free, hence by [21, Theorem 7.5] the
presentation (7.2) satisfies the condition C1."; �; 1=3; 2; 2n/, and therefore, by Re-
mark 7.1, it satisfies the conditions C1."0; �; 1=3; 2; �0/ and C1."1; �1; 1=3; 2; �1/.

Observe that w1 ¤ 1 in G because, otherwise, there would have existed a closed
path q in �.G;A/ labelled by the word W.a; v1/, and, by part (a) of Lemma 6.3, all
components of q would have been regular in the cycle o D rqr 0q0 (where r; r 0; q0 are
trivial paths), which is obviously impossible.

Denote G1 D G=hhw2ii and let � W G ! G1 be the natural epimorphism. Then,
according to Lemma 7.3, the group G1 is torsion-free, hyperbolic relative to

f�.Hi /gi2I [ S4
j D1f�.EG.vj //g

and � is injective on the setS
i2I Hi [ S4

j D1EG.vj / [ U
(because the length in A of any element from this set is at most N ). Since any
elementary group is word hyperbolic, G1 is also hyperbolic relative to f�.Hi /gi2I

(by Lemma 2.4) and �.v3/; �.v4/ 2 �.S/ become hyperbolic elements of infinite
order inG1, that are not commensurable with each other (by Lemma 2.3). Therefore
EG1

.�.v3//\EG2
.�.v4// D f1g (recall that these subgroups are cyclic by Lemma 2.2

and becauseG1 is torsion-free), and, consequently, �.S/ is a suitable subgroup ofG1.
Suppose that �.w1/ D 1. By van Kampen’s Lemma there exists a reduced

planar diagram � over the presentation (7.2) with the word W.a; v1/ written on its

boundary. SinceW.a; v1/
G

¤ 1,� possesses at least one R-cell. It was proved in [21,
Lemma 7.1] that any path in �.G;A/ labelled byW.a; v1/ is .1=3; 2/-quasigeodesic,
hence we can apply Lemma 7.2 to find an R-cell … of � and an "0-contiguity
subdiagram � (containing no R-cells) between … and @� such that .…; �; @�/ >
1�23�. Thus there exists a cycle o D rqr 0q0 in �.G;A/ such that q is labelled by a
subword of (a cyclic shift of) W.a; v2/, q0 is labelled by a subword of (a cyclic shift
of) W.a; v1/

˙1, L.r/;L.r 0/ � "0 D C and

L.q/ > .1 � 23�/ � L.@…/ D .1 � 23�/ � 2n > L:
In particular, Lab.q/;Lab.q0/ 2 W.�;m/. Therefore we can apply Lemma 6.5
to find two consecutive components of q that are connected to some components
of q0. Due to the form of the word W.a; v2/, one of the formers will have to be an
EG.v2/-component, but q0 can have only EG.v1/- or Hi0-components. This yields
a contradiction because EG.v2/ ¤ EG.v1/ and EG.v2/ ¤ Hi0 . Hence �.w1/ ¤ 1

in G1, and the proof is complete. �
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8. Every group is a group of outer automorphisms of a (2CC)-group

Lemma 8.1. There exists a wordR.x; y/ over the two-letter alphabet fx; yg such that
every non-elementary torsion-free word hyperbolic group F1 has a non-elementary
torsion-free word hyperbolic quotient F that is generated by two elements a; b 2 F
satisfying

R.a; b/
F

¤ 1; R.a�1; b�1/
FD 1; R.b; a/

FD 1; R.b�1; a�1/
FD 1: (8.1)

Proof. Consider the word

R.x; y/ � xy101x2y102 : : : x100y200:

Denote by F.a; b/ the free group with the free generators a; b. Let

R1 D fR.a; b/; R.a�1; b�1/; R.b; a/; R.b�1; a�1/g;
and R2 be the set of all cyclic permutations of words from R˙1

1 . It is easy to see
that the set R2 satisfies the classical small cancellation condition C 0.1=8/ (see [10,
Chapter V]). Denote by QN the normal closure of the set

R3 D fR.a�1; b�1/; R.b; a/; R.b�1; a�1/g
in F.a; b/. Since the symmetrization of R3 also satisfies C 0.1=8/, the group QF D
F.a; b/= QN is a torsion-free ([10, TheoremV.10.1]) word hyperbolic group (because it
has a finite presentation for which the Dehn function is linear by [10, Theorem V.4.4])
such that

R.a; b/
QF

¤ 1 but R.a�1; b�1/
QFD R.b; a/

QFD R.b�1; a�1/
QFD 1:

Indeed, if the wordR.a; b/were trivial in QF then, by Greendlinger’s Lemma [10, The-
oremV.4.4], it would contain more than a half of a relator from (the symmetrization of)
R3 as a subword, which would contradict the fact that R2 enjoysC 0.1=8/. The group
QF is non-elementary because every torsion-free elementary group is cyclic, hence,

abelian, but in any abelian group the relation R.a�1; b�1/ D 1 implies R.a; b/ D 1.
Now, the free product QG D QF � F1 is a torsion-free hyperbolic group. Its sub-

groups QF and F1 are non-elementary, hence, according to a theorem of Ol’shanskii
[16, Theorem 2], there exists a non-elementary torsion-free word hyperbolic group F
and a homomorphism� W QG ! F such that�. QF / D �.F1/ D F and�.R.a; b// ¤ 1

in F . Therefore F is a quotient of F1, the (�-images of the) elements a; b generate
F and enjoy the required relations. �

We are now ready to prove Theorem 1.5.
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Proof of Theorem 1.5. The argument will be similar to the one used to prove Theo-
rem 5.1.

First, set n D 2 and apply Lemma 4.2 to find a countable torsion-free groupH and
a normal subgroupM C H , whereH=M Š C andM has (2CC) (alternatively, one
could start with a free groupH 0 andM 0 C H 0 such thatH 0=M 0 Š C , and then apply
Lemma 4.4 to the pair .H 0;M 0/ to obtainH andM with these properties). Consider
the wordR.x; y/ and the torsion-free hyperbolic group F , generated by the elements
a; b 2 F which satisfy (8.1), given by Lemma 8.1. Denote G.�2/ D H � F and let
N.�2/ be the normal closure of hM;F i inG.�2/, F.�2/ D F , R.�2/ D fR.a; b/g
– a finite subset of F.�2/. By Lemma 2.6, G.�2/ will be hyperbolic relative to the
subgroup H , G.�2/ D H �N.�2/, H \N.�2/ D M and F.�2/ will be a suitable
subgroup of G.�2/.

The element a 2 F.�2/ will be hyperbolic in G.�2/ and since the group G.�2/
is torsion-free, the maximal elementary subgroupEG.�2/.a/will be cyclic generated
by some element h�2x�2, where h�2 2 H , x�2 2 N.�2/.

Choose y�2 2 M so that h�2y�2 ¤ 1. By Lemmas 2.2 and 2.5, the HNN-exten-
sion

G.�3=2/ D hG.�2/; t�1 j t�1h�2x�2t
�1�1 D h�2y�2i

is hyperbolic relative to H . As in proof of Theorem 5.1, one can verify that F.�3/
is a suitable subgroup of G.�3=2/, and apply Theorem 2.8 to find an epimorphism
��2 W G.�3=2/ ! G.�1/ such thatG.�1/ is a torsion-free group hyperbolic relative
to ��2.H/, ��2 is injective on H [ R.�2/ and ��2.t�1/ 2 F.�1/ where F.�1/ D
��2.F.�2// is a suitable subgroup of G.�1/. Hence ��2.G.�2// D G.�1/ as
G.�3=2/ was generated by G.�2/ and t�1.

Denote N.�1/ D ��2.N.�2//, R.�1/ D ��2.R.�2// and  �2 D ��2jG.�2/ W
G.�2/ � G.�1/. One can show that G.�1/ D H � N.�1/ and H \ N.�1/ D
M using the same arguments as in the proof of Theorem 5.1. According to the
construction, we have

��2.t�1/��2.a/��2.t
�1�1 / D �.t�1at

�1�1 / 2 N.�1/ \H D M

in G.�1/, therefore, since the conjugation by ��2.t�1/ is an inner automorphism of
F.�1/, we can assume that F.�1/ is generated by a�1 and b�1, where a�1 2 M

and R.a�1; b�1/ ¤ 1 in F.�1/ (because ��2.R.a; b// ¤ 1 in F.�1/).
Now, if b�1 is not a hyperbolic element of G.�1/, i.e., if b�1

G.�1/� c for some
c 2 H , then c 2 N.�1/\H D M , and sinceM has (2CC) we can find s�1 2 G.�1/
such that b�1 D s�1a�1s

�1�1 . In this case we defineG.0/ D G.�1/,N.0/ D N.�1/,
F.0/ D F.�1/, R.0/ D R.�1/, a0 D a�1, s0 D s�1 and  �1 D idG.�1/.

Otherwise, if b�1 is hyperbolic in G.�1/, then we construct the group G.0/, and
an epimorphism  �1 W G.�1/ ! G.0/ in an analogous way, to make sure that ��1

is injective on H [ R.�1/, G.0/ torsion-free and hyperbolic relative to (the image
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of) H , F.0/ D  �1.F.�1// is a suitable subgroup of G.0/, G.0/ D H � N.0/ and
H \ N.0/ D M where N.0/ D  �1.N.�1//, and b0 D s0a0s

�1
0 in G.0/ where

b0 D  �1.b�1/, a0 D  �1.a�1/ for some s0 2 G.0/
Enumerate all elements ofN.0/: fg0; g1; g2; : : : g, and ofG.0/: fq0; q1; q2; : : : g,

so that g0 D q0 D 1.
The groups G.j / together with N.j / C G.j /, F.j / � G.j /, finite subsets

R.j / 	 G.j /, and elements aj ; sj 2 G.j /, j D 1; 2; : : : , that we will construct
shall satisfy the following properties:

1B. for each j 2 N there is an epimorphism  j �1 W G.j � 1/ ! G.j / which is
injective onH[R.j �1/. F.j / D  j �1.F.j �1//,N.j / D  j �1.N.j �1//,
aj D  j �1.aj �1/ 2 M , sj D  j �1.sj �1/ 2 G.j /;

2B. G.j / is torsion-free and hyperbolic relative to (the image of) H , and F.j / �
G.j / is a suitable subgroup generated by aj and sjaj s

�1
j ;

3B. G.j / D H �N.j /, N.j / C G.j / and H \N.j / D M ;

4B. the natural image Ngj of gj in G.j / belongs to F.j /;

5B. there exists zj 2 H such that Nqj
G.j /� zj , where Nqj is the image of qj in G.j /;

6B. if j � 1, Nqj �1 2 G.j � 1/ n H and for each Ok 2 N there is k � Ok
such that ak

j �1sj �1a
k
j �1s

�1
j �1

G.j �1/

6� ak
j �1 Nqj �1a

k
j �1 Nq�1

j �1, then where wj �1 D
Rj �1.aj �1; sj �1aj �1s

�1
j �1/ in G.j � 1/, for some there is a word Rj �1.x; y/

over the two-letter alphabet fx; yg which satisfies

R.j / 3  j �1

�
Rj �1.aj �1; sj �1aj �1s

�1
j �1/

� ¤ 1 and

 j �1

�
Rj �1.aj �1; Nqj �1aj �1 Nq�1

j �1/
� D1 in G.j /:

Suppose that the groups G.0/; : : : ; G.i/ have already been defined. The group
G.i C 1/ will be constructed in three steps.

First, assume that Nqi 2 G.i/ n H and for each Ok 2 N there is k � Ok such that

ak
i sia

k
i s

�1
i

G.i/

6� ak
i Nqia

k
i Nq�1

i . Observe that si … H because, otherwise, one would
have F.i/ 	 H , which is impossible as F.i/ is suitable in G.i/. Therefore, by
Corollary 6.6, we can suppose that k is so large that the elements v1 D ak

i sia
k
i s

�1
i

and v2 D ak
i Nqia

k
i Nq�1

i are hyperbolic in G.i/. Applying Lemma 7.4 we can find a
word W.x; y/ over fx; yg such that the group G.i C 1=3/ D G.i/=hhW.ai ; v2/ii
and the natural epimorphism � W G.i/ ! G.i C 1=3/ satisfy the following: � is
injective on H [ R.i/, G.i C 1=3/ is torsion-free and hyperbolic relative to (the
image of) H , �.F.i// � G.i C 1=3/ is a suitable subgroup, and �.W.ai ; v1// ¤ 1.
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Define the word Ri .x; y/ � W.x; xkyk/. Then Ri .ai ; siais
�1
i / D W.ai ; v1/,

Ri .ai ; Nqiai Nq�1
i / D W.ai ; v2/ in G.i/, hence

�
�
Ri .ai ; siais

�1
i /

� ¤ 1 and �
�
Ri .ai ; Nqiai Nq�1

i /
� D 1 in G.i C 1=3/:

If, on the other hand, Nqi 2 H or there is Ok 2 N such that for every k � Ok one

has ak
i sia

k
i s

�1
i

G.i/� ak
i Nqia

k
i Nq�1

i , then we define G.i C 1=3/ D G.i/, � W G.i/ !
G.i C 1=3/ to be the identical homomorphism and Ri .x; y/ to be the empty word.

Let OgiC1 and OqiC1 denote the images of giC1 and qiC1 in G.i C 1=3/, yN.i/ D
�.N.i//, yF .i/ D �.F.i// and yR.i/ D �

�
R.i/ [ fRi .ai ; siais

�1
i /g�. Then, us-

ing 3B, we get G.i C 1=3/ D H � yN.i/ andH \ yN.i/ D M because ker.�/ � N.i/

(as ai ; Nqiai Nq�1
i 2 N.i/).

Now we construct the group G.i C 2=3/ in exactly the same way as the group
G.i C 1=2/ was constructed in during the proof of Theorem 5.1.

If for some f 2 G.i C 1=3/, f OqiC1f
�1 D z 2 H , then setG.i C 2=3/ D G.i/,

KiC1 D yN.i/ C G.i C 2=3/ and tiC1 D 1.
Otherwise, OqiC1 is a hyperbolic element of infinite order in G.i C 1=3/. Since

G.i C 1=3/ is torsion-free, one has EG.iC1=3/. OqiC1/ D hhxi for some h 2 H and
x 2 yN.i/, and there is m 2 Z such that OqiC1 D .hx/m. Now, by Lemma 2.2,
G.i C 1=3/ is hyperbolic relative to fH; hhxig. Choose y 2 M so that hy ¤ 1 and
let G.i C 2=3/ be the following HNN-extension of G.i C 1=3/:

G.i C 2=3/ D hG.i C 1=3/; tiC1 j tiC1.hx/t
�1
iC1 D hyi:

The group G.i C 2=3/ is torsion-free and hyperbolic relative to H by Lemma 2.5.
One can show that yF .i/ is a suitable subgroup of G.i C 2=3/ in the same way as
during the proof of Theorem 5.1. Lemma 4.3 assures that H \ KiC1 D M where
KiC1 C G.i C 2=3/ is the normal closure of h yN.i/; tiC1i in G.i C 2=3/. Finally,
note that

tiC1 OqiC1t
�1
iC1 D tiC1.hx/

mt�1
iC1 D .hy/m D z 2 H in G.i C 2=3/:

Define TiC1 D f OgiC1; tiC1g 	 KiC1. The group G.i C 1/ is constructed from
G.i C 2=3/ as follows. Since TiC1 � yF .i/ 	 KiC1 C G.i C 2=3/, we can apply
Theorem 2.8 to find a groupG.iC1/ and an epimorphism'i W G.iC2=3/ ! G.iC1/
such that'i is injective onH[ yR.i/,G.iC1/ is torsion-free and hyperbolic relative to
(the image of)H , f'i . OgiC1/; 'i .tiC1/g 	 'i . yF .i//, 'i . yF .i// is a suitable subgroup
ofG.iC1/, and ker.'i / � KiC1. Denote by i W G.i/ ! G.iC1/ the composition
'i B�. Then i .G.i// D 'i .G.i// D G.iC1/ becauseG.iC2=3/was generated by
G.i/ and tiC1, and according to the construction, tiC1 2 'i . yF .i// � 'i .G.i//. Now,
after defining F.i C 1/ D  i .F.i//, N.i C 1/ D  i .N.i//, R.i C 1/ D 'i . yR.i//,
NgiC1 D 'i . OgiC1/ 2 F.i C 1/ and ziC1 D 'i .z/ 2 H , we see that the conditions
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1B–5B hold in the case when j D i C 1, as in the proof of Theorem 5.1. The last
property 6B follows from the way we constructed the group G.i C 1=3/.

Let Q D G.1/ be the direct limit of the sequence .G.i/;  i / as i ! 1, and let
F.1/ and N D N.1/ be the limits of the corresponding subgroups. Let a1, b1
and s1 be the images of a0, b0 and s0 in Q respectively. Then b1 D s1a1s�11 , Q
is torsion-free by 2B, N C Q, Q D H � N and H \ N D M by 3B, N � F.1/

by 4B. Hence Q=N Š H=M Š C .
Since F.0/ � N.0/ we get F.1/ � N . Thus N D F.1/ is a homomorphic

image of F.0/ D F , and, consequently, it is a quotient of F1. By 5B, for any q 2 N
there are z 2 H and p 2 Q such that pqp�1 D z. Consequently z 2 H \N D M .
Choose x 2 N and h 2 H so that p D hx. Since M has (2CC) and h�1zh 2 M ,
there is y 2 M such that yh�1zhy�1 D z, therefore .yx/q.yx/�1 D z 2 M and
yx 2 MN D N . Hence each element q ofN will be conjugated (inN ) to an element
of M , and since M has (2CC), therefore the group N will also have (2CC).

The property that CQ.N / D f1g can be established in the same way as in Theo-
rem 5.1. Therefore the natural homomorphismQ ! Aut.N / is injective. It remains
to show that it is surjective, that is for every � 2 Aut.N / there is g 2 Q such
that �.x/ D gxg�1 for every x 2 N . Since all non-trivial elements of N are
conjugated, after composing � with an inner automorphism of N , we can assume
that �.a1/ D a1. On the other hand, there exist q1 2 N and i 2 N such that
�.b1/ D q1a1q�11 and q1 is the image of qi in Q. Note that s1 … H because
si 2 G.i/ n H for every i 2 N. This implies that H is a proper subgroup of N ,
thus q1 … H since N D F.1/ D ha1; q1a1q�11 i � Q, and a1 2 H . Hence
Nqi 2 G.i/ nH .

Now we have to consider two possibilities.

Case 1. For each Ok 2 N there is k � Ok such that

ak
i sia

k
i s

�1
i

G.i/

6� ak
i Nqia

k
i Nq�1

i :

Then there is a word Ri .x; y/ such that the property 6B holds for j D i C 1. And,
since each  j is injective on f1g [ Rj (by 2B), we conclude that

Ri .a1; s1a1s�11 / ¤ 1 and Ri .a1; q1a1q�11 / D 1 in Q;

which contradicts the injectivity of �. Hence Case 1 is impossible.

Case 2. The assumptions of Case 1 fail. Then we can use Lemma 6.7 to find
ˇ; 
 2 H and �; 	 2 f�1; 1g such that Nqi D 
s

�
i ˇ, ˇaiˇ

�1 D a�
i and 
�1ai
 D a�

i in
G.i/. Denote by 
1 the image 
 inQ, and for any y 2 Q letCy be the automorphism
of N defined by Cy.x/ D yxy�1 for all x 2 N .

If 	 D �1 then 
�11 a1
1 D a�1 and �.b1/ D q1a1q�11 D 
1s�11 a�1s1
�11 ,
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hence

Aut.N / 3 Cs1��1
1

B � W
´
a1 7! s1a�1s�11 D b�1;
b1 D s1a1s�11 7! a�1:

But N has no such automorphisms because R.a1; b1/ ¤ 1 and R.b�1; a�1/ D 1 in
N (since N is a quotient of F and 1 ¤ R.a0; b0/ 2 R.0/ in G.0/).

Therefore 	 D 1. Similarly, � D 1, as otherwise we would obtain a contradiction
with the fact that R.a�11 ; b�11 / D 1 in N . Thus

Aut.N / 3 C��1
1

B � W
´
a1 7! a1;
b1 D s1a1s�11 7! s1a1s�11 D b1:

And since a1 and b1 generate N we conclude that for all x 2 N , �.x/ D gxg�1,
where g D 
1 2 Q. Thus the natural homomorphism fromQ to Aut.N / is bijective,
implying that Out.N / D Aut.N /=Inn.N / Š Q=N Š C . �
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