NK_0 and NK_1 of the groups C_4 and D_4

Addendum to "Lower algebraic *K*-theory of hyperbolic 3-simplex reflection groups" by J.-F. Lafont and I. J. Ortiz

Charles Weibel

Abstract. In this addendum to [LO] we explicitly compute the Bass Nil-groups $NK_i(\mathbb{Z}[C_4])$ for i = 0, 1 and $NK_0(\mathbb{Z}[D_4])$. We also show that $NK_1(\mathbb{Z}[D_4])$ is not trivial. Here C_4 denotes the cyclic group of order 4 and D_4 is the dihedral group of order 8.

Mathematics Subject Classification (2000). 19A31, 19B28, 19D35, 18F25, 16E20.

Keywords. Lower algebraic K-theory, hyperbolic reflection group, Bass Nil-groups.

In [LO], Lafont and Ortiz computed the lower algebraic *K*-theory of the integral group ring of all 32 hyperbolic 3-simplex reflection groups (see [LO, Tables 6–7]). For 25 of these integral group rings, their computation was completely explicit. For the remaining 7 examples, the expression for some of the *K*-groups involved the Bass Nil-groups NK_0 and NK_1 associated to D_4 (the dihedral group of order 8).

In [L05], Lück computed the lower algebraic *K*-theory of the integral group ring of the semi-direct product of the three-dimensional discrete Heisenberg group by C_4 (the cyclic group of order 4). These computations involved the Bass Nil-groups NK_0 and NK_1 associated to C_4 (see [L05, Corollary 3.9]).

In this addendum we compute the Bass Nil-groups

$$NK_n(\mathbb{Z}G) = \ker\{K_n(\mathbb{Z}G[x]) \xrightarrow{x \mapsto 0} K_n(\mathbb{Z}G)\},\$$

where G is D_2 , C_4 or D_4 , and n = 0, 1. We will use these calculations to complement the calculations of [L05] and [LO] in 1.5 and 2.9 below.

Our calculation will keep track of the additional structure on the groups $NK_n(A)$ given by the Verschiebung and Frobenius operators, V_m and F_m , as well as the continuous module structure over the ring $W(\mathbb{Z})$ of big Witt vectors; the additive group of $W(\mathbb{Z})$ is the abelian group $(1 + x\mathbb{Z}[[x]])^{\times}$. (See [We80] for more details.) In fact, it is a module over the slightly larger Cartier algebra consisting of row-and-column

finite sums $\sum V_m[a_{mn}]F_n$, where V_m and F_m are the Verschiebung and Frobenius operators, and the [a] are the homotheties operators for $a \in \mathbb{Z}$; see [DW93] as well as Remarks 1.2.1 and 2.4 below. Some of the identities satisfied by these operators include: $V_mV_n = V_{mn}$, $F_mF_n = F_{mn}$, $F_mV_m = m$, $[a]V_m = V_m[a^m]$ and $F_m[a] = [a^m]F_m$.

It is convenient to write V for the continuous $W(\mathbb{F}_2)$ -module $x\mathbb{F}_2[x]$, which, as an abelian group, is just a countable direct sum of copies of $\mathbb{F}_2 = \mathbb{Z}/2$ on generators x^i , i > 0. The module structure on V is determined by: $V_m(x^n) = x^{mn}$; $[a]x^n = a^n x^n$; $F_m(x^n) = 0$ if (m, n) = 1 (m > 1) and $F_d(x^n) = d x^{n/d}$ when $d \mid n$.

1. The groups C_2 , D_2 and C_4

For the cyclic group $C_2 = \langle \sigma \rangle$ of order two, consider the Rim square:

from which we immediately get $NK_0(\mathbb{Z}[C_2]) = NK_1(\mathbb{Z}[C_2]) = 0$ as in [Bas68, XII.10.6] and [Mi71, 6.4]. From Guin–Loday–Keune [GL80], [Keu81], the double relative group $NK_2(\mathbb{Z}[C_2], \sigma + 1, \sigma - 1)$ is isomorphic to V, with the Dennis–Stein symbol $\langle x^n(\sigma - 1), \sigma + 1 \rangle$ corresponding to $x^n \in V$. We also have a diagram

Thus we obtain:

Theorem 1.1. $NK_2(\mathbb{Z}[C_2]) \cong V$ with $\langle x^n(\sigma-1), \sigma+1 \rangle$ corresponding to $x^n \in V$.

We now turn to the group $D_2 = C_2 \times C_2$. First we need a calculation. Let $\Phi(V)$ denote the subgroup (and Cartier submodule) $x^2 \mathbb{F}_2[x^2]$ of V, and write Ω_R for the Kähler differentials of R, so that $\Omega_{\mathbb{F}_2[x]} \cong \mathbb{F}_2[x] dx$. By abuse, we will write $\mathbb{F}_2[\varepsilon]$ for the 2-dimensional algebra $\mathbb{F}_2[\varepsilon]/(\varepsilon^2)$.

Lemma 1.2. The map $q: \mathbb{Z}[C_2] \to \mathbb{F}_2[C_2] \cong \mathbb{F}_2[\varepsilon]$ in (1) induces an exact sequence

$$0 \longrightarrow \Phi(V) \longrightarrow NK_2(\mathbb{Z}[C_2]) \xrightarrow{q} NK_2(\mathbb{F}_2[\varepsilon]) \xrightarrow{D} \Omega_{\mathbb{F}_2[x]} \longrightarrow 0.$$

Proof. Van der Kallen computed $NK_2(\mathbb{F}_2[\varepsilon])$ in [vdK71, Exemple 3]: there is a split short exact sequence

$$0 \longrightarrow V/\Phi(V) \xrightarrow{F} NK_2(\mathbb{F}_2[\varepsilon]) \xrightarrow{D} \Omega_{\mathbb{F}_2[x]} \longrightarrow 0,$$
(2)

where $F(x^n) = \langle x^n \varepsilon, \varepsilon \rangle$ and $D(\langle f \varepsilon, g + g' \varepsilon \rangle) = f \, dg$. The map $NK_2(\mathbb{Z}[C_2]) \xrightarrow{q} NK_2(\mathbb{F}_2[\varepsilon])$ sends $\langle x^n(\sigma + 1), \sigma - 1 \rangle$ to $F(x^n) = \langle x^n \varepsilon, \varepsilon \rangle$. By Theorem 1.1 and (2), this map has kernel $\Phi(V)$ and image $F(V/\Phi(V))$.

Remark 1.2.1. Although $\Omega_{\mathbb{F}_2[x]}$ is isomorphic to *V* as an abelian group, it has a different $W(\mathbb{F}_2)$ -module structure. This is determined by the formulas in $\Omega_{\mathbb{F}_2[x]}$:

$$V_m(x^{n-1} dx) = mx^{mn-1} dx, \quad F_m(x^{n-1} dx) = \begin{cases} x^{n/m-1} dx & \text{if } m \mid n, \\ 0 & \text{else.} \end{cases}$$

Grunewald has pointed out that since $\Omega_{\mathbb{F}_2[x]}$ is not finitely generated as a module over the \mathbb{F}_2 -Cartier algebra (of row-and-column finite sums $\sum V_m[a_{mn}]F_n$), or over the subalgebra $W(\mathbb{F}_2)$), neither are $NK_2(\mathbb{F}_2[\varepsilon])$ or (by 1.3 below) $NK_1(\mathbb{Z}[D_2])$.

Theorem 1.3. For $D_2 = C_2 \times C_2$, $NK_0(\mathbb{Z}[D_2]) \cong V$, $NK_1(\mathbb{Z}[D_2]) \cong \Omega_{\mathbb{F}_2[x]}$ and the image of the map $NK_2(\mathbb{Z}[D_2]) \to NK_2(\mathbb{Z}[C_2])^2 \cong V^2$ is $\Phi(V) \times V$.

Proof. We tensor (1) with $\mathbb{Z}[C_2]$. Since $\mathbb{F}_2[C_2] \cong \mathbb{F}_2[\varepsilon]$, $\varepsilon^2 = 0$, and $NK_1(\mathbb{F}_2[C_2]) \cong (1 + x\varepsilon\mathbb{F}_2[x])^{\times} \cong V$, then the Mayer–Vietoris sequence in [Mi71, Theorem 6.4] for the *NK*-functor,

$$NK_{2}(\mathbb{Z}[D_{2}]) \longrightarrow (NK_{2}(\mathbb{Z}[C_{2}]))^{2} \xrightarrow{q \times q} NK_{2}(\mathbb{F}_{2}[\varepsilon]) \longrightarrow NK_{1}(\mathbb{Z}[D_{2}])$$

$$\longrightarrow (NK_{1}(\mathbb{Z}[C_{2}])^{2} \longrightarrow NK_{1}(\mathbb{F}_{2}[\varepsilon]) \xrightarrow{\cong} NK_{0}(\mathbb{Z}[D_{2}]) \longrightarrow NK_{0}(\mathbb{Z}[C_{2}]),$$
(3)

quickly gives $NK_0(\mathbb{Z}[D_2]) \cong NK_1(\mathbb{F}_2[\varepsilon]) \cong V$. By Lemma 1.2, the initial portion of (3) yields the calculation of $NK_1(\mathbb{Z}[D_2])$ and the asserted surjection $NK_2(\mathbb{Z}[D_2]) \twoheadrightarrow \Phi(V) \times V$.

Remark. The kernel K of the map $NK_2(\mathbb{Z}[D_2]) \to V^2$ in Theorem 1.3 has a subgroup generated by the double relative group $NK_2(\mathbb{Z}[D_2], \sigma_1 + 1, \sigma_1 - 1)$, which is isomorphic to $\mathbb{F}_2[\varepsilon] \otimes V$ on the symbols $\langle x^n(a + b\sigma_2)(\sigma_1 + 1), \sigma_2 - 1 \rangle$, where σ_1, σ_2 are the generators of $D_2 = C_2 \times C_2$. The quotient of K by this subgroup is generated by the image of $NK_3(\mathbb{F}_2[\varepsilon])$, a group which I do not know.

C. Weibel

The analysis for the cyclic group C_4 of order 4 on generator σ is similar, using the Rim square

Theorem 1.4. $NK_1(\mathbb{Z}[C_4]) \cong \Omega_{F_2[x]}$ and $NK_0(\mathbb{Z}[C_4]) \cong V$.

Proof. Since $\mathbb{Z}[i]$ is a regular ring, the Mayer–Vietoris sequence for (4) reduces to

$$NK_{2}(\mathbb{Z}[C_{4}]) \xrightarrow{p_{2}} NK_{2}(\mathbb{Z}[C_{2}]) \xrightarrow{q} NK_{2}(\mathbb{F}_{2}[\varepsilon]) \longrightarrow NK_{1}(\mathbb{Z}[C_{4}])$$
$$\longrightarrow NK_{1}(\mathbb{Z}[C_{2}]) \longrightarrow NK_{1}(\mathbb{F}_{2}[\varepsilon]) \xrightarrow{\cong} NK_{0}(\mathbb{Z}[C_{4}]) \longrightarrow NK_{0}(\mathbb{Z}[C_{2}]).$$

The isomorphism marked in this sequence follows from Theorem 1.1. By Lemma 1.2, the image of the first map p_2 is $\Phi(V)$ and the cokernel of the map q is $\Omega_{\mathbb{F}_2[\varepsilon]}$.

Remark. The proof provides a surjection $NK_2(\mathbb{Z}[C_4]) \xrightarrow{p_2} \Phi(V)$. The kernel of p_2 contains the image E of the double relative group $NK_2(\mathbb{Z}[C_4], \sigma^2 + 1, \sigma^2 - 1)$, which is isomorphic to $\mathbb{F}_2[\varepsilon] \otimes V$ on symbols $\langle \sigma^2 + 1, x^n(\sigma^2 - 1) \rangle$. The quotient $\ker(p_2)/E$ is generated by the image of $NK_3(\mathbb{F}_2[\varepsilon])$, which I do not know.

Here is an application of this calculation. Let Hei denote the *three-dimensional* discrete Heisenberg group, which is the subgroup of $GL(3, \mathbb{Z})$ consisting of upper triangular integral matrices with ones along the diagonal. Consider the action of the cyclic group C_4 given by

$$\left(\begin{array}{rrrr} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{array}\right) \mapsto \left(\begin{array}{rrrr} 1 & -z & y - xz \\ 0 & 1 & x \\ 0 & 0 & 1 \end{array}\right).$$

Combining Theorem 1.4 with [L05, 3.9], the lower *K*-theory of the group Hei $\rtimes C_4$ is given in the following proposition.

Proposition 1.5. We have

Wh_n(Hei
$$\rtimes C_4$$
) =
$$\begin{cases} \bigoplus_{\infty} \mathbb{Z}/2, & n = 0, 1, \\ 0, & n \le -1. \end{cases}$$

342

2. The dihedral group D_4

Before moving on to the group ring of D_4 , we need some facts about the double relative groups $K_1(A, B, I)$ when $A \rightarrow B$ is an injection. These groups were described in [GW83, 0.2] as follows:

$$K_1(A, B, I) \cong (B/A) \otimes (I/I^2) / \{b \otimes cz + c \otimes zb - bc \otimes z\} \quad (b, c \in B, z \in I).$$
(5)

Moreover, by [GW83, 3.12 and 4.1], the map $K_1(A, B, I) \to K_1(A, I)$ sends the class of $b \otimes z$ to the class of the matrix $\begin{pmatrix} 1-zb & z \\ -bzb & 1+bz \end{pmatrix}$.

Lemma 2.1. Suppose that $A \rightarrow B$ is a ring homomorphism mapping an ideal I of A isomorphically onto an ideal of B. Then the double relative group satisfies

$$K_1(A[x], B[x], I[x]) \cong K_1(A, B, I) \otimes \mathbb{Z}[x],$$

and

$$NK_1(A, B, I) \cong K_1(A, B, I) \otimes x\mathbb{Z}[x].$$

Proof. Because x is central in B[x], the formulas are immediate from (5).

We will be specifically interested in the twisted group ring $A = \mathbb{Z}[i] \rtimes C_2$, where $C_2 = \langle \tau \rangle$ acts on $\mathbb{Z}[i]$ by $\tau i \tau^{-1} = -i$. It injects into the matrix ring $B = M_2(\mathbb{Z})$ by the map $\phi \colon A \to B$ defined by $\phi(i) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $\phi(\tau) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. The ideal $I = (2, 1 + \tau)A$ maps isomorphically to 2B, and $A/I \cong \mathbb{F}_2[\varepsilon_1]$, where $\varepsilon_1 = 1 + i$ and $\varepsilon_1^2 = 0$. Hence we have the following cartesian square:

To calculate $NK_1(A)$, we use the following double relative calculation.

Lemma 2.2. The double relative group $K_1(A, B, 2B)$ of (6) is isomorphic to \mathbb{F}_2 , and $NK_1(A, B, 2B) \cong V$. The map $V \cong NK_1(A, B, 2B) \to NK_1(A)$ sends $x^n \in V$ to the class of the unit $1 + x^n i(1 + \tau)$ of A[x].

Proof. Since dim(B/A) = 2 and dim $(I/I^2) = 4$, the group $(B/A) \otimes (I/I^2)$ has 8 generators and 64 relations; a basis of B/A is $\{e_{11}, e_{12}\}$ and the $2e_{ij}$ span I/I^2 . By inspection of the relations in (5) we see that the map $B/I \otimes I/I^2 \rightarrow \mathbb{F}_2$ sending $e_{ij} \otimes 2e_{kl}$ to $\delta_{il} + \delta_{jk}$ sends $A/I \otimes I/I^2$ and all the relations in (5) to zero, and

sends $e_{11} \otimes 2e_{12}$ to 1. Thus it induces a surjection $K_1(A, B, I) \to \mathbb{F}_2$. We claim that this is an isomorphism.

The relations for $(b, c, z) = (e_{11}, e_{11}, 2e_{11}), (e_{11}, e_{11}, 2e_{22}), (e_{11}, e_{12}, 2e_{12})$ and $(e_{11}, e_{21}, 2e_{21})$ in (5) yield the relations

$$0 = e_{11} \otimes 2e_{11} = e_{11} \otimes 2e_{22} = e_{12} \otimes 2e_{12} = e_{21} \otimes 2e_{21}.$$

The relations for $(e_{12}, e_{11}, 2e_{11})$, $(b, c, z) = (e_{11}, e_{21}, 2e_{11})$ and $(e_{12}, e_{12}, 2e_{21})$ in (5) yield the relations

$$0 = e_{11} \otimes 2e_{12} - e_{12} \otimes 2e_{11} = e_{21} \otimes 2e_{11} - e_{11} \otimes 2e_{21} = e_{12} \otimes 2e_{22} - e_{12} \otimes 2e_{11}.$$

This verifies the claim, proving that $K_1(A, B, 2B) \cong \mathbb{F}_2$.

Finally, the map $NK_1(A, B, 2B) \to NK_1(A, I)$ sends the class of $x^n e_{11} \otimes 2e_{12}$ to the class of the matrix $\begin{pmatrix} 1-2x^n e_{12}e_{11} & 2x^n e_{12} \\ -x^{2n}e_{11}e_{12}e_{11} & 1+2x^n e_{11}e_{12} \end{pmatrix} = \begin{pmatrix} 1 & x^n i(1+\tau) \\ 0 & 1+x^n i(1+\tau) \end{pmatrix}$, which is the class of $1 + x^n i(1+\tau)$ in $NK_1(A)$.

Remark. The elements $u = i + \tau$ and $v = i(1 + \tau)$ of A satisfy $u^2 = v^2 = 0$, and are distinct in $A/2A = \mathbb{F}_2[i, \tau]$. Hence the units $(1 + x^m u)(1 + x^n v)$ of A[x] generate a subgroup of $NK_1(A)$ isomorphic to V^2 , which injects into $NK_1(\mathbb{F}_2[i, \tau]) \cong V^3$. (Since $\mathbb{F}_2[i, \tau] = \mathbb{F}_2[u, v]/(u^2, v^2)$, the other copy of V in $NK_1(\mathbb{F}_2[i, \tau])$ is the subgroup generated by all $(1 + x^n uv)$.)

Proposition 2.3. $NK_0(A) = 0$ and $NK_1(A) \cong V^2$ on the units $(1+x^m u)(1+x^n v)$. The maps $A \to \mathbb{F}_2[i, \tau] \cong \mathbb{F}_2[\varepsilon_1, \varepsilon_2]$ and $\Omega_{\mathbb{F}_2[x]} \xrightarrow{\delta} NK_2(\mathbb{F}_2[\varepsilon_1, \varepsilon_2])$ sending x^n to $\langle x^{n-1}\varepsilon_1\varepsilon_2, x \rangle$ induce a surjection $NK_2(A) \times \Omega_{\mathbb{F}_2[x]} \to NK_2(\mathbb{F}_2[\varepsilon_1, \varepsilon_2])$.

Proof. Consider the Mayer–Vietoris sequence of the square (6). Since $B = M_2(\mathbb{Z})$ and $B/I = M_2(\mathbb{F}_2)$ are regular rings, $NK_n(B) = NK_n(B/I) = 0$ and hence $NK_n(B, I) = 0$ for all n. We immediately get that $NK_n(A, B, I) \cong NK_n(A, I)$, that the Mayer–Vietoris sequence reduces to $NK_0(A) \cong NK_0(A/I) = 0$, and that there is an exact sequence

$$NK_2(A) \to NK_2(\mathbb{F}_2[\varepsilon_1]) \to NK_1(A, B, I) \to NK_1(A) \to NK_1(\mathbb{F}_2[\varepsilon_1]) \to 0.$$

By Lemma 2.2 and the remark preceding it, this yields the calculation of $NK_1(A)$.

Now $\pi: A \to \mathbb{F}_2[\varepsilon_1, \varepsilon_2]$ satisfies $\pi(u) = \varepsilon_1 + \varepsilon_2$, $\pi(v) = \varepsilon_1 + \varepsilon_1\varepsilon_2$ and $\pi(uv) = \varepsilon_1\varepsilon_2$, so we may write $\mathbb{F}_2[\varepsilon_1, \varepsilon_2] \cong \mathbb{F}_2[\bar{u}, \bar{v}]/(\bar{u}^2, \bar{v}^2)$. By [vdK71], the group $NK_2(\mathbb{F}_2[\bar{u}, \bar{v}])$ is isomorphic to the direct sum of $NK_2(\mathbb{F}_2[\bar{u}])$, $NK_2(\mathbb{F}_2[\bar{v}])$ and a group with the following generators:

$$\langle x^n \bar{u}, \bar{v} \rangle$$
, $\langle x^n \bar{u} \bar{v}, \bar{u} \rangle$, $\langle x^n \bar{u} \bar{v}, \bar{v} \rangle$ and $\langle x^{n-1} \bar{u} \bar{v}, x \rangle$.

Since $u^2 = v^2 = 0$ in A, all these symbols lift to Dennis–Stein symbols in $NK_2(A)$ except possibly the symbols $\langle x^{n-1}\bar{u}\bar{v}, x \rangle$. But these symbols are hit by the image of $\Omega_{\mathbb{F}_2[x]}$ under δ .

Remark. $\delta: \Omega_{\mathbb{F}_2[x]} \to NK_2(\mathbb{F}_2[\varepsilon_1, \varepsilon_2])$ is a homomorphism by the Dennis–Stein identity $\langle f, x \rangle \langle g, x \rangle = \langle f + g - fgx, x \rangle$ with fg = 0; see [GL80, p. 184]. It is a morphism of \mathbb{F}_2 -Cartier modules since $V_m \langle x^{n-1} \varepsilon_1 \varepsilon_2, x \rangle = m \langle x^{mn-1} \varepsilon_1 \varepsilon_2, x \rangle = \delta(V_m(x^n))$ and (by [St80, 2.1])

$$F_m \langle x^{n-1} \varepsilon_1 \varepsilon_2, x \rangle = \begin{cases} \langle x^{n/m-1} \varepsilon_1 \varepsilon_2, x \rangle, & m \mid n \\ r \langle x^{n-1} (\varepsilon_1 \varepsilon_2)^m, x \rangle - s \langle x^n (\varepsilon_1 \varepsilon_2)^{m-1}, \varepsilon_1 \varepsilon_2 \rangle = 0, & rm + sn = 1. \end{cases}$$

Our analysis of D_4 will involve the units of the ring $\mathbb{Z}/4[x][C_2]$.

Example 2.4. Consider the modular group ring $B = \mathbb{Z}/4[C_2] = \mathbb{Z}/4[e]/(e^2 - 2e)$, with $e = 1 - \tau$. The ideals 2eB of B and eB/2eB of B/2eB are isomorphic to \mathbb{F}_2 , so both $NK_1(B, 2e)$ and $NK_1(B/2e, e)$ are isomorphic to V and the group $NK_1(B, e)$, identified with the abelian group $(1 + xeB[x])^{\times}$, is a nontrivial extension:

$$0 \to V \to NK_1(B, e) \to V \to 0.$$

As an abelian group, $NK_1(B, e)$ is the direct sum of a countably infinite free $\mathbb{Z}/4$ -module on the $(1 + ex^m)$ (m = 1, 2, ...) and a countably infinite free $\mathbb{Z}/2$ -module on the $(1 + 2ex^{2i-1})$ (i = 1, 2, ...). As a module over the $\mathbb{Z}/4$ -Cartier algebra (generated by the operators V_m , F_m and homothety [2]), $NK_1(B, e)$ is cyclic on generator u = 1 + ex; $V_m(u) = 1 + ex^m$ and $V_m[2](u) = 1 + 2ex^m$.

Finally, we are in position to analyze $NK_0(\mathbb{Z}[D_4])$. The sharp exponent 4 for $NK_0(\mathbb{Z}[D_4])$ in Theorem 2.5 is a slight improvement on the bound in [CP02]. It is convenient to write D_4 as the semidirect product of C_4 (on σ) with the cyclic group $C_2 = \{1, \tau\}$, with relation $\tau \sigma \tau = \sigma^{-1}$.

Theorem 2.5. The group $NK_0(\mathbb{Z}[D_4])$ is isomorphic to the cyclic Cartier module $NK_1(\mathbb{Z}/4[C_2], 1-\tau)$, described in Example 2.4. As a group, it is the direct sum of a countably infinite free $\mathbb{Z}/4$ -module and a countably infinite free $\mathbb{Z}/2$ -module.

Proof. We can map $\mathbb{Z}[D_4]$ to the twisted ring $A = \mathbb{Z}[i] \rtimes C_2$ occurring in (6) above, sending σ to *i*. Combining this with the natural surjection onto the subring $\mathbb{Z}[D_2]$ of $\mathbb{Z}[C_2] \times \mathbb{Z}[C_2]$, we get a ring map $\mathbb{Z}[D_4] \to A \times \mathbb{Z}[C_2] \times \mathbb{Z}[C_2]$. The ideal $I = (4, 2 - 2\sigma, \sigma^2 - 1)\mathbb{Z}[D_4]$ has $B_0 = \mathbb{Z}[D_4]/I = \mathbb{Z}/4[D_2]/(2 - 2\sigma)$, and is

C. Weibel

isomorphic to the ideal $2A \times (4) \times (4)$ of $A \times \mathbb{Z}[C_2] \times \mathbb{Z}[C_2]$. Consider the following cartesian square:

The kernel of the split surjection $q_+: B_0 \to B = \mathbb{Z}/4[C_2]$ is the 2-dimensional ideal $J = (1 - \sigma)B_0$. This implies that $NK_1(B_0) = NK_1(B) \oplus NK_1(B_0, J)$. Because $NK_1(\mathbb{Z}[C_2]) = NK_0(\mathbb{Z}[C_2]) = NK_0(A) = 0$ (by 2.3), the Mayer–Vietoris sequence associated to (7) ends

$$NK_1(A) \times NK_1(B_0, J) \xrightarrow{\eta} NK_1(\mathbb{F}_2[D_2]) \times NK_1(B) \to NK_0(\mathbb{Z}[D_4]) \to 0.$$
(8)

The displayed map η is given by the matrix $\begin{pmatrix} \pi & 0 \\ q_0 & q_- \end{pmatrix}$. It is easy to see that $NK_1(B_0, J)$ is isomorphic to V^2 on the terms $(1 + (1 - \sigma)x^m)$ and $(1 + (1 - \sigma)\tau x^n)$. An elementary calculation using the isomorphism $NK_1(A) \cong V^2$ of 2.3 shows that η is an injection, sending the module $NK_1(A) \times NK_1(B_0, J) \cong V^4$ isomorphically onto the subgroup $NK_1(\mathbb{F}_2[D_2]) \times NK_1(\mathbb{Z}/4)$. Since $NK_1(B) = NK_1(\mathbb{Z}/4) \oplus NK_1(B, eB), e = 1 - \tau$, it follows that the induced map $NK_1(B, e) \to NK_0(\mathbb{Z}[D_4])$ is an isomorphism.

To begin the calculation of $NK_1(\mathbb{Z}[D_4])$, we extend the Mayer–Vietoris sequence (8) associated to (7) to the left. This is possible by the following observation: since B_0 maps onto each of the three ring factors on the lower right of (7), the presentation (5) shows that the double relative K_1 obstruction vanishes. Because η is an injection in (8), the continuation of the Mayer–Vietoris sequence yields the exact sequence

$$(*) \xrightarrow{\begin{pmatrix} \pi & 0\\ q_0 & q_- \end{pmatrix}} NK_2(\mathbb{F}_2[D_2]) \times NK_2(B) \to NK_1(\mathbb{Z}[D_4]) \to 0, \tag{9}$$

where (*) denotes $NK_2(A) \times NK_2(\mathbb{Z}[C_2])^2 \times NK_2(B_0, J)$.

Definition 2.6. The map $\cup [x] \colon NK_0(\mathbb{Z}[D_4]) \to NK_1(\mathbb{Z}[D_4])$ is obtained by composing the isomorphism $NK_1(B, e) \cong NK_0(\mathbb{Z}[D_4])$ of Theorem 2.5 with the canonical map $NK_2(B, e) \to NK_2(B) \to NK_1(\mathbb{Z}[D_4])$ of (9).

Remark. There is also a canonical map $NK_1(B, e) \rightarrow NK_2(B, e)$ sending the unit 1 - aex to $\langle ae, x \rangle$; the composition with $NK_2(B, e) \subset K_2(B[x, x^{-1}], e)$ is given by $1 - aex \mapsto \{1 - aex, x\}$ (multiplication by the class of x in $K_1(\mathbb{Z}[x, x^{-1}])$).

346

The analogous maps from $V \cong NK_1(B, 2e)$ and $V \cong NK_1(B/2eB, e)$ to $\Omega_{\mathbb{F}_2[x]} \cong NK_2(B, 2e)$ and $\Omega_{\mathbb{F}_2[x]} \cong NK_2(B/2eB, e)$ are compatible with the divided power map $[d]: V \to \Omega_{\mathbb{F}_2[x]}$ sending x^n to $x^{n-1} dx$. Note that [d] is an isomorphism of abelian groups but is not a morphism of \mathbb{F}_2 -Cartier modules.

Theorem 2.7. The map $\cup [x]$: $NK_0(\mathbb{Z}[D_4]) \to NK_1(\mathbb{Z}[D_4])$ in Definition 2.6 is a surjection. Hence the group $NK_1(\mathbb{Z}[D_4])$ has exponent 2 or 4, and there is a commutative diagram whose rows are exact:

$$0 \longrightarrow V \longrightarrow NK_{0}(\mathbb{Z}[D_{4}]) \longrightarrow V \longrightarrow 0$$
$$\cong \left| \begin{bmatrix} d \end{bmatrix} \qquad \qquad \downarrow \cup \begin{bmatrix} x \end{bmatrix} \qquad \cong \left| \begin{bmatrix} d \end{bmatrix} \\ \Omega_{\mathbb{F}_{2}[x]} \longrightarrow NK_{1}(\mathbb{Z}[D_{4}]) \longrightarrow \Omega_{\mathbb{F}_{2}[x]} \longrightarrow 0.$$

Proof. A diagram chase on (9) shows that $NK_1(\mathbb{Z}[D_4])$ is an extension of the cokernel of $NK_2(\mathbb{Z}[C_2]) \times NK_2(B_0, J) \to NK_2(B)$ by a quotient of the cokernel of $NK_2(A) \to NK_2(\mathbb{F}_2[D_2])$. These cokernels are both $\Omega_{\mathbb{F}_2[x]}$, by Proposition 2.3 and Lemma 2.8 below, yielding the bottom row of the theorem. The map $\cup[x]$ sends the element corresponding to $1 - x^n ae \in NK_1(B, e)$ to the element corresponding to $\langle x^{n-1}ae, x \rangle \in NK_2(B, e)$, so the diagram in the theorem commutes by inspection. \Box

Lemma 2.8. The cokernel of the map $NK_2(\mathbb{Z}[C_2]) \times NK_2(B_0, J) \to NK_2(B)$ in (9) is $\Omega_{\mathbb{F}_2[x]}$, on symbols $\langle x^{n-1}e, x \rangle$.

Proof. The kernel of the map $q_-: B_0 \to B$ is the ideal $J' = (1+\sigma)B_0$. Because $J \cap J' = 0$ in B_0 , the double relative group $NK_2(B_0, J, J')$ is isomorphic to $\mathbb{F}_2[C_2][x]$ on symbols $\langle x^m(1+\sigma), (1-\sigma) \rangle$ and $\langle x^m\tau(1+\sigma), (1-\sigma) \rangle$ by [GL80], [Keu81]. Since $J \cong 2B$, we have an exact sequence

$$\mathbb{F}_2[C_2][x] \to NK_2(B_0, J) \xrightarrow{q_-} NK_2(B, 2B) \to 0.$$
⁽¹⁰⁾

Combining this with the ideal sequence for $2B \subset B$ shows that the cokernel of $NK_2(B_0, J) \rightarrow NK_2(B)$ is $NK_2(B/2B)$. Since $B/2B \cong \mathbb{F}_2[C_2]$, the lemma now follows from Lemma 1.2.

Inserting the calculations of Theorems 2.5 and 2.7 into Tables 6–7 in [LO], we obtain the following result.

Theorem 2.9. Let Γ be one of the following hyperbolic 3-simplex reflection groups: $[(3, 4, 3, 6)], [4, 3^{[3]}], [4, 3, 6], [(3^3, 4)], [4, 3, 5], [(3, 4)^{[2]}], [(3, 4, 3, 5)].$ Then the lower algebraic K-theory of the groups Γ is given by the following table:

C. Weibel

Г	$K_{-1} \neq 0$	$\widetilde{K}_0 \neq 0$	$Wh \neq 0$
[(3, 4, 3, 6)]	\mathbb{Z}^3	$(\mathbb{Z}/4)^2 \oplus \operatorname{Nil}_0$	Nil ₁
[4, 3 ^[3]]	\mathbb{Z}^3	$(\mathbb{Z}/4)^2 \oplus \operatorname{Nil}_0 \oplus \bigoplus_{\infty} \mathbb{Z}/2$	$\operatorname{Nil}_1 \oplus \bigoplus_\infty \mathbb{Z}/2$
[4, 3, 6]	\mathbb{Z}^4	$(\mathbb{Z}/4)^2 \oplus \operatorname{Nil}_0 \oplus \bigoplus_{\infty} \mathbb{Z}/2$	$\operatorname{Nil}_1 \oplus \bigoplus_\infty \mathbb{Z}/2$
$[(3^3, 4)]$	\mathbb{Z}^2	$(\mathbb{Z}/4)^2 \oplus \operatorname{Nil}_0 \oplus \bigoplus_{\infty} \mathbb{Z}/2$	$\operatorname{Nil}_1 \oplus \bigoplus_\infty \mathbb{Z}/2$
[4, 3, 5]	\mathbb{Z}^4	$(\mathbb{Z}/4)^2 \oplus \operatorname{Nil}_0 \oplus \bigoplus_{\infty} \mathbb{Z}/2$	$\mathbb{Z}^3 \oplus \operatorname{Nil}_1 \oplus \bigoplus_{\infty} \mathbb{Z}/2$
[(3, 4) ^[2]]	\mathbb{Z}^4	$(\mathbb{Z}/4)^4 \oplus 2\mathrm{Nil}_0 \oplus \bigoplus_{\infty} \mathbb{Z}/2$	$2\mathrm{Nil}_1 \oplus \bigoplus_{\infty} \mathbb{Z}/2$
[(3, 4, 3, 5)]	\mathbb{Z}^6	$(\mathbb{Z}/4)^2 \oplus \operatorname{Nil}_0 \oplus \bigoplus_{\infty} \mathbb{Z}/2$	$\mathbb{Z}^3 \oplus \operatorname{Nil}_1 \oplus \bigoplus_{\infty} \mathbb{Z}/2$

In this table, $\operatorname{Nil}_0 = NK_0(\mathbb{Z}[D_4])$ is the direct sum of a countably infinite free $\mathbb{Z}/4$ -module and a countably infinite free $\mathbb{Z}/2$ -module, and $\operatorname{Nil}_1 = NK_1(\mathbb{Z}[D_4])$ is a countably infinite torsion group of exponent 2 or 4.

References

- [Bas68] H. Bass, Algebraic K-theory. W. A. Benjamin, New York 1968. Zbl 0174.30302 MR 0249491
- [CP02] F. Connolly and S. Parasidis, On the exponent of the cokernel of the forget-control map on K₀-groups. Fund. Math. **172** (2002), 201–216. Zbl 0992.57022 MR 1898685
- [DW93] B. Dayton and C. Weibel, Module structures on the Hochschild and Cyclic Homology of Graded Rings. In *Algebraic K-theory and Algebraic Topology*, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 407, Kluwer, Dordrecht 1993, 63–90. Zbl 0900.16015 MR 1367293
- [F87] F. T. Farrell, A remark on K₀ of crystallographic groups. *Topology Appl.* 26 (1987), 97–99. Zbl 0624.18004 MR 0893807
- [GW83] S. Geller and C. Weibel, *K*₁(*A*, *B*, *I*). *J. Reine Angew. Math.* **342** (1983), 12–34. Zbl 0503.18009 MR 0703484
- [GL80] D. Guin-Waléry, and J-L. Loday, Obstruction à l'excision en K-théorie algébrique. In Algebraic K-theory (Evanston 1980), Lecture Notes in Math. 854, Springer-Verlag, Berlin 1981, 179–216. Zbl 0461.18007 MR 0618305
- [Keu81] F. Keune, Doubly relative *K*-theory and the relative *K*₃. *J. Pure Appl. Algebra* **20** (1981), 39–53. Zbl 0473.18009 MR 0596152
- [LO] J. F. Lafont, and I. J. Ortiz, Lower algebraic K-theory of hyperbolic 3-simplex reflection groups. Comment. Math. Helv. 84 (2009), 297–337.

CMH

- [L05] W. Lück, K- and L-theory of the semi-direct product of the discrete 3-dimensional Heisenberg group by ℤ/4. Geom. Topol. 9 (2005), 1639–1676 Zbl 1073.19004 MR 2175154
- [Mi71] J. Milnor, Introduction to algebraic K-theory. Ann. of Math. Stud. 72, Princeton University Press, Princeton, N.J., 1971. Zbl 0237.18005 MR 0349811
- [St80] J. Stienstra, On K₂ and K₃ of truncated polynomial rings. In Algebraic K-theory, Evanston 1980, Lecture Notes in Math. 854, Springer-Verlag, Berlin 1981, 409–455. Zbl 0463.13007 MR 0618315
- [vdK71] W. van der Kallen, Le K₂ des nombres duaux. C. R. Acad. Sci. Paris Sér. A-B **273** (1971), 1204–1207. Zbl 0225.13006 MR 0291158
- [We80] C. A. Weibel, Mayer-Vietoris sequences and module structures on NK*. In Algebraic K-theory, Evanston 1980, Lecture Notes in Math. 854, Springer-Verlag, Berlin 1981, 466–493. Zbl 0487.18012 MR 0618317

Received February 17, 2008

Charles Weibel, Department of Mathematics, Rutgers University, Piscataway, NJ 08854, U.S.A.

E-mail: weibel@math.rutgers.edu