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NK0 and NK1 of the groups C4 and D4

Addendum to “Lower algebraic K -theory of hyperbolic 3-simplex reflection
groups” by J.-F. Lafont and I. J. Ortiz
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Abstract. In this addendum to [LO] we explicitly compute the Bass Nil-groups NKi .ZŒC4�/

for i D 0; 1 and NK0.ZŒD4�/. We also show that NK1.ZŒD4�/ is not trivial. Here C4 denotes
the cyclic group of order 4 and D4 is the dihedral group of order 8.
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In [LO], Lafont and Ortiz computed the lower algebraic K-theory of the integral
group ring of all 32 hyperbolic 3-simplex reflection groups (see [LO, Tables 6–7]).
For 25 of these integral group rings, their computation was completely explicit. For
the remaining 7 examples, the expression for some of the K-groups involved the Bass
Nil-groups NK0 and NK1 associated to D4 (the dihedral group of order 8).

In [L05], Lück computed the lower algebraic K-theory of the integral group ring
of the semi-direct product of the three-dimensional discrete Heisenberg group by C4

(the cyclic group of order 4). These computations involved the Bass Nil-groups NK0

and NK1 associated to C4 (see [L05, Corollary 3.9]).
In this addendum we compute the Bass Nil-groups

NKn.ZG/ D kerfKn.ZGŒx�/
x 7!0���! Kn.ZG/g;

where G is D2, C4 or D4, and n D 0; 1. We will use these calculations to complement
the calculations of [L05] and [LO] in 1.5 and 2.9 below.

Our calculation will keep track of the additional structure on the groups NKn.A/

given by the Verschiebung and Frobenius operators, Vm and Fm, as well as the con-
tinuous module structure over the ring W.Z/ of big Witt vectors; the additive group
of W.Z/ is the abelian group .1 C xZŒŒx��/�. (See [We80] for more details.) In fact,
it is a module over the slightly larger Cartier algebra consisting of row-and-column
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finite sums
P

VmŒamn�Fn, where Vm and Fm are the Verschiebung and Frobenius
operators, and the Œa� are the homotheties operators for a 2 Z; see [DW93] as well
as Remarks 1.2.1 and 2.4 below. Some of the identities satisfied by these opera-
tors include: VmVn D Vmn, FmFn D Fmn, FmVm D m, Œa�Vm D VmŒam� and
FmŒa� D Œam�Fm.

It is convenient to write V for the continuous W.F2/-module xF2Œx�, which, as an
abelian group, is just a countable direct sum of copies of F2 D Z=2 on generators xi ,
i > 0. The module structure on V is determined by: Vm.xn/ D xmn; Œa�xn D anxn;
Fm.xn/ D 0 if .m; n/ D 1 (m > 1) and Fd .xn/ D d xn=d when d || n.

1. The groups C2, D2 and C4

For the cyclic group C2 D h�i of order two, consider the Rim square:

ZŒC2�

� 7!�1

��

� 7!C1 �� Z

q

��
Z

q �� F2

or, equivalently,

ZŒC2�

��

� 7!.1;�1/ �� Z � Z

q�q

��
F2

� �� F2 � F2

(1)

from which we immediately get NK0.ZŒC2�/ D NK1.ZŒC2�/ D 0 as in [Bas68,
XII.10.6] and [Mi71, 6.4]. From Guin–Loday–Keune [GL80], [Keu81], the double
relative group NK2.ZŒC2�; � C 1; � � 1/ is isomorphic to V , with the Dennis–Stein
symbol hxn.� � 1/; � C 1i corresponding to xn 2 V . We also have a diagram

NK2.ZŒC2�; � C 1; � � 1/ Š V

Š
��

0 D NK3.Z/ �� NK2.ZŒC2�; � C 1/

��

Š �� NK2.ZŒC2�/

��

�� NK2.Z/ D 0

0 D NK2.Z; 2/ �� NK2.Z/ D 0:

Thus we obtain:

Theorem 1.1. NK2.ZŒC2�/ Š V with hxn.� � 1/; � C 1i corresponding to xn 2 V .

We now turn to the group D2 D C2 � C2. First we need a calculation. Let ˆ.V /

denote the subgroup (and Cartier submodule) x2F2Œx2� of V , and write �R for the
Kähler differentials of R, so that �F2Œx� Š F2Œx�dx. By abuse, we will write F2Œ"�

for the 2-dimensional algebra F2Œ"�=."2/.
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Lemma 1.2. The map q W ZŒC2� ! F2ŒC2� Š F2Œ"� in (1) induces an exact sequence

0 �! ˆ.V / �! NK2.ZŒC2�/
q�! NK2.F2Œ"�/

D�! �F2Œx� �! 0:

Proof. Van der Kallen computed NK2.F2Œ"�/ in [vdK71, Exemple 3]: there is a split
short exact sequence

0 �! V=ˆ.V /
F�! NK2.F2Œ"�/

D�! �F2Œx� �! 0; (2)

where F.xn/ D hxn"; "i and D.hf "; g C g0"i/ D f dg. The map NK2.ZŒC2�/
q�!

NK2.F2Œ"�/ sends hxn.� C 1/; � � 1i to F.xn/ D hxn"; "i. By Theorem 1.1 and
(2), this map has kernel ˆ.V / and image F.V=ˆ.V //. �

Remark 1.2.1. Although �F2Œx� is isomorphic to V as an abelian group, it has a
different W.F2/-module structure. This is determined by the formulas in �F2Œx�:

Vm.xn�1 dx/ D mxmn�1dx; Fm.xn�1dx/ D
´

xn=m�1dx if m || n;

0 else.

Grunewald has pointed out that since �F2Œx� is not finitely generated as a module
over the F2-Cartier algebra (of row-and-column finite sums

P
VmŒamn�Fn), or over

the subalgebra W.F2/), neither are NK2.F2Œ"�/ or (by 1.3 below) NK1.ZŒD2�/.

Theorem 1.3. For D2 D C2 � C2, NK0.ZŒD2�/ Š V , NK1.ZŒD2�/ Š �F2Œx� and
the image of the map NK2.ZŒD2�/ ! NK2.ZŒC2�/2 Š V 2 is ˆ.V / � V .

Proof. We tensor (1) with ZŒC2�. Since F2ŒC2� Š F2Œ"�, "2 D 0, and NK1.F2ŒC2�/ Š
.1 C x"F2Œx�/� Š V , then the Mayer–Vietoris sequence in [Mi71, Theorem 6.4] for
the NK-functor,

NK2.ZŒD2�/ �! .NK2.ZŒC2�//2 q�q���! NK2.F2Œ"�/ �! NK1.ZŒD2�/

�! .NK1.ZŒC2�/2 �! NK1.F2Œ"�/
Š��! NK0.ZŒD2�/ �! NK0.ZŒC2�/;

(3)

quickly gives NK0.ZŒD2�/ Š NK1.F2Œ"�/ Š V . By Lemma 1.2, the initial
portion of (3) yields the calculation of NK1.ZŒD2�/ and the asserted surjection
NK2.ZŒD2�/ � ˆ.V / � V . �

Remark. The kernel K of the map NK2.ZŒD2�/ ! V 2 in Theorem 1.3 has a
subgroup generated by the double relative group NK2.ZŒD2�; �1 C1; �1 �1/, which
is isomorphic to F2Œ"� ˝ V on the symbols hxn.a C b�2/.�1 C 1/; �2 � 1i, where
�1, �2 are the generators of D2 D C2 � C2. The quotient of K by this subgroup is
generated by the image of NK3.F2Œ"�/, a group which I do not know.
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The analysis for the cyclic group C4 of order 4 on generator � is similar, using
the Rim square

ZŒC4�

�2 7!1

��

� 7!i �� ZŒi �

i 7!1C"

��
ZŒC2�

q �� F2Œ"� .

(4)

Theorem 1.4. NK1.ZŒC4�/ Š �F2Œx� and NK0.ZŒC4�/ Š V .

Proof. Since ZŒi � is a regular ring, the Mayer–Vietoris sequence for (4) reduces to

NK2.ZŒC4�/
p2���! NK2.ZŒC2�/

q��! NK2.F2Œ"�/ �! NK1.ZŒC4�/

�! NK1.ZŒC2�/ ! NK1.F2Œ"�/
Š��! NK0.ZŒC4�/ �! NK0.ZŒC2�/:

The isomorphism marked in this sequence follows from Theorem 1.1. By Lemma 1.2,
the image of the first map p2 is ˆ.V / and the cokernel of the map q is �F2Œ"�. �

Remark. The proof provides a surjection NK2.ZŒC4�/
p2�! ˆ.V /. The kernel of

p2 contains the image E of the double relative group NK2.ZŒC4�; �2 C 1; �2 � 1/,
which is isomorphic to F2Œ"� ˝ V on symbols h�2 C 1; xn.�2 � 1/i. The quotient
ker.p2/=E is generated by the image of NK3.F2Œ"�/, which I do not know.

Here is an application of this calculation. Let Hei denote the three-dimensional
discrete Heisenberg group, which is the subgroup of GL.3; Z/ consisting of upper
triangular integral matrices with ones along the diagonal. Consider the action of the
cyclic group C4 given by

 
1 x y
0 1 z
0 0 1

!
7!
 

1 �z y � xz
0 1 x
0 0 1

!
:

Combining Theorem 1.4 with [L05, 3.9], the lower K-theory of the group Hei Ì C4

is given in the following proposition.

Proposition 1.5. We have

Whn.Hei Ì C4/ D
´L

1 Z=2; n D 0; 1;

0; n � �1:



Vol. 84 (2009) NK0 and NK1 of the groups C4 and D4 343

2. The dihedral group D4

Before moving on to the group ring of D4, we need some facts about the double relative
groups K1.A; B; I / when A ! B is an injection. These groups were described in
[GW83, 0.2] as follows:

K1.A; B; I / Š .B=A/˝.I=I 2/=fb˝czCc˝zb�bc˝zg .b; c 2 B; z 2 I /: (5)

Moreover, by [GW83, 3.12 and 4.1], the map K1.A; B; I / ! K1.A; I / sends the
class of b ˝ z to the class of the matrix

�
1�zb z�bzb 1Cbz

�
.

Lemma 2.1. Suppose that A ! B is a ring homomorphism mapping an ideal I of A

isomorphically onto an ideal of B . Then the double relative group satisfies

K1.AŒx�; BŒx�; I Œx�/ Š K1.A; B; I / ˝ ZŒx�;

and

NK1.A; B; I / Š K1.A; B; I / ˝ xZŒx�:

Proof. Because x is central in BŒx�, the formulas are immediate from (5). �

We will be specifically interested in the twisted group ring A D ZŒi � Ì C2, where
C2 D h�i acts on ZŒi � by � i��1 D �i . It injects into the matrix ring B D M2.Z/

by the map � W A ! B defined by �.i/ D �
0 1�1 0

�
and �.�/ D �

1 0
0 �1

�
. The ideal

I D .2; 1 C �/A maps isomorphically to 2B , and A=I Š F2Œ"1�, where "1 D 1 C i

and "2
1 D 0. Hence we have the following cartesian square:

A

mod I

��

� �� M2.Z/

mod 2B

��
F2Œ"1� �� M2.F2/.

(6)

To calculate NK1.A/, we use the following double relative calculation.

Lemma 2.2. The double relative group K1.A; B; 2B/ of (6) is isomorphic to F2, and
NK1.A; B; 2B/ Š V . The map V Š NK1.A; B; 2B/ ! NK1.A/ sends xn 2 V to
the class of the unit 1 C xni.1 C �/ of AŒx�.

Proof. Since dim.B=A/ D 2 and dim.I=I 2/ D 4, the group .B=A/ ˝ .I=I 2/ has 8
generators and 64 relations; a basis of B=A is fe11; e12g and the 2eij span I=I 2. By
inspection of the relations in (5) we see that the map B=I ˝ I=I 2 ! F2 sending
eij ˝ 2ekl to ıil C ıjk sends A=I ˝ I=I 2 and all the relations in (5) to zero, and
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sends e11 ˝ 2e12 to 1. Thus it induces a surjection K1.A; B; I / ! F2. We claim
that this is an isomorphism.

The relations for .b; c; z/ D .e11; e11; 2e11/, .e11; e11; 2e22/, .e11; e12; 2e12/ and
.e11; e21; 2e21/ in (5) yield the relations

0 D e11 ˝ 2e11 D e11 ˝ 2e22 D e12 ˝ 2e12 D e21 ˝ 2e21:

The relations for .e12; e11; 2e11/, .b; c; z/ D .e11; e21; 2e11/ and .e12; e12; 2e21/ in
(5) yield the relations

0 D e11 ˝2e12 �e12 ˝2e11 D e21 ˝2e11 �e11 ˝2e21 D e12 ˝2e22 �e12 ˝2e11:

This verifies the claim, proving that K1.A; B; 2B/ Š F2.
Finally, the map NK1.A; B; 2B/ ! NK1.A; I / sends the class of xne11 ˝ 2e12

to the class of the matrix
�

1�2xne12e11 2xne12

�x2ne11e12e11 1C2xne11e12

�
D
�

1 xni.1C�/
0 1Cxni.1C�/

�
, which is

the class of 1 C xni.1 C �/ in NK1.A/. �

Remark. The elements u D i C � and v D i.1 C �/ of A satisfy u2 D v2 D 0, and
are distinct in A=2A D F2Œi; � �. Hence the units .1Cxmu/.1Cxnv/ of AŒx� generate
a subgroup of NK1.A/ isomorphic to V 2, which injects into NK1.F2Œi; � �/ Š V 3.
(Since F2Œi; � � D F2Œu; v�=.u2; v2/, the other copy of V in NK1.F2Œi; � �/ is the
subgroup generated by all .1 C xnuv/.)

Proposition 2.3. NK0.A/ D 0 and NK1.A/ Š V 2 on the units .1Cxmu/.1Cxnv/.

The maps A ! F2Œi; � � Š F2Œ"1; "2� and �F2Œx�

ı�! NK2.F2Œ"1; "2�/ sending
xn to hxn�1"1"2; xi induce a surjection NK2.A/ � �F2Œx� ! NK2.F2Œ"1; "2�/.

Proof. Consider the Mayer–Vietoris sequence of the square (6). Since B D M2.Z/

and B=I D M2.F2/ are regular rings, NKn.B/ D NKn.B=I / D 0 and hence
NKn.B; I / D 0 for all n. We immediately get that NKn.A; B; I / Š NKn.A; I /,
that the Mayer–Vietoris sequence reduces to NK0.A/ Š NK0.A=I / D 0, and that
there is an exact sequence

NK2.A/ ! NK2.F2Œ"1�/ ! NK1.A; B; I / ! NK1.A/ ! NK1.F2Œ"1�/ ! 0:

By Lemma 2.2 and the remark preceding it, this yields the calculation of NK1.A/.
Now � W A ! F2Œ"1; "2� satisfies �.u/ D "1 C "2, �.v/ D "1 C "1"2 and

�.uv/ D "1"2, so we may write F2Œ"1; "2� Š F2Œ Nu; Nv�=. Nu2; Nv2/. By [vdK71], the
group NK2.F2Œ Nu; Nv�/ is isomorphic to the direct sum of NK2.F2Œ Nu�/, NK2.F2Œ Nv�/

and a group with the following generators:

hxn Nu; Nvi; hxn Nu Nv; Nui; hxn Nu Nv; Nvi and hxn�1 Nu Nv; xi:
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Since u2 D v2 D 0 in A, all these symbols lift to Dennis–Stein symbols in NK2.A/

except possibly the symbols hxn�1 Nu Nv; xi. But these symbols are hit by the image of
�F2Œx� under ı. �

Remark. ı W �F2Œx� ! NK2.F2Œ"1; "2�/ is a homomorphism by the Dennis–Stein
identity hf; xihg; xi D hf C g � fgx; xi with fg D 0; see [GL80, p. 184]. It is
a morphism of F2-Cartier modules since Vmhxn�1"1"2; xi D mhxmn�1"1"2; xi D
ı.Vm.xn// and (by [St80, 2.1])

Fmhxn�1"1"2; xi

D
´

hxn=m�1"1"2; xi; m || n

rhxn�1."1"2/m; xi � shxn."1"2/m�1; "1"2i D 0; rm C sn D 1:

Our analysis of D4 will involve the units of the ring Z=4Œx�ŒC2�.

Example 2.4. Consider the modular group ring B D Z=4ŒC2� D Z=4Œe�=.e2 �2e/,
with e D 1�� . The ideals 2eB of B and eB=2eB of B=2eB are isomorphic to F2, so
both NK1.B; 2e/ and NK1.B=2e; e/ are isomorphic to V and the group NK1.B; e/,
identified with the abelian group .1 C xeBŒx�/�, is a nontrivial extension:

0 ! V ! NK1.B; e/ ! V ! 0:

As an abelian group, NK1.B; e/ is the direct sum of a countably infinite free
Z=4-module on the .1 C exm/ (m D 1; 2; : : : ) and a countably infinite free Z=2-
module on the .1 C 2ex2i�1/ (i D 1; 2; : : : ). As a module over the Z=4-Cartier
algebra (generated by the operators Vm, Fm and homothety Œ2�), NK1.B; e/ is cyclic
on generator u D 1 C ex; Vm.u/ D 1 C exm and VmŒ2�.u/ D 1 C 2exm.

Finally, we are in position to analyze NK0.ZŒD4�/. The sharp exponent 4 for
NK0.ZŒD4�/ in Theorem 2.5 is a slight improvement on the bound in [CP02]. It is
convenient to write D4 as the semidirect product of C4 (on � ) with the cyclic group
C2 D f1; �g, with relation ��� D ��1.

Theorem 2.5. The group NK0.ZŒD4�/ is isomorphic to the cyclic Cartier module
NK1.Z=4ŒC2�; 1 � �/, described in Example 2.4. As a group, it is the direct sum of
a countably infinite free Z=4-module and a countably infinite free Z=2-module.

Proof. We can map ZŒD4� to the twisted ring A D ZŒi � Ì C2 occurring in (6) above,
sending � to i . Combining this with the natural surjection onto the subring ZŒD2�

of ZŒC2� � ZŒC2�, we get a ring map ZŒD4� ! A � ZŒC2� � ZŒC2�. The ideal
I D .4; 2 � 2�; �2 � 1/ZŒD4� has B0 D ZŒD4�=I D Z=4ŒD2�=.2 � 2�/, and is
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isomorphic to the ideal 2A � .4/ � .4/ of A � ZŒC2� � ZŒC2�. Consider the following
cartesian square:

ZŒD4�

��

� 7!.i;1;�1/

� 7!.�;�;�/
�� A � ZŒC2� � ZŒC2�

�

��
B0 D Z=4ŒD2�=.2 � 2�/

qD.q0;qC;q�/ �� F2ŒD2� � B � B .

(7)

The kernel of the split surjection qC W B0 ! B D Z=4ŒC2� is the 2-dimensional
ideal J D .1 � �/B0. This implies that NK1.B0/ D NK1.B/ ˚ NK1.B0; J /.
Because NK1.ZŒC2�/ D NK0.ZŒC2�/ D NK0.A/ D 0 (by 2.3), the Mayer–Vietoris
sequence associated to (7) ends

NK1.A/ � NK1.B0; J /
��! NK1.F2ŒD2�/ � NK1.B/ ! NK0.ZŒD4�/ ! 0: (8)

The displayed map � is given by the matrix
�

� 0
q0 q�

�
. It is easy to see that NK1.B0; J /

is isomorphic to V 2 on the terms .1 C .1 � �/xm/ and .1 C .1 � �/�xn/. An
elementary calculation using the isomorphism NK1.A/ Š V 2 of 2.3 shows that �

is an injection, sending the module NK1.A/ � NK1.B0; J / Š V 4 isomorphically
onto the subgroup NK1.F2ŒD2�/ � NK1.Z=4/. Since NK1.B/ D NK1.Z=4/ ˚
NK1.B; eB/, e D 1�� , it follows that the induced map NK1.B; e/ ! NK0.ZŒD4�/

is an isomorphism. �

To begin the calculation of NK1.ZŒD4�/, we extend the Mayer–Vietoris sequence
(8) associated to (7) to the left. This is possible by the following observation: since
B0 maps onto each of the three ring factors on the lower right of (7), the presentation
(5) shows that the double relative K1 obstruction vanishes. Because � is an injection
in (8), the continuation of the Mayer–Vietoris sequence yields the exact sequence

.�/

�
� 0
q0 q�

�
������! NK2.F2ŒD2�/ � NK2.B/ ! NK1.ZŒD4�/ ! 0; (9)

where .�/ denotes NK2.A/ � NK2.ZŒC2�/2 � NK2.B0; J /.

Definition 2.6. The map [Œx� W NK0.ZŒD4�/ ! NK1.ZŒD4�/ is obtained by com-
posing the isomorphism NK1.B; e/ Š NK0.ZŒD4�/ of Theorem 2.5 with the canon-
ical map NK2.B; e/ ! NK2.B/ ! NK1.ZŒD4�/ of (9).

Remark. There is also a canonical map NK1.B; e/ ! NK2.B; e/ sending the unit
1 � aex to hae; xi; the composition with NK2.B; e/ � K2.BŒx; x�1�; e/ is given
by 1 � aex 7! f1 � aex; xg (multiplication by the class of x in K1.ZŒx; x�1�/).
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The analogous maps from V Š NK1.B; 2e/ and V Š NK1.B=2eB; e/ to
�F2Œx� Š NK2.B; 2e/ and �F2Œx� Š NK2.B=2eB; e/ are compatible with the
divided power map Œd � W V ! �F2Œx� sending xn to xn�1 dx. Note that Œd � is an
isomorphism of abelian groups but is not a morphism of F2-Cartier modules.

Theorem 2.7. The map [Œx� W NK0.ZŒD4�/ ! NK1.ZŒD4�/ in Definition 2.6 is
a surjection. Hence the group NK1.ZŒD4�/ has exponent 2 or 4, and there is a
commutative diagram whose rows are exact:

0 �� V

Œd�Š
��

�� NK0.ZŒD4�/

[Œx�

��

�� V

Œd�Š
��

�� 0

�F2Œx�
�� NK1.ZŒD4�/ �� �F2Œx�

�� 0.

Proof. A diagram chase on (9) shows that NK1.ZŒD4�/ is an extension of the co-
kernel of NK2.ZŒC2�/ � NK2.B0; J / ! NK2.B/ by a quotient of the cokernel of
NK2.A/ ! NK2.F2ŒD2�/. These cokernels are both �F2Œx�, by Proposition 2.3
and Lemma 2.8 below, yielding the bottom row of the theorem. The map [Œx� sends
the element corresponding to 1 � xnae 2 NK1.B; e/ to the element corresponding
to hxn�1ae; xi 2 NK2.B; e/, so the diagram in the theorem commutes by inspec-
tion. �

Lemma 2.8. The cokernel of the map NK2.ZŒC2�/ � NK2.B0; J / ! NK2.B/ in
(9) is �F2Œx�, on symbols hxn�1e; xi.
Proof. The kernel of the map q� W B0 ! B is the ideal J 0 D .1C�/B0. Because J \
J 0 D 0 in B0, the double relative group NK2.B0; J; J 0/ is isomorphic to F2ŒC2�Œx�

on symbols hxm.1 C �/; .1 � �/i and hxm�.1 C �/; .1 � �/i by [GL80], [Keu81].
Since J Š 2B , we have an exact sequence

F2ŒC2�Œx� ! NK2.B0; J /
q���! NK2.B; 2B/ ! 0: (10)

Combining this with the ideal sequence for 2B � B shows that the cokernel of
NK2.B0; J / ! NK2.B/ is NK2.B=2B/. Since B=2B Š F2ŒC2�, the lemma now
follows from Lemma 1.2. �

Inserting the calculations of Theorems 2.5 and 2.7 into Tables 6–7 in [LO], we
obtain the following result.

Theorem 2.9. Let 	 be one of the following hyperbolic 3-simplex reflection groups:
Œ.3; 4; 3; 6/�, Œ4; 3Œ3��, Œ4; 3; 6�, Œ.33; 4/�, Œ4; 3; 5�, Œ.3; 4/Œ2��, Œ.3; 4; 3; 5/�. Then the
lower algebraic K-theory of the groups 	 is given by the following table:
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	 K�1 ¤ 0 zK0 ¤ 0 Wh ¤ 0

Œ.3; 4; 3; 6/� Z3 .Z=4/2 ˚ Nil0 Nil1

Œ4; 3Œ3�� Z3 .Z=4/2 ˚ Nil0 ˚L
1 Z=2 Nil1 ˚L

1 Z=2

Œ4; 3; 6� Z4 .Z=4/2 ˚ Nil0 ˚L
1 Z=2 Nil1 ˚L

1 Z=2

Œ.33; 4/� Z2 .Z=4/2 ˚ Nil0 ˚L
1 Z=2 Nil1 ˚L

1 Z=2

Œ4; 3; 5� Z4 .Z=4/2 ˚ Nil0 ˚L
1 Z=2 Z3 ˚ Nil1 ˚L

1 Z=2

Œ.3; 4/Œ2�� Z4 .Z=4/4 ˚ 2Nil0 ˚L
1 Z=2 2Nil1 ˚L

1 Z=2

Œ.3; 4; 3; 5/� Z6 .Z=4/2 ˚ Nil0 ˚L
1 Z=2 Z3 ˚ Nil1 ˚L

1 Z=2

In this table, Nil0 D NK0.ZŒD4�/ is the direct sum of a countably infinite free
Z=4-module and a countably infinite free Z=2-module, and Nil1 D NK1.ZŒD4�/ is
a countably infinite torsion group of exponent 2 or 4.
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