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Abstract. A hyperbolic 3-simplex reflection group is a Coxeter group arising as a lattice in
OC.3; 1/, with fundamental domain a geodesic simplex in H3 (possibly with some ideal ver-
tices). The classification of these groups is known, and there are exactly 9 cocompact examples,
and 23 non-cocompact examples. We provide a complete computation of the lower algebraic
K-theory of the integral group ring of all the hyperbolic 3-simplex reflection groups.
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1. Introduction

In this paper, we proceed to give a complete computation of the lower algebraic
K-theory of the integral group ring of all the hyperbolic 3-simplex reflection groups.

We now proceed to outline the main steps of our approach. Since the groups � we
are considering are lattices insideOC.3; 1/, fundamental results of Farrell and Jones
[FJ93] imply that the lower algebraic K-theory of the integral group ring Z� can be
computed by calculating H�

n .EV� .�/I KZ�1/, a specific generalized equivariant
homology theory for a model for the classifying space EV� .�/ of � with isotropy in
the family V� of virtually cyclic subgroups of � .

After introducing the groups we are interested in (see Section 2), we then com-
bine results from our previous paper [LO07] with a recent construction of Lück and
Weiermann [LW] to obtain the following explicit formula for the homology group
above:

Kn.Z�/ Š H�
n .EF�N .�/I KZ�1/˚

kM
iD1

HVi
n .EF�N .Vi / ! �/:

In the formula above,EF�N .�/ is a model for the classifying space for proper actions
(i.e., with isotropy in the family F�N of finite subgroups), the collection fVigk

iD1 are
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a finite collection of virtually cyclic subgroups with specific geometric properties,
and HVi

n .EF�N .Vi / ! �/ are cokernels of certain relative assembly maps. This
explicit formula is obtained in Section 3.

In view of this explicit formula, our computation reduces to being able to

(1) identify, for each of our groups, the corresponding collection fVig of virtually
cyclic subgroups (done in Section 4),

(2) to calculate the cokernels of the corresponding relative assembly maps (done in
Section 6), and

(3) to calculate the homology groups H�
n .EF�N .�/I KZ�1/.

For the computation of the homology groups, we note that Quinn [Qu82] has de-
veloped a spectral sequence for computing the groups H�

n .EF�N .�/I KZ�1/. The
E2-terms in the spectral sequence can be computed in terms of the lower algebraic
K-theory of the stabilizers of cells in a CW-model for the classifying spaceEF�N .�/.

In Section 5, we proceed to give, for each of the finite subgroups appearing as
a cell stabilizer, a computation of the lower algebraic K-theory. We return to the
spectral sequence computation in Section 7, where we analyze some of the maps
appearing in the computation of the E2-terms for the Quinn spectral sequence. In
all 32 cases, the spectral sequence collapses at the E2 stage, allowing us to complete
the computations. The reader who is merely interested in knowing the results of the
computations is invited to consult Table 7 (for the non-uniform lattices) and Table 8
(for the uniform lattices). Finally, in the Appendix, we provide a “walk through” of
the computations for two of the 32 groups we consider.
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produced by Dennis Burke. The authors are particularly grateful to Bruce Magurn for
his extensive help with the computations of the algebraic K-theory of finite groups
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version of this work. This project was partially supported by the NSF, under the
grants DMS-0606002 and DMS-0805605. The first author was partly supported by
an Alfred P. Sloan research fellowship.

2. The 3-dimensional groups

A hyperbolic Coxeter n-simplex�n is an n-dimensional geodesic simplex in Hn, all
of whose dihedral angles are integral submultiples of � . We allow a simplex in Hn

to be unbounded with ideal vertices on the sphere at infinity of Hn. It is known that
such simplices exist only in dimensions n D 2; 3; : : : ; 9, and that for n � 3, there
are exactly 72 hyperbolic Coxeter simplices up to congruence (see for instance the
discussion in [JKRT99] and [JKRT02]).
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A hyperbolic Coxeter n-simplex reflection group � is the group generated by
reflections in the sides of a Coxeter n-simplex in hyperbolic n-space Hn. We will
call such group a hyperbolic n-simplex group.

According to Vinberg [V67], the associated hyperbolic n-simplex groups of all
but eight of the 72 simplices are arithmetic. The nonarithmetic groups are the hyper-
bolic Coxeter tetrahedra groups Œ.3; 4; 3; 5/� Œ5; 3; 6�. Œ5; 3Œ3��, Œ.33; 6/�, Œ.3; 4; 3; 6/�,
Œ.3; 5; 3; 6/�, and the 5-dimensional hyperbolic Coxeter group Œ.35; 4/�.

In dimension 3, there are 32 hyperbolic Coxeter tetrahedra groups; 9 of them are
cocompact (see Figure 1), and 23 are noncocompact (see Figure 2). Let us briefly
recall how the algebra and geometry of these groups are encoded in the Coxeter
diagrams.
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Figure 1. Cocompact hyperbolic Coxeter tetrahedral groups.

From the algebraic viewpoint, the Coxeter diagram encodes a presentation of the
associated group� as follows: associate a generatorxi to each vertex vi of the Coxeter
diagram (hence all of our groups will come equipped with four generators, as the
Coxeter diagrams have four vertices). For the relations in � , one has the following:

(1) for every vertex vi , one inserts the relation x2
i D 1;

(2) if two vertices vi ; vj are not joined by an edge, one inserts the relation .xixj /
2 D

1 (so combined with the previous relation, one sees that xi and xj commute,
generating a Z=2 � Z=2);

(3) if two vertices vi ; vj are joined by an unlabelled edge, one inserts the relation
.xixj /

3 D 1 (and in particular, the two elements xi ; xj generate a subgroup
isomorphic to the dihedral group D3);
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Figure 2. Noncocompact hyperbolic Coxeter tetrahedral groups.

(4) if two vertices vi ; vj are joined by an edge with label mij , one inserts the
relation .xixj /

mij D 1 (and hence, the two elements xi ; xj generate a subgroup
isomorphic to the dihedral group Dmij

).

A special subgroup of� will be a subgroup generated by a subset of the generating
set. Observe that such a subgroup will automatically be a Coxeter group, with a
presentation that can again be read off from the Coxeter diagram. Special subgroups
generated by a pair of generators will always be isomorphic to a (finite) dihedral
group. An important point for our purposes is that in our Coxeter groups, every
finite subgroup can be conjugated into a finite special subgroup. In particular, since
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there are only finitely many special subgroups, one can quite easily classify up to
isomorphism all the finite subgroups appearing in any of our 32 Coxeter groups.

Now let us move to the geometric viewpoint. As we mentioned earlier, associated
to any of our 32 Coxeter groups, one has a simplex �3 in hyperbolic 3-space H3.
Each of the four generators xi of the Coxeter group � is bijectively associated with
the hyperplanePi extending one of the four faces of the simplex�3, and the (interior)
angles between the respective hyperplanes can again be read off from the Coxeter
diagram:

(1) if two vertices vi ; vj are not joined by an edge, then †.Pi ; Pj / D �=2,

(2) if two vertices vi ; vj are joined by an unlabelled edge, then †.Pi ; Pj / D �=3,

(3) if two vertices vi ; vj are joined by an edge with label mij , then †.Pi ; Pj / D
�=mij .

The resulting configuration of four hyperplanes exists, and is unique up to isometries
of H3. One can now define the map � ! OC.3; 1/ D Isom.H3/ by sending each
generatorxi to the isometry obtained by reflecting in the corresponding hyperplanePi .
The condition on the angles between the hyperplanes ensures that this map respects
the relations in � , and hence is actually a homomorphism. In fact this map is an
embedding of � as a discrete subgroup of OC.3; 1/, with fundamental domain for
the associated action on H3 consisting precisely of the simplex �3.

Finally, to relate the geometric with the algebraic viewpoint, we remind the reader
of the following bijective identifications:

(1) Given an edge in the 3-simplex�3, lying on the intersection of two hyperplanes
Pi ; Pj , the subgroup of � that fixes the edge pointwise is precisely the special
subgroup hxi ; xj i (and hence will be a dihedral group).

(2) Given a vertex in the 3-simplex�3, obtained as the intersection of three hyper-
planes Pi ; Pj ; Pk , the subgroup of � that stabilizes the vertex is precisely the
special subgroup hxi ; xj ; xki.

We point out that the stabilizer of a vertex of�3 will either be a finite Coxeter group
(if the vertex lies inside H3), or will be a 2-dimensional crystallographic group (if the
vertex is an ideal vertex). Furthermore, one can readily determine whether a vertex
will be ideal or not, just by determining whether the associated special subgroup is
crystallographic or finite.

It is known that for all the groups listed above the Farrell and Jones Isomorphism
Conjecture in lower algebraic K-theory holds, that is H�

n .EV� .�/I KZ�1/ Š
Kn.Z�/ for n < 2. This follows immediately from results in [FJ93] and [BFPP00],
see the discussion in [Or04, pg. 325]. Our plan is to use this result to explicitly
compute the lower algebraicK-theory of the integral group ring Z� , for all of the 32
groups listed above.
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3. A formula for the algebraic K -theory

In this section, we combine some recent work of Lück and Weiermann [LW] with
some previous work of the authors [LO07] to establish the following:

Proposition 3.1. Let F � zF be a nested pair of families of subgroups of � , and
assume that the collection of subgroups fH˛g˛2I is adapted to the pair .F ; zF /. Let
H be a complete set of representatives of the conjugacy classes within fH˛g, and
consider the cellular �-pushouts:

`
H2H � �H EF .H/

˛

��

ˇ �� EF .�/

��`
H2H � �H E zF .H/ �� X .

Then X is a model for E zF .�/. In the above cellular �-pushout, we require either
(1) ˛ is the disjoint union of cellular H -maps (H 2 H ), ˇ is an inclusion of �-CW-
complexes, or (2) ˛ is the disjoint union of inclusions ofH -CW-complexes (H 2 H ),
ˇ is a cellular �-map.

Proof. Let us start by recalling that a collection fH˛g˛2I of subgroups of� is adapted
to the pair .F ; zF /, provided that the following holds:

(1) For all H1;H2 2 fH˛g˛2I , either H1 D H2, or H1 \H2 2 F .

(2) The collection fH˛g˛2I is conjugacy closed i.e., ifH 2 fH˛g˛2I thengHg�1 2
fH˛g˛2I for all g 2 � .

(3) Every H 2 fH˛g˛2I is self-normalizing, i.e., N�.H/ D H .

(4) For all G 2 zF n F , there exists H 2 fH˛g˛2I such that G � H .

Note that the subgroups in the collection fH˛g˛2I are not assumed to lie within the
family zF .

Using the existence of the adapted family fH˛g˛2I , one can now define an equiv-
alence relation on the subgroups in zF � F as follows: we decree that G1 	 G2 if
there exists an H 2 fH˛g˛2I such that G1 � H and G2 � H . Note that 	 is in-
deed an equivalence relation: the symmetric property is immediate, while reflexivity
follows from property (4) of adapted collection, and transitivity comes from property
(1) of adapted collection. Furthermore this equivalence relation has the following
two properties:

� if G1; G2 2 zF � F satisfies G1 � G2, then G1 	 G2 (immediate from the
definition of 	).

� ifG1; G2 2 zF � F and g 2 � , thenG1 	 G2 , gG1g
�1 	 gG2g

�1 (follows
from property (2) of adapted collection).
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We denote by Œ zF � F � the set of equivalence classes of elements in zF � F under
the above equivalence relation, and for G 2 zF � F , we will write ŒG� for the cor-
responding equivalence class. Note that by the second property above, the �-action
by conjugation on zF � F preserves equivalence classes, and hence descends to a �-
action on Œ zF � F �. We let I be a complete set of representatives ŒG� of the �-orbits
in Œ zF � F �. For G 2 zF � F , define the subgroup

N� ŒG� WD fg 2 � j ŒgGg�1� D ŒG�g;
which is precisely the isotropy group of ŒG� 2 Œ zF � F � under the �-action induced
by conjugation. Finally, define a family of subgroups zF ŒG� of the group N� ŒG� by

zF ŒG� WD fK � N� ŒG� j K 2 zF � F ; ŒK� D ŒG�g [ fK � N� ŒG� j K 2 F g:
Observe that the notions defined above (introduced in [LW]) make sense for any
equivalence relation on zF � F satisfying the two properties mentioned above.

Now [LW, Theorem 2.3] states that for any equivalence relation 	 on the elements
in zF � F satisfying the two properties above (and with the notation used in the pre-
vious paragraph), the �-CW-complex X defined by the cellular �-pushout depicted
below is a model for E zF .�/.

`
ŒH�2I � �N� ŒH� EF \N� ŒH�.N� ŒH �/

˛

��

ˇ �� EF .�/

��`
ŒH�2I � �N� ŒH� E zF ŒH�

.N� ŒH �/ �� X .

In the above cellular �-pushout, Lück–Weiermann require either (1) ˛ is the dis-
joint union of cellularN� ŒH �-maps (ŒH � 2 I ), ˇ is an inclusion of�-CW-complexes,
or (2) ˛ is the disjoint union of inclusions of N� ŒH �-CW-complexes (ŒH � 2 I ), ˇ is
a cellular �-map.

We now proceed to verify that, for the equivalence relation we have defined using
the adapted family fH˛g˛2I , the left hand terms in the cellular�-pushout given above
reduce to precisely the left hand terms appearing in the statement of our proposition.
This boils down to two claims:

Claim 1: For any G 2 zF � F , we have the equality N� ŒG� D H where H is the
unique element in fH˛g˛2I satisfying G � H .

To see this, we first note that there indeed is a unique H 2 fH˛g˛2I satisfying
G � H , for if there were two such groups H1 ¤ H2, then we would immediately
see that H1 \ H2 � G 2 zF � F , contradicting the property (1) of an adapted
collection. Next we observe that if h 2 H , then hGh�1 � hHh�1 D H , and hence
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that ŒhGh�1� D ŒG�, which implies the containment H � N� ŒG�. Conversely,
if k 2 N� ŒG�, then we have that ŒG� D ŒkGk�1�, and so from the definition of
the equivalence relation there must exist some xH 2 fH˛g˛2I with G � xH and
kGk�1 � xH . Since we already know that G � H , the uniqueness forces xH D H ,
and thus that kGk�1 � H . This in turn tells us that H \ k�1Hk � G 2 zF � F ,
and property (1) of an adapted collection now forces H D k�1Hk, which implies
that k 2 N�.H/. But property (3) of an adapted collection forces the groupH to be
self-normalizing, giving k 2 H , and completing the proof of the reverse inclusion.

Claim 2: For any G 2 zF � F , the family zF ŒG� on the group N� ŒG� D H (see the
previous claim) coincides with the restriction zF \H of the family zF to the subgroup
H (i.e., consisting of all elements in zF that lie within H ).

Note that the containment zF ŒG� � zF \H is obvious from the definition of zF ŒG�.
For the opposite containment, let K 2 zF \H � zF , and observe that K � H and
either K 2 F , or K 2 zF � F . In the first case, we have K 2 F \H � zF ŒG�,
while in the second case, we have that ŒK� D ŒG� by the definition of the equivalence
relation, and hence again we haveK 2 zF ŒG�. This gives us the containment zF \H �
zF ŒG�, giving us the claim.

Having established our two claims, we can now substitute the expressions from
the claims for the corresponding ones in the Lück–Weiermann diagram. Finally,
we comment on the indices in the disjoint sums appearing in the right hand of the
diagrams. In the expression of Lück–Weiermann, the disjoint sum is taken over I ,
a complete system of representatives ŒG� of the �-orbits in Œ zF � F �. But observe
that from the definition of the equivalence relation we are using, classes in Œ zF � F �

can be bijectively identified with groups H 2 fH˛g˛2I (by associating each class in
Œ zF � F �with the unique element in fH˛g˛2I containing all the elements in the class).
Since it is clear that the �-action on Œ zF � F � coincides (under the bijection above)
with the �-action on the set fH˛g˛2I , we can replace the system of representatives I
by the system of representatives H . This completes the proof of the proposition. �

We now specialize to the case where F D F�N and zF D V� , and obtain the
following:

Corollary 3.2. Given the group � , assume that the collection of subgroups fH˛g˛2I

is adapted to the pair .F�N ;V� /. If H be a complete set of representatives of the
conjugacy classes within fH˛g, then we have a splitting

H�� .EV� .�/I KZ�1/

Š H�� .EF�N .�/I KZ�1/˚
M

H2H

HH� .EF�N .H/ ! EV� .H//:
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Proof. Let us work with the explicit modelX forEV� .�/ constructed via the previous
proposition. SinceX is obtained as a double mapping cylinder, there exists an obvious
map � W X ! Œ0; 1�, which further has the property that every point pre-image is �-
invariant. In particular, corresponding to the splitting of Œ0; 1� into Œ0; 2=3/[.1=3; 1�,
we get a�-invariant splitting ofX . If we letA D ��1Œ0; 2=3/,B D ��1.1=3; 1�, then
from the Mayer–Vietoris sequence in equivariant homology (and omitting coefficients
to simplify notation), we have that


 
 
 �! H�
n .A \ B/ �! H�

n .A/˚H�
n .B/ �! H�

n .X/ �! 
 
 
 :
But now observe that we have obvious �-equivariant homotopy equivalences:

� A D ��1Œ0; 2=3/ ' ��1.0/ D `
H2H � �H EV� .H/,

� B D ��1.1=3; 1� ' ��1.1/ D EF�N .�/,
� A \ B D ��1.1=3; 2=3/ ' ��1.1=2/ D `

H2H � �H EF�N .H/.

Now combining the fact that our equivariant generalized homology theory turns dis-
joint unions into direct sums, along with the induction structure, this allows us to
evaluate the terms in the Mayer–Vietoris sequence


 
 
 �!
M

H2H

HH
n .EF�NH/ �! H�

n .EF�N�/˚
M

H2H

HH
n .EV�H/

�! H�
n .EV��/ �! 
 
 
 :

But recall that Bartels [Bar03] has established that for any group G, the relative
assembly map

HG� .EF�N .G/I KZ�1/ ! HG� .EV� .G/I KZ�1/

is split injective. In particular, for each integer n, the above portion of the Mayer–
Vietoris long exact sequence breaks off as a short exact sequence (since the initial term
injects). Since the map from the H�

n .EF�N�/ ! H�
n .EV��/ is also split injective

(from Bartels result), we immediately obtain an identification of the cokernel of this
map with the cokernel of the mapM

H2H

HH
n .EF�NH/ !

M
H2H

HH
n .EV�H/:

But from the definition of the map ˛ in Proposition 3.1, we see that the latter map
splits as a direct sum (overH 2 H ) of the relative assembly mapsHH

n .EF�NH/ !
HH

n .EV�H/. This immediately yields a corresponding splitting of the cokernel,
completing the proof of the corollary. �

Next we recall that the authors established in [LO07, Theorem 2.6] that in the
case where � is hyperbolic relative to a collection of subgroups fHigk

iD1 (assumed
to be pairwise non-conjugate), then the collection of subgroups consisting of
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(1) all conjugates of Hi (these will be called peripheral subgroups),

(2) all maximal infinite virtually cyclic subgroups V such that V ª gHig
�1, for

all i D 1; 
 
 
 k, and for all g 2 � ,

is adapted to the pair of families .F�N ;V� /. Applying the previous corollary to
this special case, we get:

Corollary 3.3. Assume that the group � is hyperbolic relative to the collection of
subgroups fHigk

iD1 (assumed to be pairwise nonconjugate). Let V be a complete
set of representatives of the conjugacy classes of maximal infinite virtually cyclic
subgroups inside � which cannot be conjugated within any of the Hi . Then we have
a splitting

H�� .EV� .�/I KZ�1/ Š H�� .EF�N .�/I KZ�1/

˚
kM

iD1

H
Hi� .EF�N .Hi / ! EV� .Hi //

˚
M
V 2V

HV� .EF�N .V / ! �/:

The primary example of relatively hyperbolic groups are groups � acting with
cofinite volume (but not cocompactly) on a complete, simply connected, Riemannian
manifold whose sectional curvature satisfies �b2 � K � �a2 < 0. These groups
are hyperbolic relative to the “cusp groups”, which one can take to be the infinite
subgroups arising as stabilizers of ideal points in the boundary at infinity of the Rie-
mannian manifold. We note that non-uniform lattices in OC.n; 1/ D Isom.Hn/ are
examples of relatively hyperbolic groups, and for this class of groups, the cusp groups
are automatically .n� 1/-dimensional crystallographic groups (this is due to the fact
that the horospheres have intrinsic geometry homothetic to Rn�1). Observe that 23 of
the groups we are considering (see Figure 2) are non-uniform lattices inOC.3; 1/, and
hence are relatively hyperbolic groups, relative to a collection of subgroups, each of
which is isomorphic to a 2-dimensional crystallographic group. For these 23 groups,
the situation is even further simplified by the following observations:

� Pearson [Pe98] showed that for any 2-dimensional crystallographic group H ,
the relative assembly map is an isomorphism for n � 1, and hence that

HH
n .EF�N .H/ ! EV� .H// D 0

for n � 1.

� The authors in [LO07, Section 3] gave a general procedure for classifying the
maximal virtually cyclic subgroups of Coxeter groups acting on H3. The groups
fall into three types, with infinitely many conjugacy classes of type II and type III,
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and only finitely many conjugacy classes of type I subgroups. Furthermore, the
relative assembly map is an isomorphism (for n � 1) for all groups of type II
and III. This is discussed in more detail in Section 4.

� Work of Farrell and Jones [FJ93] and Berkove, Farrell, Juan-Pineda, and Pearson
[BFPP00] implies that the Farrell–Jones isomorphism conjecture holds for all
lattices� in hyperbolic space (and k � 1), and hence that one has isomorphisms

Kn.Z�/ Š H�
n .EV� .�/I KZ�1/

for all n � 1.

Combining these observations with the previous corollary yields the following:

Corollary 3.4. Let � � OC.3; 1/ be any Coxeter group arising as a lattice (uniform
or non-uniform), and let fVigk

iD1 be a complete set of representatives for conjugacy
classes of type I maximal virtually infinite cyclic subgroups of � . Then we have, for
all n � 1, isomorphisms

Kn.Z�/ Š H�
n .EF�N .�/I KZ�1/˚

kM
iD1

HVi
n .EF�N .Vi / ! �/:

In the next sections, we will implement this corollary to compute the lower al-
gebraic K-theory of the integral group rings of all 32 of the 3-simplex hyperbolic
reflection groups.

4. Maximal infinite V� 1 subgroups

In this section, we proceed to classify the maximal infinite virtually cyclic (V� 1)
subgroups arising in our groups. Let us start by briefly recalling some of the results
from Section 3 of [LO07]. First of all, for a lattice � in OC.n; 1/, infinite V�

subgroups are of two types: those that fix a single point in the boundary at infinity,
and those that fix a pair of points in the boundary at infinity. We call subgroups of the
first type parabolic, and those of second type hyperbolic. Note that every parabolic
subgroup can be conjugated into a cusp group; for the purpose of our classification,
we will ignore these subgroups. The subgroups of hyperbolic type automatically
stabilize the geodesic joining the pair of fixed points in the boundary at infinity.
Furthermore the geodesic they stabilize will project to a periodic curve in the quotient
space Hn=� . Note that conversely, stabilizers of periodic geodesics are infinite V�

subgroups of� . This implies that the maximal hyperbolic type infinite V� subgroups
of � are in bijective correspondence with stabilizers of periodic geodesics.

We now specialize to the case where n D 3, and � is a Coxeter group. In this
situation, we can subdivide the family of periodic geodesics into three types.
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� A geodesic whose projection has non-trivial intersection with the interior of the
polyhedron H3=� , which we call type III.

� A geodesic whose projection lies in the boundary of the polyhedron H3=� , but
does not lie inside the 1-skeleton of H3=� , which we call type II.

� A geodesic whose projection lies in the 1-skeleton of the polyhedron H3=� ,
which we call type I.

For geodesics of type III, it is easy to see that the stabilizer of the geodesic must
be isomorphic to either Z or D1. For geodesics of type II, the stabilizer is always
isomorphic to either Z2 � Z or Z2 �D1. The main purpose of this section will be
to classify stabilizers of type I geodesics for all 32 groups which occur as hyperbolic
3-simplex reflection groups.

We start by outlining our approach: all the groups we are considering have fun-
damental domain consisting of a 3-dimensional simplex in H3 (possibly with some
ideal vertices). So up to conjugacy, for each of the groups we are considering, we
can have at most six distinct stabilizers of type I geodesic (one for each edge in the
fundamental domain, fewer in the presence of ideal vertices). But this is actually
an overcount, as one could potentially have a type I geodesic whose projection into
the fundamental domain passes through several of the edges. So the first step is to
understand how many distinct stabilizers (up to conjugacy) one obtains.

Let us explain how one can find out the number of distinct stabilizers. Note that,
at every (non-ideal) vertex v of our fundamental domain 3-simplex in H3, we can
consider a small "-sphere Sv centered at v. Now the tessellation of H3 by copies of
the fundamental domain induces a tessellation of Sv by isometric spherical triangles.
In fact, the tessellation of Sv is the one naturally associated with the special subgroup
of the Coxeter group � that stabilizes the vertex v. Now note that, if we were to label
the three edges of the 3-simplex incident to v, we get a corresponding label of the
three vertices of a spherical triangle in the tessellation of Sv . One can extend this
labeling via reflections, both for the tessellation of H3 and the tessellation of Sv .

Now given a periodic geodesic of type I, with a portion of the geodesic projecting
to the edge e in the 3-simplex, with e adjacent to the vertex v, one can easily “read
off” from the labeled tessellation of Sv which edge extends the geodesic. Indeed, this
will be picked up by the label of the vertex in the tessellation of Sv which is antipodal
to the labeled vertex corresponding to e. In this manner, one can easily decide the
number of distinct stabilizers of type I geodesics that arise for the 32 groups we are
considering.

To recognize the tessellations arising for the various Sv , one now notes that the
isometry group of each of these tessellations can be obtained by looking at the stabi-
lizer �v of the vertex v in the group � . These stabilizers are finite special subgroups
of the Coxeter group � , generated by three of the four canonical generators of � .
From the classification of the 32 hyperbolic 3-simplex groups, it is easy to list out all
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such finite special subgroups: there are eight of these, namely Z2 � D2, Z2 � D3,
Z2 �D4, Z2 �D5, Z2 �D6, Œ3; 3� Š S4, Œ3; 4� Š Z2 � S4, and Œ3; 5� Š Z2 � A5.

The next step is to identify the stabilizers of the corresponding geodesics. In the
situation we are considering, all the type I geodesics � that appear have stabilizer
Stab�.�/ acting with fundamental domain an interval. In fact, the interval can be
identified with the quotient space �=Stab�.�/ � H3=� , which will be a union of

edges in the 1-skeleton of the 3-simplex H3=� . Hence the group Stab�.�/ can be
identified using Bass–Serre theory: it will be the fundamental group of a graph of
groups, where the graph of groups consists of a single edge joining two vertices, with
edge/vertex groups which can be explicitly found from the tessellations. We will say
that the geodesic (or sometimes the edge in the 1-skeleton) reflects at the two endpoint
vertices.

Indeed, the edge group Ge will be precisely the stabilizer of one of the edges in
�=Stab�.�/ � H3=� . On the other hand, the vertex groups Gv; Gw can be found
by looking at each of the two endpoint vertices v;w for �=Stab�.�/, and studying
the spherical tessellations of Sv; Sw . Note that we are trying to identify elements in
� , which stabilize the vertex v (respectively w), and additionally map the geodesic
� through v to itself. In particular, it must map the pair of antipodal vertices �˙
(corresponding to the incoming/outgoing �-directions) in the tessellation of Sv to
themselves. The subgroup Ge � Gv can be identified with the index 2 subgroup
consisting of elements Gv which fix both of the points �˙. Now there is an obvious
map which permutes the two points �C and ��, namely the reflection in the equator
equidistant from these two points. But it is not clear that this reflection preserves
the tessellation of Sv; in some cases, one will need to reflect in the equator, and then
rotate by a certain angle along the �˙ axis, in order to obtain an element in �v . Note
that if the reflection in the equator preserves the tessellation, then we immediately
obtain that Gv Š Ge � Z2. If the reflection in the equator does not preserve the
tessellation, then we obtain that Gv Š Ge Ì Z2. One can perform the same analysis
at the vertexw, and hence find an expression for Stab�.�/ as an amalgamation of the
groups Gv; Gw over the index 2 subgroups Ge .

We make two observations: first of all, the stabilizer of an edge will always be a
special subgroup of � , generated by a pair of canonical generators in � . In particular,
the groupGe will always be a dihedral groupDk for some k. Now the vertex groups
are of two types: (1) if the reflection in the equator preserves the tessellation, we
obtain Gv Š Z2 � Dk , or (2) if the reflection in the equator does not preserve the
tessellation, then one can explicitly read off the semi-direct product structure from
the tessellation, and in fact it is easy to see that Gv Š D2k . In Table 1 below, we list
out, for each of the finite special subgroups we need to consider, the edges that reflect,
as well as the corresponding Gv . Let us explain the notation used in the table: the
first column gives the various finite special subgroups that occur, the second column
lists the angles that appear in the spherical triangles of the corresponding tessellation
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of Sv . The remaining three columns are ordered from smallest angle to largest, and
expresses whether (1) the corresponding edge extends (i.e., does not reflect) at v, and
(2) if it reflects, the corresponding subgroup Gv .

Table 1. Finite special subgroups & local behavior of edges.

Z2 �D2 �=2; �=2; �=2 Z2 �D2 Z2 �D2 Z2 �D2

Z2 �D3 �=3; �=2; �=2 Z2 �D3 extends extends

Z2 �D4 �=4; �=2; �=2 Z2 �D4 Z2 �D2 Z2 �D2

Z2 �D5 �=5; �=2; �=2 Z2 �D5 extends extends

Z2 �D6 �=6; �=2; �=2 Z2 �D6 Z2 �D2 Z2 �D2

S4 �=3; �=3; �=2 extends extends D4

Z2 � S4 �=4; �=3; �=2 Z2 �D4 D6 Z2 �D2

Z2 � A5 �=5; �=3; �=2 D10 D6 Z2 �D2

From the Coxeter diagrams of the 32 groups we are considering, we can now read
off quite easily the number (up to conjugacy) of stabilizers of type I geodesics. We
now proceed to summarize the results of this procedure, which we list out in Tables
2, 3, and 4. We remind the reader that, in addition to these subgroups, there will also
be (up to conjugacy) countably infinitely many maximal V� subgroup of hyperbolic
type isomorphic to one of Z;D1;Z2 � Z;Z2 � D1 (coming from stabilizers of
type II and type III geodesics). The list below can be thought of as the “exceptional”
maximal V� subgroups of hyperbolic type. Indeed, as we will see in the subsequent
sections, these will be the only maximal V� subgroups of hyperbolic type that will
actually contribute to the algebraic K-theory of the ambient groups.

4.1. The uniform lattices. There are 9 hyperbolic 3-simplex groups with funda-
mental domain a compact 3-simplex in H3. The number and type of stabilizers of
type I geodesics are listed in the following table:

Table 2. Structure of V� subgroups of cocompact groups.

� Stab�

Œ.33; 5/� D3 �D1;D5 �D1; .D2 � Z2/ �D2
D4 .twice/

Œ5; 3; 5� D2 �D1;D3 �D1;D5 �D1 .twice/

Œ.33; 4/� D3 �D1;D4 �D1; .D2 � Z2/ �D2
D4 .twice/

Œ3; 5; 3� D2 �D1;D3 �D1 .twice/;D5 �D1
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� Stab�

Œ5; 31;1� D2 �D1 .twice/;D3 �D1;D5 �D1; .D2 � Z2/ �D2
D4

Œ4; 3; 5� D2 �D1 .twice/;D3 �D1;D4 �D1;D5 �D1
Œ.3; 5/Œ2�� D2 �D1 .twice/;D3 �D1 .twice/;D5 �D1 .twice/

Œ.3; 4; 3; 5/� D2 �D1 .twice/;D3 �D1 .twice/;D4 �D1;D5 �D1
Œ.3; 4/Œ2�� D2 �D1 .twice/;D3 �D1 .twice/;D4 �D1 .twice/

4.2. One ideal vertex. We have nine such Coxeter groups, namely the groups
Œ5; 3Œ3��, Œ5; 3; 6�, Œ32; 42�, Œ4; 3Œ3��, Œ3; 3Œ3��, Œ3; 41;1�, Œ4; 3; 6�, Œ3; 3; 6�, and Œ3; 4; 4�.
The number and type of (non-finite) stabilizers of type I geodesics, as well as the cusp
subgroups are listed in the following table:

Table 3. Structure of V� subgroups of 1-ideal vertex groups.

� Stab� Cusp

Œ3; 3Œ3�� 1 edge D4 �D2
D4 Œ3Œ3��

Œ3; 3; 6� 1 edge .D2 � Z2/ �D2
D4 Œ3; 6�

Œ5; 3Œ3�� 2 edges D2 �D1; D5 �D1 Œ3Œ3��

Œ5; 3; 6� 2 edges D2 �D1; D5 �D1 Œ3; 6�

Œ.32; 42/� 2 edges D2 �D1; D3 �D1 Œ4; 4�

Œ4; 3Œ3�� 2 edges D2 �D1; D4 �D1 Œ3Œ3��

Œ3; 4; 4� 2 edges D2 �D1; D3 �D1 Œ4; 4�

Œ3; 41;1� 3 edges D2 �D1 .twice/; D3 �D1 Œ4; 4�

Œ4; 3; 6� 3 edges D2 �D1 .twice/; D4 �D1 Œ3; 6�

4.3. Two ideal vertices. We have nine such Coxeter groups, namely the groups
Œ.3; 5; 3; 6/�, Œ.3; 43/�, Œ.3; 4; 3; 6/�, Œ.33; 6/�, Œ3Œ3;3��, Œ6; 31;1�, Œ3; 6; 3�, Œ6; 3; 6�, and
Œ4; 4; 4�. Note that for these groups, we have only one edge segment in the fundamental
domain to consider.

For the groups Œ.33; 6/� and Œ3; 6; 3�, the edge extends to one of the non-compact
edges, and hence we again have that there are no periodic geodesics of type I. So
in both of these cases, we have that the maximal virtually infinite V� subgroups of
hyperbolic type are isomorphic to Z, D1, Z2 � Z, or Z2 �D1.
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In the remaining cases, the edge reflects at both of its endpoints. The stabilizers
we obtain, as well as the two cusp subgroups, are listed out in the following table:

Table 4. Structure of V� subgroups of 2-ideal vertex groups.

� Stab� Cusp

Œ.3; 5; 3; 6/� D5 �D1 Œ3; 6� .twice/

Œ.3; 43/� D3 �D1 Œ4; 4� .twice/

Œ.3; 4; 3; 6/� D4 �D1 Œ3; 6� .twice/

Œ3Œ3;3�� D4 �D2
D4 Œ3Œ3�� .twice/

Œ6; 31;1� .D2 � Z2/ �D2
D4 Œ3; 6� .twice/

Œ6; 3; 6� D3 �D1 Œ3; 6� .twice/

Œ4; 4; 4� D2 �D1 Œ4; 4� .twice/

4.4. Three ideal vertices. We have two such Coxeter group: Œ6; 3Œ3�� and Œ41;1;1�.
Again, there will be no periodic geodesics of type I. So we obtain that the maximal
virtually infinite V� subgroups of hyperbolic type are isomorphic to Z,D1, Z2 �Z,
or Z2 �D1.

4.5. Four ideal vertices. There are three such Coxeter groups, namely the groups
Œ3Œ ��Œ ��, Œ4Œ4�� and Œ.3; 6/Œ2��. It is clear that these groups have no periodic geodesics
of type I, and hence the only maximal virtually infinite V� subgroups of hyperbolic
type in both of these groups are isomorphic to Z, D1, Z2 � Z, or Z2 �D1.

5. The algebraic K -theory of cell stabilizers in EF�N

In this section, we focus on finding the algebraicK-theory of the finite subgroups that
occur as cell stabilizers for the �-action on H3, when � ranges over the 32 groups we
are studying. Recall from the discussion in Section 2 that these cell stabilizers will be
(up to conjugacy) precisely the finite special subgroups. Since these can be read off
from the Coxeter diagrams of the groups, one can easily see that, up to isomorphism,
these groups are the following:

Finite special subgroups. 1, Z=2, Dn for n D 2; 3; 4; 5; 6; 10 (here Dn denotes the
dihedral group of order 2n), D2 � Z=2, D4 � Z=2, D6 � Z=2, S4, S4 � Z=2, and
A5 � Z=2.

In the spectral sequence computing the homology H�� .EF�N .�/I KZ�1/, the
E2-term is computed from the algebraic K-groups of the various cell stabilizers.
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So we need the algebraic K-groups for all of the finite groups appearing in the list
above. For the convenience of the reader, we provide in Table 5 below the results of
the computations in this section. Table 5 provides a list of all the non-trivialK-groups
that occur amongst the finite groups we are considering.

Table 5. Lower algebraic K-theory of cell stabilizers in EF�N .

F 2 F�N Whq ¤ 0; q � �1 zK0 ¤ 0 Wh ¤ 0

D2 � Z=2 Z=2

D5 Z

D6 K�1 Š Z

D4 � Z=2 Z=4

D10 K�1 Š Z Z2

D6 � Z=2 K�1 Š Z3 .Z=2/2

S4 � Z=2 K�1 Š Z Z=4

A5 � Z=2 K�1 Š Z2 Z=2 Z2

We now proceed to justify the results summarized in Table 5. It is well known
that for G a finite group Kq.ZG/ is trivial for all q � �2 (see [C80a]), so we will
focus exclusively on the functors K�1, zK0, and Wh. Next we point out that, for all
but four of the finite groups in our list, their lower algebraicK-theory is well known.
The relevant references are listed below for each of these groups.

� Z=2: For the negative K-groups, we refer the reader to [C80a]; the fact that
K�1.ZŒZ=2�/ D 0 can also be found in [Bas68, Theorem 10.6, pg. 695]. The
vanishing of zK0 can be found in [CuR87, Corollary 5.17]. For information
about the vanishing of Wh we refer the reader to [O89].

� D2 � Z=2: For the negative K-groups, we refer the reader to [C80a]. The
formula in Bass [Bas68, Chapter 12] shows also that K�1.ZŒD2 � Z=2�/ D 0.
For the information concerning Wh we refer the reader to [Ma78], [Ma80],
[O89]. For the zK0 see Remark 5.1.

� Dn, n D 2; 3; 4: For the vanishing of the negativeK-groups, we refer the reader
to [C80a]. For the zK0 we refer the reader to [Re76]. In particular, the vanishing
of zK0.ZG/ is proven for G D D3 in [Re76, Theorem 8.2] and for G D D4 in
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[Re76, Theorem 6.4]. For information about Wh we refer the reader to [Ma78],
[Ma80] and [O89].

� D5: As far as we know the only K-groups found in the literature are
zK0.ZD5/ Š 0 (see [RU74, (2.6), pg. 506]) and Kq.ZD5/ Š 0 for all q � �2

(see [C80a]). To compute K�1.ZD5/, we used results that can be found in
[C80a], and [C80b], and to compute Wh.D5/, we used results that can be found
in [Ma78], [Ma80] and [O89] (see the details in the Section 5.2).

� D10: As far as we know the only K-groups found in the literature are
zK0.ZD10/ Š 0 (by a straightforward modification of the argument in [RU74,

Theorem 2.9]) and Kq.ZD10/ D 0 for all q � �2 (see [C80a]). For the
K�1.ZD10/, we used the results found in [C80a], and [C80b], and for Wh.D10/,
we used results that can be found in [Ma78], [Ma80] and [O89] (see the details
in the Section 5.3).

� D6: See the discussion in Section 5.1. The whitehead groups Whq.D6/ for
q � 1 can also be found in [Pe98, Section 3], and [Or04, Section 5].

� D4�Z=2: Ortiz in [Or04, Section 5] using results from [C80a] [C80b], [CuR87],
[O89] and [Ma06] showed that Kq.ZŒD4 � Z=2�/ D 0, q � �1, zK0.ZŒD4 �
Z=2�/ Š Z=4, and that Wh.D4 � Z=2/ is trivial.

� S4: Reiner and Ullom in [RU74, Theorem 3.2]) proved zK0.ZS4/ is trivial. By
[O89, Theorem 14.1], it follows that Wh.S4/ is trivial. By [C80b, Remark on
pg. 606], it follows that zK�1.ZS4/ is trivial.

� S4�Z=2: By [C80a], it followsKq.ZŒS4�Z=2��/ is trivial for all q � �2. Ortiz
in [Or04, Section 5] showedK�1.ZŒS4�Z=2��/ Š Z, zK0.ZŒS4�Z=2�/ Š Z=4,
and Wh.S4 � Z=2/ is trivial.

For the remaining groups in our list, we detail the computations in the next few
subsections.

5.1. The lower algebraic K -theory of D6 �Z=2. To calculateK�1.ZŒD6 �Z=2�/,
we use the following formula due to Carter [C80b, Theorem 3]. Let G be a group of
order n, let p denote a prime number, let yZp denote the p-adic integers and let yQp

denote the p-adic numbers. Then the following sequence is exact:

0 �! K0.Z/ �! K0.QG/˚
M
pjn

K0.yZpG/ �!
M
pjn

K0. yQpG/ �! K�1.ZG/ �! 0:

Since the group algebra QD6 Š Q4 � .M2.Q//2 (see [Or04, pg. 350]), it follows
that the group algebra QŒD6 � Z=2� is isomorphic to Q8 � .M2.Q//4, and the same
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statement is true if Q is replaced by yQ2 and yQ3. Hence K0.QŒD6 � Z=2�/ Š
K0. yQ2ŒD6 � Z=2�/ Š K0. yQ3ŒD6 � Z=2�/ Š Z12. The integral p-adic terms are
K0.yZ2ŒD6�Z=2�/ Š K0.F2ŒD6�Z=2� Š K0.F2ŒD6�/ Š Z2 (see [Or04, pg. 350]),
and K0.yZ3ŒD6 � Z=2�/ Š K0.F3ŒD6 � Z=2�/ Š K0.F3Œ.Z=2/3�/ Š Z8. Carter
also shows in [C80a] thatK�1.ZŒD6 �Z=2�/ is torsion free, so counting ranks in the
exact sequence, we have that K�1.ZŒD6 � Z=2�/ Š Z3.

To compute zK0.ZŒD6 � Z=2�/, consider the following Cartesian square

ZŒZ=2�ŒD6�

��

�� ZŒD6�

��
ZŒD6� �� F2ŒD6�,

which yields the Mayer–Vietories sequence (see [CuR87, Theorem 49.27])

K1.ZŒD6 � Z=2�/ �! K1.ZD6/˚K1.ZD6/
'���! K1.F2ŒD6�/

�! zK0.ZŒZ=2�ŒD6�/ �! zK0.ZD6/˚ zK0.ZD6/ �! 0:
(1)

We now proceed to compute the various terms appearing in this sequence.
We start by looking at the terms involving ZD6. In [Re76] Reiner shows that

zK0.ZD6/ is trivial. K1.ZD6/ can be computed as follows: since Wh.G/ equals
K1.ZG/=f˙Gabg, the rank ofK1.ZG/ is equal to the rank of Wh.G/. But the rank of
Wh.G/ isy D r�q, where r denotes the number of irreducible real representations of
G, and q denotes the number of irreducible rational representations ofG. In [Bas65]
Bass shows that r is equal to the number of conjugacy classes of sets fx; x�1g, x 2 G,
and q is the number of conjugacy classes of cyclic subgroups ofG (see also [Mi66]).
ForG D D6, a direct calculations shows that r D q, and hence that Wh.G/ is purely
torsion. Next note that the torsion part ofK1.ZG/ is f˙1g ˚Gab ˚ SK1.ZG/ (see
[W74]), and hence we have that Wh.D6/ D SK1.ZD6/. Since Magurn [Ma78] has
shown that SK1.ZD6/ is trivial, we see that Wh.D6/ is trivial. Since .D6/

ab D
.Z=2/2, we obtain that K1.ZŒD6�/ D .Z=2/3.

Next we consider the remaining terms in the Mayer–Vietoris sequence. For G D
D6 �Z=2, Magurn in [Ma80, Corollary 11] shows that Wh.D6 �Z=2/ D 0 (note that
the rank of Wh.G � Z=2/ is twice the rank of Wh.G/ since r and q get doubled, see
Sections 5.2 and 5.3). Since .D6�Z=2/ab D .Z=2/3, this yieldsK1.ZŒD6�Z=2�/ D
.Z=2/4. Finally, Magurn in [Ma06, Example 9]) shows thatK1.F2ŒD6�/ D .Z=2/4.
Substituting all the known terms into the exact sequence in (1) yields the following
exact sequence:

.Z=2/4
����! .Z=2/3 ˚ .Z=2/3

'���! .Z=2/4 �! zK0.ZŒZ=2�ŒD6�/ �! 0: (2)

Next, we study the image of ' W K1.ZD6/ ˚ K1.ZD6/ ! K1.F2ŒD6�/. We
claim that im.'/ D .Z=2/2. This can be seen as follows: first im.'/ D im. /
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where W K1.ZD6/ ! K1.F2ŒD6�/ is induced by the canonical ring homomorphism
Z ! F2. Note the K1.Z/ is a direct summand of K1.ZD6/ isomorphic to Z=2; but
this summand goes to zero in K1.F2ŒD6�/ since it factors through the following
commutative square:

Z=2 D K1.Z/

��

��K1.F2/ D 0

��
K1.ZD6/ �� K1.F2ŒD6�/.

Since K1.ZD6/ D .Z=2/3, this forces dimF2
.im.'// � 2. Now from the exact

sequences given in (1) and (2), we have that

dimF2
.im.'// D 2 dimF2

.K1.ZŒD6�// � dimF2
.ker.'// D 6 � dimF2

.im.�//:

Since dimF2
.im.�// � 4, we see that dimF2

.im.'// � 2, which forces im.'/ Š
.Z=2/2. The exact sequence now yields zK0.ZŒZ=2�ŒD6�/ Š .Z=2/2.

Remark. In a preliminary version of this paper, the authors incorrectly stated that
zK0.ZŒD2 � Z=2�/ vanished. The second author realized, while working on a new

project (see [FO]), that this group is in fact non-trivial, as is proved in [EH79, pg.
161]. Using the same argument as in the case ofD6 � Z=2 above, one can show that
zK0.ZŒD2 � Z=2�/ Š Z=2:

In one of our earlier papers (see [LO07, pg. 542]), the incorrect vanishing of
zK0.ZŒD2 � Z=2�/ was used, leading to an incorrect computation for the zK0 of
Q D .D2 � Z=2/ �D2

.D2 � Z=2/. We would like to use this opportunity to state
the correct computation of this group: zK0.ZQ/ Š .Z=2/2 ˚ NK0.ZD2IB1; B2/,
where Bi D ZŒ.D2 �Z=2/ nD2� is the ZD2-bimodule generated by .D2 � Z=2/ n
D2 for i D 1; 2: However, as was shown in [LO07, Theorem 5.2], the Nil-group
NK0.ZD2IB1; B2/ is isomorphic to a countably infinite direct sum

L
1 Z=2 of

cyclic groups of order two, and hence the abstract isomorphism type of the group
zK0.ZQ/ is correct as stated in [LO07]. In particular, the computation presented in

the main theorem [LO07, Theorem 1.1] remains correct as stated.

5.2. The computation of the K -groups K�1.ZD5/, and Wh.D5/. To compute
K�1.ZD5/, we need Carter’s formula for K�1, [C80b, Theorem 3], the reader is
referred to Section 5.1.

0 �! K0.Z/ �! K0.QD5/˚
M
pjn

K0.yZpD5/

�!
M
pjn

K0. yQpD5/ �! K�1.ZD5/ �! 0:
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The group algebra QD5 is isomorphic to Q2 � M2.QŒ
p
5�/ (see [Se77, pgs. 36–

38]), and the same statement is true if Q is replaced by yQ2 (recall that
p
5 … yQ2/.

For p D 5, the group algebra yQ5D5 is isomorphic to . yQ5/
2 � M2. yQ5/. Hence

K0. yQ2ŒD5�/ Š K0.QŒD5�/ Š K0. yQ5ŒD5�/ Š Z3. By using techniques described
in [CuR81, Section 5], we have thatK0.yZ5ŒD5�/ Š K0.F5ŒD5�/ Š K0.F5ŒZ=2�/ D
K0.F5 �F5/ D Z2. Similarly, we have thatK0.yZ2ŒD5�/ Š K0.F2ŒD5�/ Š K0.F2 �
M2.F2// D Z2. Carter also shows in [C80a] that K�1.ZŒD5�/ is torsion free, so
counting ranks as before, we obtain K�1.ZD5/ Š 0.

Next, we compute Wh.D5/. Recall that Wh.G/ D Zy ˚ SK1.ZG/. Magurn
in [Ma78] proves that SK1 vanishes for all finite dihedral groups. The rank of the
torsion free part is y D r�q (see Section 5.1). For the groupD5, a direct calculation
shows that r D 4 and q D 3, yielding Wh.D5/ Š Zr�q Š Z.

5.3. The computation of the K -groups K�1.ZD10/, and Wh.D10/. To calculate
K�1.ZD10/, again using Carter’s formula forK�1 [C80b, Theorem 3], we have (see
Sections 5.1 and 5.2)

0 �! K0.Z/ �! K0.QD10/˚
M
pjn

K0.yZpD10/

�!
M
pjn

K0. yQpD10/ �! K�1.ZD10/ �! 0:

The group algebra QŒD5 � Z=2� is isomorphic to Q4 � .M2.QŒ
p
5�//2 (see Sec-

tion 5.2) and the same statement is true if Q is replaced by yQ2. For p D 5, we
have isomorphisms of algebras yQ5ŒD5 � Z=2� Š . yQ5/

4 � .M2. yQ5//
2. Hence

K0.QŒD5 �Z=2�/ Š K0. yQ2ŒD5 �Z=2�/ Š K0. yQ5ŒD5 �Z=2�/ Š Z6. The integral
p-adic terms areK0.yZ2ŒD5�Z=2�/ Š K0.F2ŒD5�Z=2�/ Š K0.F2ŒD5�/ Š Z2 (see
Section 5.2), and K0.yZ5ŒD5 � Z=2�/ Š K0.F5ŒD5 � Z=2�/ Š K0.F5Œ.Z=2/2�/ Š
Z4. Carter also shows in [C80a] thatK�1.ZŒD10�/ is torsion free, so counting ranks
in the exact sequence, we have that K�1.ZD10/ Š Z.

Next, we compute Wh.D10/. Magurn in [Ma78] proves that SK1 vanishes for all
finite dihedral groups, then as before Wh.D10/ Š Zy . Since rk.Wh.G � Z=2// D
2 rk.Wh.G// and Wh.D5/ Š Z, it follows that Wh.D10/ Š Z2.

5.4. The lower algebraic K -theory of A5 �Z=2. To compute Whq.A5 �Z=2/ for
q � 1, we first claim that

Whq.A5/ D
´

Z; q D 1;

0; q � 0:

This can be seen as follows. By [O89, Theorem 14.6], we have that SK1.ZA5/ D 0.
The group A5 has precisely five (mutually nonisomorphic) irreducible real represen-
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tation, giving r D 5. InA5 the conjugacy classes of cyclic subgroups are represented
by the trivial subgroup feg, h.12/.34/i, h.123/i, h.12345/i giving us that q D 4. This
forces Wh.A5/ Š Zr�q D Z. By [RU74, Theorem 3.2], we have that zK0.ZA5/ D 0;
Dress induction as used in [O89, Theorem 11.2] shows that K�1.ZA5/ D 0, and by
[C80a] we have that Kq.ZA5/ D 0 for q � �2.

Now let us compute Wh.A5 � Z=2/. Magurn in [Ma07, Example 5] shows that
SK1.ZŒA5�Z=2�/ D 0. Since rk.Wh.G�Z=2// D 2 rk.Wh.G// and Wh.A5/ Š Z
we get Wh.A5 � Z=2/ Š Z2.

Next, we claim zK0.ZŒA5 � Z=2�/ Š Z=2. To see this, letH be a subgroup ofG.
For any locally free ZG-moduleM its restriction toH (denoted byMH ) is a locally
free ZH -module. The mapping defined by ŒM � ! ŒMH � gives a homomorphism of
zK0.ZG/ ! zK0.ZH/.

A group H is hyper-elementary if H is a semidirect product N Ì P of a cyclic
normal subgroup N and a subgroup P of prime order, where .jN j; jP j/ D 1. Let
H .G/ consist of one representative from each conjugacy class of hyper-elementary
subgroups of G. We shall need the following result presented by Reiner and Ullom
in [RU74, Theorem 3.1]: for every finite group G, the map

zK0.ZG/ !
Y

H2H.G/

zK0.ZH/ (3)

is a monomorphism. Observe that H .A5/ consists of subgroups of A5 isomorphic
to one of D2, D3 and D5. Note that the hyper-elementary subgroups of G � Z=2
are of the form H or H � Z=2 for H 2 H .G/. In particular, the hyper-elementary
subgroups of A5 � Z=2 are all isomorphic to one of: D2, D3 and D5, D2 � Z=2,
D3 � Z=2 Š D6, and D5 � Z=2 Š D10. By the results already mentioned in
Sections 5.2, 5.3, and the remark at the end of Section 5.1, we have zK0.ZH/ D 0

for allH 2 H .A5 � Z=2/ except forH D D2 � Z=2, where zK0.ZH/ Š Z=2. This
implies that the target of the map given in (3) is isomorphic to Z=2, and injectivity
of the map now gives us an injection zK0.ZŒA5 � Z=2�/ ,! Z=2. Since it is known
that zK0.ZŒA5 � Z=2�/ is non trivial (see [EH79, Theorem on pg. 161]), it follows
that zK0.ZŒA5 � Z=2�/ Š Z=2, as desired.

Finally, using results from [C80a], Magurn showed thatK�1.ZŒA5�Z=2�/ Š Z2.
The explicit computation of this K-group can be found in [LMO, Section 3.2].

6. Cokernels of relative assembly maps for maximal infinite virtually cyclic
subgroups

In view of Corollary 3.4, we will need for our computations the cokernels of the
relative assembly maps for the various maximal infinite virtually cyclic subgroups
of type I. From the tables 2, 3, 4 computed in Section 4, we have the following list
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containing all the maximal infinite virtually cyclic subgroups that appear in the 32
groups we are interested in:

Maximal infinite virtually cyclic subgroups. Z,D1, Z�Z=2,D1 �Z=2,D4 �D2

D4, .D2 � Z=2/ �D2
D4, and Dn �D1 for n D 2; 3; 4; 5.

We first note that, for the groups in our list, the cokernels are known to be trivial
in the following cases:

� Z: by work of Bass [Bas68].

� D1: by work of Waldhausen [Wd78].

� Z � Z=2, and D1 � Z=2: by work of Pearson [Pe98, Section 2].

� D3 �D1: by work of the authors [LO07, Section 4]

Finally, the authors have also shown in [LO07, Section 4] that for the group
D2 � D1, the cokernels of the relative assembly map for n D 0; 1 are countably
infinite direct sums of Z=2. The remaining four groups in our list will be discussed
in the following subsections.

Observe that by a result of Farrell and Jones [FJ95], the cokernels of the relative
assembly maps HV

n .EF�N .V / ! �/ that we are interested in are automatically
trivial for n < �1 (in fact, both the source and target groups vanish in this case). In
the same paper, they establish that for the case n D �1, these cokernels are finitely
generated, which by results of Farrell [F77], Ramos [Ra07], and Grunewald [G07],
implies that the cokernel is actually trivial. In particular, we only need to focus
on the cases n D 0, and n D 1. These cokernels are precisely the elusive Bass,
Farrell, and Waldhausen Nil-groups. We are able to identify these cokernels exactly,
with the exception of the case D4 �D1. For this group, we content ourselves with
summarizing what we were able to obtain in Subsection 6.4. We summarize the
non-trivial cokernels in Table 6.

Table 6. Cokernels of relative assembly map for maximal infinite V 2 V� .

V 2 V� HV
0 .EF�N .V / ! �/ ¤ 0 HV

1 .EF�N .V / ! �/ ¤ 0

D2 �D1
L

1 Z=2
L

1 Z=2

D4 �D2
D4

L
1 Z=2

L
1 Z=2

.D2 � Z=2/ �D2
D4

L
1 Z=2

L
1 Z=2

D4 �D1 Nil0 Nil1
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6.1. The lower algebraic K -theory of D5 � D1. First, note that D5 � D1 Š
D10 �D5

D10. As mentioned earlierKn.ZQ/ is zero for n < �1 (see [FJ95]). Since
K�1.ZD5/ D 0 (see Section 5.2), and K�1.ZD10/ D Z (see Section 5.3), we see
that for Q D D10 �D5

D10, we have K�1.ZQ/ D Z ˚ Z.
For the remaining K-groups, we make use of [CP02, Lemma 3.8]. This gives

us that zK0.ZQ/ Š NK0.ZD5IC1; C2/, where Ci D ZŒD10 � D5� is the ZD5-
bimodule generated by D10 � D5 for i D 1; 2, (see Sections 5.2 and 5.3 for the
zK0.ZDn/ for n D 5; 10), and Wh.Q/ Š Z3 ˚NK1.ZD5IC1; C2/, with C1 and C2

as before, (see Sections 5.2 and 5.3 for the Wh.Dn/ for n D 5; 10). The Nil-groups
appearing in these computations are the Waldhausen Nil-groups.

Now by [LO08], we know that NKi .ZD5IC1; C2/ D 0 for i D 0; 1, vanishes
if and only if the corresponding Farrell Nil-group vanishes for the canonical index
two subgroup D5 � Z G D5 � D1. Note that in this case, the Farrell Nil-group is
untwisted, and hence is just the Bass Nil-groupNKi .ZD5/. But Harmon [Ha87] has
shown that for finite groups G of square-free order (such as D5), the Bass Nil group
NKi .ZG/ vanishes for i D 0; 1. We summarize our computations in the following:

Whq.D5 �D1/ D

8̂̂
<̂
ˆ̂̂:

Z3; q D 1;

0; q D 0;

Z2; q D �1;
0; q � �2:

and both the cokernels of the relative assembly map vanish for this group.

6.2. The lower algebraic K -theory of .D2 � Z=2/ �D2
D4. As before Kn.ZQ/

is zero for n < �1 (see [FJ95]). Since K�1.ZD2/ D 0, K�1.ZŒD2 � Z=2�/ D 0,
and K�1.ZD4/ D 0, we see that for Q D .D2 � Z=2/ �D2

D4, we have that
K�1.ZQ/ D 0.

For the remainingK-groups, using [CP02, Lemma 3.8], we have that zK0.ZQ/ Š
Z=2˚NK0.ZD2IA1; A2/, whereA1 D ZŒ.D2 �Z=2/�D2� is the ZD2-bimodule
generated by .D2�Z=2/�D2, andA2 D ZŒD4�D2� is the ZD2-bimodule generated
byD4 �D2. Similarly, we have that Wh.Q/ Š NK1.ZD2IA1; A2/, where A1, A2

are the bimodules defined above.
Recall that in [LO07, Theorem 5.2], the authors established that (1) zK0.ZŒD2 �

D1�/ Š L
1 Z=2 and (2) Wh.D2 �D1/ Š L

1 Z=2. The computation reduced
to showing that the Waldhausen Nil-groups NKi .ZD2IA2; A2/ is isomorphic to an
infinite countable sum of Z=2 (where the bimodule A2 is defined in the previous
paragraph). This was achieved by establishing (1) the existence of an injection, and
(2) the existence of a (different) surjection, from the Bass Nil-group NKi .ZD2/ ŠL

1 Z=2 into the corresponding Waldhausen Nil-group NKi .ZD2IA2; A2/. But
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the reader can verify that the argument given in [LO07] applies verbatim to the
Waldhausen Nil-groups NKi .ZD2IA1; A2/ appearing in our present computation.

We conclude that the lower algebraic K-theory of .D2 � Z=2/ �D2
D4 is given

by

Whq..D2 � Z=2/ �D2
D4/ D

8̂<
:̂

L
1 Z=2; q D 1;L
1 Z=2; q D 0;

0; q � �1;
and that the cokernels of the relative assembly map are both isomorphic to

L
1 Z=2.

6.3. The lower algebraic K -theory of D4 �D2
D4. As beforeKn.ZQ/ is zero for

n < �1 (see [FJ95]). Since K�1.ZD2/ D 0 and K�1.ZD4/ D 0, we see that for
Q D D4 �D2

D4, we have that K�1.ZQ/ D 0.

For the remainingK-groups, using [CP02, Lemma 3.8], we have that zK0.ZQ/ Š
NK0.ZD2IF1; F2/, where for i D 1; 2, Fi D ZŒD4 � D2� is the ZD2-bimodule
generated byD4 �D2. Similarly, we have that Wh.Q/ Š NK1.ZD2IF1; F2/, with
F1 and F2 as before.

Now using [LO07, Theorem 5.2], we conclude that for Q D D4 �D2
D4

Whq.Q/ D

8̂<
:̂

L
1 Z=2; q D 1;L
1 Z=2; q D 0;

0; q � �1;
and that the cokernels of the relative assembly map are both isomorphic to

L
1 Z=2.

6.4. The lower algebraic K -theory of D4 � D1. The authors were unable to ob-
tain an explicit computation for this group. In this case, we have that D4 �D1 Š
.D4 � Z=2/ �D4

.D4 � Z=2/, and we are interested in the Waldhausen Nil-groups
associated to this splitting. A special case of recent independent work of several au-
thors (including Davis [D], Davis–Khan–Ranicki [DKR], and Davis–Quinn–Reich
[DQR]) is that this Waldhausen Nil-group is isomorphic to the Bass Nil-group asso-
ciated to the canonical index two subgroupD4 � Z insideD4 �D1 (a considerable
strengthening of the result of the authors in [LO08]). In our tables, we denote these
groups by Nil0 D NK0.ZD4/ and Nil1 D NK1.ZD4/ (the lower Nil groups van-
ish by work of Farrell–Jones [FJ95]). These abelian groups are known to have the
following properties:

(1) Nil1 is either trivial or infinitely generated [F77],

(2) Nil0 is infinitely generated (see below),

(3) in both of these groups, the order of every element divides 8 [G07, Corollary 5].



322 J.-F. Lafont and I. J. Ortiz CMH

It is very likely that the group Nil1 is also non-trivial, but we were unable to
establish this result. In order to see that Nil0 is non-trivial, consider the following
Cartesian square:

ZŒa�=ha4 � 1 D 0i Š ZŒZ=4�

��

�� ZŒZ=2� Š ZŒa�=ha2 � 1 D 0i

��
ZŒa�=ha2 C 1 D 0i Š ZŒi � �� F2ŒZ=2� Š F2Œa�=ha2 � 1 D 0i

which yields the Cartesian square for ZŒD4� D ZŒZ=4 Ì˛ Z=2� D ZŒZ=4�˛ŒZ=2�,

ZŒZ=4�˛ŒZ=2�

��

�� ZŒZ=2�ŒZ=2�

��
ZŒi �˛ŒZ=2� �� F2ŒZ=2�ŒZ=2�,

where in ZŒi �˛ŒZ=2�, the automorphism ˛ acts via ˛.i/ D �i . Writing D2 D
Z=2 � Z=2 and A D ZŒi �˛ŒZ=2�, and applying the NK-functor, this Cartesian
square yields the Mayer–Vietoris sequence

NK2.F2ŒD2�/ �! Nil1 �! NK1.ZŒD2�/˚NK1.A/ �! NK1.F2ŒD2�/

�! Nil0 �! NK0.ZŒD2�/˚NK0.A/ �! NK0.F2ŒD2�/:

Several of the groups appearing in this Mayer–Vietoris sequence are known: the group
NK0.F2ŒD2�/ vanishes by [Bas68], while the authors have previously shown [LO07]
that the groups NK1.ZŒD2�/ and NK0.ZŒD2�/ are likewise countable infinite sums
of Z=2.

Focusing on the tail end of the Mayer–Vietoris sequence, and substituting in the
expressions we already know, we see that


 
 
 �! Nil0 �! NK0.A/˚
M
1

Z=2 �! 0;

and non-triviality of Nil0 follows from the surjectivity onto the countable infinite sum
of Z=2. In contrast, focusing on the head of the Mayer–Vietoris sequence, we see
that

NK2.F2ŒD2�/ �! Nil1 �! NK1.A/˚
M
1

Z=2 �! NK1.F2ŒD2�/ �! 
 
 
 :

Hence to establish that Nil1 is non-trivial from this sequence, one would need to
either
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� establish that the first map is non-zero, i.e., understand the map

NK2.F2ŒD2�/ ! NK1.ZD4/;

or

� establish that the second map is non-zero by showing that the third map has
a non-trivial kernel, for instance by understanding the map NK1.ZŒD2�/ !
NK1.F2ŒD2�/.

The authors have some partial results concerning some of the terms showing up
in the head of the Mayer–Vietoris sequence, but so far have been unsuccessful in
establishing non-triviality of Nil1.

7. The spectral sequences and final computations

We now proceed to apply Corollary 3.4 to compute the lower algebraic K-theory of
Z� , for� one of the 32 possible 3-simplex hyperbolic reflection groups. Let us recall
that Corollary 3.4 tells us that for such groups � we have for n � 1 an isomorphism

Kn.Z�/ Š H�
n .EV� .�/I KZ�1/˚

kM
iD1

HVi
n .EF�N .Vi / ! �/;

where fVigk
iD1 are a complete set of representatives for the conjugacy classes of

maximal infinite virtually cyclic subgroups of type I.
We first note that for all 32 of our groups, we have

� obtained in Section 4 a complete list of the type I maximal infinite virtually
cyclic subgroups (listed out in Tables 2, 3, and 4),

� explicitly computed in Section 6 the groups

HV
n .EF�N .V / ! �/

for all the type I maximal infinite virtually cyclic subgroups that occur, with the
exception of the case V D D4 �D1 (see Table 6).

In particular, this allows us to determine the expression

kM
iD1

HVi
n .EF�N .Vi / ! �/

occurring in the formula above for all 32 of our groups.
Hence we are left with computing H�

n .EF�N .�/I KZ�1/ for each of our 32
groups. In order to do this, we recall that Quinn [Qu82] established the existence of
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a spectral sequence which converges to this homology group, with E2-terms given
by

E2
p;q D Hp.EF�N .�/=�I fWhq.�� /g/ H) H�

n .EF�N .�/I KZ�1/:

The complex that gives the homology of EF�N .�/=� with local coefficients
fWhq.�� /g has the form


 
 
 �!
M

�pC1

Whq.��pC1/ �!
M
�p

Whq.��p /

�!
M

�p�1

Whq.��p�1/ �! 
 
 
 �!
M
�0

Whq.��0/;

where �p denotes the cells in dimension p, and the sum is over all p-dimensional
cells in EF�N .�/=� . The pth homology group of this complex will give us the
entries for the E2

p;q-term of the spectral sequence. Let us recall that

Whq.F / D

8̂<
:̂

Wh.F /; q D 1;

zK0.ZF /; q D 0;

Kq.ZF /; q � �1:
Observe that for the groups we are interested in it is particularly easy to obtain a model
for EF�N .�/: indeed, it is well known that for a lattice in Isom.Hn/ the action on
Hn is a model for EF�N . A cocompact model yH3 can be obtained by equivariantly
removing a suitable collection of horoballs from H3. In our specific situation, we
obtain a model forEF�N .�/ having a very explicit fundamental domain: the original
hyperbolic 3-simplex, with the ideal vertices truncated.

Now note that for this fundamental domain y�3 D yH3=� , it is particularly easy
to identify the stabilizers of each cell. Indeed, there will always be a single 3-dimen-
sional cell, with trivial isotropy. There will be four 2-dimensional cells, each of
which will have stabilizer Z=2. Additionally, there might be some 2-dimensional
cells with trivial stabilizer (from the truncated vertices). Note that since Whq.1/ and
Whq.Z=2/ vanish for all q � 1, this in particular implies that there will never be
any contribution to theE2-terms from the 3-dimensional and 2-dimensional cells. In
other words, E2

p;q D 0 except possibly for p D 0; 1.
Now let us focus on the 1-dimensional and 0-dimensional cells in the fundamental

domain y�3. We will have exactly six 1-dimensional cells, each of which will have
stabilizer a dihedral groupDn (n D 2; 3; 4; 5; or 6). In addition, there might be some
1-dimensional cells with stabilizer Z=2 (three such cells for each truncated vertex).
Note that amongst these groups, the only ones that have some non-trivial Whq are
the groups D5 (for q D 1) and D6 (for q D �1).
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Next, we observe that there are at most four0-dimensional cells in y�3 coming from
the non-ideal vertices of�3. Furthermore, each of these vertices will have stabilizer
a spherical Coxeter group, isomorphic to the special subgroup of the Coxeter group �
which corresponds to the vertex (up to isomorphism, these are the groups occurring
in Table 1). The remaining vertices of y�3 (coming from the truncated vertices in�3)
will have stabilizers of the form Dn (n D 2; 3; 4; 5 or 6). For all these groups, the
non-vanishing Whq can be found in Table 5.

Finally, we observe that since the only 1-cells with non-trivial Whq are the groups
D5 andD6, most of the morphisms in the chain complex for theE2-terms will either
be zero (or in a few cases, will clearly be isomorphisms). The three morphisms one
needs to take care with are the following:

� K�1.ZD6/ ! K�1.ZŒD6 � Z=2�/,
� Wh.D5/ ! Wh.D10/,
� Wh.D5/ ! Wh.A5 � Z=2/.

We proceed to analyze each of these three morphisms in the next three sections.

7.1. The map K�1.ZD6/ ! K�1.ZŒD6 � Z=2�/. We start by observing that
K�1.ZD6/ Š Z andK�1.ZŒD6 �Z=2�/ Š Z3 (see Table 5). We claim that the map
induced by the natural inclusionD6 ,! D6 �Z=2 is injective, and the quotient group
is isomorphic to Z2. In order to see this, we merely note that there is a retraction
from D6 � Z=2 to the subgroup D6, and hence we must have that K�1.ZD6/ Š Z
is a summand insideK�1.ZŒD6 � Z=2�/ Š Z3, which immediately gives our claim.

7.2. The map Wh.D5/ ! Wh.D10/. We start by observing that Wh.D5/ Š Z
and Wh.D10/ Š Z2 (see Table 5). We claim that the map induced by the natural
inclusionD5 ,! D10 Š D5 � Z=2 is injective, and the quotient group is isomorphic
to Z. But again, we see that there is a retraction from D5 � Z=2 to the subgroup
D5, and hence Wh.D5/ Š Z is a summand inside Wh.D10/ Š Z2, which gives us
our claim. Note that this map was used implicitly in Section 6.1 (in the argument
mentioned in the second paragraph).

7.3. The map Wh.D5/ ! Wh.A5 �Z=2/. We start by observing that Wh.D5/ Š
Z and Wh.A5 � Z=2/ Š Z2 (see Table 5). We claim that the map induced by the
natural inclusionD5 ,! A5 � Z=2 is injective, and the quotient group is isomorphic
to Z. Note that in this case we do not have a retraction from the group A5 � Z=2 to
the subgroup D5 (since A5 is simple, the only possible non-trivial quotients would
be isomorphic Z=2, A5, or A5 � Z=2).

Let us start by observing that, from the inclusion D5 ,! A5, we obtain that the
inclusion D5 ,! A5 � Z=2 factors through

D5 ,! D5 � Z=2 Š D10 ,! A5 � Z=2
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which implies the map on Whitehead groups likewise factors through

Wh.D5/ ! Wh.D10/ ! Wh.A5 � Z=2/:

Observe that the first map in the above sequence was analyzed in the previous Sec-
tion 7.2. Furthermore the last two groups in this sequence are abstractly isomorphic
to Z2. So in order to obtain our claim, all we need to do is establish that the inclusion
D10 ,! A5 � Z=2 induces an isomorphism on Whitehead groups.

In order to do this, we recall that Dress induction provides us with an isomorphism
(see [O89, Chapter 11]):

Wh.A5 � Z=2/ Š lim�!H2H.A5�Z=2/Wh.H/:

Here H .A5 � Z=2/ consists of all hyperelementary subgroups of A5 � Z=2, the
limit is over all maps induced by inclusion and conjugation, and the isomorphism is
naturally induced by the inclusions. Now recall (Section 5.4) that the hyperelementary
subgroups of A5 � Z=2 are, up to isomorphism, D2, D2 � Z=2, D3, D5, D6, and
D10. Amongst these groups (see Table 5), the only groups with non-trivial Wh are
the groups D5 and D10, with Wh.D5/ Š Z and Wh.D10/ Š Z2. Furthermore,
inside the group A5 � Z=2, it is easy to see that

(1) every subgroup isomorphic to D5 lies inside a subgroup isomorphic to D10;

(2) all the subgroups isomorphic to D10 are pairwise conjugate.

This immediately implies that the direct limit to the right is canonically isomorphic
to Wh.D10/, which gives us our desired claim.

7.4. The spectral sequences. By this point of the paper we have

� described a simple model for EF�N .�/ for our groups, and identified the stabi-
lizers of cells (in this section),

� computed (in Section 5) the lower algebraic K-groups of the stabilizers of the
cells, and

� identified (in this section) the non-trivial morphisms appearing in the computa-
tion of the E2-terms of the Quinn spectral sequence.

Furthermore, as explained earlier, the only possible non-zero terms in the spectral
sequence are theEp;q with p D 0; 1. This boils down to understanding the homology
of the complex

0 �!
M
�1

Whq.��1/ �!
M
�0

Whq.��0/ �! 0:

But we have seen (Sections 7.1, 7.2, and 7.3) that the middle map is always injective,
hence the E1;q terms will also vanish. This gives us that in all 32 cases the spectral
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sequence collapses at theE2-term. In fact, in all 32 cases, the only possible non-zero
E2-terms are E2

0;�1, E2
0;0, E2

0;1. In particular the Ki .Z�/ vanish for i � �2.

The results obtained forK�1, zK0, and Wh for all 32 hyperbolic 3-simplex groups
are listed out in Table 7 and Table 8 (on the next two pages). For ease of notation,
we have only entered the non-zero terms in the tables; all the blank squares represent
entries where the corresponding group vanishes.

Table 7. Lower algebraic K-theory of non-cocompact hyperbolic 3-simplex groups.

� K�1 ¤ 0 zK0 ¤ 0 Wh ¤ 0

Œ3Œ ��Œ ��

Œ4Œ4��

Œ.3; 6/Œ2�� Z2

Œ6; 3Œ3�� Z2

Œ41;1;1� Z=2

Œ.3; 5; 3; 6/� Z5 .Z=2/2 Z3

Œ.3; 43/� Z2 .Z=4/2

Œ.3; 4; 3; 6/� Z3 .Z=4/2 ˚ Nil0 Nil1

Œ.33; 6/� Z

Œ3Œ3;3��
L

1 Z=2
L

1 Z=2

Œ6; 31;1� Z
L

1 Z=2
L

1 Z=2

Œ3; 6; 3� Z3

Œ6; 3; 6� Z6 .Z=2/4

Œ4; 4; 4� .Z=4/2 ˚ L
1 Z=2

L
1 Z=2

Œ5; 3Œ3�� Z4
L

1 Z=2 Z3 ˚ L
1 Z=2

Œ5; 3; 6� Z6
L

1 Z=2 Z3 ˚ L
1 Z=2

Œ.32; 42/� Z2 .Z=4/2 ˚ L
1 Z=2

L
1 Z=2

Œ4; 3Œ3�� Z3 .Z=4/2 ˚ L
1 Z=2˚ Nil0

L
1 Z=2˚ Nil1

Œ3; 3Œ3��
L

1 Z=2
L

1 Z=2

Œ3; 41;1� Z2 .Z=4/2 ˚ L
1 Z=2

L
1 Z=2

Œ4; 3; 6� Z4 .Z=4/2 ˚ L
1 Z=2˚ Nil0

L
1 Z=2˚ Nil1

Œ3; 3; 6� Z4
L

1 Z=2
L

1 Z=2

Œ3; 4; 4� Z2 .Z=4/2 ˚ L
1 Z=2

L
1 Z=2
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Table 8. Lower algebraic K-theory of cocompact hyperbolic 3-simplex groups.

� K�1 ¤ 0 zK0 ¤ 0 Wh ¤ 0

Œ3; 5; 3� Z6
L

1 Z=2 Z3 ˚ L
1 Z=2

Œ5; 3; 5� Z6
L

1 Z=2 Z6 ˚ L
1 Z=2

Œ.33; 4/� Z2 .Z=4/2 ˚ L
1 Z=2˚ Nil0

L
1 Z=2˚ Nil1

Œ5; 31;1� Z4
L

1 Z=2 Z3 ˚ L
1 Z=2

Œ4; 3; 5� Z4 .Z=4/2 ˚ L
1 Z=2˚ Nil0 Z3 ˚ L

1 Z=2˚ Nil1

Œ.33; 5/� Z4
L

1 Z=2 Z3 ˚ L
1 Z=2

Œ.3; 5/Œ2�� Z8
L

1 Z=2 Z6 ˚ L
1 Z=2

Œ.3; 4/Œ2�� Z4 .Z=4/4 ˚ L
1 Z=2˚ .2 
 Nil0/

L
1 Z=2˚ .2 
 Nil1/

Œ.3; 4; 3; 5/� Z6 .Z=4/2 ˚ L
1 Z=2˚ Nil0 Z3 ˚ L

1 Z=2˚ Nil1

Note that several of the group appearing in Tables 7 and 8 involve copies of the
Bass Nil-groups NK0.ZD4/ and NK1.ZD4/ (see Section 5.5). In order to simplify
the notation in the tables, we used Nil0 and Nil1 to denote these two Nil-groups.
Recall that we know that the groups Nil0, Nil1 are torsion groups, where the order of
every element divides 8, and furthermore the group Nil0 is infinitely generated (see
Section 5.5). In the entries for the group Œ.3; 4/Œ2��, the expression 2 
 Nili denotes
two copies of the Bass Nil-group Nili .

Remark. In an Addendum to the present paper [We], C. Weibel has obtained some
additional information on the Bass Nil-groups Nil0, Nil1. Specifically, he shows that
Nil0 is the direct sum of a countably infinite free Z=2-module with a countably infinite
free Z=4-module. He also shows that Nil1 is a countably infinite torsion group of
exponent 2 or 4.

8. Appendix: two specific examples

In thisAppendix we work through the entire procedure for two specific examples (one
cocompact, and one non-cocompact), with a view of helping the reader understand
the layout of the paper.
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8.1. The group Œ.3; 5/Œ2��. The Coxeter diagram for this group � can be found in
Figure 1, from which the following presentation can be read off (see Section 2):

hw; x; y; z j w2 D x2 D y2 D z2 D 1;

.wx/3 D .xy/5 D .yz/3 D .zw/5 D .wy/2 D .xz/2 D 1i:
This group acts on H3 cocompactly, with fundamental domain a 3-simplex�3. After
labeling the hyperplanes extending the four faces by the four generators of � , the
angles between these hyperplanes satisfy the following relationships (see Section 2):

� †.Pw ; Py/ D †.Px; Pz/ D �=2,

� †.Pw ; Px/ D †.Py ; Pz/ D �=3,

� †.Pw ; Pz/ D †.Px; Py/ D �=5.

In particular, the action of � on H3 gives a cocompact model for EF�N .�/,
and the splitting formula (see Corollary 3.4) tells us that we have, for all n � 1,
isomorphisms

Kn.Z�/ Š H�
n .EF�N .�/I KZ�1/˚

kM
iD1

HVi
n .EF�N .Vi / ! �/:

Let us now identify the (finitely many) groups fVig that appear in the above
formula. As explained in Section 4, these groups will arise as stabilizers of type I
geodesics, which are precisely (up to the �-action) one of the six geodesicsPw \Px ,
Pw \ Py , Pw \ Pz , Px \ Py , Px \ Pz , and Py \ Pz . To identify the stabilizers of
these geodesics, we first need to identify the vertex stabilizers for the simplex �3.
Recall that these will be the special subgroups generated by triples of generators.
But from the Coxeter diagram for � , one immediately sees that any triple of vertices
spans out a subdiagram corresponding to the Coxeter group Œ3; 5�. This implies that
every vertex has stabilizer isomorphic to the (finite) Coxeter group Œ3; 5�, which is
well known to be isomorphic to the group A5 � Z=2. Now for each of the six type I
geodesics we have, one can consider the projection to the fundamental domain �3.
From Table 1, looking up the vertex stabilizers A5 � Z=2, we see that every one of
the six geodesics projects to precisely the associated edge in �3. Now to find the
stabilizers of the geodesics, one applies Bass–Serre theory. The stabilizer acts on
each of the geodesics with quotient a segment, so one can write each of the stabilizers
as a generalized free product. Furthermore, Table 1 allows us to identify the vertex
groups in the Bass–Serre graph of groups.

Let us see how this works, for instance in the case of the geodesic Px \ Py .
The two associated hyperplanes Px and Py intersect at an angle of �=5, hence the
edge group in the Bass–Serre graph of groups will be D5. For the vertex groups,
we see that the corresponding segment in �3 joins a pair of vertices with stabilizer
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A5 � Z=2, and correspond to the angle of �=5 at both the vertices. The last row in
Table 1 tells us that both the vertex groups in the Bass–Serre graph of groups will be
D10. This tells us that the stabilizer of the geodesic Px \ Py is precisely the group
D10 �D5

D10 Š D5 �D1. Carrying this procedure out for each of the six geodesics,
one finds that the stabilizers one obtains are as follows:

� two copies of D10 �D5
D10, corresponding to the two geodesics Px \ Py and

Pw \ Pz ,

� two copies of D6 �D3
D6, corresponding to the two geodesics Pw \ Px and

Py \ Pz ,

� two copies of D2 � D1, corresponding to the two geodesics Pw \ Py and
Px \ Pz .

Note that these are precisely the groups that are listed out in Table 4. Finally, amongst
these six subgroups, one needs to know which ones have a non-trivial cokernel for the
relative assembly map. But from the work in Section 6, all the non-trivial cokernels
are listed out in Table 6. Looking up Table 6, one sees that out of these six groups, the
only ones with non-trivial cokernels are the two copies of D2 �D1, each of whom
contributes

L
1 Z=2 to the K0.Z�/ and Wh.�/.

So we are finally left with computing the homology coming from the finite sub-
groups, i.e., the termH�

n .EF�N .�/I KZ�1/. As we mentioned earlier, a cocompact
fundamental domain for H3=� is given by �3. The stabilizers of cells in the funda-
mental domain can be read off from the Coxeter diagram, as they will precisely be
the special subgroups (see the discussion in Section 7). We see that

� there is one 3-dimensional cell (the interior of �3), with trivial stabilizer,

� there are four 2-dimensional cells (the faces of �3), with stabilizer Z=2,

� there are six 1-dimensional cells (the edges of�3), two of which have stabilizer
D2, two of which have stabilizer D3, and two of which have stabilizer D5,

� there are four 0-dimensional cells (the vertices of�3), each of which has stabi-
lizer A5 � Z=2.

Now to obtain the E2-terms in the Quinn spectral sequence, we need the homology
of the complex


 
 
 �!
M

�pC1

Whq.��pC1/ �!
M
�p

Whq.��p /

�!
M

�p�1

Whq.��p�1/ �! 
 
 
 �!
M
�0

Whq.��0/;

where �p are the p-dimensional cells (which we identified above). But from the
work in Section 5, we know explicitly all the groups appearing in the above complex.
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Indeed, looking up the non-zeroK-groups inTable 5, we see that forq < �1, the entire
complex is identically zero. We now consider the remaining values q D �1; 0; 1.

q D �1: The complex degenerates to

0 ! 4K�1.ZŒA5 � Z=2�/ ! 0;

where the four copies ofK�1.ZŒA5 �Z=2�/ come from the four vertices of�3. Since
we know (see Table 5) thatK�1.ZŒA5 �Z=2�/ Š Z2, we immediately get thatE2

p;�1

all vanish, with the exception of E2
0;�1 Š Z8.

q D 0: The complex degenerates to

0 ! 4 zK0.ZŒA5 � Z=2�/ ! 0;

where the four copies of zK0.ZŒA5 � Z=2�/ come from the four vertices of�3. Since
we know (see Table 5) that zK0.ZŒA5 � Z=2�/ Š Z=2, we immediately get that E2

p;0

all vanish, with the exception of E2
0;0 Š .Z=2/4.

q D 1: The complex degenerates to

0 ! 2Wh.D5/ ! 4Wh.A5 � Z=2/ ! 0:

Note that the first copy of Wh.D5/ comes from the edge Px \ Py \ �3, while the
second copy of Wh.D5/ comes from the edge Pw \ Pz \ �3. The four copies of
Wh.A5 � Z=2/ come from the four vertices of �3.

Since the two edges Px \ Py \�3 and Pw \ Pz \�3 are disjoint, the complex
splits as a sum of two subcomplexes, one for each of the two edges. Focusing on the
first edge, we see that we have

0 ! Wh.D5/ ! 2Wh.A5 � Z=2/ ! 0:

We know that Wh.D5/ Š Z and Wh.A5 � Z=2/ Š Z2 (see Table 5), and that
the map Wh.D5/ ,! Wh.A5 � Z=2/ induced by inclusion is split injective (see
Section 7.3). This immediately tells us that in the chain complex above, we have that
2Wh.A5 � Z=2/=Wh.D5/ Š Z3. An identical analysis for the other edge gives us
that the homology of the original complex yields E2

1;1 Š 0 and E2
0;1 Š Z6.

Combining everything we have said so far, we see that for the Quinn spectral
sequence, the only non-zeroE2-terms areE2

0;�1 Š Z8 andE2
0;1 Š Z6. This implies

that the spectral sequence immediately collapses, giving us that

H�
n .EF�N .�/I KZ�1/ Š 0; for n < �1,

and

H��1.EF�N .�/I KZ�1/ Š Z8;

H�
0 .EF�N .�/I KZ�1/ Š .Z=2/4;

H�
1 .EF�N .�/I KZ�1/ Š Z6:
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We now have both the terms appearing in the splitting formula, and we conclude
that the lower algebraic K-theory of the group � is given by

Whn.�/ D

8̂̂̂
<
ˆ̂̂:

Wh.�/ Š Z6 ˚ L
1 Z=2; n D 1;

zK0.Z�/ Š L
1 Z=2; n D 0;

K�1.Z�/ Š Z8; n D �1;
Kn.Z�/ Š 0; n � �1:

Looking up Table 8, one finds that these are precisely the values reported.

8.2. The group Œ3; 41;1�. The Coxeter diagram for this group � can be found in
Figure 2, from which the following presentation can be read off (see Section 2):

hw; x; y; z j w2 D x2 D y2 D z2 D 1;

.wx/3 D .xy/4 D .yz/2 D .zw/2 D .wy/2 D .xz/4 D 1i:
This group acts on H3 with cofinite volume, with fundamental domain a (non-
compact) 3-simplex�3 with one ideal vertex. After labeling the hyperplanes extend-
ing the four faces by the four generators of � , the angles between these hyperplanes
satisfy the following relationships (see Section 2):

� †.Pw ; Py/ D †.Pw ; Pz/ D †.Pw ; Pz/ D �=2,

� †.Pw ; Px/ D �=3,

� †.Px; Pz/ D †.Px; Py/ D �=4.

The ideal vertex arises as the intersection (at infinity) of the three hyperplanes Px \
Py \ Pz , and has stabilizer the 2-dimensional crystallographic group Œ4; 4�.

Now as discussed in Section 7, the action of � on H3 provides us with a model
for EF�N .�/. Furthermore, the splitting formula (see Corollary 3.4) tells us that we
have, for all n � 1, isomorphisms

Kn.Z�/ Š H�
n .EF�N .�/I KZ�1/˚

kM
iD1

HVi
n .EF�N .Vi / ! �/:

Let us now identify the (finitely many) groups fVig that appear in the above
formula. As explained in Section 4, these groups will arise as stabilizers of type I
geodesics, which are precisely (up to the �-action) one of the six geodesicsPw \Px ,
Pw \ Py , Pw \ Pz , Px \ Py , Px \ Pz , and Py \ Pz . Note that since the geodesic
segments Px \ Py , Py \ Pz and Px \ Pz project to non-compact segments in the
fundamental domain (they give rise to edges joined to the ideal vertex), these geodesics
will never have an infinite stabilizer, and we can hence safely ignore them.
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To identify the stabilizers of the remaining three geodesics, we follow the proce-
dure from Section 4. We first need to identify the (non-ideal) vertex stabilizers for
the simplex �3. Recall that these will be the special subgroups generated by triples
of generators. But from the Coxeter diagram for � , and the subdiagram spanned out
by the triple of vertices, we obtain that:

� the Coxeter group Œ3; 4� Š S4 � Z=2 will be the stabilizer of the vertices Pw \
Px \ Pz and of the vertex Pw \ Px \ Py ,

� the group .Z=2/3 will be the stabilizer of the vertex Pw \ Py \ Pz .

Now for each of the three (potentially cocompact) type I geodesics that we have
(Pw \Px ,Pw \Py , andPw \Pz) one can consider the projection to the fundamental
domain �3. From Table 1, looking up the vertex stabilizers S4 � Z=2, we see that
every one of the three geodesics projects to precisely the associated edge in �3.

To find the stabilizers of these geodesics, we now use Bass–Serre theory as ex-
plained in Section 4. To find the vertex groups, one uses Table 1, while the edge
group will be precisely the dihedral group given by the special subgroup associated
to the geodesic. This immediately gives us the stabilizers:

� one copy of D6 �D3
D6, corresponding to the geodesic Pw \ Px ,

� two copies of .Z=2�D2/ �D2
.Z=2�D2/ Š D2 �D1, corresponding to the

two geodesics Pw \ Py and Pw \ Pz ,

which are precisely the groups reported in Table 3. Finally, amongst these three
subgroups, one needs to decide which ones have a non-trivial cokernel for the relative
assembly map. These cokernels are listed out in Table 6, and one sees that the only
non-trivial contribution will come from the two copies of D2 �D1, each of which
will contribute

L
1 Z=2 to the zK0.Z�/ and Wh.�/.

So we are finally left with computing the homology coming from the finite sub-
groups, i.e., the termH�

n .EF�N .�/I KZ�1/. As we mentioned earlier, a fundamen-
tal domain for yH3=� is given by the original hyperbolic 3-simplex�3 with the ideal
vertexPx \Py \Pz truncated. The stabilizers of cells in the fundamental domain can
be read off from the Coxeter diagram, as they will precisely be the special subgroups
(see the discussion in Section 7). We see that

� there is one 3-dimensional cell (the interior of �3), with trivial stabilizer;
� there are four 2-dimensional cells with stabilizer Z=2 (for the faces of the orig-

inal �3), and one 2-dimensional cell with trivial stabilizer (from the truncated
vertex);

� there are nine 1-dimensional cells: three of these have stabilizer D2 (from the
edges corresponding to Py \ Pz , Pw \ Py , and Pw \ Pz), two have stabilizer
D4 (from the edges corresponding to Px \Py and Px \Pz), one has stabilizer
D3 (from the edge corresponding to Pw \ Px), and three have stabilizer Z=2
(from the truncation of Px , Py , Pz);
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� there are six 0-dimensional cells: two have stabilizer S4 � Z=2 (from two of
the non-ideal vertices), one has stabilizer D2 � Z=2 (from the third non-ideal
vertex), two have stabilizer D4 (from the truncation of the edges Px \ Py and
Px \Pz), and one has stabilizerD2 (from the truncation of the edge Py \Pz).

Now to obtain the E2-terms in the Quinn spectral sequence, we need the homology
of the complex


 
 
 �!
M

�pC1

Whq.��pC1/ �!
M
�p

Whq.��p /

�!
M

�p�1

Whq.��p�1/ �! 
 
 
 �!
M
�0

Whq.��0/;

where �p are the p-dimensional cells (which we identified above). But from the
work in Section 5, we know explicitly all the groups appearing in the above complex.
Indeed, looking up the non-zeroK-groups in Table 5, we see that the only two of the
cell stabilizers that have non-trivialK-theory are the groupsD2 �Z=2 and S4 �Z=2.
There are two copies of the group S4 � Z=2, arising as stabilizers of 0-cells, and we
have that K�1.ZŒS4 � Z=2�/ Š Z and zK0.ZŒS4 � Z=2�/ Š Z=4. There is only one
copy of the group D2 � Z=2 , arising as the stabilizer of one single 0-cell, and we
have that zK0.ZŒD2 � Z=2�/ Š Z=2. This immediately tells us that non-zero terms
in the Quinn spectral sequence will beE2

0;�1 Š Z2 andE2
0;0 Š .Z=4/2 ˚ Z=2. This

implies that the spectral sequence immediately collapses, giving us that

H�
n .EF�N .�/I KZ�1/ Š 0

for n < �1; n D 1, and

H��1.EF�N .�/I KZ�1/ Š Z2;

H�
0 .EF�N .�/I KZ�1/ Š .Z=4/2 ˚ Z=2:

We now have both the terms appearing in the splitting formula, and we conclude
that the lower algebraic K-theory of the group � is given by

Whn.�/ D

8̂̂̂
<
ˆ̂̂:

Wh.�/ Š L
1 Z=2; n D 1

zK0.Z�/ Š .Z=4/2 ˚ L
1 Z=2; n D 0;

K�1.Z�/ Š Z2; n D �1;
Kn.Z�/ Š 0; n � �1:

Looking up Table 7, one finds that these are precisely the values reported.



Vol. 84 (2009) Lower algebraic K-theory of hyperbolic 3-simplex reflection groups 335

References

[Bar03] A. Bartels, On the domain of the assembly map in algebraicK-theory. Algebr. Geom.
Topol. 3 (2003), 1037–1050. Zbl 1038.19001 MR 2012963

[Bas65] H. Bass, The Dirichlet unit theorem, induced characters, and Whitehead groups of
finite groups. Topology 4 (1965), 391–410. Zbl 0166.02401 MR 0193120

[Bas68] H. Bass, Algebraic K-theory. W. A. Benjamin, New York 1968. Zbl 0174.30302
MR 0249491

[BFPP00] E. Berkove, F. T. Farrell, D. J. Pineda, and K. Pearson, The Farrell-Jones isomorphism
conjecture for finite covolume hyperbolic actions and the algebraic K-theory of
Bianchi groups. Trans. Amer. Math. Soc. 352 (2000), 5689–5702. Zbl 0954.19001
MR 1694279

[C80a] D. Carter, Lower K-theory of finite groups. Comm. Algebra 8 (20) (1980),
1927–1937. Zbl 0448.16017 MR 0590500

[C80b] D. Carter, Localization in lower algebraic K-theory. Comm. Algebra 8 (1980),
603–622. Zbl 0429.16019 MR 0561543

[CP02] F. X. Connolly and S. Prassidis, On the exponent of the cokernel of the forget-control
map onK0-groups. Fund. Math. 172 (2002), 201–216. Zbl 0992.57022 MR 1898685

[CuR81] C. Curtis and I. Reiner, Methods of representation theory. Vol. I, Wiley, New York
1981. Zbl 0469.20001 MR 0632548

[CuR87] C. Curtis and I. Reiner, Methods of representation theory. Vol. II, Wiley, New York
1987. Zbl 0616.20001 MR 0892316

[D] J. Davis, Some remarks on Nil groups in algebraic K-theory. Preprint;
arXiv:0803.1641v2.

[DKR] J. Davis, Q. Khan, and A. Ranicki, Algebraic K-theory over the infinite dihedral
group. Preprint; arXiv:0803.1639v2.

[DQR] J. Davis, F. Quinn, and H. Reich, Algebraic K-Theory of virtually cyclic groups. In
preparation.

[EH79] S. Endo and Y. Hironaka, Finite groups with trivial class group. J. Math. Soc. Japan
31 (1979), 161–174. Zbl 0396.20004 MR 0519042

[EM76] S. Endo and T. Miyata, On the projective class group of finite groups. Osaka J. Math.
13 (1976), 109–122. Zbl 0364.20009 MR 0409561

[EM80] S. Endo and T. Miyata, On the class group of dihedral groups. J. Algebra 63 (1980),
548–573. Zbl 0436.16006 MR 0570730

[FO] D. Farley and I. J. Ortiz, Three-dimensional crystallographic groups and algebraic
K-theory. In preparation.

[F77] F. T. Farrell, The nonfiniteness of Nil. Proc. Amer. Math. Soc. 65 (1977), 215–216.
Zbl 0365.18021 MR 0450328

[FJ93] F. T. Farrell and L. Jones, Isomorphism conjectures in algebraic K-theory. J. Amer.
Math. Soc. 6 (1993), 249–297. Zbl 0798.57018 MR 1179537

[FJ95] F. T. Farrell and L. Jones, The lower algebraic K-theory of virtually infinite cyclic
groups. K-theory 9 (1995), 13–30. Zbl 0829.19002 MR 1340838

http://www.emis.de/MATH-item?1038.19001
http://www.ams.org/mathscinet-getitem?mr=2012963
http://www.emis.de/MATH-item?0166.02401
http://www.ams.org/mathscinet-getitem?mr=0193120
http://www.emis.de/MATH-item?0174.30302
http://www.ams.org/mathscinet-getitem?mr=0249491
http://www.emis.de/MATH-item?0954.19001
http://www.ams.org/mathscinet-getitem?mr=1694279
http://www.emis.de/MATH-item?0448.16017
http://www.ams.org/mathscinet-getitem?mr=0590500
http://www.emis.de/MATH-item?0429.16019
http://www.ams.org/mathscinet-getitem?mr=0561543
http://www.emis.de/MATH-item?0992.57022
http://www.ams.org/mathscinet-getitem?mr=1898685
http://www.emis.de/MATH-item?0469.20001
http://www.ams.org/mathscinet-getitem?mr=0632548
http://www.emis.de/MATH-item?0616.20001
http://www.ams.org/mathscinet-getitem?mr=0892316
http://arxiv.org/abs/0803.1641v2
http://arxiv.org/abs/0803.1639v2
http://www.emis.de/MATH-item?0396.20004
http://www.ams.org/mathscinet-getitem?mr=0519042
http://www.emis.de/MATH-item?0364.20009
http://www.ams.org/mathscinet-getitem?mr=0409561
http://www.emis.de/MATH-item?0436.16006
http://www.ams.org/mathscinet-getitem?mr=0570730
http://www.emis.de/MATH-item?0365.18021
http://www.ams.org/mathscinet-getitem?mr=0450328
http://www.emis.de/MATH-item?0798.57018
http://www.ams.org/mathscinet-getitem?mr=1179537
http://www.emis.de/MATH-item?0829.19002
http://www.ams.org/mathscinet-getitem?mr=1340838


336 J.-F. Lafont and I. J. Ortiz CMH

[G07] J. Grunewald, Non-finiteness results for nil-groups. Algebr. Geom. Topol. 7 (2007),
1979–1986. Zbl 1127.19004 MR 2366184

[Ha87] D. R. Harmon, NK1 of finite groups. Proc. Amer. Math. Soc. 100 (1987), 229–232.
Zbl 0625.18003 MR 0884456

[JKRT99] N. W. Johnson, J. G. Ratcliffe, R. Kellerhals, and S. T. Tschantz, The size of a
hyperbolic Coxeter simplex. Transform. Groups 4 (1999), 329–353. Zbl 0953.20041
MR 1726696

[JKRT02] N. W. Johnson, J. G. Ratcliffe, R. Kellerhals, and S. T. Tschantz, Commensurability
classes of hyperbolic Coxeter groups. Linear Algebra Appl. 345 (2002), 119–147.
Zbl 1033.20037 MR 1883270

[LO07] J.-F. Lafont and I. J. Ortiz, Relative hyperbolicity, classifying spaces, and lower
algebraic K-theory. Topology 46 (2007), 527–553. Zbl 1132.19001 MR 2363244

[LO08] J.-F. Lafont and I. J. Ortiz, Relating the Farrell Nil-groups to the Waldhausen Nil-
groups. Forum Math. 20 (2008), 445–455. Zbl 1147.19005 MR 2418200

[LMO] J.-F. Lafont, B. Magurn, and I. J. Ortiz, Lower algebraicK-theory of certain reflection
groups. In preparation.

[LW] W. Lück and M. Weiermann, On the classifying space of the family of virtually cyclic
subgroups. Pure Appl. Math. Q., to appear.

[Ma78] B. Magurn, SK1 of dihedral groups. J. Algebra 51 (1978), 399–415. Zbl 0376.16026
MR 0498804

[Ma80] B. Magurn, Whitehead groups of some hyperelementary groups. J. London Math.
Soc. (2) 21 (1980), 176–188. Zbl 0418.16015 MR 0576195

[Ma06] B. Magurn, Explicit K1 of some modular groups rings. J. Pure Appl. Algebra 206
(2006), 3–20. Zbl 1093.19001 MR 2220078

[Ma07] B. Magurn, ExplicitK2 of some finite groups rings. J. Pure Appl. Algebra 209 (2007),
801–811. Zbl 1120.19002 MR 2298858

[Mi66] J. Milnor, Whitehead torsion. Bull. Amer. Soc. 72 (1966), 358–426. Zbl 0147.23104
MR 0196736

[O89] R. Oliver, Whitehead groups of finite groups. London Math. Soc. Lecture Notes Ser.
132, Cambridge University Press, Cambridge 1989. Zbl 0636.18001 MR 0933091

[Or04] I. J. Ortiz, The lower algebraic K-theory of �3. K-theory 32 (2004), 331–355.
Zbl 1068.19004 MR 2112901

[Pe98] K. Pearson, Algebraic K-theory of two dimensional crystallographic groups. K-
theory 14 (1998), 265–280. Zbl 0907.19001 MR 1633509

[Qu82] F. Quinn, Ends of maps II. Invent. Math. 68 (1982), 353–424. Zbl 0533.57008
MR 0669423

[Ra07] R. Ramos, Non finiteness of twisted Nils. Bol. Soc. Mat. Mexicana (3) 13 (2007),
55–64. MR 2468022

[Re76] I. Reiner, Class groups and Picard groups of group rings and orders. Conference
Board of the Mathematical Sciences, Regional Conference Ser. Math. 26, Amer.
Math. Soc., Providence, RI, 1976. Zbl 0326.16025 MR 0404410

http://www.emis.de/MATH-item?1127.19004
http://www.ams.org/mathscinet-getitem?mr=2366184
http://www.emis.de/MATH-item?0625.18003
http://www.ams.org/mathscinet-getitem?mr=0884456
http://www.emis.de/MATH-item?0953.20041
http://www.ams.org/mathscinet-getitem?mr=1726696
http://www.emis.de/MATH-item?1033.20037
http://www.ams.org/mathscinet-getitem?mr=1883270
http://www.emis.de/MATH-item?1132.19001
http://www.ams.org/mathscinet-getitem?mr=2363244
http://www.emis.de/MATH-item?1147.19005
http://www.ams.org/mathscinet-getitem?mr=2418200
http://www.emis.de/MATH-item?0376.16026
http://www.ams.org/mathscinet-getitem?mr=0498804
http://www.emis.de/MATH-item?0418.16015
http://www.ams.org/mathscinet-getitem?mr=0576195
http://www.emis.de/MATH-item?1093.19001
http://www.ams.org/mathscinet-getitem?mr=2220078
http://www.emis.de/MATH-item?1120.19002
http://www.ams.org/mathscinet-getitem?mr=2298858
http://www.emis.de/MATH-item?0147.23104
http://www.ams.org/mathscinet-getitem?mr=0196736
http://www.emis.de/MATH-item?0636.18001
http://www.ams.org/mathscinet-getitem?mr=0933091
http://www.emis.de/MATH-item?1068.19004
http://www.ams.org/mathscinet-getitem?mr=2112901
http://www.emis.de/MATH-item?0907.19001
http://www.ams.org/mathscinet-getitem?mr=1633509
http://www.emis.de/MATH-item?0533.57008
http://www.ams.org/mathscinet-getitem?mr=0669423
http://www.ams.org/mathscinet-getitem?mr=2468022
http://www.emis.de/MATH-item?0326.16025
http://www.ams.org/mathscinet-getitem?mr=0404410


Vol. 84 (2009) Lower algebraic K-theory of hyperbolic 3-simplex reflection groups 337

[RU74] I. Reiner, and S. Ullom, Remarks on class groups of integral group rings. Symposia
Math. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972),
Academic Press, London 1974, 501–516. Zbl 0305.20007 MR 0367043

[Se77] J. P. Serre, Linear representations of finite groups Grad. Texts in Math. 42, Springer-
Verlag, New York 1977. Zbl 0355.20006 MR 0450380

[Sw60] R. G. Swan, Induced representations and projective modules. Ann. of Math. (2) 71
(1960), 552–578. Zbl 0104.25102 MR 0138688

[V67] E. B. Vinberg, Discrete groups generated by reflections in Lobachevskii spaces.
Math. USSR-Sb. 1 (1967), 429–444. Zbl 0166.16303 MR 0207853

[Wd78] F. Waldhausen, Algebraic K-theory of generalized free product I, II. Ann. of Math.
108 (1978), 135–256. Zbl 0397.18012 MR 0498807

[W74] C. T. C. Wall, Norms of units in group rings. Proc. London Math. Soc. 29 (1974),
593–632. Zbl 0302.16013 MR 0376746

[We] C. Weibel, NK0 and NK1 of the groups C4 and D4. Comment. Math. Helv. 84
(2009), 339–349.

Received May 6, 2007

Jean-François Lafont, Department of Mathematics, Ohio State University, Columbus,
OH 43210, U.S.A.
E-mail: jlafont@math.ohio-state.edu

Ivonne J. Ortiz, Department of Mathematics and Statistics, Miami University, Oxford,
OH 45056, U.S.A.
E-mail: ortizi@muohio.edu

http://www.emis.de/MATH-item?0305.20007
http://www.ams.org/mathscinet-getitem?mr=0367043
http://www.emis.de/MATH-item?0355.20006
http://www.ams.org/mathscinet-getitem?mr=0450380
http://www.emis.de/MATH-item?0104.25102
http://www.ams.org/mathscinet-getitem?mr=0138688
http://www.emis.de/MATH-item?0166.16303
http://www.ams.org/mathscinet-getitem?mr=0207853
http://www.emis.de/MATH-item?0397.18012
http://www.ams.org/mathscinet-getitem?mr=0498807
http://www.emis.de/MATH-item?0302.16013
http://www.ams.org/mathscinet-getitem?mr=0376746

	Introduction
	The 3-dimensional groups
	A formula for the algebraic K-theory
	Maximal infinite `39`42`"613A``45`47`"603A==========V==========C_ subgroups
	The uniform lattices
	One ideal vertex
	Two ideal vertices
	Three ideal vertices
	Four ideal vertices

	The algebraic K-theory of cell stabilizers in E_`39`42`"613A``45`47`"603A==========FIN
	The lower algebraic K-theory of D_6 Z/2
	The computation of the K-groups K_-1(ZD_5), and Wh(D_5)
	The computation of the K-groups K_-1(ZD_10), and Wh(D_10)
	The lower algebraic K-theory of A_5 Z/2

	Cokernels of relative assembly maps for maximal infinite virtually cyclicsubgroups
	The lower algebraic K-theory of D_5 D_
	The lower algebraic K-theory of (D_2 Z/2) _D_2 D_4
	The lower algebraic K-theory of D_4 _D_2 D_4
	The lower algebraic K-theory of D_4 D_

	The spectral sequences and final computations
	The map K_-1(Z D_6)K_-1(Z [D_6Z/2])
	The map Wh(D_5)Wh(D_10)
	The map Wh(D_5)Wh(A_5Z /2)
	The spectral sequences

	Appendix: two specific examples
	The group [(3,5)[2]]
	The group [3,41,1]


