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Complete surfaces with positive extrinsic curvature in product
spaces

José M. Espinar, José A. Gélvez and Harold Rosenberg*

Abstract. We prove that every complete connected immersed surface with positive extrinsic
curvature K in H? x R must be properly embedded, homeomorphic to a sphere or a plane
and, in the latter case, study the behavior of the end. Then, we focus our attention on surfaces
with positive constant extrinsic curvature (K-surfaces). We establish that the only complete
K-surfaces in S? x R and H? x R are rotational spheres. Here are the key steps to achieve this.
First height estimates for compact K -surfaces in a general ambient space M2 x R with boundary
in a slice are obtained. Then distance estimates for compact K-surfaces (and H -surfaces) in
H? x R with boundary on a vertical plane are obtained. Finally we construct a quadratic form
with isolated zeroes of negative index.
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1. Introduction

In 1936, J. Stoker [S] generalized the result of J. Hadamard [H] that a compact strictly
locally convex surface in Euclidean 3-space R? is homeomorphic to the sphere.
J. Stoker showed that a complete strictly locally convex immersed surface in R must
be embedded and homeomorphic to the sphere or plane. In the latter case, the surface
is a graph over a planar domain. Today, this result is known as the Hadamard—Stoker
Theorem. Strict convexity of the surface is equivalent in R3 to positive Gaussian
curvature. Note that in R3, the Gauss equation for a surface says that the Gauss
curvature, i.e., the intrinsic curvature K(I), and the Gauss—Kronecker curvature, i.e.,
the extrinsic curvature K, are equal. In space forms, the situation is close since both
curvatures are related by a constant.

M. Do Carmo and F. Warner [CW] extended Hadamard’s theorem to hyperbolic
3-space H3, assuming the surface is compact and has positive extrinsic curvature.

*J. M. Espinar and J. A. Gélvez were partially supported by Ministerio de Educacién y Ciencia Grant No.
MTM2007-65249 and Junta de Andalucia projects FQM325 and PO6-FQM-01642.
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The complete case in H? was treated by R. J. Currier in [C] and it is interesting to
remark the difference with the euclidean case. Currier’s theorem says that a complete
immersed surface in H3 whose principal curvatures are greater than or equal to one
is embedded and homeomorphic to the sphere or plane. And we cannot expect a
better result; it is easy to construct examples of complete embedded flat surfaces, i.e.,
K = 1in H3, homeomorphic to a cylinder.

Recently, the study of surfaces in product spaces M? x R, where M? is a Rieman-
nian surface and R the real line, has undergone considerable development. U. Abresch
and H. Rosenberg [AR1] defined a holomorphic quadratic differential on constant
mean curvature surfaces in the homogeneous 3-manifolds. This enabled them to gen-
eralize Hopf’s theorem to these spaces: immersed constant mean curvature spheres
are rotational and embedded. Aledo, Espinar and Gélvez associated a holomorphic
quadratic differential to constant Gaussian curvature surfaces in S x R and H? x R,
[AEG1]. This enabled them to prove the same Hopf type theorem for immersed con-
stant Gaussian spheres in these product spaces. Also, they classified the complete
surfaces with constant Gauss curvature, and established Liebmann and Hilbert type
theorems for these surfaces. More precisely:

Liebmann type theorem. There exists a unique complete surface of constant Gauss-
ian curvature K(I) > 1in S? x R (up to isometry), and a unique complete surface
of constant Gaussian curvature K(I) > 0 in H? x R. In addition, these surfaces are
rotationally symmetric embedded spheres.

Hilbert type theorem. There is no complete immersion of constant Gaussian cur-
vature K(I) < —1 into H? x R or S? x R.

Also, there exist complete immersions of every constant curvature K(I) > —1
into H? x R. In [AEG3] the authors prove that there are no complete immersions
with constant Gaussian curvature 0 < K(I) < 1inS? xR. The existence of complete
immersions with constant Gaussian curvature —1 < K(I) < 0 in S? x R remains
open.

In contrast, the case of extrinsic curvature has been rarely considered in these
spaces (see [CR]). We note that the classification of surfaces of constant Gaussian
curvature does not help us since the intrinsic and extrinsic curvature differ by the
sectional curvature function in a product space.

We center our attention on complete surfaces with positive (non constant and
constant) extrinsic curvature in H? x R, nonetheless some of our results for constant
extrinsic curvature also work in a more general setting, as we will point out.

One of the main results of this paper is that only embedded rotational spheres can
occur when K is a positive constant, see Theorem 7.3.

We organize the paper as follows. In Section 2 we introduce the notation and
definitions we need. In Section 3 we establish the following Hadamard—Stoker type
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theorem in H? x R (the notion of simple end will be given later).

Theorem 3.1. Let S be a complete connected immersed surface with K > 0 in
H? x R. Then S must be properly embedded and bounds a strictly convex domain in
H? x R. Moreover, S is homeomorphic to S* or R2. In the latter case, S is a graph
over a convex domain of H? x {0} or S has a simple end.

This result suggests that surfaces with positive extrinsic curvature in H? x R
behave like surfaces with K > 0 in R3, rather than surfaces with K > 0 in H3. This
is because there are many totally geodesic foliations of H? x R by vertical planes
which are isometric to R2.

In Section 4 we construct complete embedded surfaces with positive extrinsic
curvature with asimple endin H2 xR. In Section 5 we classify the complete revolution
surfaces of positive constant extrinsic curvature in H? x R which are topological
spheres. Hereafter we will refer to surfaces with positive constant extrinsic curvature
as K-surfaces.

In Section 6 we establish vertical height estimates for K-surfaces in M? x R, M?
a Riemannian surface. More precisely,

Theorem 6.1. Let : S — M? x R be a compact graph on a domain Q@ C M?,
with positive constant extrinsic curvature K and whose boundary is contained in the
slice M2 x {0}. Let k be the minimum of the Gauss curvature on Q@ C M?. Then,
there exists a constant cg (depending only on K and k) such that |h(p)| < ck for
all p € S (h is the height function on the graph).

Also, horizontal height (or distance) estimates are obtained,

Theorem 6.2. Let S be a compact embedded surface in H? x R, with extrinsic
curvature a constant K > 0. Let P be a vertical plane in H? x R and assume that
d0S C P. Then the distance from S to P is bounded; i.e., there is a constant d,
independent of S, such that

dist(q, P) <d forallq € S.

We remark that the proof of this result works for H -surfaces in H? x R with
H > 1/2, thus this result, together with the vertical height estimates given in [AEG?2]
for H-surfaces with H > 1/2, generalizes Theorem 1.1 in [NR] for H -surfaces with
H > 1/2. More precisely,

Theorem 7.2. For K > 0 (or H > 1/2) there is no properly embedded K -surface
(H -surface) in H? x R, with finite topology and one end.

Finally, in Section 7 we classify the complete immersed K -surfaces in H? x R
and S? x R.
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Theorem 7.3. The complete immersions with positive constant extrinsic curvature
K in H? x R and S? x R are the rotational spheres given in Section 5.

2. Notation

In Sections 2, 3 and 4 we will use the Poincaré disk model of H?. In Section 5 we
will work in the hyperboloid of one sheet model of H? in the Lorentz—Minkowski
3-space 3. We make this precise in Section 5.
In the Poincaré model, HZ is represented as the domain
D= {ZE(x,y)e]R2:|Z|2=x2—i—y2< l}

. . 2
endowed with the metric g—; = %.
The complete geodesics in this model are given by arcs of circles or straight lines

which are orthogonal to the boundary at infinity
St ={zeR*:|z| =1}.
Thus, the asymptotic boundary of a set Q C H? is
0002 = cl(Q) N SL,

where cl(2) is the closure of 2 in {Z eR?:|z| < 1}.
We orient H? so that its boundary at infinity is oriented counter-clockwise. Let y
be a complete oriented geodesic in H?2, then

Isoy = {y .1},

where y~ = lim;,_o ¥(¢) and y* = lim;, 1o y(¢). Here ¢ is the arc length
along y. We will often identify a geodesic y with its boundary at infinity, writing
y={y.v*}. 2.1)

Definition 2.1. Let 07,6, € S.,. We define the oriented geodesic joining 6; and 65,
y(61,6,), as the oriented geodesic from 8; € Sclx, to 6, € Séo. Here we represent
points on the circle as real numbers (angles) by their image under the exponential
map.

We observe that given an oriented geodesic y = {y_, y+} in H?, then H? \ y has
two connected components. We will distinguish them using the following notation,

Definition 2.2. Let J be the standard counter-clockwise rotation operator. We call
exterior set of y in H2, extg2 (y), the connected component of H? \ y towards which
Jy' points. The other connected component of H? \ y is called the interior set of y
in H? and denoted by intgp (y).
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On the other hand, we consider the product space H? x R represented as the
domain
H? xR = {(x,y,1) e R : x* + y> < 1}

endowed with the product metric { , ) = g_; + dt?. In addition, we denote by
: H? x R — H? x {0} the usual projection and 3% the gradient of the function 7 in
H? x R.

Given a complete oriented geodesic y in H? x {0}, we will call y x R a vertical
plane of H? x R and we will call a slice H? x {t} a horizontal plane. Note that a
vertical plane is isometric to R? and a horizontal plane is isometric to H?2.

The notions of the interior and exterior domains of a horizontal oriented geodesic
extend naturally to vertical planes.

Definition 2.3. For a complete oriented geodesic y in H? x {0} = H? we call,
respectively, interior and exterior of the vertical plane P = y x R the sets

intp2,g (P) = intga(y) x R and  extp,p(P) = exta(y) x R.

We will often use foliations by vertical planes of H? x R. We now make this
precise.

Definition 2.4. Let P be a vertical plane in H? x R and let y(z) be an oriented
horizontal geodesic in H? x {0}, with ¢ being the arc length along y, y(0) = po € P,
y’(0) orthogonal to P at po and y(t) € extpayg(P) for t > 0. We define the
oriented foliation of vertical planes along y, denoted by P,(t), to be the vertical
planes orthogonal to y(¢) with P = P, (0).

To finish, we will give the definition of a particular type of curve in a vertical
plane.

Definition 2.5. Let P be a vertical plane and let & be a complete embedded convex
curve in P. We say that « is vertical (in P) if there exist a point p € «, called a
vertical point, and a vertical direction v = =+ a%, such that the half-line p 4+ sv, s > 0,
is contained in the convex body bounded by « in P (cf. Figure 1).

3. A Hadamard-Stoker type theorem

This section is devoted to the proof of a Hadamard—Stoker type theorem in H? x R.
Let us consider a surface S and ¥ : S — H? x R an immersion with positive extrinsic
curvature K = det(Il)/ det(I), where I and II are the first and second fundamental
forms of S.
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HxR

Figure 1. Definition of vertical point.

Observe that the definition of K does not depend on the local choice of a unit
normal vector field N. Nevertheless, N can be globally chosen since K > 0, that is,
11 is definite. From now on we will identify ¥ (S) with S.

We begin with an elementary, but useful, result.

Proposition 3.1. Let S be an immersed surface with positive extrinsic curvature in
H? x R. Let P be either a horizontal or a vertical plane in H> x R. If S and P
intersect transversally then each connected component C of S N P is a strictly convex
curve in P.

Proof. Let us parametrize C as «(t), where ¢ is the arc length. Then since P is a
totally geodesic plane, we have

Vid = Vya' =V5d 4+ 11, a')N,
where VF, V and VS are the connections on P, H? x R and S respectively. Since

the extrinsic curvature is positive we have II(e/, ) # 0. Thus Vo’ # 0, that is,
the geodesic curvature of C vanishes nowhere on P. O
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Definition 3.1. Let S C H? x R be a surface. We say that S has a simple end if the
boundary at infinity of 7(S) C H? x {0} = H? is a unique point f € S, and, in
addition, for all 01, 6, € SL, \ {0o} the intersection of the vertical plane y (61, 62) x R
and S is empty or a compact set.

Now, we can establish the main theorem of this section.

Theorem 3.1. Let S be a complete connected immersed surface in H? x R with
K > 0. Then S must be properly embedded and bounds a strictly convex domain in
H? x R. Moreover, S is homeomorphic to S* or R2. In the latter case, S is a graph
over a convex domain of H? x {0} or S has a simple end.

Proof. We first distinguish two cases, depending on the existence of a point on S
with horizontal unit normal, or equivalently, depending on the existence of a vertical
tangent plane.

Suppose there is no point p € S with a vertical tangent plane at p. We will show
that S is a graph and homeomorphic to R?.

Let P be a vertical plane which meets S transversally. Let y be an oriented
horizontal geodesic orthogonal to P and consider the foliation P, (¢) of vertical
planes along y (see Definition 2.4). Now, if Py, (t) NS # @, using that there is no
point p € S with a vertical tangent plane at p and Proposition 3.1, each connected
component of P, (#) NS is a non-compact complete embedded strictly convex curve.
Otherwise, if a connected component has a self-intersection or it is compact, then it
has a point with a vertical tangent line, which means that .S has a point with a vertical
tangent plane at that point (cf. Figure 2).

Let C(0) be an embedded component of P NS = P, (0) N S. Let us consider
how C(0) varies as ¢ increases to +o00. No two points of P, (fp) N S can join at
some 7y > 0, since this would produce a vertical tangent plane at some point. So
the component C(0) of P, (0) varies continuously to one embedded curve C(t) of
Py () NS as t increases. The only change possible is that C(7) goes to infinity as ¢
converges to some #; and disappears in P, (t;).

Similarly C(0) varies continuously to one embedded curve of P,(f) N S as
t — —oo. Hence S connected yields P,(¢) N S is at most one component for
all 7. So, we conclude that S is a vertical graph. To finish, we observe that P, (1) N .S
is empty or homeomorphic to R for each z, hence S is topologically R2.

Now, for the rest of the proof we suppose that there is a point py € S with a
vertical plane P tangent at po. We will show that S is homeomorphic to S? or S is
homeomorphic to R? and has a simple end.

By assumption, it is easy to see that there exist neighborhoods py € U C S and
V C P such that U is a horizontal graph over V. Also, because of K(pg) > 0, S is
strictly locally convex at pg, hence we can assume that U C S is on one side of P
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H xR

Figure 2. No self-intersection.

(cf. Figure 3). Let P, () be the foliation of vertical planes along y, y a horizontal
geodesic with y(0) = pg and y’(0) orthogonal to P. Note that, up to an isometry, we
can suppose that U \ {po} C extgay g (P), po € H? x {0} and y = {r/2,37/2}.
From Proposition 3.1 and the fact that locally S is a graph, there exist ¢ > 0 such
that P, () N U are embedded compact strictly convex curves for all 0 < ¢ < e. For
0 <t < g, let C(t) denote the connected component of P, () N S which coincides
with Py (t) N U (cf. Figure 4). Perhaps P,(t) N S has other components distinct
from C(t) for each 0 < ¢ < g, but we only care how C(¢) varies as ¢ increases. We
also denote by C(¢) the continuous variation of the curves P, () N S, whent > ¢.
We distinguish two cases:

A. C(t) remains compact as ¢ increases.

By topological arguments it is easy to show that, if C(¢) remains compact and
non-empty as ¢ increases, then the C(¢) are embedded compact strictly convex
curves or a point.

A.1. If C(t) remains compact and non-empty as ¢ — o0, then since S is con-
nected, S must be embedded. In addition, because C(0) is a point and C(¢) is
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C@)

Figure 4. C(¢t) are embedded compact strictly convex curves for all 0 < ¢ < e.

homeomorphic to a circle for every positive ¢, S is homeomorphic to R2.

Now, from the fact that C(¢) remains compact, then
doo(S) = {37/2} C SL
and S has a simple end (cf. Figure 5).
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C(t)

Figure 5. C(¢) remains compact as ¢ increases.

A.2. If there exists > 0 such that C(¢) is compact for all 0 < 7 < ¢ and the
component C(¢) disappears for ¢ > 7, then, using that S is connected, S is
either compact, embedded and topologically S2, or non compact, embedded
and topologically R2. That s, if C(¢) converges to a compact set as ¢ converges
to 7, then C(7) must be a point (because our surface has no boundary) and S is
a sphere (cf. Figure 6). Otherwise the C(¢) drift off to infinity as ¢ converges

to 7 and S is topologically a plane.
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Figure 6. C(t) goes to a point.

We now show that in the latter case, the vertical projection 7z of S has asymptotic
boundary one of the two points at infinity of 7 (P, (¢)).
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Without lost of generality we can assume that P,(f) = f x R where f =
{,3_, B +}. Consider the vertical plane Q = y x R. Let C be the component
of O N S containing po. First observe that C is compact, otherwise it would
intersect the line Q N P, (7) in two points, which is not the case. Thus, we can
consider the disk D bounded by ConsS.

Let Qg(t) denote the foliation by vertical planes along B, Qg(0) = Q. There
exists 7o (we can assume 7y < 0) satisfying Qg (o) touches D on one side of D
by compactness. Let gg € Dn 0 g (to) be the point where they touch. Consider
the variation C (1) of go on S N Qp(t) from t = 19 to infinity. Then, C@t)isa
convex embedded curve for 7 in a maximal interval (f, 7o) With 0 < 7o < o0.
Hence, S is foliated by the C(¢), C = C(0) = Q@ N S and B~ € 0007 (S)
because S is on one side of Qg(fp).

Now, we will show that deo7(S) = {,3+}. Let y(6) denote the complete
horizontal geodesic starting at po and making an angle 6 with y at py. Assume
v(8) enters the side of Q containing A1, for 0 < 8 < /2. Let 6 be the value
of 6 such that y(0) is asymptotic to +. Let Q(8) = y(0) x R. For each
0,0 <6 < 6, we have S N Q(0) is one connected embedded compact curve
C’(0). The proof of this is the same as the previous one for C . Notice that each
C’(0) is non empty, since pg € C'(0).

Now C’(6) can not be compact, otherwise S could not be asymptotic to the
plane P, (), a contradiction.

In order to complete the proof of the Case A.2 we show that S has a simple
end. Observe that C’(6) is compact, § < 6 < /2 because S = Uo<s<7 C(2).
Moreover, C'(8) C D, —n/2 < 0 < 0, and D is compact. Thus, it is easy to
conclude that S has a simple end.

Thus we have proved that in Case A.2, S is either a properly embedded sphere
or S is a properly embedded plane with a simple end at 87 (cf. Figure 5, picture
on the right).

B. C(t) becomes non-compact.

Let 7 > 0 be the smallest # with C () non-compact, C(7) the limit of the C(¢)
ast — t, C(r) is an embedded strictly convex curve in Py (7).

Claim 1. We now show that C(f) is not vertical (see Definition 2.5).

Let us assume that C(7) is vertical, and let ¢ € C(¢) be a vertical point (cf.
Figure 7). First of all, note that S = Uo<<7 C(t) C S is embedded. Let
q' = m(q) € H? x {0} and let us consider [y, the complete horizontal
geodesic joining pg and ¢". Let Q = T'p ¢’ X R, and consider 7o = Q N P, (0)

and r; = Q N P,(r). Note that ro and r; are parallel lines in Q. Also,
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Figure 7. C(f) becomes vertical.

ag=0nN Sisa non-compact embedded strictly convex curve in Q such that
ro is tangent to ap at po € g and ag N r7 is exactly one point, since C(7) is
vertical. But this is a contradiction because o ¢ is a strictly convex curve in O,
which is isometric to R?, and it must intersect r; twice.

Thus, C(7) is not vertical, and we claim that
Claim 2. d5m(C(t)) is one point.

Let us denote by D(¢) the convex body bounded by C(¢) in P, (¢) for each
0 <t < t. Thus, the limit, D(7), of D(¢) as t increases to 7 is an open convex
body bounded by C(7) in P, (f), which is isometrically R?. If 0,7 (C(f)) has
two points, the only possibility is that C(¢) is vertical, which is impossible by
Claim 1 (cf. Figure 7)

Let 8o > 0 and 15, < f such that P(t5,) = I'(§o) x R where I'(§p) =
{80, —8o}. We denote by §; = UOSl‘Sl‘sO C(t) C S and note that S is
connected and embedded.

Let us consider the complete horizontal geodesic given by
I'(8o,s) = {80, m — S0 + s}

and the vertical plane Q(s) = I'(8o, s) xR, foreachs > 0. So, Q(0) = P, (t5,)
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and Q(0)NS, =C (2s,) is an embedded compact strictly convex curve. Let us
consider how a(s) = Q(s) N S varies as s increases to 7 + §¢. At this point,
we have two cases:

B.1. a(s) remains compact for all 0 < s < 7w + §p.

This case, letting 6o — 0, corresponds to Case A.1 (cf. Figure 8).

H? x R

\/ B

ﬂ(f)\
HZ

14

Figure 8. «(s) remains compact.
So, without lost of generality we can assume that P, (1) = T'(f) x R where
I'(t) = {0, 7} and (cf. Figure 9)
doom (C(7)) = {0}. (3.1

H2

Figure 9. S has a simple end.
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B.2. «(s) becomes non-compact.

Let 0 < 5§ < 7 + 8o be the smallest s with «(5) non-compact, «(5) is the
limit of the «(s) as s — §. So, without lost of generality we can assume that
P,(t) = T'(t) x R where I'(t) = {0, 7} and

oo (C (7)) = {0} (3.2)

Also,
oo ((5)) = {m — 8o + 5},

otherwise it must be {6¢} which contradicts (3.2).

Clearly ¢ < 5. For each § < &y we consider the complete horizontal geodesic
given by 6(§) = {§, 7 + § — 8o — 8} and the vertical plane 7' (8) = o (§) x R.
Let us denote by S, = Uo<s<s—2s, @(s) C S and note that S, is connected
and embedded, so, §S=5 1 U §2 C S is connected and embedded. For each &,
0<8<8, EG)=T@)NSisa strictly convex compact embedded curve
in T(8). As § — 0, these curves converge to a convex curve in 7(0) with
doo (E(0)) the two points {0, = — 8¢ + §}. This contradicts Claim 2. Hence
a(s) can not become non-compact and we are in the Case B.1.

Finally, S bounds a strictly convex body follows from Proposition 3.1, and the
fact that every geodesic in H? x R lies in a vertical plane, i.e., let p and g be two
points in the domain W of H? x R bounded by X, such that the mean curvature vector
of X points into this domain W. Let P be a vertical plane containing p and g. The
intersection of P with X is convex in P, hence the geodesic of P (which is also an
ambient geodesic), is contained in W. Thus W is convex.

This completes the proof of Theorem 3.1. O

4. Complete surfaces in H? x R with K > 0 and a simple end

This section is devoted to the construction of some examples of complete embedded
surfaces with positive extrinsic curvature and a simple end.

Note that if S has a simple end, then for each € R where S N (H? x {¢}) is not
compact, the intersection is a convex curve in H? x {¢} with asymptotic boundary
one point. Also, the point at infinity of each horizontal section is the same, that is,
Doo (S NH? x {t}) = {9} e SL.

Bearing this in mind, we fix a point 0 e Sclx,, say 0 =0= (1,0), and consider
the 1-parameter isometry group given by

Fi(x,y,2)

_ (1 N 4(x — 1) 4y +2t((x — 1)? + y?) )
- Ay +2(x =12+ %) d+dty+ 2 (x =12 +12) )
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Here, the orbit of any point p € H? x R is a horocycle H,, contained in a slice such
that deot(Hp) = {6}.

Let P be a plane orthogonal to every orbit, say P = {(x, y,z) € H®?xR : y = 0}.

We parametrize P as
e* —1
Yx,y) = 0,y

e +1’
in such a way that its induced metric is dx? + dy?.

Now, let a(y) = ¥ (p(y),y) be a curve in the vertical plane P for a suitable
function p and consider the helicoidal surface S, given by f,(y,1) = F;(a(y)).
Then, it is easy to check that the extrinsic curvature of S, is

__ MO
(I+p'(y)?)?
Thus, we obtain

Proposition 4.1. Let 4 = (y1, y2) be an open interval where —co < y; < yp <
+o00, and p: 4 — R a function such that p”(y) > 0 forall y € 4, limy,_,,, p(y) =
limy_,y, p(y) = +o0o. Then the surface S, is a properly embedded surface with

positive extrinsic curvature and a simple end (cf. Figure 10).

H? x R

T
TS

I
W
M

i

W

il
Y

)
\\\\\\\\\\\\\\\Q\

\

Figure 10. Example of a surface with a simple end.
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5. Complete revolution surfaces of constant positive extrinsic curvature

In this section we focus our attention on the study of the complete revolution surfaces
of positive constant extrinsic curvature in H? x R.

Let us consider the Lorentz—Minkowski 4-space IL* with induced metric —dx? +
dx3 + dx3 + dx3. Here, we consider H? x R as the submanifold of L* given by

H2 xR = {(X],Xz,X3,X4) € ]L4 : —X% +X§ +X§ =-—1, x; > 0}

It is well known that the special orthogonal group SO(2) can be identified with
the subgroup of isometries of H? x R (rotations) which preserves the orientation and
fixes an axis {p} x R, with p € H? x {0}.

Up to isometries, we can assume that the axis is given by {(1,0,0)} x R. In this
case, the set P = {(x1,x2,x3,x4) € H?> xR : x, > 0, x3 = 0} intersects every
SO(2)-orbit once. Thus, every revolution surface with that axis can be obtained under
the SO(2)-action of a curve on P.

Let a(t) = (coshk(t),sinhk(¢),0,h(t)) C P, where k(¢) > 0 and ¢ the arc
length of «, that is, k’(¢)? + h'(t)> = 1. If a(t) generates a complete surface with
positive extrinsic curvature then, from Theorem 3.1, this revolution surface S must
be topologically a sphere or a graph on an open domain in H?, and so «(?) intersects
the axis at least once. In fact, the curve intersects the axis orthogonally; otherwise
the revolution surface would not be smooth. But, from the vertical height estimates
of Section 6, there is no complete revolution K-surface with one end.

Now, S can be parametrized by

Y (t,v) = (coshk(t),sinh k(t) cos v, sinh k(¢) sinv, h(t)).

A straightforward computation shows that the principal curvatures of S are given
by

M =kKn k'R, 5.1
Ay = h' coth k, (5.2)
and so its extrinsic curvature is
K = h' cothk(k'h” — k"1,

where / denotes the derivative with respect to ¢. Since k> + h'> = 1, we have
k'k” + h'h” = 0 and so
K = —k" coth k. (5.3)

Let us assume that K is a positive constant, then

(k')?> = C; —2K Incosh k,
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where (7 is a constant to be determined by the boundary conditions.
As o must cut the axis orthogonally, we can assume that the lowest point occurs
att = 0. Then k(0) = 0 and k’(0) = 1, thus C; = 1, that is

(k')> =1—2K Incoshk. (5.4)

Since the lowest point occurs at ¢ = 0, 4’(¢t) > 0 and hence, by (5.2), A>(¢) > 0
for sufficiently small 7. But A, must have the same sign, so /’(¢) > 0 forall ¢. Hence,
h increases as t increases (and S must be embedded).

Suppose z is the highest point of S, then k(¢;) = 0 for some ¢, > 0. Hence the
domain of ¢ is [0, #;] and

kKO)=k(t;) =0, WO =h()=0 KO =1 k()=—

On the other hand, by (5.3), k" < 0 which implies that X’ decreases from k' (0) = 1 to
k'(t;) = —1. So, as ¢t increases from 0to ¢,, k first increases from 0 t0 kpax = k (fmax),
for some fm,x € [0, £;], then decreases from k., to 0.

Thus, k must increase from 0 to #,,,x and k' (fmax) = 0. So, from (5.4), one obtains
k(tmax) = cosh™Yexp (1/2K).

Now, let u = k’, where —1 < u < 1, then by equation (5.4) we have

1— 2
k=cosh_1exp( 2K” ) l<u<l. (5.5)

Since u = k', ¢ = k" = —K tanh k, we have by (5.5)
dh 1 V1 —u?

N e )
/¢exp 122)

where C is a real constant.
Also, we have

Then

du+C, —-1<uc<l, (5.6)

hmin = C,

hmax =
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and
V1—u?

K/ \/_ep uz)

Therefore, from (5.5) and (5.6), as u decreases from 1 to —1, & increases from
Bmin 10 Mmax, and k first increases from 0 to k., then decreases from k., to 0. Also,
S must be symmetric about H? x {/¢}. Thus,

du + C.

Proposition 5.1. Let S be a complete immersed sphere of revolution (about the
vertical line {1,0,0} x R) in H? x R with constant K > 0, given by

Vi (u,v) = (cosh k(u), sinh k(1) cos v, sinh k(1) sin v, h(u)),

where a(u) = (cosh k(u), sinh k(u), 0, h(u)) is the generating curve of S.
Then, S must be embedded and the generating curve is given by

1— 2
k(u) = cosh™! exp ( 2; ) . (5.7)
V1—u?

h(u) = du + C, (5.8)

/¢exp (-2)

where —1 < u < 1 and C is a real constant (cf. Figure 11).
Also, H? x {hg}, where

V1—u?

il

du + C,

divides S into two (upper and lower) symmetric parts.
Remark 5.1. Let us observe that the above analysis is the same, in spirit, as in [CR]
for the case of revolution surfaces in S? x R with constant positive extrinsic curvature.

Moreover, we will need that result, so we will state it here:

Proposition 5.2. Let S be a complete immersed sphere of revolution (about the
vertical line {1,0,0} x R) in S x R C R* with constant K > 0, given by

Vi (u,v) = (cosk(u),sink(u) cos v, sin k(u) sin v, h(u)),

where a(u) = (cosk(u), sink(u), 0, h(u)) is the generating curve of S.
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3

Figure 11. Profile curve of a rotational example.

Then,
1) S must be embedded,
ii) S staysinD xR, where D denotes the open hemisphere of S? of center (1,0, 0),

iii) the generating curve is given by

.2
k(u) = cos™!exp (— ! 2[: ) , (5.9)

V1—u?

where —1 < u < 1 and C is a real constant.
Also, D x {hg}, where

h(u) = —— (5.10)

V1i—u2

du + C,
ex 1 ”2)—1
p

divides S into two (upper and lower) symmetric parts.
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6. Vertical and horizontal height estimates for K -surfaces

We divide this section in three parts. First, we establish some necessary equations
for surfaces with positive extrinsic curvature in M?2 x R, M? a Riemannian surface.
Second, we obtain vertical height estimates for compact embedded surfaces with
constant positive extrinsic curvature in M? x R and boundary in a slice. And finally,
we give horizontal height estimates for K-surfaces in H? x R and boundary on a
vertical plane.

6.1. Necessary equations. We will work in the spirit of [AEG2] but using the con-
formal structure induced by the second fundamental form of the surface as in [AEG3].

Let us denote by g the metric of M2. Then the metric of M? x R is given by
(,) =g+dt? Lety:S — M? x R be an immersion with positive extrinsic
curvature K with unit normal vector field N.

Let 7: M? x R — M? and 7g: M? x R — R be the usual projections. We
denoteby : S — R the height function, thatis, h(z) = 7r (¥ (z)),andv = (N, %),
a% the gradient in M2 x R of the function ¢.

Since K > 0 the second fundamental form II is definite (and positive definite for
a suitable normal N). Then, we can choose a conformal parameter z such that the
fundamental forms I and II can be written as

1 = (dy,dy) = Edz? 4+ 2F |dz|* + EdZ?,

R 6.1)
II=—(dy,dN) =2pl|dz|", p>0.
Here
02
K=——, 6.2
D (6.2)
with D = |E|* — F2 < 0. The mean curvature of S is
Fp K
H=-"-=_F. (6.3)
D p
Let us write 3
—=T+4+vVvN,

ot
where T is a tangent vector field on S. Since a% is the gradient in M? x R of the
function ¢, it follows that T is the gradient of /& on S. Thus, from (6.1), one gets

1
T = B(aaz + adz), (6.4)

where 3
o« = Eh; — Fhs. (6.5)
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In addition, we obtain the following equations:

1
(I.T) = 5 (@hz + ahz), (6.6)
1 _
(T, T) = B(Ehg + Eh2 —2F|h,|?), (6.7)
1
h: = 5 (Ea + Fa), (6.8)
el = i + ©9)
z - D . .

Lemma 6.1. Let : S — M? x R be an immersion with K > 0. Then, for a
conformal parameter z for the second fundamental form, the following equations are
satisfied:

Pz (), —T%) =ka> (Codazzi), (6.10)
p p
hzz =T\ h; + TFhz, (6.11)
hzz = Fllzhz + Flzzhz + vp, (6.12)
aK
vy = (6.13)
0
IT|? 4+ v* = 1. (6.14)

Here k(p) stands for the Gauss curvature of M? at w(y (p)), and Fllj i,j, k=
1,2, are the Christoffel symbols associated to z.

Proof. From (6.1) we have
Vazaz = Flllaz + Fflag,

Vy.0; = I'},0, + T2,0; + p N, (6.15)

—Vy. N = % (Ed; — F 9z).

Thus, the scalar product of these equalities with % gives us (6.11), (6.12) and
(6.13), respectively.
The last equation follows from
d 0

—, —\=|(T.T 2,
o g — (LT +v

1=
Finally, from (6.15) we get

(Vo:Va. 8- — Vy.Vs. 3. N) = pz + p(I'}, — T3,).
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Hence, using the relationship between the curvature tensors of a product manifold
(see, for instance, [O, p. 210]), the Codazzi equation becomes

v Pz 1 2
ka— = — + (I';, — T'5,).
P P 12 22
That is, (6.10) holds. O
Remark 6.1. The equation (6.14) will be used subsequently without comment.

From now on we will assume that K is a positive constanton §. A straightforward

computation gives us
D;

(6.16)

Thus, from (6.10),
D_ —
Zz Pz =2r112—KOtK.
2D p P
Since K is constant, we obtain from (6.2) that
— ——=0 (6.17)

and
I, =ka—. (6.18)

Using I'2, = T'L,, (6.18), (6.8) and (6.2), one has

E; = 2(V,.0;,0,) = 2(ET}, + FT'},

D 6.19
=KK(E01+F6() =KV—hZ =—K%hz. (6.19)
P P K

On the other hand, by using (6.12), (6.18), (6.6) and (6.2),

2h,; = ICB(Oth + ahz) +2vp = ICKD”T”Z + 2vp
PUp vpp (6.20)
= —KE(I —v?) 4+ 2vp = E(zK — k(1 —=1?)).
Now, we compute v,;. From (6.13) and (6.17),
K K K D
s =K okl g K oKDz (621)
P p p 2D

Hence, we need to compute o :

oy = Z(Vaz 82, ai)hz + Ehzz - (Vaz 827 82>h2 - (827 Vaz ai)hé - théy
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where we have used (6.5).
If one considers (6.12) and (6.11), then

2(Vy.03,05)h, = 2h, FT}, + 2h, ET%,,
Ehy; = h ET}, + h; ET?,,
—(Vy.0,,0:)h; = —hz FT}, — hz ET?,
—(02, V. 0z)hz = —hzET}, —hz FT'D,,
~Fhyz = —h,FT{, — h;FT%, — vpF.

Therefore,

- D
a; = (T}, + T})) +alf, —al'}, —vpF = aﬁ —vpoF,

where (6.16) is used and that &Fllz is a real function from (6.18).
Finally, using (6.21) and (6.3),

v,z = —KFv=—pHv. (6.22)

Hence, we have obtained the Laplacian of /2, v and the derivative of the (2, 0)-part
of I with respect to II. That is

Lemma 6.2. Let : S — M? x R be an immersion with constant positive extrinsic
curvature K on S, then

Al = QK — k(1 —v2))—
h= 0K — k(=) 7,

AW = —2Hv,
V
Eg = —K?phz.

Now, we define a quadratic form which will play an important role in the following
sections. Let € be a constant equal to 1 or —1. Then, we consider the new quadratic
form

A =1+ g(v)dh?, (6.23)

where g(v) is the only solution to the ODE

v2—1

P(v) = g'w)

such that it is well defined for v = +1, where

¢ = % (2K + e(w?—1))g — g)—(1— v2)g’.
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That is, g(v) is the real analytic function given by

e(1—v2)

v2—1+¢eK(e
(1—-v2)2

g(v) = - (6.24)

Remark 6.2. Inorder to show the above assertion, observe that the functiong: R >R,

e(1—12)

t2—1+¢eKe & —1)

(1—12)? ’
is well defined for each r € R (in particular, if t = £1) and it is an analytic function.
This is easy to see bearing in mind that

g@) =

In addition

% =g(xl)<gh) <g0)=-1+ SK(e% — ).

Let us observe that

e(1—v2)
eK(e  ®  —1)
W) =1+gW)|T|? = — (6.25)
satisfies
1= y(£l) <y ife =1,
-1 (6.26)
0<K(d—eX)=yx(0) <y ife =—1
forall -1 <v < 1.
Let us denote
Q0 =E +g)h2, (6.27)

then Qdz? can be considered as the (2, 0)-part of the real quadratic form A for the
second fundamental form II.
The extrinsic curvature of the pair (11, A) (see [Mi]) is given by

(F +glh:»)? - 1017

K(I, A) =

02
F2 —|E|? 2F|h,|? — Eh2 — Eh?
_ |E]*) + g( lzl : z) 6.28)
o
1 g 2 1 2
= —+ T2 = =1 T|?).
K+Kll [ K( +glIT*)

where we have used (6.2) and (6.7).
In particular, the previous computation gives us

1012 = (F + g |h:|>)*+ D + g ||T|?). (6.29)
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6.2. Vertical height estimates in M? x R. Here, we establish upper bounds for
compact graphs with positive constant extrinsic curvature and boundary in a slice of
a product space M? x R.

Theorem 6.1. Let M? be a Riemannian surface, : S — M? x R be a compact
graph on a domain Q@ C M2, with positive constant extrinsic curvature K and whose
boundary is contained in the slice M? x {0}. Let k be the minimum of the Gauss
curvature on Q@ C M?2. Then, there exists a constant ck (depending only on K and k)
such that |h(p)| < cx forall p € S.

Proof. We want to compute the Laplacian of a certain function given by 2 + f(v)
for a suitable real function f. Since, we know /.3 from (6.20) then we focus our
attention on f(v),z. We can assume /& > 0.

By using (6.13), (6.22), (6.2) and (6.9),

|O{|2K2

fW)zz = [0z + [0z |> = = f'KFv + f"(v) pe

= —f'WKFv— f"WK(h:|* = (1 =v*)F)

= —K (FOf'(v) = (1 =) ") + [h f"(v)).

First, note that since II must be positive definite and S is a graph, then v < 0.
Second, we distinguish two cases, k = 0 and k # 0. When k = 0, we consider

fv) =

v
VK’
thus

SW)zz = —VKFv
and, from (6.2),

(h+ f0)ss = ”%2‘”2% _ JRFy

- _%(1 —v3vp + (V=D — F)wJ/K (6.30)
> —%(1 —v?)vp = 0;

thus, one has A"(h + f(v)) > 0 on our surface and 4 + f(v) < 0 on the boundary,
soh < —v/\/ff 1/\/?.

When k # 0, we can suppose that k = &, where eis —1 or 1. To do that it is enough
to consider, the new metric on M? x R given by the quadratic form |k| g + d¢? and
the surface " = {(x, \/m t) € M?2 xR : (x,t) € S} which has constant extrinsic
curvature K /|k|. Here, g denotes the induced metric on M?2.
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We consider

This function is real analytic and so is every primitive f(v).
In addition

_El—vz
e K &)

" v

11w =S s

where g(v) is given by (6.24).
Thus,
’ 2\ £/ _v e_sl_KU
of ) = (=) 10) = s

and ,

o ¥ e_s 1—v 5

SW)zz = _f’(v) (F +gW)|hz]7).

We observe that (F + g(v)|h;|?)|dz|? is the (1,1)-part of the quadratic form A4,
given by (6.23), and our quadratic form Qdz2, given by (6.27), is the (2,0)-part of A
for II.

Moreover, from (6.20) and (6.28),

(h+ f(V)zz = +10P

2K — k(1 —v?) ve_s% \/pz(l + gw)(1 —v?))
2K T T ) K

Here, we have used that F + g(v)|h;|?> > 0. This fact is clear because K(II, A) is
positive from (6.28), (6.25) and (6.26), so, A is positive definite or negative definite.
Thus, F + g(v)|h,|? is positive at every point or is negative everywhere. But, it is
clear that it is positive at a highest point (£, = 0 at this point).

Hence,

2K —k(1-0) et Y GRS
() = 2 2 =

_ 2
_ 2K — k(1 —v7) _6_81;%2 v
2K

_Sl—v2 1—\)2
—|e "2k —1+¢ ¥ vp > 0.

%

Here, we use that the term between parenthesis is non-negative. This is because the
real function e’ — 1 — ¢ is non-negative everywhere.
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By taking,
v
o= [
one has A'(h+ £(v)) > 0on the surface and 2+ f(v) < 0 on the boundary (because

f'(v) = 0and v <0).
Hence, the maximum height is less than or equal to

0
CK ::/ f(t)dt. O
-1

Remark 6.3. It is clear that the height estimate cx, when k # 0, is not reached for
any graph with positive constant K and boundary on a slice since

e—elz_lléz _1+81—l)2
2K

is positive for v # —1 as well as A''(h + ¢(v)). But then the maximum principle at
the highest point shows that A'(h + ¢ (v)) vanishes identically; a contradiction.

But, when £ = 0, by (6.30), if the maximum height is attained at a point, then
h — v/~/K vanishes identically on S. Thus, using (6.30) again, ¥ and E vanish
identically. That is, the domain €2 is flat and S is totally umbilical.

As a standard consequence of the Alexandrov reflection principle with respect to
the slices M? x {t}, we have the following corollary.

Corollary 6.1. Let : S — M? x R be a compact embedded surface with positive
constant extrinsic curvature K and whose boundary is contained in the slice M? x {0}.
Let k be the infimum of the Gauss curvature on M?2. Then, there exists a constant ¢k
(depending only on K and k) such that |h(p)| < 2ck forall p € S.

We also observe that if S is a non-compact properly embedded K -surface without
boundary in M? x R and M? is compact then S must have at least one top end and
one bottom end. This is a consequence of our height estimates (see, for instance,
[HLR]).

6.3. Horizontal height estimates. Now, we consider a compact embedded K-sur-
face in H? x R with boundary on a vertical plane and obtain distance estimates to
this plane.

Theorem 6.2. Let S be a compact embedded surface in H? x R, with extrinsic
curvature a constant K > 0. Let P be a vertical plane in H?> x R and assume that
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d0S C P. Then the distance from S to P is bounded; i.e., there is a constant d,
independent of S, such that

dist(q, P) <d forallg € S.

Proof. Let ¢ € S be a furthest point from P. Up to isometry, we can assume
g € H? x {0} and ¢ € exty,g (P). Let Py, () be the foliation of vertical planes
along y with P,(0) = P and ¢ € P,(h). Let X denote the horizontal Killing field
of H? x R generated by translations along y (X is tangent to each H? x {r} and is
translation along y x {t}); X is orthogonal to the planes P, (t).

Now, do Alexandrov reflection with the planes P, (), starting at t = h, and
decrease f. Forh/2 <t < h, the symmetry of the part S in exty2 g (P (¢)) does not
touch 05, since S C P. Hence the Alexandrov reflection technique shows that the
symmetry of S* () = S Nexty, g (Py (7)), by Py (¢), intersects S only at S N Py, (¢)
and S is never orthogonal to Py (s) fort < s < h. Since X is orthogonal to each
P, (1), we conclude that X is transverse to St (h/2), and ST (//2) is a graph over a
domain of P, (h/2) with respect to the orbits of X.

Thus, to prove the theorem, it suffices to prove that X-graphs are a bounded
distance from P, assuming the boundary of the graph is in P.

Now, suppose S is an X -graph over a domain D C P and chose P, (¢) as before.
Let Sg be the rotationally invariant sphere whose extrinsic curvature K is the same
as that of S. Denote by ¢ = ¢(K), the diameter of Sg.

We will now prove thatforeacht > 2c¢, the diameter of each connected component
of S(t) = P(¢t) N S is at most 2¢. Suppose not, so for some component C(¢) of
S(t), there are points x, y inside the domain D(¢) of P(¢) bounded by C(¢) with
dist(x, y) > 2c. Let O be the bounded domain of H? x R bounded by S U D. Let
B be a path in D(¢) joining x to y, B is disjoint from C(¢). Let 2 be the “rectangle”
formed by the orbits of X joining B to P; 2 C Q. Let p be a point of 2 whose
distance to d€2 is greater than c; p exists by construction of €2.

Let n be the geodesic through p, each of whose points is a distance greater than ¢
from 0€2; it is easy to find such an 7 in the plane P(¢) containing p. The geodesic n
“enters” Q at a first point go and “leaves” Q at a last point ¢;.

Now, consider the family of spheres centered at each point of 71, each sphere
obtained from the rotational sphere Sg (of extrinsic curvature K) by a translation of
H? x R. Consider the family of spheres as entering Q at qo (cf. Figure 12).

Then, there is some first sphere in the family (coming from ¢g) that touches €2
for the first moment at an interior point of 2. Then the sphere passes through €2, not
touching dQ initially, and the sphere passes through € without touching d€2. Since
the spheres leave Q at ¢, there is some sphere that touches dQ N S at a first point
of contact. At this first point of contact (cf. Figure 13), the mean curvature vectors of
S and the rotational sphere are equal. Hence S equals this sphere by the maximum
principle; a contradiction.
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Figure 12. Moving the spheres along 7.

Figure 13. Touching 0Q.

Now, if the theorem is false, there is a sequence of graphs S, over domains
D, C P, with diameter(D,) < 2c¢ and dist(S,, P) unbounded.

After an ambient isometry we can assume that the D, are contained in a fixed
disk D and the S, are contained in the horizontal Killing cylinder € over D, i.e., a
tubular neighborhood of a horizontal geodesic y. We will use “tilted” vertical planes
to show this is impossible.

We can assume, without lost of generality, that y = {0, =}, P is the vertical plane
over the geodesic {7/2, 37 /2}, and the graphs S, satisfy 7(S,) are asymptotic to 0.
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Consider the vertical plane Q(s1,s52) = {s1,52} X R. A simple calculation shows
that for s; = 0 and s, positive and close to 0, the symmetry through Q(0, s2) of
€ Nintp2,g (Q(0, 57)) does not intersect P. In particular, the symmetry of the part
of any S, N inty2, gz (O (0, s2)) does not intersect dS, C D. By continuity, for s;
negative and sufficiently close to 0, the above last two statements continue to hold, i.e.,
the symmetry through Q(s1, s2) of € Nintg2.r (O (51, 52)) does not intersect P, and
the symmetry of the part of any S, Ninty2,g (Q (51, 52)) does not intersect 95, C D.

Now observe that the symmetry of € Nintyp2 g (O (51, 52)) goes outside €, hence
the symmetry of S, Ninty2, g (Q(s1, 52)) also goes outside €, for n sufficiently large.

Choose a and b between s1 and s; so that Q(a, b) is disjoint from €. Let R(¢) be
a foliation by vertical planes of the region of H? x R between Q(a, b) and O (s1, 52)
with R(0) = Q(a,b) and R(1) = Q(s1,52),0 <t < 1.

Consider doing Alexandrov reflection with the planes R(¢). Choose n large so
that the symmetry of (S,) Nintg24p (Q (1, 52)) has points outside €. The symmetry
of this part of S(n) through each R(¢) is disjoint from P, hence disjoint from 9.S;,.
Also the symmetry of this part of S(n) through R(1) goes outside €, and R(0) is
disjoint from € (cf. Figures 14 and 15).

R(0)

R(0)

N

Figure 14. No accident of Alexandrov Reflection. The picture on the right is a horizontal section.

Hence there is a smallest # such that the symmetry of S(n) through R(¢) touches
S(n) at some point. Thus R(¢) is a symmetry plane of S(n), which is a contradiction.
This completes the proof. O

This proof also works for properly embedded surfaces with constant mean curva-
ture greater than 1/2. Thus, [NR, Theorem 1.2] can be extended for H -surfaces with
H > 1/2, that is,

Corollary 6.2. Let H > 1/2 and let S be a properly embedded H -surface in H? x R
with finite topology and one end. Then S is contained in a vertical cylinder of H? xR.

In Theorem 7.2, we use this corollary to prove that no such surface exists.
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Sn

R(1)

Figure 15. For n large, the symmetry of S,, goes outside €. The picture on the right is a
horizontal section.

7. Classification of complete K -surfaces in H? x R and S? x R

The aim of this section is to classify the complete surfaces with positive constant
extrinsic curvature as the complete revolution examples established in Section 5.

In this section M?(¢) stands for S? or H?, dependingon ¢ = 1 ore = —1,
respectively. We continue working with a conformal parameter z for the second
fundamental form II. We now come to a key lemma.

Lemma?7.1. Lety: S — M?(g) xR be an immersed K -surface. If we consider S as
the Riemann surface with the conformal structure induced by its second fundamental
Jorm, then the quadratic form given by (6.27) verifies

Kg'(v)*(1 = v?)?[h;?
4x()
where g and x are given by (6.24) and (6.25) respectively.

|0:)* < 107, (7.1)

Proof. First, we compute the derivative of Q, which is given by
Q: = Ez + g'vzhZ + 2gh;h.:.
So, from (6.19) and (6.20), one gets

Es + 2ghsh,s = % (2K +e(v® = 1)g — €) phs.

Moreover, (6.13), (6.8) and (6.6) give

Eo o
v:E = Py = 'OBF — phz,

oh,

Vihg = —ph; D

a
= ,OBIhZI2 —|IT|? ph-,
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/_h2_/h2£_/T2h
gvzhz =g h:I"p — & IT|" ph-.

Consequently,

U2

o —1 2 &
Qz—,Og(V)( ) hz + |h;| D)' (7.2)

So,

hs|?
A O (e

Jar|?

|hz|? ah, + ahs 4

(1-2P | slaf
= e O (~5 2 P

2,/ 2 22 1_22 2

—(1—v?)

-D

D (1 —v?)?

:K/ 2h22
0P (08

P = ) F - |hz|2)) ,

where we have used (6.6), (6.2) and (6.9).
Thus, from (6.29)

_ 0P = (F +50) [hP)?

D
x(v)

Hence, from the previous equation of |Q; |,

Q> — (F + g(v) |hz|*)? (1 —v?)?
1) 4

b1 =) F - |hz|2))

102 = Kg/(v)2|hz|2(

_ Kg'(n)*(1 —v?)?|h?

2

) O]
Kg' (v)?|h,|? 2,2 2)2
_ W((1 — V) (F +gW) |h;]%)

—4xW)hz (1 = v F —|h:[?)).
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Now, we show that the last term between parenthesis is non negative. That is,
(1=v)F =2+ gw)(1 —v?)|h*)?

= (1-v*)?F?> = 2F|h*(2(1 —v?) + g(v)(1 —v?)?)
+ (4 +4g()(1 =% + g)*(1 —v?)?)|h|*

= (1= v)*(F? = 2Fg(v)|h:|* + g(v)?|h:[*)
+ (1= V) bz [P (—4F + 4g)|hz|?) + 4lh|*

= (1= v)*(F + g)|hz1)* + 4h: > (= Fg(v)(1 — v*)?
— F(1=v?) +g) (1 =v?)|h:|? + |hz]?)

= (1= v)*(F + gW)|h:)> — dx()|hz (1 = v F — |k )

as we wanted to prove.
Therefore,
Kg'(v)*(1 = v?)?|h?

2
1) 101°. 0

2
|0z]° <

This lemma shows that [J, Lemma 2.7.1, p. 75] can be used.

Lemma7.2. Lety : S — M?(g) xR be animmersion with positive constant extrinsic
curvature. Then, the zeroes of Q are isolated with negative index or Q vanishes
identically.

As a consequence, using the Poincaré Index Theorem, one has

Theorem 7.1. Let y: S — M?(g) x R be an immersion with positive constant
extrinsic curvature, with S a topological sphere. Then Q vanishes identically on S.

From Theorem 3.1 we know that every complete K -surface in H? x R is properly
embedded and it is compact or homeomorphic to R%. So, we will show that it cannot
be homeomorphic to R2. This follows from the following result.

Theorem 7.2. For K > 0 (or H > 1/2) there is no properly embedded K -surface
(H -surface) in H? x R with finite topology and one end.

Proof. We only outline the main steps of the proof since, in essence, it is the same as
in [NR] for surfaces of constant mean curvature greater than 1/ V3.

Note that the Plane Separation Lemma is valid for properly embedded surfaces
with constant positive extrinsic curvature, so, Theorem 6.2 ensures us that such a
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surface must be contained in a vertical cylinder. Thus the Alexandrov reflection
method using horizontal planes and Theorem 6.1 completes the proof as in [NR,
Theorem 1.1].

Analogously, the result is also valid for H-surfaces, H > 1/2, using height
estimates in [AEG2] and Corollary 6.2. O

Bringing this all together yields:

Theorem 7.3. A complete immersion with positive constant extrinsic curvature K in
M?(g) x R is a rotational sphere (cf. Section 5).

Proof. By the Gauss equation [D], the Gauss curvature K(I) of the surface satisfies
K1) = K + ev2.

Thus, for e = 1, K(I) > K > 0 and, so, every complete K-surface in S? x R must
be a topological sphere from the Bonnet and Gauss—Bonnet theorems. On the other
hand, from Theorem 3.1 and Theorem 7.2, we can also state that every complete
K -surface in H? x R must be a topological sphere.

Thus, by Theorem 7.1, QO = 0 on any complete immersion with positive constant
extrinsic curvature K in M?(g) x R.

Now we show that the immersion is rotational. Let us take doubly orthogonal
coordinates (u, v) for (I, II), that is,

I = mdu® + ndv?,
II = kymdu? + kondv?.

Then, since the metric II and the real quadratic form A given by (6.23) are conformal
(because Q is the (2, 0)-part of A for II), we have that h,h, = 0.

Thus, we can assume that /,, vanishes locally. Using the compatibility equations
given in [D] and making a suitable change of doubly orthogonal parameters, as in
[AEG3, Theorem 3.1], one sees that all m,n, k1, ka2, h, v only depend on the sec-
ond parameter v. Therefore, the uniqueness part in [D] gives that the immersion is
invariant under a 1-parameter group of transformations ((u,v) — (u + t,v)). To
finish, as the surface is compact, then it must be invariant by the group of rotations,
so Proposition 5.1 and Proposition 5.2 give us the result. O

Note that Theorem 3.1 together with Theorem 7.2 shows that a complete K -surface
S in H? x R must be embedded and topologically a sphere. Then, the Alexandrov
reflection principle with respect to vertical planes proves S is a rotational sphere.
This gives us an alternative proof to Theorem 7.3 in H? x R.

Observe that a similar reasoning does not seem possible in S? x R. That is, the
existence of the quadratic form Q with isolated zeroes of negative index appears to
be essential in this case.
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Concluding remarks. It would be interesting to know which of the results in this
article extend to the other complete, simply connected, homogeneous 3-manifolds.
For example, does the Hadamard—Stoker Theorem hold in Heisenberg space, the
Berger spheres or the universal cover of PSL(2, R)? The space Sols is foliated by
totally geodesic surfaces, each isometric to H? (in fact, there are two such orthogonal
foliations, and their intersection is an Anosov flow). Using the above techniques,
it is not hard to see that immersed compact surfaces of positive extrinsic curvature
in Sols are embedded spheres. Also each leaf of the two orthogonal foliations is
a symmetry submanifold by an ambient isometry of Sol;. Thus the Alexandrov
reflection technique can be used to show that a compact embedded H -surface in Sols
is a topological sphere. Alexandrov reflection with respect to one of the foliations
shows it is a bigraph with respect to one of the leaves. Then using the orthogonal
foliation it is also a bigraph with respect to an orthogonal leaf. Thus it is of genus
zero; hence a sphere. Is this the case in Heisenberg space? If the extrinsic curvature
K is a positive constant, is the surface a rotational sphere?
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