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Amenable groups and Hadamard spaces with a totally
disconnected isometry group

Pierre-Emmanuel Caprace�

Abstract. Let X be a locally compact Hadamard space and G be a totally disconnected group
acting continuously, properly and cocompactly on X . We show that a closed subgroup of G is
amenable if and only if it is (topologically locally finite)-by-(virtually abelian). We are led to
consider a set @fine

1
X which is a refinement of the visual boundary @1 X . For each x 2 @fine

1
X ,

the stabilizer Gx is amenable.
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1. Introduction

The class of amenable locally compact groups enjoys remarkable closure properties
with respect to algebraic operations, such as taking quotients or closed subgroups,
or forming group extensions. However, despite of this nice algebraic behaviour, the
interaction between the amenability of a given group and its algebraic structure is still
not completely understood. This is notably illustrated by the still unresolved problem
to show whether or not there exists an infinite finitely generated simple group which
is amenable. On the other hand, for some special classes of locally compact groups,
the notion of amenability has a very well understood algebraic interpretation. For
example, it is known that a connected locally compact group is amenable if and only
if its solvable radical is cocompact [Pat88, Theorem 3.8]. Therefore, understanding
the structure of amenable locally compact groups amounts to understand the structure
of amenable locally compact groups which are totally disconnected. The purpose of
this paper is to show that for totally disconnected groups arising in a rather wide
geometric context, the algebraic property which is relevant to amenability is the
notion of topological local finiteness. A subgroup H of a topological group G is
called topologically locally finite if every finite subset of H topologically generates
a compact subgroup of G. Basic facts on topologically locally finite groups may be
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found in Section 2 below. Here we merely mention a result of V. Platonov [Pla65] (see
Theorem 2.2 below) which ensures that the class of topologically locally finite groups
is closed under group extensions. In particular, any topological group G possesses a
topologically locally finite radical, or LF-radical, namely a unique maximal normal
subgroup N which is topologically locally finite and such that G=N has no nontrivial
normal topologically locally finite subgroup. The LF-radical of G is denoted by
RadLF.G/.

In this paper we focus on isometry groups of locally compact Hadamard spaces.
Recall that a Hadamard space is a complete CAT.0/ space. Given a locally compact
Hadamard space X , its isometry group Is.X/, endowed with the topology of uniform
convergence on compact subsets, is a locally compact second countable topological
group. The main result of this paper is the following:

Theorem 1.1. Let X be a locally compact Hadamard space and G be a totally
disconnected group acting continuously, properly and cocompactly on X . Then a
closed subgroup H < G is amenable if and only if RadLF.H/ is open in H and the
quotient H= RadLF.H/ is virtually abelian.

Note that the hypothesis that G is totally disconnected is naturally satisfied in the
case of singular Hadamard spaces, for example when X is a CAT.0/ cell complex
and the G-action is cellular. In fact, the same result as above holds if one replaces the
hypothesis that G is totally disconnected and cocompact by the following require-
ments: X is a locally finite cell complex with finitely many isometry types of cells
and finitely many types of links, and the G-action is cellular.

Corollary 1.2. Maintain the assumptions of the theorem and let � be a finitely
generated simple subgroup of G. The the closure x� is amenable if and only if � is
finite. In particular, if � is amenable, then it is finite.

In the special case when X is CAT.�1/ and Is.X/ acts cocompactly with no fixed
point at infinity, one has the following dichotomy: either Is.X/ is virtually connected,
or it is totally disconnected, see [MMS04, Theorem 21]. This yields the following:

Corollary 1.3. Let � be a finitely generated infinite simple group acting nontrivially
on a CAT.�1/ space X such that Is.X/ acts cocompactly with no fixed point at
infinity. Then � has no fixed point in X [ @1 X .

Specializing Theorem 1.1 to discrete groups, we also recover the following result,
due to S. Adams and W. Ballmann [AB98, Corollary B]. It is a generalization to
amenable subgroups of the so called Solvable Subgroup Theorem for CAT.0/ groups
[BH99, Theorem II.7.8]:
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Corollary 1.4. Let � be a group acting properly discontinuously and cocompactly on
a complete CAT.0/ space X . Then any amenable subgroup of � is virtually abelian
and finitely generated.

Applying an argument due to M. Burger and V. Schroeder [BS87, Proof of Corol-
lary 2], one can show furthermore, as in [AB98, Corollary B], that every amenable
subgroup of � leaves some flat of X invariant (the flat is possibly reduced to a point).

We refer to the introduction and reference list of [AB98] for a historical back-
ground on amenability in the geometrical context of non-positive curvature. The
proof of Theorem 1.1 is based on the one hand, on obstructions for amenable groups
to act by isometries on Hadamard spaces established by S. Adams and W. Ballmann
[AB98] (see Theorem 5.1 below) and, on the other hand, on an elementary construc-
tion which associates to every point � of the visual boundary of any CAT.0/ space X

another CAT.0/ space X� . This construction is described in Section 4 below; it is orig-
inally due to F. Karpelevič [Kar65], who considered it in the context of Riemannian
symmetric spaces, (implicitly) by F. Bruhat and J. Tits [BT72, Proposition 7.6.4] in
the context of Euclidean buildings, and then by B. Leeb [Lee00, §2.1.3] in the context
of general Hadamard spaces. As suggested in [Lee00], one may iterate this construc-
tion to define a boundary @fine1 X of a proper CAT.0/ space X of bounded geometry
which refines the usual visual boundary @1 X , in the sense that there is a canonical
Is.X/-equivariant surjection @fine1 X ! @1 X . Therefore, the set @fine1 X is called the
refined visual boundary of X . A generic point of @fine1 X is a sequence of the form
.�1; �2; : : : ; �k; x/ such that �1 2 @1 X , �iC1 2 @1 X�1;:::;�i

for each i D 1; : : : ; k�1

and x 2 X�1;:::;�k
. When X is of bounded geometry, the maximal possible length of

this sequence happens to be bounded above by a constant depending only on X , see
Corollary 4.4 below. The following result provides a more geometric description of
amenable subgroups of G:

Theorem 1.5. Let X be a locally compact Hadamard space and G be a totally dis-
connected group acting continuously, properly and cocompactly on X . Any amenable
subgroup of G has a finite index subgroup which fixes a point in X [ @fine1 X . Con-
versely, given any point x 2 X [ @fine1 X , the stabilizer Gx is amenable.

It is likely that if Is.X/ is cocompact, then the full stabilizer Is.X/x of any point
x 2 X [ @fine1 X is always amenable. In fact, this is already known if X is CAT.�1/

by a result of M. Burger and Sh. Mozes [BM96, Proposition 1.6].
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2. On topologically locally finite groups

Let G be a topological group. A subgroup H < G is called topologically locally
finite if the closure of every finitely generated subgroup of H is compact. It is readily
seen that if G itself is topologically locally finite, then so is any subgroup and any
continuous quotient group. Moreover, we have:

Lemma 2.1. Let G be a locally compact group and H be a topologically locally
finite subgroup. Then the closure xH is topologically locally finite, and xH endowed
with the induced topology is a topologically locally finite group.

Proof. Suppose that G contains a dense subgroup H which is topologically locally
finite. We must show that G itself is topologically locally finite. Let C be a relatively
compact open neighborhood of the identity in G. Given c1; : : : ; ck 2 G, the subset
C1 D Sk

iD0 ciC , where c0 D 1, is a relatively compact open neighborhood of the
identity containing c1; : : : ; ck . We set U D C1 [ C �1

1 . It suffices to prove that the
subgroup of G generated by U is compact. Note that this subgroup is open, hence
closed.

Let now y 2 SU 2. Then yU \ U 2 is a nonempty open set. Hence there exists h 2
H \yU \U 2. Since U D U �1 and h 2 yU , we have y 2 hU . Therefore, we deduce
that SU 2 � S

h2H\U 2 hU . Since SU 2 is compact, there exist h1; : : : ; hn 2 H such
that SU 2 � Sn

iD1 hiU . Let K be a compact subgroup of G containing fh1; : : : ; hng.
Then we have:

U 3 D U 2 � U � .K � U / � U D K � U 2 � K � K � U D K � U:

We obtain inductively that U n is contained in K �U for each n. Since hU i D S
n>0 U n

and since K � xU is compact, it follows that hU i is compact, as desired. �

By Zorn’s lemma, any topological group G possesses a maximal normal subgroup
which is topologically locally finite. It is called the LF-radical of G and denoted
RadLF.G/. By Lemma 2.1, the LF-radical of a locally compact group is a closed
subgroup. The following result was proven by V. Platonov [Pla65, Theorem 2]:

Theorem 2.2. Let G be a locally compact group and N be a closed normal subgroup.
If N and G=N are both topologically locally finite, then so is G. �

It follows from Theorem 2.2 that RadLF.G= RadLF.G// D f1g for any locally
compact group G. Another useful basic fact is the following:
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Lemma 2.3. Let G be a locally compact group. Then G is topologically locally finite
if and only if every compact subset of G is contained in a compact subgroup.

Proof. The ‘if’ part is clear. We focus on the opposite implication and assume hence-
forth that G is topologically locally finite. Let Q be a compact subset of G such
that Q D Q�1. We must show that Q is contained in a compact subgroup of G.
Up to replacing G by the closed subgroup which is generated by Q, this amounts
to showing that if G is compactly generated, then it is compact. Let thus U be a
compact symmetric neighborhood of the identity which generates G. There exist
g1; : : : ; gn 2 G such that U 2 � Sn

iD1 giU . Now we can conclude by the same
argument as in the proof of Lemma 2.1. �

Corollary 2.4. Let G be a locally compact group which is topologically locally finite.
Then G is amenable.

Proof. Follows from Lemma 2.3 together with Følner’s characterization of amena-
bility. �

3. On proper actions of totally disconnected groups on Hadamard spaces

Let X be a locally compact Hadamard space, namely a complete locally compact
CAT.0/ space. Let also G be a totally disconnected group acting continuously on X .
Any compact subgroup of G fixes a point in X by [BH99, Chapter II, Corollary 2.8].
Recall that the full isometry group Is.X/, endowed with the topology of uniform
convergence on compact subsets, is a locally compact second countable group. In
particular, if the G-action on X is proper, then G is locally compact. The following
basic fact will be useful:

Lemma 3.1. Let G be any totally disconnected locally compact group. Then every
compact subgroup of G is contained in a compact open subgroup of G.

Proof. Let K be a compact subgroup of G and choose a compact open subgroup
Q < G; it is well-known that such a subgroup exists, see [Bou71, III §4 No 6].
Considering the open cover

S
k2K kQ of the compact group K, we may extract

finitely many k1; : : : ; kn 2 K such that K � Sn
iD1 knQ. In particular Q has finitely

many K-conjugates and we deduce Q0 WD T
k2K kQk�1 D Tn

iD1 knQk�1
n . Thus

the subgroup Q0, which is by definition compact and normalized by K, is moreover
open. It follows that K is contained in the compact open subgroup K � Q0. �

We say that the G-action is smooth if Gx is open in G for each x 2 X . The term
smooth is borrowed from the representation theory of p-adic groups.
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The following lemma, though elementary, is crucial to the proof of the main
results:

Lemma 3.2. Assume that G acts properly on X . Let .xn/n�0 be a sequence of points
of X and .�n/n�0 be a sequence of elements of G such that the sequence .�n:xn/n�0

has a subsequence converging to some c 2 X . Then we have the following:

(i) There exists a sequence .x0
n/n�0 of points of X such that, given any g 2 G with

limn!1 d.xn; g:xn/ D 0, we have g:x0
n D x0

n for all but a finite number of
indices n � 0.

(ii) Assume moreover that the G-action is smooth. Then, given any g 2 G such that
limn!1 d.xn; g:xn/ D l , there exists k 2 G such that d.c; k:c/ D l and that
the set fn � 0 j �ng��1

n 2 kGcg is infinite.

Proof. Up to extracting, we may and shall assume that limn!1 �n:xn D c. Let
g 2 G be such that limn!1 d.xn; g:xn/ D l . We have

lim
n!1 d.xn; g:xn/ D lim

n!1 d.�n:xn; .�ng��1
n /�n:xn/ D l:

Therefore, it follows that limn!1 d.c; �ng��1
n :c/ D l . In particular, the set

f�ng��1
n gn�0 is relatively compact in G. Hence, up to extracting, we may assume

that the sequence .�ng��1
n /n�0 converges. By construction, its limit k maps the point

c to a point c0 such that d.c; c0/ D l .
Assume first that l D 0. Thus c D c0. By Lemma 3.1, there exists x 2 X such

that Gc � Gx and Gx is compact open. Since the sequence .�ng��1
n /n�0 converges

to k 2 Gx , it follows that the set fn � 0 j �ng��1
n 2 Gxg contains all sufficiently

large n. Now, setting x0
n D ��1

n :x, we obtain that g fixes x0
n for almost all n. Thus

(i) holds.
Assume now that l is arbitrary and that G acts smoothly. Then Gc is open, hence

so is the coset kGc D fh 2 G j h:c D c0g. Therefore, for all n sufficiently large, we
have �ng��1

n 2 kGc and (ii) holds. �

Recall that, given � 2 G, the displacement function of � is the map d� W X ! RC,
x 7! d.x; �:x/. Its infimum is denoted by j� j and is called the translation length of
� in X .

Note that when G is cocompact, the existence of a sequence .�n/n�0 as in the
lemma is automatic. In particular, we obtain (see [BH99, Chapter II, Section 6.1–
6.3]):

Corollary 3.3. Assume that G acts properly and cocompactly on X . Then every
element � 2 G with j� j D 0 has a fixed point in X , and the set fj� j j � 2 Gg of
translation lengths of elements of G is discrete at 0. Furthermore, if the G-action is
smooth, then it is semisimple: any element acts as an elliptic or a hyperbolic isometry.



Vol. 84 (2009) Amenable groups and Hadamard spaces 443

Proof. Let � 2 G and choose xn 2 X so that d.xn; �:xn/ tends to j� j as n tends to
infinity. Since X=G is compact, there exists �n 2 G such that f�n:xng is relatively
compact in X . Thus, up to extracting, we may assume that .�n:xn/n�0 converges
to some c 2 X . If j� j D 0, then Lemma 3.2 (i) shows that �n���1

n is elliptic for
some n, hence so is � . Similarly, if the G-action is smooth, Lemma 3.2 shows that
the displacement function d� attains its infimum j� j.

Let now .gn/n�0 be a sequence of elements of G such that jgnj tends to 0 as n

tends to infinity and assume in order to obtain a contradiction that jgnj > 0 for all n.
Since X=G is compact, we may and shall assume, up to replacing gn by a conjugate,
that there exists c 2 X , r 2 R and xn 2 X such that d.c; xn/ < r for all n and
that d.xn; gn:xn/ tends to 0 as n tends to infinity. Up to extracting, we may assume
that the sequence .xn/n�0 converges to some x 2 X . Since fgngn�0 is relatively
compact in G, we may assume, up to a further extraction, that .gn/n�0 converges to
some g 2 G. Clearly g fixes x. By Lemma 3.1, this implies that gn is elliptic for
all n sufficiently large. Thus jgnj D 0, which is absurd. �

Recall from [Bri99, Theorem A] that if X is a CAT.0/ cell complex with finitely
many isometry types of cells, and if the G-action is cellular, then it is semisimple and
the set of translation lengths of elements of G is discrete at 0. Thus the hypothesis
that X=G is compact is superfluous in that special case. Note that G is automatically
smooth in this case.

We record the following observation:

Lemma 3.4. Assume that G acts properly and smoothly on X . Let F � X be
a flat and let ' W GfF g ! Is.F / be the homomorphism induced by the action of
the stabilizer GfF g of F on F . Then '.GfF g/ is a discrete subgroup of Is.F /. In
particular GfF g= Ker ' is virtually abelian and GfF g possesses a finite index subgroup
which fixes a point in @1 F .

Proof. Let � D '.GfF g/. We must show that � < Is.F / acts properly discontinu-
ously on F .

Let x 2 F be any point. We may choose n C 1 points x0; : : : ; xn, where n D
dim F , in such a way that the group GfF g;x0;:::;xn

fixes pointwise a neighborhood of
x in F . Therefore, the group GfF g;x0;:::;xn

is contained in Ker '. Since Gx0;:::;xn

is an open subgroup of the compact open subgroup Gx , it follows that the index of
Gx0;:::;xn

in Gx is finite. In particular, for each x 2 F , the index of Ker ' in GfF g;x

is finite or, in other words, for each x 2 F , the stabilizer �x is finite.
Suppose now that the �-action on F is not properly discontinuous. Then there

exist x0 2 F and r 2 RC such that the set S� D f� 2 � j d.�:x0; x0/g is infinite.
Since �x is finite for each x 2 X , it follows that the set S0 D f�:x0 j � 2 S�g is
infinite. Let x1 2 F be a cluster point of S0. Let also .gn/n�0 be a sequence of
elements of GfF g such that lim gn:x0 D x1 and that gm:x0 ¤ gn:x0 for m ¤ n.
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Since fgngn�0 is relatively compact, we may assume that .gn/n�0 converges to some
g 2 G such that g:x0 D x1. Since Gx0

is open in G, so is gGx0
. Therefore, we have

gn:x0 D x1 for all sufficiently large n. This contradicts the fact that gm:x0 ¤ gn:x0

for m ¤ n. Thus � is a discrete subgroup of Is.F /.
The fact that � is virtually abelian now follows from [Thu97, Corollary 4.1.13].

It remains to show that � has a finite index subgroup which fixes an element in the
sphere at infinity @1 F . This is trivial if � is finite. If � is infinite, then there exists
an element � 2 � which acts as a hyperbolic isometry on F . Some power of � is
centralized by a finite index subgroup �0 < � . Therefore, the group �0 fixes the
unique attracting fixed point of � in @1 F . �

4. Projective limits of horoballs: the space X�

The purpose of this section is to study the main geometrical tool of this paper. In the
first subsection, we collect a few subsidiary facts on metric geometry.

4.1. On metric spaces of bounded geometry. Let .X; d/ be any metric space.
Given " > 0, a subset N � X is called "-sparse if d.x; x0/ � " for all x ¤ x0 2 N .
Note that a "-sparse subset is discrete; in particular, if it is contained in a compact
subset, then it is finite. Given a subset C � X , we denote by n".C / the maximal
cardinality of a "-sparse subset of C . Note that if n".C / is finite, then a "-sparse
subset N � C of maximal possible cardinality is necessarily "-dense: every point
of C is at distance less than " from some point of N . Given r > 0 and " > 0, we also
set

nr;".X/ D sup
x2X

n".B.x; r//;

where B.x; r/ denotes the open ball of radius r centered at x.
We say that the metric space .X; d/ is of bounded geometry if for all r > " > 0,

one has nr;".X/ < 1. We record some elementary facts for later references:

Lemma 4.1. We have the following:

(i) If .X; d/ is complete and of bounded geometry, then it is proper, i.e. any closed
ball is compact.

(ii) If .X; d/ is locally compact and X= Is.X/ is compact, then X is of bounded
geometry.

Proof. (i) follows from the characterization of compact metric spaces as those metric
spaces which are complete and totally bounded. The argument goes as follows. Let
B be a closed ball in X and S be an infinite set of points of B . Since X is of bounded
geometry, the ball B can be covered by a finite number of balls of radius 1. Thus there
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exists b0 2 B such that the ball B.b0; 1/ contains an infinite subset of S . Repeating
this argument inductively, we construct a sequence .bn/n�0 of points of B such that
B.bn; 2�n/ contains an infinite subset of S and that bnC1 2 B.bn; 2�n/. In particular
the sequence .bn/n�0 is Cauchy. Let b denote its limit. Clearly b is a cluster point
of S . Hence B is compact.

The proof of (ii) is a standard exercise and will be omitted here. �

4.2. The space X� and the refined boundary @fine
1 X . Let X be any CAT.0/ space.

Given any point � 2 @1X in the visual boundary of X , we now describe a canonical
construction which attaches a CAT.0/ space X� to � . Any closed horoball centered
at � is a closed convex subset of X . The collection of all of these horoballs form a
chain of subspaces of X . Endowing this chain with the orthogonal projections, we
obtain a projective system of CAT.0/ spaces. By definition, the space X� is the metric
completion of the projective limit of this system. Note that the projective limit itself
need not be complete even if X is so. Indeed, consider for example the convex subset
of the Euclidean plane R2 defined by X D f.x; y/ j xy � 1; x; y > 0g. Then the
space X� associated to the direction of the positive y-axis is an open half-line, which
is thus not complete. It is therefore important to take a completion since we want to
deal with Hadamard spaces. The space X� is endowed with a canonical surjective
projection

�� W X ! X�

induced by the orthogonal projections onto horoballs. Note that �� is 1-Lipschitz: it
does not increase distances.

There is a more down-to-earth description of X� which goes as follows. Let X�
�

be the set of all geodesics rays of X which point toward � . The set X�
�

is endowed
with a pseudo-distance defined by:

d.�; �0/ D inf
t;t 0�0

d.�.t/; �0.t 0//:

The space X� is the completion of the quotient of X�
�

by the relation which identifies
two rays at distance 0, namely two rays which are strongly asymptotic. It is readily
verified that this construction yields the same space as the preceding one. Note that
X� need not be locally compact, even if X is so. Indeed, consider for example the
CAT.0/ cube complex X which is defined as follows. For each positive integer n,
we define a closed convex subset Cn of the Hilbert space `2.N/ consisting of those
functions f 2 `2.N/ satisfying

8̂
<
:̂

f .0/ 2 Œn � 1; n�;

f .k/ 2 Œ0; 1� for k 2 ¹1; : : : ; n � 1º;
f .k/ D 0 for k � n:
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Thus Cn is isometric to the unit cube in the Euclidean n-space. Now we define X as
the union over all n > 0 of the Cn’s, endowed with the length metric induced from
`2.N/ (see [BH99, Definition I.3.3] for the definition of the induced length metric).
Thus X is a locally compact CAT.0/ cube complex. Note that the visual boundary
@1 X consists of a single point � , associated with the geodesic ray

� W RC ! X; t 7! t�f0g:

Moreover, it is easily seen that for each n � 0 the horosphere centered at � with base
point 0 and radius �n is a n-cube. Therefore the space X� is an infinite-dimensional
cube; in particular it is not locally compact.

The fact that �� does not increase distances yields the following:

Lemma 4.2. Let � 2 @1 X and r; " > 0 be positive numbers. Let x0; x1; : : : ; xn 2
X� be such that d.x0; xi / < r for each i and that the set fx1; : : : ; xng is "-sparse.
Then there exist y0; y1; : : : ; yn; ynC1 2 X such that d.y0; yi / < r for each i and
that the set fy1; : : : ; yn; ynC1g is "-sparse.

Proof. Let �0; �1; : : : ; �n W RC ! X be geodesic rays which are representatives
of x0; x1; : : : ; xn respectively. Note that for all i D 0; : : : ; n and t 2 RC, we
have ��.�i .t// D xi . Let R0 D �0.RC/. By definition, for each i D 1; : : : ; n

there exists ti 2 RC such that d
�
�i .ti /; projR0

.�i .ti //
�

< r . Here proj denotes
the orthogonal CAT.0/ projection map [BH99, Chapter II, Proposition 2.4]. Let
now H be a closed horoball centered at � , whose radius is sufficiently small so that
f�i .ti /; projR0

.�i .ti // j i D 1; : : : ; ng \ H D ¿ and that �0."/ does not belong to
H either. Set yi D projH .�i .0// for each i D 0; : : : ; n; this makes sense since H is
closed and convex. Note that projH .�i .0// D projH .�i .ti // for all i > 0. Therefore,
we have

d.yi ; y0/ � d
�
�i .ti /; projR0

.�i .ti //
�

< r

for each i D 1; : : : ; n since projH does not increase distances. Note also that the set
fy1; : : : ; yng is "-sparse since �� does not increase distances and since fx1; : : : ; xng
is "-sparse.

It remains to define ynC1. To this end, let t0 2 RC be the unique real such
that �0.t0/ D y0. We set ynC1 D �0.t0 � "/. Thus d.y0; ynC1/ D ". Since
projH .ynC1/ D y0, we have d.y; ynC1/ � " for all y 2 H . In particular, the set
fy1; : : : ; yn; ynC1g is "-sparse. Finally, since " < r , we have d.y0; ynC1/ < r as
desired. �

The following proposition collects some of the basic properties of X� :

Proposition 4.3. Let � 2 @1X . We have the following:
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(i) X� is a complete CAT.0/ space.

(ii) There is a canonical continuous homomorphism '� W Is.X/� ! Is.X�/, where
Is.X/ and Is.X�/ are endowed with the topology of uniform convergence on
compact subsets.

(iii) If X is proper and of bounded geometry, then so is X� .

Proof. (i) follows immediately from the definition in terms of horoballs. For another
argument using the alternative construction of X� , see B. Leeb [Lee00, Proposi-
tion 2.8].

(ii). The map '� is defined by

'�.g/:��.x/ D ��.g:x/: (4.1)

It is immediate from the definition that it is a homomorphism. Assume in order to
obtain a contradiction that '� is not continuous. Then it is not continuous at 1. Thus
there exists a compact subset C � X� , a real " > 0, a sequence .yn/n�0 of points
of C and a sequence .gn/n�0 of elements of Is.X/� such that limn!1 gn D 1 and
d.'�.gn/:yn; yn/ > " for each n. Let D � C be a finite subset which is "

3
-dense

in C . Let D0 � X be a finite subset such that ��.D0/ D D. Since limn!1 gn D 1

and since D0 is finite, we have d.gn:x; x/ � "
3

for all x 2 D0 and all sufficiently large
n. Since �� does not increase distances, we deduce from the definition of '� that
d.'�.gn/:y; y/ � "

3
for all y 2 D and all sufficiently large n. Since D is "

3
-dense

in C , it finally follows that d.'�.gn/:z; z/ � " for all z 2 C and all sufficiently
large n. This is a contradiction.

Note that '� need not be proper.
(iii). By definition, the space X� is complete. In view of Lemma 4.1 (i), it is

proper whenever it is of bounded geometry. The fact that it is of bounded geometry
follows easily from Lemma 4.2. �

Important to us will be the fact that the length of a sequence .�1; �2; : : : ; �k/ such
that �1 2 @1 X and �iC1 2 @1 X�1;:::;�i

for each i D 1; : : : ; k � 1 may not be
arbitrarily large under suitable assumptions on X :

Corollary 4.4. Let X be a complete CAT.0/ space of bounded geometry. Then
there exists an integer K � 0 depending only on X such that, given any sequence
.�1; �2; : : : ; �k/ with �1 2 @1 X and �iC1 2 @1 X�1;:::;�i

for each i D 1; : : : ; k � 1,
the space X�1;:::;�k

is bounded whenever k D K. In particular @1 X�1;:::;�k
is empty

whenever k D K.

Proof. Suppose that X�1;:::;�k
is of diameter > r . Then X�1;:::;�k

contains two points
at distance r from one another. Applying Lemma 4.2 inductively, we construct a
finite subset N � X of cardinality k C 2 which is r-sparse and of radius � r C ",
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where " > 0 is a fixed positive number (which may be chosen arbitrarily small). In
particular, we obtain k C 2 � nrC";r.X/. The desired result follows. �

Remark. Using results of B. Kleiner [Kle99], it can be shown that if X is complete
and GeomDim.X�/ � n, then GeomDim.X/ � nC1. In particular, if GeomDim.X/

is finite, then GeomDim.X�/ < GeomDim.X/. Therefore, if X is complete and
GeomDim.X/ is finite, then there exists a constant K such that @1 X�1;:::;�k

is empty
whenever k � K. Note that a CAT.0/ space X such that @1 X is empty might be
unbounded: for example take X to be a metric graph which is a star with infinitely
many branches of finite length, such that the supremum of the length of the branches
is infinite. Note also that the fact that X is of finite geometric dimension is unrelated
to the local compactness of X . In particular, if X is a CAT.0/ piecewise Euclidean
cell complex with finitely many types of cells (such as a building [Dav98] or a finite
dimensional cube complex), then GeomDim.X/ is finite but X need not be locally
compact.

We define the refined visual boundary @fine1 X to be the set of all sequences

.�1; �2; : : : ; �k; x/

such that �1 2 @1 X , �iC1 2 @1 X�1;:::;�i
for each i D 1; : : : ; k�1 and x 2 X�1;:::;�k

.
Given such a sequence .�1; �2; : : : ; �k; x/ in the refined boundary, we define its level
to be the number k. In order to associate a level to each point of X [@fine1 X , we adopt
the convention that points of X are of level 0. Corollary 4.4 gives sufficient conditions
on X for the existence of an upper bound on the level of all points in X [ @fine1 X .

4.3. Structure of the stabilizer of a point in the refined boundary. Given a point
� 2 @1X and a base point x 2 X , we let b�;x W X ! R be the Busemann function
centered at � such that b�;x.x/ D 0. Recall that Busemann functions satisfy the
following cocycle identity for all x; y; z 2 X :

b�;x.y/ � b�;x.z/ D b�;z.y/:

It follows that the mapping

ˇ� W Is.X/� ! R; g 7! b�;x.g:x/;

is independent of the point x 2 X and is a group homomorphism. It is called the
Busemann homomorphism centered at � .

Proposition 4.5. Let X be a proper CAT.0/ space and G be a totally disconnected
group acting continuously, properly and cocompactly on X . Given � 2 @1X , we
have the following:
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(i) Given any x 2 X� , the LF-radical RadLF.G�;x/ is open in G�;x; it coincides
with the kernel of ˇ� W G�;x ! R.

(ii) Let K� be the kernel of the restriction of '� to G� , where 	� is defined by (4.1)
on page 447. Then RadLF.K�/ is open in K�; it coincides with the kernel of
ˇ� W K� ! R. In particular, the group K�= RadLF.K�/ is isomorphic to a
subgroup of R.

(iii) Let .�1; �2; : : : ; �n; x/ 2 @fine1 X be a point of level n in the refined visual bound-
ary. Set H D G�1;:::;�n;x . Then RadLF.H/ is open in H , it contains all elements
of H which act as elliptic isometries on X and, furthermore, H= RadLF.H/ is
abelian and torsion free. In particular H is amenable.

Proof. Note that (i) is a special case of (iii). However, the proof of (iii) involves
some technicalities which can be avoided in the situation of (i). Therefore, in order
to make the argument more transparent, we prove (i) separately.

(i). Let K�;x denote the kernel of the restriction to G�;x of the Busemann ho-
momorphism ˇ� . Let y 2 X be such that ��.y/ D x and � D ��;y W RC ! X

be the geodesic ray pointing towards � with origin y. Define xn D �.n/ for each
n 2 N. Since G is cocompact, there exists a sequence .�n/n�0 of elements of G

such that .�n:xn/n�0 converges to some c 2 X . Now, given any g1; : : : ; gk 2 K�;x ,
we have limn!1 d.xn; gi :xn/ D 0 for each i D 1; : : : ; k. Therefore, applying
Lemma 3.2 inductively, we deduce that there exists n 2 N such that gi 2 G��1

n :c

for each i D 1; : : : ; k. In particular, the set fg1; : : : ; gkg is contained in a compact
subgroup of G. This shows that K�;x is topologically locally finite.

Now, the inclusion K�;x � RadLF.G�;x/ is obvious. Conversely, given any
element g 2 G�;x which does not belong to K�;x , then g is not elliptic, hence it is
not contained in RadLF.G�;x/. Thus K�;x D RadLF.G�;x/ as desired.

The fact that K�;x is open in G�;x is clear: by definition G�;x is closed and any
compact open subgroup of G�;x fixes a point in X , and is thus contained in K�;x .

(ii). By definition, we have K� D T
x2X�

G�;x . Hence the desired assertion
follows from (i).

(iii). For each i D 1; : : : ; n, let ˇ�i
W G�1;:::;�i

! R be the restriction of the
Busemann homomorphism centered at �i . In particular, restricting further, one obtains
a homomorphism ˇ�i

W H ! R. The direct product of these homomorphisms defines
a homomorphism

ˇ D ˇ�1
� � � � � ˇ�n

W H ! Rn;

whose kernel is the subgroup K D Tn
iD1 Ker ˇ�i

. Clearly K contains all elements of
H which act as elliptic isometries on X (and hence on X�1;:::;�i

for each i D 1; : : : ; n).
In particular it follows that K is open in H .

Our aim is to show that K D RadLF.H/. We have just seen that K contains all
periodic elements of H . Thus the inclusion RadLF.H/ � K is clear. It remains to
show that K is topologically locally finite.



450 P.-E. Caprace CMH

For each i D 1; : : : ; n, we define

'i D '�i
B : : : B '�1

B '�1
W Is.X/�1;:::;�i

! Is.X�1;:::;�i
/:

Let g1; : : : ; gk be elements of K. By definition, there exists a sequence .xn�1;m/m�0

of points of X�1;:::;�n�1
such that

lim
m!1 d.'n�1.gi /:xn�1;m; xn�1;m/ D 0

for each i D 1; : : : ; k. Let now �n�2;m W RC ! X�1;:::;�n�2
be a geodesic ray pointing

towards �n�1 such that ��n�1
.�n�2;m.t// D xn�1;m for each t 2 RC.

For each m, we may choose a sufficiently large tm 2 RC in such a way that the
sequence .xn�2;m/m�0 defined by xn�2;m D �n�2;m.tm/ 2 X�1;:::;�n�2

satisfies the
identity

lim
m!1 d.'n�2.gi /:xn�2;m; xn�2;m/ D 0

for each i D 1; : : : ; k.
Proceeding inductively, we construct in this way a sequence .xj;m/m�0 of points

of X�0;:::;�j
such that

lim
m!1 d.'j .gi /:xj;m; xj;m/ D 0

for each i D 1; : : : ; k and each j D 1; : : : ; n � 1. In a final further step, we then
construct a sequence .xm/m�0 of points of X such that

lim
m!1 d.gi :xm; xm/ D 0

for each i D 1; : : : ; k. Now, it follows by the same arguments as in the proof of (i)
that fg1; : : : ; gkg is contained in a compact subgroup of G. Hence K is topologically
locally finite, as desired.

The amenability of H is now immediate from Corollary 2.4. �

Note that the proof of Proposition 4.5 (iii) shows that RadLF.H/ coincides with
Ker ˇjH , where ˇ D ˇ�1

� � � � � ˇ�n
W G�1;:::;�n

! Rn is the direct product of the
Busemann homomorphisms centered at �i for i D 1; : : : ; n.

Lemma 4.6. Let X be a proper CAT.0/ space and G be a totally disconnected
group acting continuously, properly and cocompactly on X . Then, given any element
� 2 Ker ˇ, the respective translation lengths of � in X and in X�1;:::;�n

coincide.
Furthermore, if the G-action is smooth, then the action of G�1;:::;�n

on X�1;:::;�n
is by

semisimple isometries.

Proof. Let � 2 @1 X . Since �� does not increase distances, it is clear that the
translation length j� j of any element � 2 Is.X/� is bounded below by the translation
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length j'�.�/j of '�.�/ in X� . Conversely, if � 2 Ker ˇ, then it is easy to see that
j� j � j'�.�/j.

It is clear that an elliptic isometry � 2 Is.X/ which fixes � acts as an elliptic
isometry on X� . Suppose now that � 2 Is.X/ is hyperbolic and fixes � . Let 
 be an
axis of � . If � 2 @1 
, then � is elliptic on X� . Otherwise, it follows easily from
[BH99, Chapter II, Proposition 9.8 and Corollary 9.9] that 
 bounds a Euclidean half-
plane H such that � 2 @1 H . Moreover, one verifies immediately that the projection
of H to X� is an axis for � , from which it follows that � acts as a hyperbolic isometry
on X� . Note moreover that ˇ�.�/ D 0 if and only if � is the middle point of @1 H ,
where ˇ� denotes the Busemann homomorphism centered at � .

Now, if the G-action is smooth, the fact that the G�1;:::;�n
-action on X�1;:::;�n

is semisimple follows from a straightforward induction on n, since we know by
Corollary 3.3 that the G-action on X is semisimple. �

5. The structure of amenable subgroups

The main tool in proving Theorem 1.1 is provided by the obstructions for continuous
isometric actions of amenable groups on locally compact Hadamard spaces estab-
lished by S. Adams and W. Ballmann in [AB98]. Let us recall its precise statement:

Theorem 5.1. Let H be an amenable locally compact group acting continuously by
isometries on a proper CAT.0/ space X . Then H stabilizes a Euclidean flat in X , or
else H fixes a point in X [ @1X .

Proof. See [AB98, Theorem]. �

Before proceeding to the proof of the main results, we still need a subsidiary
lemma:

Lemma 5.2. Let X be a proper CAT.0/ space and G be a totally disconnected group
acting continuously, properly and cocompactly on X . Let .�1; : : : ; �n/ be a sequence
such that �1 2 @1 X , �iC1 2 @1 X�1;:::;�i

for each i D 1; : : : ; n�1 and let F be a flat
in X�1;:::;�n

(possibly n D 0 and F � X ). Suppose that H < G is a closed amenable
subgroup which fixes .�1; : : : ; �n/ and which stabilizes F . Then H possesses a finite
index subgroup which fixes a point in F [ @1 F .

Proof. As in the proof of Proposition 4.5 (iii), we let ˇ�i
W G�1;:::;�i

! R be the
restriction of the Busemann homomorphism centered at �i and

ˇ D ˇ�1
� � � � � ˇ�n

W G�1;:::;�n
! Rn

be the direct product of these Busemann homomorphisms. Let R D Ker ˇ.



452 P.-E. Caprace CMH

By hypothesis, we have H < StabG�1;:::;�n
.F /. Thus there is a well defined

homomorphism

' W H ! Is.F /:

Since H is totally disconnected, it follows from [MZ55, Chapter V, Theorem 2] that
'.H/ (endowed with the quotient topology) is a discrete group. Since moreover
'.H/ is amenable and contained in the real Lie group Is.F /, it follows from [Tit72,
Theorem 1] that '.H/ is virtually solvable, hence virtually metabelian because Is.F /

is abelian-by-compact. Up to replacing H by a finite index subgroup, we may – and
shall – assume henceforth that '.H/ is metabelian.

Let T denote the translation subgroup of Is.F /. Thus we have Œ'.H/; '.H/� � T .
On the other hand, since R D Ker ˇ contains the derived group ŒH; H�, we deduce
that Œ'.H/; '.H/� � T \ '.H \ R/. Now we distinguish several cases.

Assume first that T \ '.H \ R/ is nontrivial. By Corollary 3.3 and Lemma 4.6,
the set of translation lengths of elements of R in X�1;:::;�n

is discrete at 0. Therefore,
it follows that T \'.H \R/ is a discrete subgroup of T . Let now t 2 T \'.H \R/

be a nontrivial element. Since T \ '.H \ R/ is normal in '.H/ and since conjugate
elements act with the same translation length, it follows from the discreteness of
T \ '.H \ R/ in T that '.H/ possesses a finite index subgroup which centralizes t .
Since t acts as a hyperbolic element, we deduce that its unique attractive fixed point
in the sphere at infinity @1 F is fixed by a finite index subgroup of H . Hence we are
done in this case.

We assume henceforth that T \ '.H \ R/ is trivial. By the above, it follows
that '.H/ is abelian. Suppose now '.H/ contains an element t 0 which acts as a
hyperbolic element on F . Then '.H/ fixes the attractive fixed point of t 0 in @1 F

and again we are done. Suppose finally that every element in '.H/ is elliptic. Since
the fixed point set of an element in Is.F / is a linear, hence Euclidean, subspace, a
straightforward induction on dimension shows then that '.H/ has a global fixed point
in F . This concludes the proof. �

We are now ready for the

Proof of Theorems 1.1 and 1.5. Note that X is complete and of bounded geometry,
since Is.X/ is cocompact by hypothesis.

The fact that Gx is (topologically locally finite)-by-(virtually abelian) for each
x 2 X [ @fine1 X follows from Proposition 4.5 (iii). Any such subgroup is amenable
in view of Corollary 2.4.

Let now H < G be a closed amenable subgroup. We want to show that H

possesses a finite index subgroup which fixes an element of X [ @fine1 X .
Assume that H fixes no point in X [ @1 X . In view of Theorem 5.1, this implies

that H stabilizes a flat F � X . By Lemma 5.2, we deduce that H possesses a finite
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index subgroup which fixes a point in @1 F . This shows that in all cases H possesses
a finite index subgroup H0 which fixes a point �1 2 X [ @1 X .

If �1 2 X we are done. Otherwise H0 acts on X�1
. Assume that H0 fixes no point

in X�1
[ @1 X�1

. Then H0 stabilizes a flat in X�1
and, by Lemma 5.2, we deduce

that H0 possesses a finite index subgroup H1 which fixes a point �2 in X�1
[@1 X�1

.
Again, if �2 2 X�1

we are done. Otherwise H2 acts on X�1;�2
.

Now we repeat this argument inductively. The process will stop after finitely many
steps in view of Corollary 4.4. Therefore, we obtain a point .�1; : : : ; �n; x/ 2 @fine1 X

and a closed subgroup Hn < H of finite index which is contained in G�1;:::;�n;x . By
Proposition 4.5 (iii), the latter subgroup is (topologically locally finite)-by-(abelian
torsion free) and its LF-radical is open. �

Proof of Corollary 1.2. Let � < G be a finitely generated simple subgroup which is
contained in an amenable subgroup of G. In view of the characterization of amenabil-
ity in terms of a fixed point property [BdlHV07, Theorem G.1.7], we may and shall
assume that � is in fact contained in a closed amenable subgroup of G, say H . Let
H0 be its LF-radical. There are two cases.

Suppose first that H0 \ � is trivial. Then � injects in the quotient H=H0, which
is virtually abelian. Since � is simple and finitely generated, it must then be finite.

Suppose now that H0 \ � is nontrivial. Then � � H0. Therefore � is contained
in a compact subgroup of G. Since any such subgroup is a profinite group, it follows
that � is residually finite. Hence, since � is simple, it must be finite. �

Proof of Corollary 1.3. By [MMS04, Theorem 21], the group Is.X/ is either virtually
connected or totally disconnected. By assumption Is.X/ contains a finitely generated
infinite simple group � . Such a group cannot be contained in a connected locally
compact group. Indeed, a connected locally compact group is an extension of a Lie
group by a compact group [MZ55], and any finitely generated subgroup of a compact
group (resp. a Lie group) is residually finite. Thus we may assume without loss of
generality that Is.X/ is totally disconnected. Now, given any x 2 X , the stabilizer
Is.X/x is compact and, hence, cannot contain the simple group � . Finally, given
any � 2 @1X , the stabilizer Is.X/� is amenable [BM96, Proposition 1.6] and the
conclusion now follows from Corollary 1.2. �

Proof of Corollary 1.4. Let H < � be an amenable subgroup. Let F be its LF-
radical. It is a discrete countable locally finite group. In particular, it is a union of
an ascending chain of finite subgroups of � . Since � acts geometrically on X , it
follows from [BH99, Chapter II, Corollary 2.8] that it has finitely many conjugacy
classes of finite subgroups. In particular F is finite. Therefore, there exists a finite
index subgroup H0 < H which centralizes F . By Theorem 1.1, the group H=F is
virtually abelian. Thus H0 possesses a finite index subgroup H1 such that the derived
subgroup ŒH1; H1� is contained in F . Since any finitely generated group with a finite
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derived subgroup is virtually abelian [BH99, Chapter II, Lemma 7.9], it follows that
any finitely generated subgroup of H1 is virtually abelian. On the other hand, the
group � satisfies an ascending chain condition for virtually abelian subgroups by
[BH99, Chapter II, Theorem 7.5], from which it finally follows that H1 is virtually
abelian and finitely generated and, hence, so is H . �
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