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Simplicial volume of Hilbert modular varieties

Clara Löh and Roman Sauer

Abstract. The simplicial volume introduced by Gromov provides a topologically accessible
lower bound for the minimal volume. Lafont and Schmidt proved that the simplicial volume of
closed, locally symmetric spaces of non-compact type is positive. In this paper, we extend this
positivity result to certain non-compact locally symmetric spaces of finite volume, including
Hilbert modular varieties. The key idea is to reduce the problem to the compact case by first
relating the simplicial volume of these manifolds to the Lipschitz simplicial volume and then
taking advantage of a proportionality principle for the Lipschitz simplicial volume. Moreover,
using computations of Bucher-Karlsson for the simplicial volume of products of closed surfaces,
we obtain the exact value of the simplicial volume of Hilbert modular surfaces.
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1. Introduction and statement of results

1.1. Simplicial volume. The simplicial volume of a manifold was introduced by
Gromov [Gro82]: The simplicial volume of an n-dimensional, compact, oriented
manifold M (possibly with non-empty boundary @M ) is defined by

kM; @Mk D inf
˚jcj1I c 2 Cn.M/ relative fundamental cycle of .M; @M/

�
:

Here jcj1 denotes the `1-norm of a chain in the singular chain complex Cn.M/

with real coefficients with respect to the basis of all singular simplices. Similarly,
one defines the simplicial volume kMklf for an open, oriented n-manifold M by
fundamental cycles in the locally finite chain complex C lf

n .M/ with R-coefficients:

kMklf D inf
˚jcj1I c 2 C lf

n .M/ fundamental cycle of M
�
:

In the sequel we suppress the superscript “lf” in the notation and just write kMk. Be-
cause both simplicial volumes are multiplicative with respect to finite coverings,
it makes sense to define the simplicial volume of a non-orientable manifold M

as k xMk=2 where xM is the orientation double covering of M . Notice that the simpli-
cial volume is invariant under proper homotopy equivalences.
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1.2. The volume estimate. One of the main motivations to introduce the simplicial
volume is to establish a lower bound for the minimal volume by a homotopy invariant
(proper homotopy invariant in the non-compact case). Gromov defined the minimal
volume minvol.M/ of a smooth manifold M as the infimum of volumes vol.M; g/

over all complete Riemannian metrics g on M with sectional curvature pinched
between �1 and 1. The following fundamental inequality holds [Gro82, p. 12, p. 73]
for all smooth n-manifolds M :

kMk � .n � 1/nnŠ � minvol.M/:

A basic question is whether minvol.M/ > 0, and thus whether kMk > 0. For exam-
ple, for negatively curved locally symmetric spaces of finite volume one knows that
the minimal volume is achieved by the locally symmetric metric [BCG95], [BCS05],
[Sto06]. Gromov first proved that the minimal volume of closed locally symmetric
spaces is positive. Connell and Farb gave a much more detailed proof of this result
in [CF03]. They also proved that locally symmetric spaces of finite volume that do
not have a local H2- or SL.3; R/=SO.3; R/-factor (thereby excluding Hilbert modu-
lar varieties) have a positive minimal volume within the Lipschitz class of the locally
symmetric metric.1

Thurston proved that if M has a complete Riemannian metric of finite volume
with sectional curvature between �k and �1 then kMk > 0 [Gro82, Section 0.2].
Moreover, if M is a compact locally symmetric space of non-compact type, then
kMk > 0 by a result of Lafont and Schmidt [LS06].

1.3. Lipschitz simplicial volume. The aim of this paper is to give explicit compu-
tations and estimates of the simplicial volume of certain locally symmetric spaces
with R-rank at least 2, namely, of Hilbert modular varieties.

However, the simplicial volume of non-compact manifolds is much less well
behaved than the one for compact manifolds. For instance, both the proportionality
principle [Gro82, Section 0.4] and the product formula [Gro82, Section 0.2] fail in
general. Even worse, the simplicial volume of �nX , where X is a symmetric space
and � an arithmetic lattice of Q-rank at least 3, vanishes [LöhS09].

The following metric variant of the simplicial volume, which was first considered
by Gromov [Gro82] and is studied in detail in our paper [LöhS09], shows a much
more decent behaviour.

Definition 1.1. Let M be an oriented, n-dimensional Riemannian manifold without
boundary. For a locally finite chain c D P

i�0 a�i
�i define Lip.c/ 2 Œ0; 1� as

the supremum of the Lipschitz constants of the singular simplices �i W �n ! M

1Benson Farb informed us that positivity of the minimal volume in the finite volume case is erroneously stated
in the cited reference without this Lipschitz constraint. However, Chris Connell explained to us how to modify
their proof to get positivity of the minimal volume.
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where �n carries the standard Euclidean metric. Then the Lipschitz simplicial vol-
ume kMkLip of M is defined as

kMkLip D inf
˚jcj1I c 2 C lf

n .M/ fundamental cycle of M with Lip.c/ < 1�
:

Note that kMkLip D kMk for all closed Riemannian manifolds M because sin-
gular homology and smooth singular homology are isometrically isomorphic with
respect to the `1-semi-norm [Löh06, Proposition 5.3].

The main advantage of the Lipschitz simplicial volume over the ordinary one is
the presence of the following proportionality principles.

Theorem 1.2 (Gromov’s proportionality principle, open – closed). Let M be a closed
Riemannian manifold, and let N be a complete Riemannian manifold of finite volume.
Assume the universal covers of M and N are isometric. Then

kMkLip

vol.M/
D kN kLip

vol.N /
:

Proof. Gromov defines different notions of Lipschitz volumes [Gro82, Section 4.5],
denoted by kV W volkC and kV W volk�, which also make sense for Riemannian mani-
folds V with infinite volume. For a complete Riemannian manifold V of finite volume
he states the inequality [Gro82, third set of examples in Section 4.5]

kV W volk� � kV k
vol.V /

� kV W volkC:

The hypothesis of being stable at infinity [Gro82, proportionality theorem of
Section 4.5] is always satisfied for complete Riemannian manifolds of finite volume
(see the Example in loc. cit.), and thus the theorem in loc. cit. says that

kN W volk� D kN W volkC D kMk
vol.M/

:

Therefore, the inequality above yields the assertion. �

Since the proof of Gromov’s theorem is not very detailed, we refer the reader also
to the following result [LöhS09], which one might use alternatively in Strategy 1.4
below.

Theorem 1.3 (Proportionality principle, non-positive curvature). Let M and N be
complete, non-positively curved Riemannian manifolds of finite volume whose uni-
versal covers are isometric. Then

kMkLip

vol.M/
D kN kLip

vol.N /
:
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Our strategy to compute the simplicial volume for a locally symmetric space M

of non-compact type and finite volume consists of the following steps:

Strategy 1.4.

� Show that kMk D kMkLip under certain conditions.

� By a theorem of Borel [Bor63], there is a compact locally symmetric space N

of non-compact type with the same universal covering as M ; furthermore, both
M and N are non-positively curved (see [Ebe96, Sections 2.1 and 2.2]).

� Use the positivity result of Lafont and Schmidt [LS06] to conclude kN k > 0,
or use other available specific computations of kN k.

� Apply Theorem 1.2 or 1.3 and the equality of the first step to get positivity
or an explicit computation of kMk from the one of kN k. Notice that both
proportionality principles are applicable in view of the second step.

1.4. Relating simplicial volume and Lipschitz simplicial volume. The following
general result helps to verify the first step in the strategy above for certain examples.
It is proved in Section 2.

Theorem 1.5. Let .M; d/ be an open, Riemannian manifold. Assume that there is
a compact submanifold W � M with boundary @W D `m

iD1 Wi and connected
components Wi satisfying the following conditions:

(a) The complement M � W and the disjoint union
`m

iD1 Wi � .0; 1/ of cylinders
are homeomorphic.

(b) Each Wi has a finite cover SWi ! Wi that has a self-map fi W SWi ! SWi

with deg fi 62 f�1; 0; 1g with the following property: Let f
.k/

i denote the k-fold
composition of fi . There is C > 0 such that for every k � 1 the map

F
.k/
i W SWi � Œ0; 1� ! SWi � Œk; k C 1�; .x; t/ 7! �

f
.k/

i .x/; t C k
�

has Lipschitz constant at most C with respect to the metric on SWi � .0; 1/

induced by d .

(c) Each Wi has amenable fundamental group.

Then

kW; @W k D kMk D kMkLip:
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1.5. Simplicial volume of locally symmetric spaces of finite volume. Next we
present examples of locally symmetric spaces that satisfy the hypothesis of the previ-
ous theorem. In the sequel we focus on the case of higher R-rank but we remark that it
is not hard to verify the hypothesis for hyperbolic manifolds of finite volume or, more
generally, locally symmetric spaces of R-rank 1. In particular, using Theorem 1.2
or 1.3, one obtains a new proof of Thurston’s proportionality principle for hyperbolic
manifolds [Gro82, Section 0.4].

Let us first fix the following notation.

Setup 1.6. Let X be a connected symmetric space of non-compact type and let
G D Isom.X/B be the connected component of the identity in the isometry group
of X . Then G is a connected semi-simple Lie group with trivial center and no compact
factors [Ebe96, Proposition 2.1.1 on p. 69]. Let G be a connected, semi-simple, linear
algebraic group with trivial center such that G D G .R/ (there always exists such G ).
Assume that the Q-rank of G .Q/ is 1, i.e., any maximal Q-split torus of G .Q/ is
one-dimensional. Let � � G .Q/ be a torsion-free, arithmetic lattice. By definition,
one says that � is a Q-rank 1 lattice.

Section 3 gives a summary of the relevant notions about locally symmetric spaces.
The following Theorem is proved in Section 4.

Theorem 1.7. We retain the assumptions of Setup 1.6. Assume that � in addition
satisfies the following conditions:

(a) The lattice � is neat in the sense of Borel [Bor69, §17], and

(b) the connected components of the boundary of the Borel–Serre compactification
of M D �nX have amenable fundamental groups.

Then M satisfies the assumption of Theorem 1.5.

Applying the Strategy 1.4, we obtain the following positivity result:

Corollary 1.8. Under the hypotheses of the previous theorem we have k�nXk > 0.

1.6. Simplicial volume of Hilbert modular varieties. Consider a totally real num-
ber field F of degree d over Q, that is, F admits no complex embedding. Let OF be
its ring of integers. Let f�1; : : : ; �d g be the set of all embeddings OF ! R.

Then SL.2; OF / is a Q-rank 1 lattice in SL.2; R/d via the embedding

A 7! �
�1.A/; : : : ; �d .A/

�
:

In particular, SL.2; OF / acts on the d -fold product H2 � � � � � H2 of hyperbolic
planes.



462 C. Löh and R. Sauer CMH

If � � SL.2; OF / is a torsion-free, finite index subgroup then we call the
quotient �n.H2/d a Hilbert modular variety. In case F is real quadratic, i.e.,
F D Q.

p
a/ for a square-free positive integer a, we call �nH2 � H2 a Hilbert

modular surface.
If � is neat then �n.H2/d satisfies the assumption of Theorem 1.7 [BJ06b, III.2.7].

Further, every torsion-free lattice has a neat subgroup of finite index [Bor69, §17].
Thus, by Corollary 1.8 and the volume estimate in Section 1.2 we obtain:

Corollary 1.9. Hilbert modular varieties have positive simplicial and positive mini-
mal volume.

To our knowledge, this is the first class of examples of non-compact locally sym-
metric spaces of R-rank at least 2 for which positivity of the simplicial or the minimal
volume is known.

Bucher-Karlsson proved [BK07] that if the Riemannian universal covering of a
closed Riemannian manifold N is isometric to H2 � H2, then kN k D 3

2�2 vol.N /.
Thus, applying Strategy 1.4, yields following explicit computation.

Corollary 1.10. Let † be a Hilbert modular surface. Then

k†k D 3

2�2
vol.†/:

Acknowledgments. The first author would like to thank the Graduiertenkolleg “Ana-
lytische Topologie und Metageometrie” at the WWU Münster for its financial support.
The second named author would like to thank Uri Bader for numerous discussions
about Lie groups and symmetric spaces, which helped a lot in the preparation of
this paper. The second named author acknowledges support of the German Science
Foundation (DFG), made through grant SA 1661/1-1.

2. Proof of Theorem 1.5

Proof of Theorem 1.5. We first show that kW; @W k � kMk � kMkLip: By defini-
tion, kMk � kMkLip. On the other hand, restricting a locally finite fundamental
cycle zc of M to the submanifold W , and pushing the resulting finite chain down to W

via the obvious homotopy equivalence M ! W gives rise to a relative fundamental
cycle c of .W; @W /; by construction, jcj1 � jzcj1. Therefore, kW; @W k � kMk.

It remains to prove the estimate kW; @W k � kMkLip: Let c 2 Cn.W / be a
relative fundamental cycle of .W; @W /. We now proceed in several steps: First, we
use the given finite coverings and self-maps on the boundary components to extend c

to a locally finite chain zc on M . In the second step, we show that zc is a fundamental
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cycle of M . By refining the construction in the third step, we can build zc in such
a way that is has small `1-norm. In the last step, we show that jzcj1 is indeed small
enough, by applying Gromov’s equivalence theorem.

Construction of a locally finite fundamental cycle zc of M from c. In the following,
we write n D dim M . For i 2 f1; : : : ; mg let pi W SWi ! Wi denote the given finite
covering. Let di 62 f0; �1; 1g be the degree of the self-map fi W SWi ! SWi . The chain

zi D .@c/jWi
2 Cn�1.Wi /:

is a fundamental cycle of Wi and @c D P
i zi . Let zi 2 Cn�1. SWi / be the image of zi

under the transfer homomorphism C�.Wi / ! C�. SWi / corresponding to pi . Then zi

is a cycle representing 1=jdeg pi j times the fundamental class of SWi and satisfyingˇ̌
zi

ˇ̌
1

� jzi j1 as well as Cn�1.pi /.zi / D zi . Because fi has degree di , we can find a

chain bi 2 Cn. SWi / such that

@bi D 1=di � Cn�1.fi /.zi / � zi : (2.1)

In the third step of the proof, we will specify a suitable choice of bi .
There is a chain ui 2 Cn. SWi � Œ0; 1�/ with

@ui D j1.zi / � j0.zi / and jui j1 � n � jzi j1;

where jk W C�. SWi / ! C�. SWi � Œ0; 1// denotes the map induced by the inclu-
sion SWi ,! SWi � fkg ,! SWi � Œ0; 1/. For example, such a ui can be found by
triangulating the prism �n�1 � Œ0; 1� into n-simplices. Using the abbreviations

wi D ui C j1.bi / 2 Cn

� SWi � Œ0; 1�
�
;

ci D
X
k�0

1

d k
i

� Cn

�
F

.k/
i

�
.wi / 2 C lf

n

� SWi � Œ0; 1/
�
;

we define the (locally finite) chain

zc D c C
mX

iD1

Cn.pi /.ci / 2 C lf
n .M/: (2.2)

Taking advantage of a smoothing operator [Löh06, Proposition 5.3] from the
singular chain complex to the subcomplex generated by all smooth simplices, shows
that we can assume without loss of generality that all the simplices occurring in the
chains wi and c are smooth, and hence Lipschitz; in particular, all simplices in zc are
Lipschitz.
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Properties of the chain zc. The chain zc is a cycle because

@ci D
X
k�0

1

d k
i

� Cn�1

�
F

.k/
i

�
.@wi /

D
X
k�0

1

d k
i

� Cn�1

�
F

.k/
i

��
j1.zi / � j0.zi / C j1.@bi /

�

D
X
k�0

1

d k
i

� Cn�1

�
F

.k/
i

��
1

di

� j1 B Cn�1.fi /.zi / � j0.zi /

�

D
X
k�0

1

d kC1
i

� jkC1 B Cn�1

�
f

.kC1/
i

�
.zi / �

X
k�0

1

d k
i

� jk B Cn�1

�
f

.k/
i

�
.zi /

D �zi :

For every x in the interior of W , the chains c and zc give rise to the same class
in Hn.M; M � fxg/. Therefore, the cycle zc is a fundamental cycle of M . Moreover,
Lip.zc/ < 1 follows directly from the uniform Lipschitz hypothesis for .F

.k/
i /k2N .

Uniform boundary condition from amenability. Because �1.Wi / is amenable, the
finite index subgroup �1. SWi / is also amenable. Thus, the chain complex C�. SWi /

satisfies the uniform boundary condition of Matsumoto and Morita [MM85, Theo-
rem 2.8] in degree n � 1 (in fact, in every degree), i.e., there is a constant K > 0 such
that for any null-homologous cycle z 2 Cn�1. SWi / there is a chain b 2 Cn. SWi / with
@b D z and jbj1 � K � jzj1. By taking the maximum we may assume that we have
the same constant K for all i 2 f1; : : : ; mg. Therefore, we can choose the bi above
in such a way that

jbi j1 � K � j1=di � Cn�1.fi /.zi / � zi j1 � 2K � jzi j1;

and again – by smoothing bi – we may assume that all simplices occurring in bi are
smooth. This yields

jzcj1 � jcj1 C
mX

iD1

jci j1

� jcj1 C
mX

iD1

X
k�0

1

d k
i

� �jui j1 C jj1.bi /j1
�

� jcj1 C
mX

iD1

X
k�0

2K C n

d k
i

� jzi j1

� jcj1 C 2m.2K C n/n � j@cj1:
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Applying Gromov’s equivalence theorem. From the discussion above we obtain that

kMkLip � inf
˚jcj1 C2m.2K Cn/n � j@cj1I c 2 Cn.W / relative fundamental cycle

�
:

Then the amenability of each �1.Wi / and Gromov’s equivalence theorem [Gro82,
p. 57] imply that the right hand side is equal to kW; @W k. �

3. Review of cusp decomposition in Q-rank 1

We refer to the Setup 1.6. Our background reference is the book of Borel and
Ji [BJ06b]. As in this book, we stick to the following notation:

Convention. An algebraic group defined over Q or R is denoted by a bold italic
capital and its group of real points by the corresponding (ordinary) italic letter.
Parabolic subgroups are always assumed to be proper and usually denoted by P .

3.1. The Borel–Serre compactification – simply connected case. In the Q-rank
one case, the Borel–Serre compactification xX of the symmetric space X (the one of
the locally symmetric space �nX will then be �n xX , cf. Section 3.4) is of the form

xX D X [
a
P

e.P/;

where P runs over all rational parabolic subgroups of G , and the boundary component
e.P/ is a principal bundle over a symmetric space XP with the unipotent radical NP

of P as fiber. If one fixes a basepoint x0 2 X and thus an identification X D G=K

(with K D Gx0
maximal compact), then one can describe e.P/ as follows [BJ06b,

Section III.9]: Let P D NPAPMP be the rational Langlands decomposition of P

with respect to x0: Here AP is a stable lift of the identity component of the real locus
of the maximal Q-split torus in the Levi-quotient NPnP , and MP is a stable lift of
the real locus of the complement of this torus in NPnP . Write KP D K \ MP and
�P D � \ P and �NP

D � \ NP . Then XP D MP=KP and e.P/ D NP � XP .
The map [BJ06b, Section III.1, p. 272–275]

�x0
W NP � AP � XP

Š�! X; .n; a; mK/ 7! nam � x0

is a diffeomorphism. If �x0
.n; a; z/ D x then one calls .n; a; z/ the horospherical

coordinates of x 2 X .
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3.2. The rational root space decomposition. Let g be the Lie algebra of G. Let
aP and nP be the Lie algebra of AP and NP , respectively. Associated with .g; aP/

is the system ˆ.g; aP/ of Q-roots. For ˛ 2 ˆ.g; aP/ we write

g˛ D fZ 2 gI ad.H/.Z/ D ˛.H/Z for all H 2 aPg:
Furthermore, if ˆC.g; aP/ denotes the subset of positive roots, then we have

nP D
M

˛2ˆC.g;aP /

g˛:

Because G .Q/ has Q-rank 1 there is only one positive simple root ˛0 2 ˆC.g; aP/,
which defines a group isomorphism

AP

Š�! R�
>0; a 7! a˛0 WD exp B ˛0

�
log.a/

�
:

We remark that the root decomposition above gives a grading of nP , and the adjoint
action of a 2 AP on nP is given by multiplication with �k on gk˛0

, where � D a˛0 .

3.3. The ends, metrically. For any t � 0 let AP;t D fa 2 AP I ˛0.log a/ � tg.
Then

VP.t/ D �x0

�
NP � AP;t � XP

�
together with e.P/ defines a neighborhood of e.P/ for any t � 0. Next we describe
the metric on VP.t/ in horospherical coordinates [BJ06b, Lemma III.20.7 on p. 402]:
The tangent spaces of the three submanifolds NP � fag � fzg and fng � AP;t � fzg
and fng � fag � XP at every point .n; a; z/ are orthogonal. Let dx2, da2, and dz2

be the invariant metrics on X , AP , and XP , respectively, induced from the Killing
form. Then we have

dx2 D
X

a2ˆC.g;aP /

e�2˛.log.a//h˛.z/ ˚ da2 ˚ dz2;

where h˛.z/ is some metric on g˛ that smoothly depends on z but is independent
of a.

3.4. The Borel–Serre compactification – locally symmetric case. Let S denote a
set of representatives of �-conjugacy classes of rational parabolic subgroups. There
is a free �-action on xX extending that of X , and the quotient �n xX is the Borel–Serre
compactification of the locally symmetric space �nX . The �-stabilizer of e.P/, and
also of VP.t/ for t � 1, is �P , and two points in VP.t/ lie in the same �-orbit if and
only if they lie in the same �P -orbit. It turns out that

�n xX D �nX [
a

P2S

�P ne.P/:
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Moreover, for t � 1 we have (in horospherical coordinates with respect to a base-
point)

�P nVP.t/ D �P n�
NP � AP;t � XP

� D �P n�
NP � XP

� � AP;t :

There is t0 > 0 such that for all t > t0 the subsets .�P nVP.t//P2S , of �nX are
disjoint and the complement �nX �S

P2S �P nVP.t/ is a compact submanifold with
boundary. For t > t0 we say that �P nVP.t/ is a cusp. The union of all cusps together
with the boundary of �n xX is a collar neighborhood of the same boundary [JZ01,
Propositions 2.3 and 2.4].

3.5. The boundary of the Borel–Serre compactification and neatness. Denote
the image of �P under the projection P D NPAPMP ! MP by �MP

. We assume
that � is neat in the sense of Borel [Bor69, §17]. By definition, � is neat if the
multiplicative subgroup of C� generated by the eigenvalues of f .	/ 2 GL.n; C/ is
torsion-free for any 	 2 � and any Q-embedding f W G ! GL.n; C/. Every lattice
has a neat subgroup of finite index, and a neat lattice is also torsion-free [Bor69, §17].
Then �MP

� MP is a torsion-free, uniform lattice in MP , and one obtains a short
exact sequence

0 ! �NP
! �P ! �MP

! 0:

Moreover, �P n.NP � XP/ is a fiber bundle over the locally symmetric space BP D
�MP

nXP whose fiber is the nil-manifold �NP
nNP . The assumption that � is neat is

needed to ensure that BP is a manifold. The homeomorphism ˛0 B log W AP;t ! R>t

identifies the metric on AP;t with the standard Euclidean metric on R. Every cusp
of �nX is topologically a cylinder �P n.NP � XP/ � R>t . From the discussion in
Section 3.3 we see that in the locally symmetric metric the nil-manifold fiber in BP

shrinks exponentially while the base stays fixed when the AP;t -component goes to
infinity.

4. Proof of Theorem 1.7

Proof of Theorem 1.7. We know from the discussions in Section 3 (especially 3.4), to
the notation of which we freely refer, that the locally symmetric space M D �nX has
finitely many cusps .�P nVP.t//P2S , where S is a set of representatives of �-con-
jugacy classes of rational parabolic subgroups and t > 0 is sufficiently large. The
complement W of M minus the union of cusps is diffeomorphic to the Borel–Serre
compactification of M . It remains to verify hypothesis (b) of Theorem 1.5 for every
cusp �P nVP.t/. We consider the rational Langlands decomposition P D NPAPMP

with respect to a basepoint x0 2 X such that AP and MP are defined over Q. This
is always possible [BJ06a, Proposition 2.2]. Then ƒP WD �NP

.� \ MP/ is a finite
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index subgroup of �P [BJ06a, Remark 2.7]. In horospherical coordinates, the cusp
is given by

�P nVP.t/ D �P n�
NP � XP

� � AP;t :

Moreover, SWP D ƒPn.NP � XP/ is a finite cover of WP D �P n.NP � XP/.
Note for the following that NP � AP � XP inherits a G-action from X via �x0

.
In coordinates, multiplication by a0 2 AP is given by a0.n; a; x/ D .ca0

.n/; a0a; x/

where ca0
.n/ D a0na�1

0 [BJ06a, Section 2]. Remember also that the (positive) root
system ˆC.g; aP/ in Section 3.2 consists of positive, integral multiples of the single,
positive simple root ˛0.

The next lemma provides the non-trivial self-maps (even self-coverings) assumed
in hypothesis (b).

Lemma 4.1. There is a non-trivial self-covering fP of ƒPn.NP � XP/ such that
the following square commutes:

ƒPn.NP � XP/ ��

fP

��

.� \ MP/nXP

id
��

ƒPn.NP � XP/ �� .� \ MP/nXP

Moreover, the lift of fP to the universal cover is given by .n; x/ 7! .a0na�1
0 ; x/ for

some a0 2 AP with � D a
˛0

0 > 1.

Proof. Because AP commutes with � \ MP , the map ca0
� idXP

for some a0 2 AP

induces a non-trivial self-covering on the ƒP -quotient provided ca0
.�NP

/ is a proper,
finite index subgroup of �NP

. The latter condition can be checked on the level of Lie
algebras. Because NP and AP are defined over Q, the Lie algebra nP has a preferred
rational structure and the decomposition of nP in Section 3.2 is defined over Q. Recall
that the adjoint action of a0 on nP is given by the homomorphism '� W nP ! nP

where � D a
˛0

0 and '�.n/ D �in for n 2 gi˛0
. The group �NP

corresponds
to a Z-lattice in nP by the exponential map. Dekimpe and Lee show that there
is an integer � > 1 such that '� preserves this lattice [DL03, Lemma 5.2]. The
corresponding a0 2 AP with a

˛0

0 D � is the desired element. �

Continuation of the proof of Theorem 1.7. Let fP and a0 2 AP and � > 1 be as in
the previous lemma. Recall that ˆC.g; aP/ D f˛0; 2˛0; : : :g, where ˛0 is the single
positive simple root. Next we show that left multiplication by a0 is Lipschitz with
Lipschitz constant smaller than 1: First note that left multiplication by a0 on the
AP;t - and XP -component of VP.t/ is an isometry or the identity, respectively. On
the NP -component it is just the conjugation ca0

. Let kV k.n;a;z/ denote the norm of a
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tangent vector V of VP.t/ at the point .n; a; z/. For m 2 N and N 2 gm˛0
we have

according to Section 3.3��dca0
.N /

��
.ca0

.n/;aa0;z/
D k�mN k.ca0

.n/;aa0;z/

D ��2m�mkN k.n;a;z/ < kN k.n;a;z/:

In particular, for any k 2 N, left multiplication by ak
0 has a Lipschitz constant smaller

than 1. Let t0 D ˛0.log a0/ > 0. If we identify AP;t with R>t by ˛0 B log, then the
map on ƒP nVP.t/ induced by left multiplication by a0 is just

ƒP n�
NP � XP

� � R>t 3 ..n; z/; t 0/ 7! .fP.n; z/; t0 C t 0/:

Thus, after a suitable reparametrization of R>t , multiplication by ak
0 is the desired

map F
.k/
i (i corresponds to P) in hypothesis (b) of Theorem 1.5, which finishes the

proof. �
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