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Relations between tautological cycles on Jacobians

Ben Moonen

Abstract. We study tautological cycle classes on the Jacobian of a curve. We prove a new result
about the ring of tautological classes on a general curve that allows, among other things, easy
dimension calculations and leads to some general results about the structure of this ring. Further
we lift a result of Herbaut and van der Geer–Kouvidakis to the Chow ring (as opposed to its
quotient modulo algebraic equivalence) and we give a method to obtain further explicit cycle
relations. As an ingredient for this we prove a theorem about how Polishchuk’s operator D lifts
to the tautological subalgebra of CH.J /.
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Introduction

Let .J; �/ be the Jacobian of a curve C of genus g � 2, and let j W C ,! J be
the embedding obtained by choosing a point x0 2 C . The Chow ring CH.J / (with
Q-coefficients) comes equipped with a number of structures: in addition to the usual
intersection product we have the Pontryagin product �, the Fourier transform F ,
and the action of n� and n� for all n 2 Z. Using the latter we obtain Beauville’s
decomposition CH.J / D ˚ CHi

.j /.J /. These structures are inherited by the quotient
A.J / WD CH.J /= �alg.

In [2], Beauville studied the tautological subring T .C / � A.J /, that can be
defined as the smallest subalgebra that is stable under all operations just mentioned,
and that contains the image of A.C/ under j�. He proved that T .C / is generated by
certain classes pm that are the components of F ŒC � in the Beauville decomposition.
This leads to the question what is the ideal of relations between these classes.

The work of Polishchuk [15] provides us with a powerful method to produce
relations. He considers the map � W R � T .C / from the polynomial ring R WD
QŒx1; x2; : : :� given by xi 7! pi . The elements of R that are of degree � g (with
xi of degree i ) with zero coefficient in front of xg

1 lie in the kernel of � for obvious
reasons. But now the point is that Polishchuk is able to give an explicit differential
operator D onR that preserves the kernel of �, and that the ideal of “trivial” relations
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is far from stable under D . Polishchuk studies the smallest ideal I � R that is D-
stable and that contains all trivial relations. Conjecturally, for general curves C (over
a base field of sufficiently high transcendence degree) the quotient ring R WD R=I

maps isomorphically to the tautological ring T .C /.
The main results of the present paper are the following:
First we give some new results on the structure of the ring R. Though in principle

it is not difficult to calculate, for a given g, the dimensions of all summands Ri
.j /

on
a computer, it is not so easy to obtain general conclusions about the structure of R

from Polishchuk’s methods. (In some sense the main obstacle is that the variable x1

plays an exceptional role in the calculations.)
We prove a theorem, Theorem 2.6, that gives more insight in the structure of R.

Each R.j / WD L
i Ri

.j /
is a finite-dimensional sl2-module. We give a simple recipe

for the multiplicity of a given irreducible sl2-module in each R.j /. As corollaries
we get some general results about the relations in R.j /, especially for small and large
(relative to g) values of j . Further we present a conjecture of van der Geer and
Kouvidakis that gives a simple recipe for the dimensions of the spaces Ri

.j /
.

The second main goal of the paper is to lift some results about tautological cycle
classes inA.J / to the Chow ring ofJ . For general curves Polishchuk already obtained
some results about this in [16]. He considered a subalgebra taut.C / � CH.J / that we
call the small tautological ring, and he proved that is generated by classes pm (lifting
those considered above) and qm (essentially the Beauville components of F .j�K/,
with K the canonical class on C ).

We get finer results if we make assumptions on the existence of a (special) gr
d

on
the curve. Herbaut [10] proved that in this case we get new relations between the
classes pm modulo algebraic equivalence. This result was reproved and simplified
by van der Geer and Kouvidakis in [9]. In itself, it is not very hard to lift the
result of Herbaut and van der Geer–Kouvidakis to the Chow level. We do this in
Section 4, following the method of [9] which is based on a Grothendieck–Riemann–
Roch calculation. The relation we obtain (see Theorem 4.6) is the following.

Theorem. Define pn 2 CHn.J / as the degree n component of F Œj.C /�, and for
integers i and s define

B.i; s/ D
X

m1;:::;ms
m1C���CmsDi

m1Š : : : msŠ � pm1
: : : pms

:

If C has a gr
d

then for all i > d � r we have the relation

B.i; r/ D
i�1X
nD1

.�1/n�1cn.�/ � B.i � n; r/;

where the cn.�/ 2 CHn.J / are certain classes (see (4.3)) associated to the gr
d

.
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The classes cn.�/ in this result do not, in general, lie in the small tautological
ring. So we are led to consider a bigger subalgebra Taut.C / � CH.J / that we call
the big tautological ring. By definition it is the smallest Q-subalgebra of CH.J /
that is stable under all operations �, �, F , n� and n� and that contains the image of
j� W CH.C / ! CH.J /.

From the relations obtained in Theorem 4.6 we should like to obtain further ones
by (repeated) application of an operator D , lifting Polishchuk’s operator on A.J /.
In Section 3 we study the big tautological ring, and we define an operator D on
it. As Taut.C / is not finitely generated, it is now less easy to describe this operator
explicitly. But the calculations we should like to perform involve only finitely many
classes of the form F .j�Di / with Di divisors on C . We show that the subalgebra
of Taut.C / generated by these classes together with the pm and qm is stable under D

and that D again acts on it as a differential operator that we can give explicitly.
The situation we arrive at is that we have lifted Herbaut’s relations to the Chow

level, and that we also have an explicit operator D . Combined this gives an abundance
of relations that can be calculated directly. We give some examples of the relations
thus obtained in the final section. What remains is to get some control over the total
ideal of relations thus obtained.

We would like to draw the reader’s attention to some recent related work. In
particular we would like to mention Polishchuk’s paper [17], in which some ideas
appear that are closely related to our Section 3, and the paper [8] of Fu and Herbaut,
which contains some results related to the material in Section 4.

Acknowledgements. I thank Tom Koornwinder for helping me with Mathematica.
I thank Gerard van der Geer and Alexis Kouvidakis for allowing me to present their
conjecture on the dimensions of the spaces Ri

.j /
, see 2.13, and for explaining to me

some details pertaining to their conjecture. Further I thank the anonymous referee
for a number of corrections and suggestions that have led to some simplifications and
to improvements in the exposition.

Notation and conventions. We work over a fixed algebraically closed field k.
Throughout, if X is a non-singular complete variety then by CH.X/ we denote the
Chow ring of X tensored with Q.

We write sl2 D Q � f C Q � h C Q � e with Œe; f � D h, Œe; h� D �2e, and
Œf; h� D 2f .

1. The Chow ring of a Jacobian

1.1. LetC be a non-singular complete curve of genus g � 2. Let J WD Pic0
C=k be its

Jacobian, � W J �!� J t the canonical polarization. We also write � 2 CH1.J / for the
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class of a symmetric theta divisor. Choose a base point x0 2 C , and let j W C ,! J

be the embedding given on points by x 7! ŒOC .x � x0/�.
Let PJ be the Poincaré bundle on J � J t . Let LJ be the line bundle on J � J

obtained by pulling back P �1
J under the map idJ � � . We have a Fourier transform

F W CH.J / ! CH.J / given by F .x/ D pr2;�
�
ch.LJ / � pr�

1.x/
�
. Further we have

Beauville’s decomposition CHi .J / D L
j CHi

.j /.J /, with x 2 CHi
.j /.J / if and

only if n�.x/ D n2i�j �x for all n 2 Z. The Fourier transform F induces a bijection
between CHi

.j /.J / and CHg�iCj

.j /
.J /.

We write Œj.C /�, or if there is no risk of confusion simply ŒC �, for the class of
j.C / in CHg�1.J /. Further, Œj.C /�.n/, or simply ŒC �.n/, denotes the component
of ŒC � in CHg�1

.n/
.J /.

1.2. We find it helpful to draw pictures representing the Chow ring as in Figure 1.
The boxes .i; j / represent the spaces CHi

.j /. In the horizontal direction we have the

weight, where by definition CHi
.j / has weight 2i � j . The Fourier transform acts as

reflection in the central vertical line.
The filtration Fil� on CH.J / defined by FilrCH WD L

j �r CH�

.j / should satisfy
the conjectures of Beilinson and Murre; see Jannsen [12]. Most of the expected
properties of this filtration are as yet unproved; we shall mention some of these.

It is known that CHi
.j / can be nonzero only for g � i 	 j 	 i . According to

a conjecture of Beauville in [1], § 5, the spaces CHi
.j / should be zero if j < 0;

this corresponds to one of the properties of Beilinson’s conjectural filtration. In
general this is known only for i 2 f0; 1; g � 2; g � 1; gg. Over finite fields or the
algebraic closure of a finite field Beauville’s conjecture is known; see Künnemann
[13], Sections 7 and 8.

Asn� acts onH 2i as multiplication byn2i , all classes in Fil1CH are homologically
trivial. It should be the case that

L
i CHi

.0/ injects into cohomology, but this is not
known in general. Similarly, by considering the weight we see that all classes in
Fil2CH map to zero under the Abel–Jacobi map, and it should be the case that Fil2CH
is precisely the kernel of the Abel–Jacobi map.

The classes in Fil1CHg represent 0-cycles of degree zero and are therefore al-
gebraically trivial. By Fourier duality it follows that also all classes in CHj

.j /
with

j > 0 are algebraically trivial. In the picture these summands are indicated by boxes
with a heavier border. As we shall see, in general there are many more classes that
are algebraically trivial.

1.3. By the work of Künnemann in [13], the Chow motive of J has a Lefschetz
decomposition. This gives rise to an action of sl2 on CH.J /. We normalise this as
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Figure 1. A picture of CH.J /.

in [16]; so with notation given on p. 473 we have

e.˛/ D �� � ˛; f .˛/ D �ŒC �.0/ � ˛;
and

h.˛/ D .2i � j � g/ � ˛ for ˛ 2 CHi
.j /.J /.

1.4. Define A.J / as the quotient of CH.J / modulo algebraic equivalence. This
ring inherits all the structures on CH.J / that are relevant for us. Concretely, A.J /
has an intersection product, a Pontryagin product, a Fourier transform, a Beauville
decomposition A.J / D ˚Ai

.j /
, and an sl2-action. We shall use these structures

without further comments. We again write � for the class of a symmetric theta
divisor in A1

.0/
.J /.
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2. Cycle relations modulo algebraic equivalence – general curves

2.1. Throughout this section, g will be a fixed integer with g � 2. We start by
reviewing some results from Polishchuk’s paper [15].

Consider the polynomial ring R WD QŒx1; x2; : : :� in infinitely many variables.
There are several gradings that will play a role in what follows. Among these are
gradings that we call “codimension”, “level” and “weight”; they are defined by setting

codim.xi / WD i; `.˛/ WD i � 1; and w.xi / WD i C 1:

We have w D 2 � codim � `.
Define Ri

.j /
WD f˛ 2 R j codim.˛/ D i and `.˛/ D j g. This gives a bigrading

R D ˚Ri
.j /

. We write Ri WD L
j R

i
.j /

and R.j / WD L
i R

i
.j /

. Let Fil� be the
descending filtration by level, so FilnR WD L

j �n R.j /.
Define an operator D on R by

D WD �g@1 C 1
2

X
m;n�1

 
mC n

n

!
xmCn�1@m@n;

where @k WD @xk
. We give R the structure of an sl2-module by setting

e.˛/ D x1 � ˛I
h.˛/ D .w.˛/ � g/ � ˛ D .2i � j � g/ � ˛ if ˛ 2 Ri

.j /
I

f .˛/ D �D.˛/:

See [15], Lemma 3.2, and see p. 473 for our notation regarding sl2.
Define I � R to be the smallest linear subspace that is stable under D and that

contains R>g C Fil1Rg . Concretely, I D R>g ˚P
n�0 Dn.Fil1Rg/. Polishchuk

shows that I D \n�0 Im.Dn/, and that I is in fact an ideal ofR. Define R WD R=I .
(This is the ring called RJac

g in [15], but for later use it will be convenient to have a
simpler notation.) The ring R inherits a bigrading R D ˚ Ri

.j /
and the structure of

an sl2-module. Note that the subspaces R.j / are sl2-submodules of R.
The next ingredient is that we have a “Fourier operator” F on R, given by [15],

formula (0.4). (Our F is Polishchuk’s S .) If ˛ 2 Ri
.j /

then F 2.˛/ D .�1/gCj˛.

2.2. Let now C be a non-singular curve of genus g. We use the notation of 1.1.
Consider the homomorphism of Q-algebras � W R ! A.J / given by �.xi / D pi ,
with

pi WD degree i component of F ŒC � D F .ŒC �.i�1//:

The image of � is the tautological subring introduced and studied by Beauville in [2].
We shall denote this tautological ring by T .C / WD Im.�/ � A.J /.
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We have I � Ker.�/. Let  W R ! A.J / be the induced homomorphism. This
map  is compatible with all structures considered above; that is,

–  .Ri
.j /
/ 
 Ai

.j /
.J / for all i , j ;

–  is sl2-equivariant;

–  B F D F B  .

2.3. The tautological ring T .C / � A.J / is generated by the classes p1; : : : ; pg .
We should like to understand the relations between these classes. The relations in
Polishchuk’s ideal I are those that are obtained from “trivial relations”, i.e., relations
F.p1; p2; : : :/ D 0 with F 2 R>g C Fil1Rg , by (repeated) application of the oper-
ator D . The relations thus obtained are in many cases non-trivial from a geometric
perspective. For instance, using this method Polishchuk shows that pn D 0 in A.J /
for all n � g

2
C1. (These particular relations also follow from a theorem of Colombo

and van Geemen in [4], as the gonality ofC is at most 1Cdg=2e.) Polishchuk conjec-
tures that for a generic curve C (over an algebraically closed base field of sufficiently
high transcendence degree over the prime field) the ideal I gives all relations.

For a given g we can, at least in principle, write down a basis for the ideal I
over Q. See [15], Section 2.6 for examples in genera 	 10. The drawback of this
method is that it is purely computational, and that it is hard to get an insight in the
structure of R. For instance, in examples one finds that there are many pairs .i; j /,
especially j � g=2, for which Ri

.j /
D 0, and one would like to understand precisely

for which pairs this happens.
Our main result in this section further details Polishchuk’s method, and gives the

structure of the ring R as an sl2-module. Using our theorem, it becomes very easy
to calculate the dimensions of the Ri

.j /
, and we also get some general results about

the structure of R.
We start with a simple lemma.

2.4 Lemma. Let ˛ 2 Ri
.j /

. Then

Dn.xa
1 � ˛/

D
min.n;a/X

sD0

nŠ

.n � s/Š
aŠ

.a � s/Š �
 
2i � j � g C a � nC s � 1

s

!
� xa�s

1 Dn�s.˛/:

for all n � 0 and a � 0.

Note that the binomial coefficient has to be taken in the generalised sense, as
2i � j � gC a � nC s � 1 may be negative. As a particular case of the lemma, we
have

D.xa
1 � ˛/ D xa

1 � D.˛/C a.2i � j � g C a � 1/ � xa�1
1 ˛: (1)
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Proof. The formula is proven by an easy induction on n. To start the induction we
first prove (1) by induction on a, using that D.x1ˇ/ � x1D.ˇ/ D .2i � j � g/ � ˇ
for ˇ 2 Ri

.j /
. �

2.5. Given an integer j � 0, define Mon.j / � R.j / to be the (finite) set of monomials
in the variables x2; x3; : : : (no x1) with `.˛/ D j . For j D 0we have Mon.j / D f1g.
Let Moni

.j / WD Mon.j / \Ri
.j /

.
If j � 1 there is a bijection between Mon.j / and the set of partitions j D

j1 C j2 C � � � C jr with 1 	 j1 	 j2 	 � � � 	 jr , letting such a partition correspond
to ˛ D xj1C1xj2C1 : : : xjr C1. Under this bijection, Moni

.j / corresponds with the

partitions with i � j parts. In particular, Moni
.j / is non-empty (still for j � 1) if and

only if j C 1 	 i 	 2j .
The set Mon.j / is a basis for R.j / as a QŒx1�-module. WriteM i

.j /
for the Q-vec-

tor space with basis Moni
.j /; similarly, let M.j / D L

i M
i
.j /

be the Q-vector space

generated by the set Mon.j /. Note that D.M i
.j /
/ 
 M i�1

.j /
.

2.6 Theorem. Write St for the tautological 2-dimensional representation of sl2.
Given i and j with 2i � j 	 g, write

�.i; j / WD dimQ

�
M i

.j /=D
g�2iCj C1

�
M

g�iCj C1

.j /

��
:

Then for all j � 0 we have

R.j / Š
min.g�1;2j;b gCj

2 c/M
iDj

�
Symg�2iCj .St/

��.i;j / (2)

as sl2-modules.

Proof. The result for j D 0 says that R.0/ Š Symg.St/, which is immediate. In the
rest of the proof we shall assume that j � 1. Let ˆ� be the ascending filtration of
R.j / by QŒx1�-submodules that is given by ˆi WD QŒx1� �

�L
k�i M

k
.j /

�
. Note that

the ˆi are sl2-submodules of R.j /, and that ĵ D .0/ and ˆ2j D R.j /. Let ‰� be
the filtration on R.j / induced by ˆ�.

If ˛ 2 Moni
.j / then Dn.˛/ 2 ˆi�1 for all n � 1. Hence by Lemma 2.4 we have

Dn.xa
1 � ˛/ �

´
0 if a < nI

aŠ
.a�n/Š

�
2i�j �gCa�1

n

�
xa�n

1 ˛ if a � n;

moduloˆi�1. Write V˛ for the image of QŒx1� �˛ in grˆ
i , which is an sl2-submodule.

We find:
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– If 2i � j > g then V˛ is irreducible, dim.V˛/ D 1.

– If 2i � j 	 g then V˛ is an extension,

0 �! U˛ �! V˛ �! W˛ �! 0I
here U˛ WD Im

�
QŒx1� � xg�2iCj C1

1 ˛
�

is infinite dimensional and irreducible,
and W˛ is isomorphic with Symg�2iCj .St/.

As R.j / is finite dimensional it follows in particular that ˆb gCj
2 c surjects to R.j /.

Let i be an integer with j C 1 	 i 	 min
�
2j;

�gCj
2

˘�
. The set Moni

.j / gives a

basis for grˆ
i as a QŒx1�-module, and by what we have just seen we have an exact

sequence
0 �! U �! grˆ

i �! W �! 0;

where W is the direct sum of the spaces W˛ for ˛ 2 Moni
.j /. Consider the subspace

M i
.j /

� ˆi . Let SM i
.j /

be the image ofM i
.j /

under the compositionˆi � grˆ
i � W .

The natural map M i
.j /

! SM i
.j /

is an isomorphism. With f as on p. 473 we have
SM i

.j /
D Ker.fjW /, and W Š SM i

.j /
˝Q Symg�2iCj .St/ as sl2-modules.

Clearly the natural map grˆ
i � gr‰

i factors via a map � W W � gr‰
i . Let

K WD Ker.�/, which is an sl2-submodule of W . Let KŒf � WD Ker.fjK/. Then
we have KŒf � D Ker.�/ \ SM i

.j /
, and gr‰

i is isomorphic with
� SM i

.j /
=KŒf �

� ˝Q

Symg�2iCj .St/ as sl2-modules.
Now consider the composition

M i
.j / ��!� SM i

.j / ,�! W �� gr‰
i ;

which is the just the restriction of the natural map ˆi � gr‰
i to M i

.j /
� ˆi . An

element y 2 M i
.j /

maps to zero under this map if and only if y 2 I C ˆi�1. So to

complete the proof, it suffices to show that for y 2 M i
.j /

we have

y 2 I Cˆi�1 () y 2 .I \Ri
.j //C x1R

i�1
.j / (a)

() y 2 Dg�i .R
g

.j /
/C x1R

i�1
.j / (b)

() y 2
� i�j �1X

aD0

Dg�i�a.M
g�a

.j /
/
�

C x1R
i�1
.j / (c)

() y 2 Dg�2iCj C1.M
g�iCj C1

.j /
/C x1R

i�1
.j / (d)

() y 2 Dg�2iCj C1.M
g�iCj C1

.j /
/: (e)

For (a), the implication “(” is clear, as x1R
i�1
.j /


 ˆi�1 and I \Ri
.j /


 I . For

the converse, suppose we have z 2 I and w 2 ˆi�1 with y D z C w. Because I



480 B. Moonen CMH

and ˆi�1 are bi-homogeneous with respect to the decomposition R D ˚Ri
.j /

, we

may replace z and w by their components in Ri
.j /

, in which case z 2 I \ Ri
.j /

and

w 2 x1 �Ri�1
.j /

.

For (b), just note that I \Ri
.j /

D Dg�i .R
g

.j /
/. For (c), which is really the main

point, start with the decomposition Rg

.j /
D L

a�0 x
a
1 � M g�a

.j /
. If ˛ 2 M

g�a

.j /
then

using Lemma 2.4 we find that

Dg�i .xa
1˛/ D

´
0 if a � i � j ;
.g�i/Š aŠ
.g�i�a/Š

�
i�j �1

a

�
Dg�i�a.˛/ for 0 	 a 	 i � j � 1,

modulo x1 �Ri�1
.j /

.

Finally, (d) follows from the remark that D.M b
.j /
/ 
 M b�1

.j /
for all b, and for

(e) we use that y and Dg�2iCj C1.M
g�iCj C1

.j /
/ are both contained inM i

.j /
, whereas

M i
.j /

\ x1R
i�1
.j /

D 0. �

2.7 Remarks. (i) One of the main advantages of the result is that the calculations do
not involve the variable x1, and that therefore the operator D gets a much simpler
form. We give some corollaries below. It should be possible to get even finer results;
see 2.13 for some speculation. The only obstacle for pushing our results further is of
a purely combinatorial nature.

(ii) The theorem should not be read as saying that the images of the monomial
spacesM i

.j /
in Ri

.j /
consist of primitive classes, i.e., classes in the kernel of f . This

is simply not the case. However, to an element ˛ 2 M i
.j /

corresponds a primitive
class ˛0, given by

˛0 D
X
n�0

.�x1/
n � Dn.˛/

.nŠ/2 � �2i�j �g�2
n

� :
(Note that the sum is finite, as Dn.˛/ D 0 for n � 0.)

(iii) For j � 1 the direct sum in (2) starts at i D j C 1. To “visualize” where
the various summands M i

.j /
and Ri

.j /
lie, for instance in the definition of the multi-

plicity �.i; j /, it is usually helpful to look at a picture, as in Figure 1. Recall that
the number 2i � j is the weight. The summand Rg�iCj

.j /
is the Fourier mirror image

of Ri
.j /

. The reader is encouraged to look at the examples in 2.12 below.

2.8 Corollary. Write RŒg� for the ring R in genus g. If 2i � j 	 g and g < g0 then
the multiplicity of Symg0�2iCj .St/ in RŒg0�.j / is greater or equal to the multiplicity
of Symg�2iCj .St/ in RŒg�.j /.

Proof. Note that
Dg0�2iCj C1 W M g0�iCj C1

.j /
! M i

.j /



Vol. 84 (2009) Relations between tautological cycles on Jacobians 481

factors through
Dg�2iCj C1 W M g�iCj C1

.j /
! M i

.j /: �

2.9 Corollary. For n 	 gC1
2

we have xn ¤ 0 in R.

Proof. Recall that xn 2 M n
.n�1/

. In the proof of Theorem 2.6 we have seen that the

kernel of the map M i
.j /

! gr‰
i equals Dg�2iCj C1

�
M

g�iCj C1

.j /

�
. For i D n and

j D n�1, this says that the kernel of the mapM n
.n�1/

! gr‰
n equals Dg�n

�
M

g

.n�1/

�
.

ButM g

.n�1/
D 0 for n 	 gC1

2
, so the image of xn in gr‰

n (and a fortiori also the image
in R) is nonzero. �

Of course it is far more interesting to have results about the non-vanishing of
classes pn in CH.J /, for a general curve C . Ceresa’s theorem in [3] gives such a
result, as it tells us that for g � 3 and general C we have p2 ¤ 0 in A.J /. (This
follows from [3] using [10], Theorem 5.) See Fakhruddin [7] and Ikeda [11] for some
further results.

2.10 Corollary. (i) If iCj 	 g then the natural mapRi
.j /

! Ri
.j /

is an isomorphism.

(ii) If 0 	 j 	 g=3 then Ri
.j /

Š Ri
.j /

for all i with 2i � j 	 g. In this case we
have

R.j / Š
2jM

iDj C1

�
Symg�2i�j .St/

��.i;j /

as sl2-modules, where �.i; j / is the number of ordered partitions of j with i � j

parts.

Proof. By definition, for any pair .i; j / the map Ri
.j /

! Ri
.j /

is surjective, so it is
an isomorphism if and only if the two spaces have the same dimension. Note that
Fourier duality gives isomorphisms Ri

.j /
�!� R

g�iCj

.j /
and Ri

.j /
�!� R

g�iCj

.j /
, so

in the proof of (i) we may further assume that 2i � j 	 g. We have

dimQ
�
Ri

.j /

� D
X
k�i

dimQ
�
M k

.j /

�
:

On the other hand, with h 2 sl2 as on p. 473 we have Ri
.j /

D f˛ 2 R.j / j h.˛/ D
.2i � j � g/ � ˛g. So it follows from (2) that

dimQ
�
Ri

.j /

� D
X
k�i

�.k; j /:

Part (i) now follows from the remark that �.k; j / D dim
�
M k

.j /

�
if k 	 i and

i C j 	 g, because then M g�kCj C1

.j /
D 0. (As remarked in 2.5, M b

.j /
D 0 if
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b > 2j .) The first assertion of (ii) follows from (i), since the inequalities j 	 g=3

and 2i �j 	 g imply that iCj 	 g. Hence�.i; j / D dimQ
�
M i

.j /

�
for all indices i

that occur in the right hand side of (2), and as we have seen in 2.5 this is the number
of ordered partitions of j with i � j parts. �

The previous corollaries can be interpreted as non-vanishing results. The picture
that emerges is that for small j there are no relations inR.j /. By contrast, for large j
we expect many relations. We always have R.j / D 0 for j � g�1, and Polishchuk’s
result about the vanishing of the class of xj for j � g

2
C 1 (see [15], Corollary 0.2)

gives that R.g�2/ D 0 for all g � 4 and R.g�3/ D 0 for all g � 6. We expect that for
a given j there is a boundGj such that R.j / D for all g � Gj . In fact, the conjecture
of van der Geer and Kouvidakis – see 2.13 below – predicts that R.g�2l/ D 0 for all
g � .l C 1/2 and R.g�2lC1/ D 0 for all g � l.l C 1/. The following result gives
a proof of this in the first non-trivial cases. The bounds we obtain are sharp; see the
examples in 2.12.

2.11 Corollary. For all g � 9 we have R.g�4/ D 0. For all g � 12 we have
R.g�5/ D 0.

Proof. For the first assertion, assumeg � 9. By [15] we already know thatpg�3 D 0;
this means that Sym2.St/ does not occur in R.g�4/. Hence to prove that R.g�4/ D 0

it suffices, by the theorem, to show that the map D W M g�1

.g�4/
! M

g�2

.g�4/
is surjective.

A basis for M g�1

.g�4/
(resp. M g�2

.g�4/
) is the set Mong�1

.g�4/
(resp. Mong�2

.g�4/
), which is in

bijection with the set of partitions of g � 4 with 3 (resp. 2) parts.
For g D 9 the map

D W M 8
.5/ D Q � x2

2x4 ˚ Q � x2x
2
3 �! M 7

.5/ D Q � x2x5 ˚ Q � x3x4

is given by the matrix
�

30
6

20
20

�
; so it is surjective. Similarly, for g D 10 the map

D W M 9
.6/

! M 8
.6/

is given, for the natural monomial bases of the spaces involved,
by the matrix 0

@42 35 0

6 15 60

0 10 0

1
A

which has full rank.
Assuming now that g � 11 we have the relations

D.x2
2xg�5/ D .g � 3/.g � 4/ x2xg�4 C 6 x3xg�5;

D.x2x3xg�6/ D
 
g � 3
3

!
x2xg�4 C

 
g � 4
2

!
x3xg�5 C 10 x4xg�6;
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D.x2x4xg�7/ D
 
g � 3
4

!
x2xg�4 C

 
g � 5
2

!
x4xg�6 C 15 x5xg�7;

D.x2
3xg�7/ D 2 �

 
g � 4
3

!
x3xg�5 C 20x5xg�7:

One verifies by direct calculation that these elements are linearly independent; hence
x2xg�4, x3xg�5, x4xg�6 and x5xg�7 are all in the image of D W M g�1

.g�4/
! M

g�2

.g�4/
.

But this image also contains D.x2xixg�3�i / for all i with 2 	 i 	 g�3
2

, and this
element is a linear combination with positive coefficients of x2xg�4, xixg�2�i and
xiC1xg�3�i . Using induction on i this gives the desired surjectivity of D .

For the second assertion of the corollary, assume g � 12. This time we need to
show that D2 W M g�3

.g�5/
! M

g�1

.g�5/
is surjective.

By direct calculation we find the relations

D2.x3
2xg�7/ D 36 �

 
g � 3
4

!
x2xg�5 C 36 �

 
g � 5
2

!
x3xg�6

C 180 x4xg�7;

D2.x2
2x3xg�8/ D 40 �

 
g � 3
5

!
x2xg�5 C 3g �

 
g � 5
3

!
x3xg�6

C 20.g � 6/.g � 7/ x4xg�7 C 420x5xg�8;

D2.x2x
2
3xg�9/ D 40 �

 
g � 3
6

!
x2xg�5 C 40 �

 
g � 4
5

!
x3xg�6

C 40 �
 
g � 6
3

!
x4xg�7 C 40 �

 
g � 7
2

!
x5xg�8

C 1120 x6xg�9;

D2.x2
2x4xg�9/ D 60 �

 
g � 3
6

!
x2xg�5 C 12 �

 
g � 5
4

!
x3xg�6

C 12 �
 
g � 5
4

!
x4xg�7 C 60 �

 
g � 7
2

!
x5xg�8

C 840 x6xg�9;
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D2.x2x3x4xg�10/ D 70 �
 
g � 3
7

!
x2xg�5 C 30 �

 
g � 4
6

!
x3xg�6

C 4g �
 
g � 6
4

!
x4xg�7 C 30 �

 
g � 7
3

!
x5xg�8

C 70 �
 
g � 8
2

!
x6xg�9 C 2520 x7xg�10;

D2.x3
3xg�10/ D 120 �

 
g � 4
6

!
x3xg�6 C 120 �

 
g � 7
3

!
x5xg�8

C 3360 x7xg�10:

One checks that these elements span the whole space

Q �x2xg�5 CQ �x3xg�6 CQ �x4xg�7 CQ �x5xg�7 CCQ �x6xg�9 CQ �x7xg�10;

so this subspace ofM g�1

.g�5/
is fully contained in the image of D2 W M g�3

.g�5/
! M

g�1

.g�5/
.

On the other hand, for every index i with 2 < i < g�5
2

this image also contains the
element D2.x2

2xixg�5�i /, which is a linear combination with positive coefficients
of the elements x2xg�5, x3xg�6, xixg�3�i , xiC1xg�4�i and xiC2xg�5�i . From this
it follows by induction on i that D2 surjects to M g�1

.g�5/
, as claimed. �

2.12 Examples. In Figure 2 we give the dimensions of all Ri
.j /

for some low genera.
The numbering scheme is the same as in Figure 1, but we omit the part with negative
level. If in box .i; j / a number d appears, this means that dimQ.R

i
.j /
/ D d . The

unnumbered boxes correspond to the summands Ri
.j /

that are zero.

Note that for g D 10 there is a mistake in Polishchuk’s list of relations in [15],
Section 2.6. It is not true that x3x4 and x2x5 are both zero, as stated there; we only
have the relation 3x3x4 C 7x2x5 D 0.

Though these tables only give the dimensions of the spaces Ri
.j /

, it should be
clear that with little extra work one can actually write down a basis. Alternatively,
using Remark 2.7 (ii) one can give a basis for R.j / consisting of primitive elements.

2.13. Gerard van der Geer and Alexis Kouvidakis have informed me (personal com-
munication of van der Geer) that they have a conjecture for the dimension of the
spaces Ri

.j /
. Before we state their conjecture, let us introduce the notation px.nI y/

for the number of partitions of n with conditions x on the number of parts, and
conditions y on the parts. If we impose no condition, we omit x or y from the no-
tation. Thus, for instance, by pk.nI 	 l/ we mean the number of partitions of n
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Figure 2. The structure of the ring R for some low values of g.

with k parts and with all parts 	 l . Conjugation of partitions interchanges the con-
ditions “x” and “y”; for instance, pk.nI 	 l/ D p�l.nI max D k/. Also note that
p�k.nI 	 l/ D pk.nC kI 	 l C 1/.

The conjecture of van der Geer and Kouvidakis is that dimQ
�
Ri

.j /

�
equals

pi�j .i I 	 g C 1 � i/, the number of partitions of i with i � j parts and all parts at
most g C 1� i . We make the convention that p0.0Ig C 1/ D 1. They have verified
their conjecture for all g up to 25. Using the remarks just made, we see that the
conjecture is compatible with Fourier duality.

Note that the conjecture gives that the dimension of Ri equalsp.i I 	 gC1�i/ D
p�gC1�i .i/ D pgC1�i .g C 1/, and that the dimension of R equals p.g C 1/, the
number of partitions of g C 1.
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Van der Geer and Kouvidakis also have a strong version of the conjecture, namely
that the monomials x˛ corresponding to the permutations of i with i � j parts and
all parts 	 g C 1 � i give a basis for Ri

.j /
.

Though I do not know a proof for the conjecture, it is interesting to compare it
with Theorem 2.6. Namely, if 2i � j 	 g the conjecture gives, after some rewriting,
that the representation Symg�2iCj .St/ occurs in R.j / with multiplicity

pi�j .j I 	 g � i/ � pgC1�i .j I 	 i � j � 1/:
The correctness of this formula suffices to prove the conjecture. Note that in our
calculation of this multiplicity as the corank of the map Dg�2iCj C1 W M g�iCj C1

.j /
!

M i
.j /

, the source space has dimension pgC1�i .j / and the target space has dimension
pi�j .j /.

In a first version of this paper, I had suggested that the maps Dg�2iCj C1 always
have the maximum possible rank. This turns out not to be true. The first coun-
terexample occurs for g D 17, with i D 12 and j D 10; in that case we look at
D4 W M 16

.10/
! M 12

.10/
, in which source and target are both 5-dimensional, but which

has rank only 4.
As pointed out to me by Gerard van der Geer, the conjecture fits nicely with Brill–

Noether theory. Namely, if we fix r D i � j and look for the smallest j such that
R

j Cr

.j /
D 0 then the predicted result is exactly what could be expected from geometry.

To be precise, given g and r , let d.g; r/ D g C r � b g
rC1

c be the smallest positive
integer d such that the general curve of genus g has a gr

d
. By Theorem 2.14 below,

having a gr
d

gives a relation in R
j Cr

.j /
for all j � d � 2r C 1. Now observe that the

conjecture of van der Geer and Kouvidakis predicts that R
j Cr

.j /
D 0 if and only if

j � d.g; r/ � 2r C 1. For r D 1 this is Polishchuk’s result on the vanishing of the
classes pn for n � g

2
C 1. For other small r , say r D 2 and 3, this can be proven

with arguments as in 2.11, but as it seems difficult to get a general result with this
method, we shall not give the details here.

In the remainder of this section, we briefly want to recall some finer results on
the structure of the tautological subring of A.J / if we assume that the curve admits
a linear system of a given rank and dimension. The following result was proven by
Herbaut in [10] in a different formulation. Soon thereafter the result as stated here
was proven by van der Geer and Kouvidakis in [9]. It was shown by Zagier in an
appendix to [9] that the two results are actually equivalent. We shall further refine
this result in Section 4. See [14] for another proof.

2.14 Theorem (Herbaut [10], van der Geer–Kouvidakis [9]). If the curve C has a
gr

d
then in A.J /, for all i > d � r ,X

m1;:::;mr
m1C���Cmr Di

m1Š : : : mr Š � pm1
: : : pmr

D 0: (3)
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2.15 Remark. The theorem generalizes the older result of Colombo and van
Geemen [4] saying that if C has a g1

d
then pi D 0 in A.J / for all i � d . In an

earlier version of this paper, the author had a (conditional) result, very similar to [10],
Theorem 4, about the vanishing of the classes pi for i � d �2rC2 in case the curve
has a gr

d
. It was pointed out to me by the referee that such a result actually follows

from the theorem of Colombo and van Geemen by using the results of Coppens and
Martens in [5]. Indeed, if c is the Clifford index of C , which by definition is the
minimum of d � 2r over all special gr

d
on the curve, then it is shown in [5] that C

admits either a g1
cC2 or a g1

cC3. Further, the curves C that do not admit a g1
cC2 are

exceptional; see Eisenbud et al. in [6]. So indeed the existence of a gr
d

on C implies
that pi D 0 in A.J / for all i � d � 2r C 3 and even i � d � 2r C 2 except when C
is of a very particular type.

2.16. The general pattern we see is that the existence of special divisors on C leads
to relations between the generators pn of the tautological ring. One may ask if there
is a converse to this. See for instance Herbaut [10], just after Theorem 4. However,
it seems to us that one cannot expect such a converse, at least not in a naive way. The
point is that for varieties over xQ one expects that the filtration Fil�CH.J / introduced
in 1.2 satisfies Fil2 D 0. In particular, for curve C over xQ we should have pn D 0

for all n � 3. On the other hand, the general curve of genus g over xQ is also general
in the sense of Brill–Noether theory.

As yet this is of course only speculation, but it leads to the interesting question
whether one can obtain relations between the classes pn from the assumption that
there is a non-constant map C ! P 1 with at most three critical values.

3. The big tautological ring

3.1. In the rest of the paper we shall be interested in cycle relations in the Chow ring
of J (tensored with Q; see our conventions on p. 473). Note that from now on we
will consider an operator D on CH.J / that lifts the operator considered before. Also
we will consider elements pn that lift those defined in 2.2.

3.2 Definition. We define the big tautological ring Taut.C / � CH.J / as the smallest
Q-subalgebra of CH.J / that contains the image of j� W CH.C / ! CH.J / and is
stable under all operations �, �, F , n� and n�. Similarly, the small tautological ring
taut.C / � CH.J / is the smallest Q-subalgebra of CH.J / that contains the classes
ŒC �.j / and is stable under all operations �, �, F , n� and n�.

The small and big tautological rings have the same image inA.J / WD CH.J /=�alg;
this image is the tautological ring T .C / � A.J / considered before. In general,
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Taut.C / is much bigger than taut.C /. To make this more precise we first recall that
by the results of [16], to be briefly reviewed below, taut.C / is finitely generated. By
contrast, Taut.C / contains the whole CHg.J /; hence it also contains all CHi

.i/.

3.3 Remark. The big tautological ring Taut.C / � CH.J / does not depend on the
choice of the base point x0 2 C . To see this, let x0

0 2 C be another base point,
let j 0 W C ,! J be the associated embedding, and let Taut0.C / be the resulting
tautological ring. We have j 0 D tı B j with ı D �

OC .x0 � x0
0/
� 2 J . Note that

the class Œı� 2 CHg.J / lies in Taut.C /, as Œı� D .�1/�j�
�
Œx0

0�
�
. For y 2 CH.C /

we have the relation j 0�.y/ D Œı� � j�.y/. So j 0�.C / � Taut.C /, and it follows that
Taut0.C / 
 Taut.C /. Hence, by symmetry, Taut.C / D Taut0.C /.

3.4. Let � 2 CH1.J / be the class of a symmetric theta divisor. As in [16] we define
classes pn 2 CHn

.n�1/.J / and qn 2 CHn
.n/.J / by

pn WD F
�
Œj.C /�.n�1/

� D degree n component of F
�
j.C /

�
; 1 	 n 	 gI

qn WD F
�
� � Œj.C /�.n/

� D degree n component of F
�
� � Œj.C /��; 0 	 n 	 g � 1:

In particular we have p1 D �� and q0 D g. We set pn WD 0 if n 	 0 or n > g and
qn WD 0 if n < 0 or n � g.

If y is an element of CH.C /, write

an.y/ WD F
�
.j�y/.n/

�
:

If y 2 CH1.C / then an.y/ is the degree n component of F .j�y/, which lies in
CHn

.n/.J /. If D is a divisor on C then we write an.D/ WD an.ŒD�/. Note that, with

K the canonical class of C , we have � � Œj.C /� D 1
2
j�K C Œ0�; see [16], Section 1.

Hence

qn D
´
g � ŒJ � D ŒJ �C 1

2
a0.K/ if n D 0;

1
2
an.K/ if n ¤ 0.

(4)

3.5. Write ` WD c1.LJ /, with LJ as in 1.1. As in [16] we define, for n 2 Z�0

and a 2 CH.J /, an operator An.a/ 2 End
�
CH.J /

�
by An.a/.b/ D a �n b WD

.p1 C p2/�.`n � p�
1a � p�

2b/. For n < 0 we set An.a/ WD 0.
Let y be an element of CH.C /. Given integers m � 0 and n � 0 we define

Zm;n.y/ WD mŠ � An

�
.j�y/.mCn/

�
. If m < 0 or n < 0 we set Zm;n.y/ WD 0. If D is

a divisor on C we write Zm;n.D/ WD Zm;n.ŒD�/.
The operators Ym;n considered in [16] are given by

Ym;n WD
´

id C 1
2
Z0;0.K/ D g � id if .m; n/ D .0; 0/;

1
2
Zm;n.K/ else.
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Further, Polishchuk introduces operators zXm;n and Xm;n given by

zXm;n WD mŠ � An

�
ŒC �.mCn�2/

�
and Xm;n WD zXm;n �mnYm�1;n�1:

Note that the Xm;n and zXm;n can be non-zero only if mC n � 2. If m < 0 or n < 0
then we set Ym;n D zXm;n D Xm;n WD 0.

The first main result of [[16] is that we have the commutation relations

ŒXm;n; Xm0;n0 � D .m0n �mn0/ �XmCm0�1;nCn0�1;

ŒXm;n; Ym0;n0 � D .m0n �mn0/ � YmCm0�1;nCn0�1;

ŒYm;n; Ym0;n0 � D 0;

where in the second line we restrict to elementsXm;n withmCn � 2. These identities
can be interpreted as saying that a suitable Lie algebra acts on CH.J /.

The triple .X2;0=2;X1;1; X0;2=2/ defines the action of sl2 on CH.J / as in 1.3.
The operator D WD 1

2
X2;0 will play an important role in what follows; note that it is

given by D.x/ D ŒC �.0/ � x and that it maps CHi
.j /.J / to CHi�1

.j / .J /.
The second main result of [16] is that taut.C / is generated by the classes pm

(1 	 m 	 g) and qm (0 	 m 	 g � 1), and that D acts on it as the differential
operator

1
2

�
X

m;n�1

 
mC n

n

!
pmCn�1@pm

@pn

C
X

m;n�1

 
mC n � 1

n

!
qmCn�1@qm

@pn
�
X
m�1

qm�1@pm
:

(5)

(Polishchuk also has explicit formulas for the other operators Xm;n and Ym;n; for
these we refer to [16].) Note that if we say that D acts as the operator .5/, the formal
meaning is that we consider the polynomial ring Q

�fpmg1�m�g ; fqmg0�m�g�1

�
,

where we now view thepm and qm as indeterminates; then the natural homomorphism
QŒp�; q�� � taut.C / � CH.J / intertwines the differential operator given by .5/
and the operator D .

The main purpose of this section is to extend Polishchuk’s results to the big
tautological ring, as follows.

3.6 Theorem. (i) The big tautological ring Taut.C / is generated, as a Q-algebra,
by the classes pm and am.D/, for m � 0 and D a divisor on C .

(ii) Let D1; : : : ;Ds be divisors on C , and let R be the Q-subalgebra of Taut.C /
generated by the classes pm, qm and am.Di / for m � 0 and i 2 f1; : : : ; sg. Then
R is stable under the operations �, �, F , n�, n� and D , and D acts on it as the
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differential operator

1
2

�
X

m;n�1

 
mC n

n

!
pmCn�1@pm

@pn
C

X
m;n�1

 
mC n � 1

n

!
qmCn�1@qm

@pn

C
sX

iD1

X
m;n�1

 
mC n � 1

n

!
amCn�1.Di /@am.Di /@pn

�
X
m�1

qm�1@pm
:

(6)

For the proof of this result we will closely follow the arguments of [16].

3.7 Lemma. Let D be a divisor on C . Then for any n � 0 we have Z0;n.D/.x/ D
nŠ � an.D/ � x.

For the proof we refer to [16], Lemma 2.4.

3.8 Proposition. We have the commutation relations

(a)
�
Zm;n.D/;Zm0;n0.D0/

� D 0,

(b) ŒXm;n; Xm0;n0 � D .nm0 �mn0/ �XmCm0�1;nCn0�1,

(c) ŒXm;n; Zm0;n0.D/� D .nm0 �mn0/ �ZmCm0�1;nCn0�1.D/,

where in (c) we restrict to elements Xm;n with mC n � 2.

Proof. Relations (a) and (b) were proved in [16]; see loc. cit., Theorem 0.1 and the
remark following Lemma 2.5. Part (c) can be proven by the same arguments as in
the proof of [16], Theorem 2.6. Instead of giving full details, let us note that (c) also
follows from [17], Theorem 2.1. To make the connection, let us first note that, since
we work over a field, the term  that appears in Polishchuk’s relation is zero, and
also all terms p�

0 .a/ vanish. (Note that g > 1.) Hence, taking a D C and a0 D ŒD�,
loc. cit., Theorem 2.1 reads

�
Tk.m;C /; Tk0.m0; ŒD�/

� D .km0 � k0m/ � TkCk0�1

�
mCm0; ŒD�

�
; (7)

where

Tk.m;C / D
X
n�0

mn

nŠ
zXn;k and Tk0

�
m0; ŒD�

� D
X
��0

.m0/�

�Š
Z�;k0.D/:

As (7) holds for all m we obtain, using (a), that

�
Xn;k; Z�;k0.D/

� D � zXn;k; Z�;k0.D/
� D .k� � k0n/ �ZnC��1;kCk0�1.D/;

which is relation (c). �



Vol. 84 (2009) Relations between tautological cycles on Jacobians 491

3.9. Proof of Theorem 3.6. Let D1; : : : ;Ds and R be as in (ii) of the theorem.
Consider the polynomial ring

zR WD Q
�fpmgm�1; fqmgm�0; fam.D�/gm�0;1���s

�
and let 	 W zR � R be the natural map. Define zD to be the differential operator on zR
given by (6).

We first prove that R is stable under D and that the action of D is given by (6),
in other words, 	 B zD D D B 	 . The first step in the proof is to show that if x and y
are any of the variables pm, qm or am.D�/ then

	 B �Œ zD ; x�; y
� D �

ŒD ; x�; y
� B 	 I (8)

here “x” stands for “multiplication by x” on zR (resp. on R), and likewise for “y”.
Note that if (8) holds for the pair .x; y/ then it also holds for .y; x/, as follows from
the Jacobi identity, using that Œx; y� D 0. It follows from Polishchuk’s results in [16]
that

	 B Œ zD ; pm� D ŒD ; pm� B 	 (9)

for all m, as zD is the sum of the operator given by (5) and an operator that com-
mutes with pm. Because of the relation (4), it only remains to verify (8) for elements
x D am.Di / and y D an.Dj /. Direct calculation gives

�
Œ zD ; am.Di /�; an.Dj /

� D
0. On the other hand, using Lemma 3.7 and Proposition 3.8 we find that also�
ŒD ; am.Di /�; an.Dj /

� D 0. Hence we have (8).
By induction on the degree it follows from (8) that for all F 2 zR we have

	
�� zD ; am.D�/

�
.F /

� D �
D ; am.D�/

��
	.F /

�
: (10)

Note that to start the induction we need to prove this relation for F the unit element
of zR, which maps to the class ŒJ � inR. Then the LHS of (10) is zero. The RHS equals�
D ; am.D�/

��
ŒJ �

� D D
�
am.D�/

� � am.D�/ � D
�
ŒJ �

�
, which is zero, too, because

D
�
ŒJ �

� 2 CH�1.J / D 0 and D
�
am.D�/

� 2 CHm�1
.m/ .J / D 0. Hence we can start

the induction, and we get the relation (10). In particular, using (4) we find that

	 B Œ zD ; qm� D ŒD ; qm� B 	: (11)

By another induction on the degree it follows from (9), (10) and (11) that	
� zD.F /

� D
D
�
	.F /

�
for all F 2 zR, which is what we wanted to prove.

By definition R � CH.J / is stable under intersection product, and as just
proven it is stable under D . As the Fourier transform can be calculated as F D
exp.e/ � exp.�f / � exp.e/ (see [16], end of Section 1, or [18], Lemma 1.4), R is
also stable under F , and hence also under Pontryagin product. The generators of R
are homogeneous (for the usual grading by codimension), so R is a graded subal-
gebra of CH.J /, and because for y 2 CHi .J / we have y 2 CHi

.j /.J / if and only
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if F .y/ 2 CHg�iCj .J /, we find that R is stable under Beauville’s decomposition,
hence also under all n� and n�. This proves (ii) of the theorem.

Finally, let T 0 � Taut.C / be the Q-subalgebra generated by all classes pm, qm

and am.D/. By the results just proven, T 0 is stable under all operators �, �, F , n�
and n�, and as T 0 contains the image of j� we conclude that T 0 D Taut.C /. �

3.10 Corollary. Let D be a divisor on C , and consider the Q-subalgebra R �
Taut.C / generated by the classes pm, qm and am.D/. Then for all m � 1C g

2
the

class am.D/ lies in the ideal of R generated by the classes qn with 1 	 n < gC1
2

.

Proof. Write am WD am.D/. Let S � R be the subalgebra generated by the classes
pm form � 2, together with all qm and am. (So the only generator we exclude is p1.)
Then S is stable under D and so is the ideal I D S �q1 C� � �CS �qg�1. The induced
operator xD on S=I is given by

1
2

�
X

m;n�1

 
mC n

n

!
pmCn�1@pm

@pn
C

X
m;n�1

 
mC n � 1

n

!
amCn�1@am

@pn
:

First suppose g is even. Consider the element a1p
u
2 for some u � 1. By induction

we find that xDn.a1p
u
2 /, for 0 	 n 	 u� 1, is a linear combination with coefficients

in Z�0 of terms akpm1
: : : pmu�n

such that kCm1 C � � � Cmu�n D 2uC 1� n. In
particular, xDu�1.a1p

u
2 / is a linear combination of terms akpm with kCm D uC 2,

and again applying xD gives xDu.a1p
u
2 / D c � auC1 for some positive integer c. (One

readily sees that c is non-zero.) Now use that for all u � g=2 we have a1p
u
2 D 0

in S=I .
Similarly, if g is odd, we start with the relation a1p

u
2p3 D 0 for u � g�1

2
, and

applying xDu we obtain that auC2 D 0 in S=I .
This shows that am 2 I �R for all m � 1C g

2
. Finally use [16], Proposition 4.2,

which tells us that already in the small tautological ring taut.C / � R the ideal
.q1; : : : ; qg�1/ is generated by the classes qn with n < gC1

2
. �

4. Cycle relations in the Chow ring

4.1. As before, let C be a complete non-singular curve of genus g � 2. Choose a
base point x0 2 C , and let L be the Poincaré bundle on C � J , normalised such that
Ljfx0g�J is trivial.

From now on we assume C has a complete base-point free gr
d

, say j�j. Write
V WD H 0.C; �/, and let 
 W C ! P .V _/ Š P r be the morphism associated to the
linear system. If there is no risk of confusion we simple write P WD P .V /.
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Consider the incidence variety

Y WD ˚
.P; `/ 2 C � P j ` � H 0.C; � � P /	;

and let q1 W Y ! C and q2 W Y ! P be the two projections. As in van der Geer–
Kouvidakis [9] we want to apply Grothendieck–Riemann–Roch to the line bundle
M WD .q1 � id/�L on Y � J and the morphism .q2 � id/ W Y � J ! P � J . Our
main task is to refine their calculations so as to make them work on Chow level.

4.2 Proposition. We have

ch
�
.q2 � id/�M

� D F
�
j�.ŒC � � 1

2
K/

� � F
�
j�.ŒC � � 1

2
K � Œ��/� � exp.�h/;

D F
�
j�Œ��

� �
rX

iD1

F
�
j�.ŒC � � 1

2
K � Œ��/� � .�h/

i

i Š
;

where we identify CH.P � J / D CH.J /Œh�=.hrC1/, with h the hyperplane class
on P .

Proof. Consider the rank r vector bundle E on C whose fibre at a point P is
H 0.C; � � P /. More formally, let 	1, 	2 W C � C ! C be the projections; then
E WD 	2;�

�
	�

1OC .�/˝OC �C .��/�, which by our assumption that j�j is base-point
free is indeed locally free of rank r , and which sits in an exact sequence

0 �! E �! V ˝k OC �! OC .�/ �! 0: (12)

As Y ! C is the projective bundle associated to E we have

CH.Y / D CH.C /ŒH�=.H r � Œ�� �H r�1/;

where H WD c1

�
OY .1/

�
. If we have classes j̨ 2 CH.C /, almost all zero, then

q1;�
�P

j �0 j̨H
j
� D ˛r�1 C Œ�� � ˛r . Also note that OY .1/ D q�

2OP .1/, so if

h WD c1

�
OP .1/

� 2 CH1.P / is the hyperplane class on P , we have H D q�
2 .h/.

Let p1 W Y � J ! Y and p2 W Y � J ! J be the projections. GRR gives

ch
�
.q2 � id/�M

� D .q2 � id/�
�
ch.M/ � p�

1 Td.Y=P /
�

D
rX

iD0

p2;�
�
ch.M/ � p�

1

�
Td.Y=P / �H r�i

�� � hi :

We calculate p2;� by first pushing down to C � J and then pushing down via the
projection map pr2 W C � J ! J . This gives

ch
�
.q2 � id/�M

� D
rX

iD0

pr2;�
�
ch.L/ � pr�

1q1;�
�
Td.Y=P / �H r�i

�� � hi

D
rX

iD0

F
�
j� q1;�

�
Td.Y=P / �H r�i

�� � hi :

(13)
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Next we use that Td.Y=P / D Td.Y=C / � q�
1 Td.C / � q�

2 Td.P /�1. But q�
2 Td.P / D

Td
�
V ˝k OY .1/

�
, so using the exact sequences (12) and

0 �! OY �! .q�
1E/.1/ �! TY=C �! 0

we find that Td.Y=P / D q�
1 Td.C / � Td

�
q�

1OC .�/˝OY .1/
��1. Now

Td
�
q�

1OC .�/˝OY .1/
��1 D

X
m�0

.�1/m
.mC 1/Š

� .Œ��CH/m

D
X
m�0

.�1/m
.mC 1/Š

�Hm C Œ�� �
X
m�1

.�1/m �m
.mC 1/Š

�Hm�1;

so we find

q1;�.Td.Y=P / �H r�i / D
´
Œ�� if i D 0;
.�1/i�1

iŠ
� .ŒC � � 1

2
K/ � .ŒC � � Œ��/ if i > 0.

Putting this back into (13) we get the proposition. �

4.3. To apply Proposition 4.2 we need some notation. We introduce classes ci .�/

that are the Chern classes of a vector bundle for which the classes an.�/ defined
in 3.4 are the components of the Chern character. Concretely, choose a divisor � in
the linear system such that � D Q1 CQ2 C � � � CQd for distinct points Qi 2 C .
Let Li be the restriction of L to fQig � J , and define W WD L1 ˚ � � � ˚ Ld . We
then have am.�/ D chm.W /. Now define

ci .�/ WD ci .W / and ct .�/ WD ct .W /:

By construction we have

exp
�X

m�1

.�1/m�1.m � 1/Š am.�/t
m
�

D ct .�/:

4.4. Consider the situation as in 4.1. Let N be the vector bundle of rank d on P �J
given by N WD .q2 � id/�M ˝OP .1/. Our GRR calculation gives

ch.N / D F
�
j�Œ��

�C
X
n�1

F
�
j�.ŒC � � 1

2
K/

� � h
n

nŠ
;

so

ch0.N / D a0.�/ D d
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and

chm.N / D am.�/C
mX

nD1

pm�n � 1
2
am�n.K/

nŠ
hn for m � 1.

The non-trivial information we have is that

ct .N / D exp
�X

m�1

.�1/m�1.m � 1/Š chm.N /tm
�

is a polynomial in t of degree 	 d . The RHS equals

ct .�/ � exp

 X

1�n<m

.�1/m�1.m � 1/Š pm�nh
ntm

nŠ

�

� exp

 X

1�n�m

.�1/m�1.m � 1/Š am�n.K/h
ntm

2 � nŠ
�
:

(Note that we may take n < m in the second factor, as p0 D 0.) Separating terms
according to their type in the Beauville decomposition this gives that for every j � 0

the expression

ct .�/ �

 X

1�n<m

.�1/m�1.m � 1/Š pm�nh
ntm

nŠ

�j

� exp

 X

1�n�m

.�1/m�1.m � 1/Š am�n.K/h
ntm

2 � nŠ
� (14)

is a polynomial in t of degree at most d .

4.5. In the relation we have obtained we take j D r . Note that hrC1 D 0. Hence
 X
1�n<m

.�1/m�1.m � 1/Š pm�nh
ntm

nŠ

�r

D
�X

m�2

.�1/m�1.m � 1/Š pm�1ht
m
�r

D
�X

m�1

.�1/mmŠpmt
m
�r � hr t r :

We defineB.i; s/ as .�1/i times the coefficient of t i in
�P

m�1.�1/mmŠpmt
m
�s; so

B.i; s/ D
X

m1;:::;ms
m1C���CmsDi

m1Š : : : msŠ � pm1
: : : pms

: (15)

Then the relation we find is that ct .�/ �Pi�1.�1/iB.i; r/t i is a polynomial in t of
degree at most d � r . In particular, this gives the following result.
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4.6 Theorem. Let C be a curve with a gr
d

. Let � be a divisor in the linear system.
Define elements cn.�/ as in 4.3 and elements B.i; s/ as in (15). Then we have

B.i; r/ D c1.�/ � B.i � 1; r/ � c2.�/ � B.i � 2; r/C � � � C .�1/ici�1.�/ � B.1; r/:
for all i > d � r .

Note that without loss of generality we may assume that the gr
d

is complete and
base-point free. Passing to the quotient of CH.J / modulo algebraic equivalence we
recover Theorem 2.14.

4.7. The relations in Theorem 4.6 are only the tip of the iceberg. There is an
abundance of further relations. There are at least three methods we can use: (i) Take
other values for j in (14); (ii) Apply the operator D to relations we have found;
(iii) Use that if the curve has a gr

d
then it also has a gr�1

d�1
. The main difficulty is

to extract manageable information, and here we have little to offer. So we confine
ourselves to some simple examples of how we can get more relations.

4.8 Example. We consider the relations we obtain by taking j D r � 1 in (14). We
have


 X
1�n<m

.�1/m�1.m � 1/Š pm�nh
ntm

nŠ

�r�1

D A1 � hr�1t r�1 C A2 � hr t r ;

with

A1 D
�X

m�1

.�1/mmŠpmt
m
�r�1 D

X
�>0

.�1/�B.�; r � 1/t� ;

and

A2 D r � 1
2

�
�X

m�1

.�1/mC1.mC 1/Š pmt
m
�

�
�X

m�1

.�1/mmŠpmt
m
�r�2

D r � 1
2

�
�X

m�1

.�1/mC1.mC 1/Š pmt
m
�

�
�X

�>0

.�1/�B.�; r � 2/t�
�
:

On the other hand,

exp

 X

1�n�m

.�1/m�1.m � 1/Š am�n.K/h
ntm

2 � nŠ
�

D 1C 1
2

�
�X

m�0

.�1/mmŠ am.K/t
m
�

� h t .mod h2/;
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So we obtain from 4.4 that ct .�/ �P�>0.�1/�B.�; r�1/t� is a polynomial of degree
	 d C 1 � r , and that

ct .�/ �
n�X

�>0

.�1/�B.�; r � 1/t�
�

�
�X

m�0

.�1/mmŠ am.K/t
m
�

C .r � 1/ �
�X

m�1

.�1/mC1.mC 1/Š pmt
m
�

�
�X

�>0

.�1/�B.�; r � 2/t�
�o

is a polynomial of degree 	 d � r .
Concretely this means that

i�1X
nD0

.�1/ncn.�/B.i � n; r � 1/ D 0 for all i � d C 2 � r (16)

and
iX

nD0

cn.�/ �
nX

�>0

.�1/n�i .n � i � �/Š B.�; r � 1/an�i��.K/

C .r � 1/ �
X
�>0

.�1/n�iC1.n � i C 1 � �/Š B.�; r � 2/pn�i��

o
D 0

(17)

for all i � d C 1 � r .

4.9 Example. Consider a curve with ag1
d

; so we take r D 1 in the above. Theorem 4.6
gives

pi D 1

iŠ
�

i�1X
�D1

.�1/iC�C1 �Š ci��.�/ p� for all i � d .

Applying D we get, using Theorem 3.6,

�qi�1 D
i�1X
�D1

.�1/iC��Š

i Š
ci��.�/q��1

C
i�1X
�D1

X
m�1

.�1/iC�C1�Š

i Š

 
mC � � 1

�

!
amC��1.�/@am.�/

�
ci��.�/

�
:

Now use that @am.�/

�
ck.�/

� D .�1/m�1.m � 1/Š ck�m.�/. So we find that

�qi�1 D
i�1X
�D1

.�1/iC��Š

i Š
ci��.�/q��1

C
X
��1

.�1/iC1C�.� � 1/ � �Š
i Š

� a�.�/ci�1��.�/

for all i � d .



498 B. Moonen CMH

4.10. Next consider a curve with a g2
d

, i.e., we take r D 2. The first type of
relation we have is the one give by Theorem 4.6, which for every i � d � 1 gives
an expression of B.i; 2/ D Pi�1

mD1 mŠ.i � m/Š pmpi�m as a linear combination of
terms cn.�/ � B.i � n; 2/.

Next we can use that the g2
d

gives rise, in several ways, to a g1
d�1

. Concretely,
let � D Q1 C � � � CQd be one of the divisors of the g2

d
, where the Qi are distinct.

For s 2 f1; : : : ; dg let �.s/ WD � � Qs . Applying Theorem 4.6 to the g1
d�1

’s thus
obtained we get relations

pi D 1

iŠ
�

i�1X
�D1

.�1/iC�C1 �Š ci��.�
.s// p� (18)

for all i � d � 1 and all s 2 f1; : : : ; dg. Summing over s this gives

pi D 1

d � i Š �
i�1X
�D1

.�1/iC�C1 �Š .d C � � i/ ci��.�/ p� for all i � d � 1. (19)

Thirdly we can apply what we found in 4.8. Equation (16) gives

pi D 1

iŠ
�

i�1X
�D1

.�1/iC�C1 �Š ci��.�/ p� for all i � d

which also follows from (18). Equation (17) gives

iX
nD0

n�iX
�D1

.�1/n�i .n � i � �/Š �Š p� cn.�/ an�i��.K/ D 0: (20)

(Recall that the elements al.K/ are essentially the classes ql ; see (4).)
Finally we can apply the operator D to relations that we have found. For instance,

applying D to the relation in Theorem 4.6 we find a relation

0 D
i�1X

mD1

.�1/mC1m � .mC 1/Š ci�m�1.�/ pm

C 2 �
i�1X

mD1

i�m�1X
uD0

.�1/mCu u � uŠmŠ au.�/ ci�m�u�1.�/ pm

C 2 �
i�1X

mD1

i�m�1X
uD0

.�1/mCu .uC 1/ŠmŠ qu ci�m�u�1.�/ pm D 0

for all i � d � 1. Using this identity we can express the classes pi for i � d � 2 as
linear combinations of the pi�� (� > 0) with coefficients in QŒqm; am.�/Im � 1�. It
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seems that these relations (for i � d �1) do not, in general, follow from the relations
we have already obtained in (18), (19) and (20).

In conclusion, we have relations between the generatorspm, qm andam.�/ galore.
At this stage, however, we do not have a simple set of generators for the whole ideal
of relations.

4.11. A general curve of genus g has gonality dg
2

e C 1. As Polishchuk shows
in [16], Proposition 4.2, in the small tautological ring taut.C / all classes pm with
m � .g=2/C 1 lie in the ideal generated by the classes qn for n � 1. So one might
expect that if the curve has a g1

d
, all classes pn with n � d should lie in the ideal�fqngn�1

�
, at least for a suitable choice of a base point. This, however, is probably

too optimistic, except in special situations. (The main difficulty in disproving this
lies in the dependence on the base point.)

As an example of a special situation, suppose the curve has a gr
d

of divisors �
that are (rational) multiples of the canonical class K. In this case all ci .�/ are in the
ring QŒql I l � 1�. We find, for all i > d � r , that B.i; r/ is an element of the small
tautological ring, and lies in the ideal generated by the classes ql . We can push this
a bit further by applying the operator D . Before we state the result let us formulate
a lemma.

4.12 Lemma. Given integers i > s, define

C.i; s/ WD
X

m1;:::;ms�2

m1C���CmsDi

m1Š : : : msŠ � pm1
: : : pms

:

Then

Ds�1
�
C.i; s/

� D i Š .i � s � 1/Š
.i � 2s/Š � piC1�s

for all i � 0 and s � 1.

Proof. Change to the variables yn WD .n C 1/Š pnC1. Then D acts as the operator
E1 C E2 with

E1 WD
X

m;n�1

ymCn @m@n and E2 WD
X

m;n�1

mC n

2
� ymCn @m@n:

Letting
C 0.k; s/ WD

X
n1;:::;ns

n1C���CnsDk

yn1
: : : yns

it is clear that Ds�1
�
C 0.k; s/

� D c � yk for some rational number c. Our goal is to
prove that c D .kC s/Š .k�1/Š=.k� s/Š .kC1/Š. This can be checked by evaluation
at the vector 1 WD .1; 1; : : :/.
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On QŒy1; y2; : : :� consider gradings d and ı given by d.yi / D 1 and ı.yi / D i .
Suppose f is homogeneous for both. Then one finds without difficulty (reduce to
monomials) that E1.f /.1/ D d.d �1/ �f .1/ and E2.f /.1/ D ı.d �1/ �f .1/. Note
further that E1 and E2 both decrease d by 1 and preserve ı. Hence, by induction
on n 	 s � 1,

Dn
�
C 0.k; s/

�
.1/ D .k � 1/Š .k C s/Š

.k � s/Š .k C s � n/Š .s � 1 � n/Š ;

and taking n D s � 1 gives the result. �

4.13 Proposition. Assume the curve C has a gr
d

of divisors � such that � 2 Q �K
in CH1.C /. Given integers g, i and r , let

‰.g; i; r/ WD
r�1X
aD0

 
i � g
a

! 
i � a
r � a

! 
i � r � 1
r � 1 � a

!

Then pk lies in the ideal generated by the classes ql , for all k > d C 1 � 2r with
‰.g; k C r � 1; r/ ¤ 0.

A similar result has been obtained independently by Fu and Herbaut in [8]. Their
result assumes the nonvanishing of a certain numerical factor A.r; d; g/, called the
Castelnuovo number. We have the relation ‰.g; d � r C 1; r/ D .d � 2r C 2/ �
A.r; d; g/.

Proof. The idea is to apply Dr�1 to the relationB.i; r/ D Pi�1
nD1 .�1/n�1cn.�/B.i�

n; r/ for i > d � r that we have obtained in Theorem 4.6. Since all elements cn.�/

are in the ring QŒql I l � 1� it is easy to see that Dr�1 applied to the RHS gives an
element in the small tautological ring that lies in the ideal generated by the classes ql .
(Keep track of the number of terms p and q after application of the operator D , as in
the proof of [16], Proposition 4.2.)

On the other hand, it is clear that Dr�1
�
B.i; r/

�
is a multiple of piC1�r , and in

fact we claim that

Dr�1
�
B.i; r/

� D rŠ .r � 1/Š .i � r/Š �‰.g; i; r/ � piC1�r :

This indeed gives the stated result. To prove this identity, note that B.i; s/ DPs
aD0

�
s
a

�
pa

1 C.i � a; s � a/. (To see this use that B.i; s/ is the coefficient of t i

in
�P

m�1 mŠpmt
m
�s , and separate the terms with m D 1 from those with m � 2.)

Now we use Lemma 2.4, which (after replacing x1 by p1) is still valid in the present
situation. We find

Dr�1
�
B.i; r/

� D
rX

aD0

 
r

a

!
Dr�1

�
pa

1C.i � a; r � a/� D
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D
rX

aD0

min.a;r�1/X
bD0

 
r

a

!
.r � 1/Š

.r � 1 � b/Š
aŠ

.a � b/Š

 
i � a � g C b

b

!

� pa�b
1 Dr�1�b

�
C.i � a; r � a/�:

But it is clear from the explicit shape of the operator D that Dr�1�b
�
C.i�a; r�a/� D

0 if b < a. So we find, using Lemma 4.12,

Dr�1
�
B.i; r/

� D
r�1X
aD0

 
r

a

!
.r � 1/Š aŠ
.r � 1 � a/Š

 
i � g
a

!
.i � a/Š .i � r � 1/Š
.i � 2r C a/Š

� piC1�r

D rŠ .r � 1/Š .i � r/Š �‰.g; i; r/ � piC1�r :

Setting k D i C 1 � r we obtain the proposition. �

Of course, if C has a gr
d

then one can also proceed as in Remark 2.15 and use
what we have found in Example 4.9. This gives expressions for the classes pk for
k > d C 2 � 2r , or even k � d C 1 � 2r , as linear combinations of elements
ck��.�

0/p� for � < k, where j� 0j is some other linear system on C that calculates
the Clifford index.
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