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Abstract. In this paper it is proved that relative hyperbolicity is a quasi-isometry invariant. As
byproducts of the arguments, simplified definitions of relative hyperbolicity are provided. In
particular we obtain a new definition very similar to the one of hyperbolicity, relying on the
existence of a central left coset of a peripheral subgroup for every quasi-geodesic triangle.

Mathematics Subject Classification (2000). 20F65, 20F69, 57N10.

Keywords. Relative hyperbolicity, rigidity, quasi-isometry.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
1.1 Rigidity result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
1.2 Metric and algebraic relative hyperbolicity . . . . . . . . . . . . . . . . . . . . 505
1.3 New definitions of relative hyperbolicity . . . . . . . . . . . . . . . . . . . . . 507
1.4 Organization of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
2.1 Definitions and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
2.2 Asymptotic cones of a metric space . . . . . . . . . . . . . . . . . . . . . . . . 510

3 Tree-graded metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
3.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
3.2 Topological bigons contained in pieces . . . . . . . . . . . . . . . . . . . . . . 513

4 Asymptotically tree-graded metric spaces . . . . . . . . . . . . . . . . . . . . . . . . 516
4.1 Definitions and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
4.2 Property .T2/ and polygons with limit edges . . . . . . . . . . . . . . . . . . . 520
4.3 New definitions, useful for the rigidity of relatively hyperbolic groups . . . . . 524
4.4 New definition, closer to the definition of hyperbolicity . . . . . . . . . . . . . 528

5 Quasi-isometric rigidity of relatively hyperbolic groups . . . . . . . . . . . . . . . . 538
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544



504 C. Druţu CMH

1. Introduction

1.1. Rigidity result. M. Gromov asked ([Gro87], [Gro93]) which properties of
infinite finitely generated groups are invariant under quasi-isometry. Such properties
are sometimes called geometric, while a class of groups defined by a geometric
property is called rigid.

For instance, the class of virtually nilpotent groups is rigid [Gro81], while the
class of virtually solvable groups is not rigid [Dyu00]; but smaller classes of virtually
solvable groups are rigid ([FM98], [FM99], [EFW05]). Recall that a group is said to
virtually satisfy a property (P) if a finite index subgroup of it has property (P).

Also, different classes of lattices of semisimple groups are rigid (this statement
includes many deep results of different authors; see [Far97] and [Dru04] for surveys
of these results).

The present paper focuses on the class of relatively hyperbolic groups.1 This
notion was introduced by M. Gromov in [Gro87]. Other definitions, as well as
developments of the theory of relatively hyperbolic groups can be found in [Bow97],
[Far98], [Dah03b], [Yam04], [DS05b], [Osi06]. In � 1.2 and � 1.3 we discuss in more
detail different ways to define relative hyperbolicity.

Beside hyperbolic groups, other examples of relatively hyperbolic groups are:

(1) fundamental groups of finite graphs of groups with finite edge groups; these
groups are hyperbolic relative to the vertex groups [Bow97];

(2) fundamental groups of complete finite volume manifolds of pinched negative
sectional curvature; these are hyperbolic relative to the fundamental groups of
their cusps ([Bow97], [Far98]);

(3) fundamental groups of (non-geometric) Haken manifolds with at least one hy-
perbolic component; such groups are hyperbolic relative to fundamental groups
of maximal graph-manifold components and to fundamental groups of tori and
Klein bottles not contained in a graph-manifold component;

(4) fully residually free groups, also known as limit groups; it is proved in [Dah03a]
that these groups are hyperbolic relative to their maximal Abelian non-cyclic
subgroups; moreover they are CAT(0) with isolated flats [AB05].

There exist also interesting examples of groups displaying an “intermediate” ver-
sion of relative hyperbolicity. Such groups are weakly relatively hyperbolic, not
(strongly) relatively hyperbolic, but nevertheless they have some features in common
with (strongly) relatively hyperbolic groups, for instance, their asymptotic cones have
a tree-graded structure in the sense of [DS05b] (see Definition 3.1 in the present pa-
per). Such groups are the mapping class groups of surfaces of complexity at least

1By relatively hyperbolic group we mean what is sometimes called in the literature strongly relatively hyper-
bolic group, in contrast with weakly relatively hyperbolic group.
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two ([Beh05], [BDM05]), fundamental groups of 3-dimensional graph manifolds
([KL98], [KKL98], [BDM05]), as well as many Artin groups ([KS04], [BDM05]).

Recently, relatively hyperbolic groups have been used to construct examples of
infinite finitely generated groups with unusual properties. Thus in [Osi04] it is proved,
using relatively hyperbolic groups, that there exist torsion-free two-generated groups
with exactly two conjugacy classes.

Convention 1.1. Throughout the paper, relatively hyperbolic groups are assumed to
be finitely generated and hyperbolic relative to finitely many proper finitely generated
subgroups.

If a group G is hyperbolic relative to some subgroups H1; : : : Hm then the sub-
groups H1; : : : ; Hm are called peripheral subgroups.

The present paper answers affirmatively to the question whether relative hyper-
bolicity is a quasi-isometry invariant (Problem 1.15 in [DS05b]).

Theorem 1.2 (relative hyperbolicity is geometric, Theorem 5.7). Let G be a group
hyperbolic relative to a family of subgroups H1; : : : ; Hn. If a group G0 is quasi-
isometric to G then G0 is hyperbolic relative to H 0

1; : : : ; H 0
m, and each H 0

i can be
embedded quasi-isometrically in Hj for some j D j.i/ 2 f1; 2; : : : ; ng.

Rigidity has previously been proved for some sub-classes of relatively hyper-
bolic groups (with stronger versions of rigidity theorems): non-uniform lattices in
rank one semisimple groups different from SL.2; R/ [Sch96], fundamental groups
of non-geometric Haken manifolds with at least one hyperbolic component ([KL95],
[KL97]), fundamental groups of graphs of groups with finite edge groups [PW02].

Question 1.3. Can the conclusion of Theorem 1.2 be improved to: “G0 is hyperbolic
relative to H 0

1; : : : ; H 0
m, with each H 0

i quasi-isometric to some Hj , j D j.i/” ?

This is known to hold only under extra hypotheses on Hj ([DS05b], [BDM05]).
The weakest such hypothesis is that every Hj is not relatively hyperbolic in the sense
of Convention 1.1 [BDM05].

The main steps in the proof of Theorem 1.2 are explained in what follows.

1.2. Metric and algebraic relative hyperbolicity. In order to study rigidity it is
necessary to have a definition of relative hyperbolicity of a group only in terms of its
Cayley graphs. Most definitions (except the ones in [DS05b] and in [Osi06]) use not
only a Cayley graph of the group but also a metric space obtained from this graph by
gluing to each left coset of a peripheral subgroup some geometric object (a hyperbolic
horoball [Gro87], countably many edges with one common endpoint [Far98] etc.).
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We recall definitions from [DS05b]. A complete geodesic metric space F is tree-
graded with respect to a collection P of closed geodesic subsets (called pieces), if
the following two properties are satisfied:

(T1) two different pieces have at most one point in common;

(T2) any simple non-trivial geodesic triangle is contained in one piece.

A metric space X is asymptotically tree-graded with respect to a collection of
subsets A if every asymptotic cone of X is tree-graded with respect to the collection
of limit sets of sequences in A (see Section 2.2 for definitions of asymptotic cones,
and of limit sets). Equivalently, X is asymptotically tree-graded with respect to A if
the following three geometric properties are satisfied (for details see Theorem 4.1 in
[DS05b], Theorem 4.9 in this paper):

.˛1/ finite radius tubular neighborhoods of distinct elements in A are either disjoint
or intersect in sets of uniformly bounded diameter;

.˛2/ a geodesic with endpoints at distance at most one third of its length from a set
A in A intersects a tubular neighborhood of A of uniformly bounded radius;

.˛3/ any fat geodesic polygon is contained in a tubular neighborhood of a set A in
A of uniformly bounded radius (here the meaning of “fat” is the contrary of
“thin” in its metric hyperbolic sense; see Definition 4.5).

The space X is properly asymptotically tree-graded with respect to A if it is not
contained in any finite radius tubular neighborhood of a subset in A.

Convention 1.4. In what follows we assume that all asymptotically tree-graded metric
spaces are properly asymptotically tree-graded.

The notion of asymptotically tree-graded metric space is a metric version for the
relative hyperbolicity of groups. Other similar notions can be found in [BF01], and
in [HK05] in the context of CAT.0/ metric spaces. The fact that the metric definition
is coherent with the definition for groups is illustrated by the following result.

Theorem 1.5 ([DS05b], Theorem 1.11 andAppendix). A finitely generated group G is
hyperbolic relative to H1; : : : ; Hm if and only if G is asymptotically tree-graded with
respect to the collection of left cosets L D fgHi j g 2 G=Hi ; i 2 f1; 2; : : : ; mgg.

The equivalence in Theorem 1.5 suggests the following question, which appears as
Problem 1.16 in [DS05b]: if a group is asymptotically tree-graded in a metric sense,
that is, with respect to a collection of subsets A, does it follow that it is relatively
hyperbolic with respect to some finite family of subgroups ? The implication was
previously known to be true only under some restrictive metric conditions on A (see
[DS05b, Theorem 5.13] and [BDM05]).

We answer this question in the affirmative.
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Theorem 1.6 (Theorem 5.4). Let G be an infinite finitely generated group asymp-
totically tree-graded with respect to a collection of subsets A. Then G is relatively
hyperbolic with respect to some subgroups H1; : : : ; Hm, such that every Hi is con-
tained in a bounded radius tubular neighborhood of a set Ai 2 A.

Theorem 1.6 implies Theorem 1.2. Indeed, a group quasi-isometric to a relatively
hyperbolic group is asymptotically tree-graded as a metric space with respect to
the images by quasi-isometry of the left cosets of peripheral subgroups [DS05b,
Theorem 5.1].

Theorem 1.6 is also used in [BDM05] to prove the following result: given a group
G hyperbolic relative to H1; : : : ; Hn, every quasi-isometric embedding into G of a
group which is not relatively hyperbolic has its image in a tubular neighborhood of
bounded radius of a left coset gHi ; moreover the radius of the neighborhood depends
only on G, H1; : : : ; Hn and on the constants of quasi-isometry, not on the domain of
the quasi-isometry [BDM05, Theorem 4.1].

From this it is deduced in [BDM05] that in Theorem 1.2 under the extra assump-
tion that each peripheral subgroup Hi is not relatively hyperbolic the rigidity result
holds, with the stronger conclusion that each H 0

i is quasi-isometric to some Hj . This
generalizes previous results from [DS05b].

An outline of the proof of Theorem 1.6 will be given in the following sections.
Theorem 1.6 is optimal in the sense that if the group G and the collection A satisfy

less properties than those required of asymptotically tree-graded metric spaces then
the group G may not be relatively hyperbolic. This is illustrated by the examples
of groups constructed in [BDM05, �7:1] and in [OOS06]. These groups are not
relatively hyperbolic, although they do contain a collection of subsets A such that
all the asymptotic cones of the group are tree-graded with respect to some limits of
sequences in A. In each cone, not all the limits of sequences in A are considered
as pieces though: there are limits which are geodesic lines, and different such lines
intersect in more than one point. The subsets in A do not satisfy property .˛1/

requiring uniformly bounded diameter for intersections of bounded radius tubular
neighborhoods of different subsets in A.

1.3. New definitions of relative hyperbolicity. If a group has an asymptotically
tree-graded structure equivariant with respect to left translations, then a standard ar-
gument shows that the group is relatively hyperbolic (Proposition 5.1). Thus, the main
step in the proof of Theorem 1.6 is to construct an equivariant asymptotically tree-
graded structure on a group out of an arbitrary asymptotically tree-graded structure.
A natural idea is to consider all the translated asymptotically tree-graded structures
gA D fgA j A 2 Ag of a given asymptotically tree-graded structure A on a group G,
and to take non-empty intersections of the form

T
g2G gAg , with Ag 2 A . To make

such an argument work, it is necessary that the asymptotically tree-graded proper-
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ties behave well with respect to intersections. The modification of the list of three
geometric properties defining an asymptotically tree-graded metric space given in
Theorem 4.22 ensures this good behavior with respect to intersections.

Asymptotically tree-graded metric spaces have a property that strongly reminds
of hyperbolic metric spaces. A metric space is hyperbolic if and only if the edges of
every quasi-geodesic triangle intersect a ball of uniformly bounded radius [Gro87,
�6]. A space X that is asymptotically tree-graded with respect to a collection of
subsets A satisfies a similar property, called property .�/ (see Definition 4.27). If
.X; A/ satisfy only property .�/ then the space X is called .�/-asymptotically tree-
graded with respect to A. This notion is weaker than the notion of asymptotically
tree-graded metric space (see Remark 4.29, (2)).

Property .�/ was essential in the proof of the fact that the Rapid Decay property
transfers from the peripheral subgroups H1; : : : ; Hm of a relatively hyperbolic group
to the group itself [DS05a]. A version of property .�/ in the context of CAT(0) spaces
appears in [Hru04], where it is called the Relatively Thin Triangle Property.

A natural question to ask is under which additional conditions is a .�/-asymptoti-
cally tree-graded metric space also asymptotically tree-graded. The arguments used
to prove Theorem 4.22 can be adapted to answer this question.

Theorem 1.7 (Theorem 4.30). Let .X; dist/ be a geodesic metric space and let A be
a collection of subsets of X . The metric space X is asymptotically tree-graded with
respect to A if and only if .X; A/ satisfy properties .˛1/ and .˛2/, and moreover X

is .�/-asymptotically tree-graded with respect to A.

1.4. Organization of the paper. Section 2 contains preliminaries on asymptotic
cones, as well as notation.

In Section 3 are recalled some basic facts about tree-graded spaces. Proposi-
tion 3.9, proved in this section, is very useful in arguments deducing the general
property .T2/ from .T1/ combined with .T2/ restricted to particular types of geodesic
triangles (see for instance property .…3/ below).

Section 4 begins with a short overview of properties of asymptotically tree-graded
metric spaces. In � 4.2 an induction argument and Proposition 3.9 are used to show
the following central result. Denote by .…3/ the property .T2/ restricted to triangles
with edges limits of sequences of geodesics. If in an asymptotic cone Con! .X/ of
a metric space X a collection A! of closed subsets satisfies .T1/ and .…3/ then A!

satisfies .T2/ in full generality (Corollary 4.19).
This statement is the main ingredient in the proof of Theorem 4.22, given in � 4.3.

It also plays a central part in the proof of Theorem 1.7 given in � 4.4. Another difficult
step in the proof of Theorem 1.7 is to deduce from properties .�/; .˛1/ and .˛2/ the
fact that fat quadrilaterals are contained in finite radius tubular neighborhoods of
subsets in A (Lemma 4.33). Once this last statement is proved, from it as well as
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from property .�/ and Proposition 3.9 can be deduced property .…3/. Corollary 4.19
allows to finish the argument.

Theorem 1.6 is proved in Section 5. The first and most difficult step of the proof is
to construct from a given asymptotically tree-graded structure on a group an equivari-
ant asymptotically tree-graded structure. The subsets in the new equivariant asymp-
totically tree-graded structure are indexed by equivalence classes of fat hexagons.
A simple argument then shows that the existence of an equivariant asymptotically
tree-graded structure implies that the group is relatively hyperbolic (Proposition 5.1).
This completes the proof of Theorem 1.6 and thus of Theorem 1.2.

Acknowledgement. The author wishes to thank the referee for numerous useful
comments. Thanks are also due to Mark Sapir and Jason Behrstock for remarks that
helped improving the exposition in the paper.

2. Preliminaries

2.1. Definitions and notation. Let Y be a subset in a metric space .X; dist/. We
denote by Nı.Y / the set fx 2 X j dist.x; Y / < ıg, which we call the ı-tubular
neighborhood of Y . We denote by xN ı.Y / the set fx 2 X j dist.x; Y / � ıg, called
the ı-closed tubular neighborhood of Y .

When Y is a singleton y, we also use the notation B.y; ı/ and respectively xB.y; ı/.

Definition 2.1. An action of a group G on a metric space X is called K-transitive,
where K is a non-negative constant, if for every x 2 X the closed tubular neighbor-
hood xN K.Gx/ of the orbit of x coincides with X .

An .L; C /-quasi-isometric embedding of a metric space .X; distX / into a metric
space .Y; distY / is a map q W X ! Y such that for every x1; x2 2 X ,

1

L
distX .x1; x2/ � C � distY .q.x1/; q.x2// � L distX .x1; x2/ C C ; (1)

for some constants L � 1 and C � 0.
If moreover Y is contained in the C -tubular neighborhood of q.X/ then q is

called an .L; C /- quasi-isometry. In this case there exists an .L; C /-quasi-isometry
Nq W Y ! X such that Nq B q and q B Nq are at uniformly bounded distance from the
respective identity maps [GdlH90]. The quasi-isometry Nq is called quasi-converse
of q.

If q W Œa; b� ! X is an .L; C /-quasi-isometric embedding then q is called an
.L; C /-quasi-geodesic (segment) in X . The same name is used for the image of q.

Notation 2.2. For every quasi-geodesic segment q in a metric space X , we denote
the origin of q by q� and the endpoint of q by qC.
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If qi W Œ0; `i � ! X , i D 1; 2; are two quasi-geodesic segments with q1.`1/ D
q2.0/, then we denote by q1 t q2 the map q W Œ0; `1 C `2� ! X defined by q.t/ D
q1.t/ for t 2 Œ0; `1� and q.t/ D q2.t � `1/ for t 2 Œ`1; `1 C `2�.

If an .L; C /-quasi-geodesic q is L-Lipschitz then q is called an .L; C /-almost
geodesic.

2.2. Asymptotic cones of a metric space. The notion of asymptotic cone of a metric
space was used implicitly in [Gro81], and it was defined in full generality and studied
in [dDW84] and [Gro93]. For the definition, one needs the notion of non-principal
ultrafilter. This is a finitely additive measure ! defined on the set of all subsets
of N (or, more generally, of a countable set) and taking values in f0; 1g, such that
!.F / D 0 for every finite subset F of N.

Convention 2.3. Throughout the paper all ultrafilters are non-principal, therefore we
will omit mentioning it each time.

Notation 2.4. Let An and Bn be two sequences of objects and let R be a relation
that can be established between An and Bn for every n 2 N. We write An R! Bn if
and only if An R Bn !-almost surely, that is,

! .fn 2 N j An R Bng/ D 1:

Examples: D! , <! , �! .

Given an ultrafilter !, an !-limit lim! xn of a sequence .xn/ in a topological
space X is an element x 2 X such that for every neighborhood N of x, xn 2! N .
In a Hausdorff separable space if the !-limit of a sequence exists then it is unique. If
.xn/ is contained in a compact space then it has an !-limit [Bou65].

Given a space X one can define its ultrapower X! as the quotient XN= �, where
.xn/ � .yn/ if xn D! yn.

Let now .X; dist/ be a metric space, e an element in its ultrapower X! , .en/

a representative of e, and d D .dn/ a sequence of numbers in .0; C1/ such that
lim! dn D C1. Consider

Se.X/ D ˚
.xn/ 2 XN j there exists Mx such that dist.xn; en/ �! Mx dn

�
: (2)

Define the equivalence relation

.xn/ � .yn/ () lim
!

dist.xn; yn/

dn

D 0:

The quotient space Se.X/= � is denoted by Con! .X I e; d/ and it is called the
asymptotic cone of X with respect to the ultrafilter !, the scaling sequence d and
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the sequence of observation centers e. It is endowed with the natural metric dist!

defined by

dist! .x; y/ D lim
!

dist.xn; yn/

dn

:

Every asymptotic cone is a complete metric space.
A sequence of subsets .An/ in X gives rise to a limit subset in the cone, defined

by
lim

!
.An/ D flim! .an/ j an 2! Ang :

If lim!
dist.en;An/

dn
D C1 then lim! .An/ D ;. Every non-empty limit subset

lim! .An/ is closed.
If each set An is a geodesic gn with length of order O.dn/ and lim! .gn/ is non-

empty, then it is a geodesic in Con! .X I e; d/. Therefore if X is a geodesic space
then every asymptotic cone of it is geodesic.

Definition 2.5. We call a geodesic in Con! .X I e; d/ which appears as lim! .gn/

with gn geodesics in X a limit geodesic.

Not every geodesic in Con! .X I e; d/ is a limit geodesic, not even in the particular
case when X is a finitely generated group with a word metric.

Example (of a group with continuously many non-limit geodesics in an asymptotic
cone). On the two-dimensional unit sphere S2 consider a family of horizontal circles,
in parallel planes, such that two consecutive circles are at spherical distance �

2k ,
and such that the North and the South poles are at distance �

2k from two respective
horizontal circles. Consider also a family of meridians of endpoints the North and
the South poles, such that the intersection points of two consecutive meridians with
the Equator are at spherical distance �

2k .
The horizontal circles and the meridians compose a spherical grid � 0

k
. We have

that � 0
k

� � 0
kC1

. Let � 00
k

be the graph obtained from � 0
k

by joining with spherical
geodesics all pairs of vertices not on the same meridian nor on the same horizontal
circle, and at distance at most �p

2
k . Let �k be the graph obtained from � 00

k
by deleting

all the vertical edges above the Equator, except the one having the East pole .1; 0; 0/

as an endpoint, and replacing each of them by a path of double length �

2k�1 (see
Figure 1). Let distk be the shortest-path metric on �k .

Proposition 7.26 from [DS05b] applied to the sequence of graphs .�k; distk/,
and Lemma 7.5 from the same paper imply that there exists a two-generated and
recursively presented group G with one asymptotic cone tree-graded, with all pieces
isometric to S2. Moreover, from the construction of G it follows that in each of the
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North

South

East

Figure 1. The graph �k .

pieces, for an appropriate choice of the North, South and East poles, all geodesics
joining North and South poles and not containing East pole are not limit geodesics.

The same argument as in [DS05b, �7] allows in fact to construct a two-generated
and recursively presented group with continuously many non-homeomorphic asymp-
totic cones with the property that continuously many geodesics in each of these cones
are not limit geodesics.

3. Tree-graded metric spaces

3.1. Definition and properties. The notion of tree-graded metric space has been
introduced in [DS05b]. In this paper we use the following version of this notion.
Recall that a subset A in a geodesic metric space X is called geodesic if every two
points in A can be joined by a geodesic contained in A.

Definition 3.1. Let F be a complete geodesic metric space and let P be a collection
of closed geodesic subsets, called pieces. Suppose that the following two properties
are satisfied:

(T1) Every two different pieces have at most one point in common.

(T2) Every simple non-trivial geodesic triangle in F is contained in one piece.

Then we say that the space F is tree-graded with respect to P .
When there is no risk of confusion as to the set P , we simply say that F is

tree-graded.
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Remarks 3.2 (pieces need not cover the space). (1) In [DS05b] trivial geodesic tri-
angles are allowed in property (T2). This is equivalent to asking that F is covered
by the pieces in P . In the present paper we remove this convention. The reason is
that a main purpose when introducing the notion of tree-graded space is to produce a
convenient notion of relatively hyperbolic metric space (called asymptotically tree-
graded metric space in [DS05b] and in this paper, see Definition 4.1). The condition
that pieces cover F produces some unnatural restrictions for a space to be asymp-
totically tree-graded (i.e. relatively hyperbolic) with respect to a list of subsets. See
Remark 4.12 for details.

(2) Possibly P is empty, in which case F is a real tree.
(3) When a group G acts transitively on F (for instance when F is an asymptotic

cone of a group) and G permutes the pieces, the condition that pieces cover F is
automatically satisfied.

All properties of tree-graded spaces in [DS05b, �2:1] hold with the new defi-
nition 3.1, as none of the proofs uses the property that pieces cover the space. In
particular the results below hold. In what follows and throughout the paper by topo-
logical arc we mean a homeomorphic copy of the interval Œ0; 1�.

Lemma 3.3 ([DS05b], �2:1). Let x be an arbitrary point in F and let Tx be the set of
points y 2 F which can be joined to x by a topological arc intersecting every piece
in at most one point.

The subset Tx is a real tree and a closed subset of F , and every topological arc
joining two points in Tx is contained in Tx . Moreover, for every y 2 Tx , Ty D Tx .

Definition 3.4. A subset Tx as in Lemma 3.3 is called a transversal tree in F .

In [KKL98] is defined the notion of space of type I, which is equivalent to that of
a tree-graded space with the extra property that for every x the transversal tree Tx is
a geodesically complete tree which branches everywhere.

Remark 3.5. One can ensure that pieces in a tree-graded space cover it by adding to
the list of pieces the transversal trees. Thus a tree-graded space F with set of pieces P

in the sense of Definition 3.1 can be seen as tree-graded in the sense of Definition 2.1
in [DS05b] with respect to a set of pieces P 0 such that P 0 n P is a collection of real
trees.

3.2. Topological bigons contained in pieces

Definition 3.6. Let g1 and g2 be topological arcs. A topological bigon (or T -bigon,
for short) formed by g1 and g2 is a union of a sub-arc g0

1 of g1 with a sub-arc g0
2 of g2
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such that g0
1 and g0

2 have common endpoints x and y. The endpoints of the T -bigon
are the points x and y. The interior of the T -bigon is the set g0

1 [ g0
2 n fx; yg.

If g0
1 and g0

2 intersect only in their endpoints then the T -bigon is called simple (it
is a simple loop).

Note that a T -bigon with non-empty interior cannot be trivial, i.e. reduced to a
point.

The results in this section are useful in arguments aiming to prove property .T2/ for
a collection of closed subsets of a metric space. In several contexts it proves necessary
to deduce from .T1/, and .T2/ satisfied only for some special type of geodesic bigons,
the general property .T2/.

Lemma 3.7. Let g1 and g2 be two topological arcs with common endpoints. Then
every point z 2 g1 n g2 is in the interior of a simple T -bigon formed by g1 and g2.

Proof. For i D 1; 2, gi W Œ0; `i � ! Y is a topological embedding. Let t 2 Œ0; `1� be
such that g1.t/ D z. The set K D g�1

1 .g2 .Œ0; `2�// is a compact set not containing t .
Let r be the maximal element of the compact set K \ Œ0; t �, and let s be the minimal
element of the compact set K \ Œt; `1�. Then g1.r/ D g2.r 0/ and g1.s/ D g2.s0/ for
some r 0; s0 2 Œ0; `2�. The union of g1 restricted to Œr; s� with g2 restricted to Œr 0; s0�
is a simple T -bigon formed by g1 and g2, containing z in its interior. �

Lemma 3.8. Let Y be a metric space and let B be a collection of subsets of Y which
satisfies property .T1/.

Let g1 and g2 be two topological arcs with common endpoints and with the
property that any non-trivial simple T -bigon formed by g1 and g2 is contained in a
subset in B.

If g1 is contained in B 2 B then g2 is contained in B .

Proof. Take z an arbitrary point in g2 ng1. By Lemma 3.7 the point z is in the interior
of a simple T -bigon formed by g1 and g2, of endpoints z1; z2. By hypothesis this
T -bigon is contained in a subset Bz 2 B. As fz1; z2g is in B \ Bz it follows by .T1/

that Bz D B and that z 2 B . �

Proposition 3.9. Let Y be a metric space and let B be a collection of closed subsets
of Y , B with property .T1/.

Let L1 and g1 be two topological arcs with common endpoints u; v. Let L2 and
g2 be two, possibly identical, topological arcs with common endpoints v; w. Assume
that:

(1) L1 \ L2 D fvg;

(2) g1 \ g2 contains a point a ¤ v;
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(3) all non-trivial simple T -bigons formed either by g1 and g2, or by gi and Li ,
i D 1; 2, are contained in a subset in B.

Then the T -bigon formed by g1 and g2 with endpoints a and v is contained in a
subset in B.

Proof. Step 1. Let g0
i denote the sub-arc of gi of endpoints a and v, i D 1; 2.

We prove that there exists b 2 g0
1 \ g0

2 n fag, such that the T -bigon formed by g0
1

and g0
2 of endpoints a; b is contained in some B 2 B.

Hypothesis (1) implies that either a 62 L1 or a 62 L2. Without loss of generality
we may assume that a 62 L1. Then a is in the interior of a simple T -bigon formed
by L1 and g1, of endpoints x and y, with y on g0

1. Property (3) implies that this
T -bigon is contained in a set B1 2 B.

If y 2 g0
2 then take b D y.

Assume that y 62 g0
2. Then y is in the interior of a simple T -bigon formed by g0

1

and g0
2, of endpoints y1; y2 (with y2 closer to v than y1 on g0

1). By (3) this T -bigon is
contained in some B2 2 B (see Figure 2). The intersection B1 \ B2 contains fy; y1g
hence by .T1/ we have that B1 D B2 D B . Take b D y2.

The sub-arc of g0
1 with endpoints a and b is contained in B . By property (3) we

can apply Lemma 3.8 and obtain that the sub-arc of g0
2 in between a and b is also

contained in B .

u
w

v

a
x

y

L2

L1

B1

y1

y2

B2

g1
g2

Figure 2. Step 1.

Step 2. Let E be the set of points b 2 g0
1 \ g0

2 n fag, such that the T -bigon formed by
g0

1 and g0
2 of endpoints a; b is contained in some B 2 B. We prove that there exists

c 2 E such that g1 between c and v contains no other point from E .
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Note that by property .T1/ of B all T -bigons of endpoints a and b, for some
b 2 E , are contained in the same B0 2 B.

Let ' W Œ0; `� ! Y be a parametrization of g1, '.`/ D v, and let r be '�1.a/. The
pre-image E 0 D '�1 .E/ is contained in .r; `�. Let T be the supremum of E 0. Then
T D lim tn for some increasing sequence .tn/ in E 0, hence c D '.T / is the limit of
the sequence of points bn D '.tn/ 2 E . Obviously c 2 g0

1 \ g0
2 n fag. Since B0 2 B

is closed and bn 2 B0, it follows that c 2 B0. Thus the sub-arc of g0
1 between a

and c is completely contained in B0. By Lemma 3.8 and property (3), the T -bigon
formed by g0

1 and g0
2 of endpoints a and c is in B0.

Step 3. We prove that the point c obtained in Step 2 coincides with v.
Assume that c ¤ v. Step 1 applied to the point c instead of a implies that there

exists d 2 g0
1 \g0

2 nfcg, d between c and v on both g0
1 and g0

2, such that the T -bigon
formed by g0

1 and g0
2 of endpoints c; d is contained in some B 0 2 B.

Since c ¤ v it cannot be contained simultaneously in L1 and in L2. Assume that
c 62 L1. Then c is in the interior of a simple T -bigon formed by g1 and L1. According
to (3) this T -bigon is contained in some B 00 2 B. The intersections B0 \ B 00 and
B 0 \ B 00 both contain non-trivial sub-arcs of g0

1, therefore B0 D B 00 D B 0. Thus the
point d is in the set E and it is strictly between c and v on g0

1. This contradicts the
choice of c.

We conclude that c D v. �

4. Asymptotically tree-graded metric spaces

4.1. Definitions and properties. Let .X; dist/ be a geodesic metric space and let
A D fAi j i 2 I g be a collection of subsets of X . In every asymptotic cone
Con! .X I e; d/, we consider the collection A! of limit subsets

˚
lim

!
.Ain/ j i D .in/! 2I ! such that there exists an Mi with

the property dist .en; Ain/ �! Mi dn

�
:

Definition 4.1. The metric space X is asymptotically tree-graded (ATG) with respect
to A if every asymptotic cone Con! .X I e; d/ is tree-graded with respect to A! .

Following Convention 1.4, in the rest of the paper we shall assume that all ATG
metric spaces are proper, that is, no subset A 2 A contains X in a tubular neighbor-
hood of it.

The ATG property is meant to be an extension of the property of (strong) relative
hyperbolicity from groups to metric spaces. Theorem 1.5 emphasizes that it is the
correct property to work with.
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Remark 4.2. Let X be ATG with respect to A D fAi j i 2 I g.

(1) It is easy to see that for every � > 0, the space X is ATG with respect to
fN� .Ai / j i 2 I g.

(2) More generally, let B be a collection of subsets of X such that there exists a
constant K � 0 and a bijection � W A ! B verifying distH .A; �.A// � K.
Then X is ATG with respect to B.

The notion of ATG metric space can also be defined by a list of geometric con-
ditions, without involving asymptotic cones. First we introduce some notation and
terminology.

Notation 4.3. For a given quasi-geodesic p and an r > 0 we denote by Mpr the set
p n Nr .fp� ; pCg/.

We say that a metric space P is a geodesic (quasi-geodesic) k-gonal line if it is
a union of k geodesics (quasi-geodesics) q1; : : : ; qk such that .qi /C D .qiC1/� for
i D 1; : : : ; k � 1. If moreover .qk/C D .q1/� then we say that P is a geodesic
(quasi-geodesic) k-gon.

Let P be a quasi-geodesic polygon, with set of vertices V . Points in P n V are
called interior points of P .

Notation 4.4. Given a vertex x 2 V and q; q0 the consecutive edges of P such that
x D qC D q0�, we denote the polygonal line P n .q [ q0/ by Ox.P /. When there is
no possibility of confusion we simply denote it by Ox .

Let p 2 P . The inscribed radius in p with respect to P is either the distance
from p to the set Op , if p is a vertex, or the distance from p to the set P n q if p is
an interior point contained in the edge q (see Figure 3, taken from [DS05b]).

�� ��
Mq��

�

P n q

x y

Ox

x 	�

Figure 3. Properties (Fat1) and (Fat2).
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Definition 4.5 (fat polygon). Let � > 0, � � 1 and 	 � 4� . We call a k-gon P with
quasi-geodesic edges .�; �; 	/-fat if the following properties hold:

.Fat1/ (large inscribed radii in interior points, large comparison angles) for every
edge q we have, with the notation 4.3, that

dist . Mq�� ; P n q/ � � I

.Fat2/ (large inscribed radii in vertices, large edges) for every vertex x we have
that

dist.x; Ox/ � 	�:

When � D 2 we say that P is .�; 	/-fat.

Lemma 4.6. Let P be a polygon .�; �; 	/-fat for some � > 0, � � 1 and 	 � 4� .
Then any two edges of P without a common vertex are at distance at least � from
each other.

Proof. Let q and q0 be two edges without a common vertex. Assume that there exists a
point a 2 q such that dist.a; q0/ < � . Property .Fat1/ implies that a 2 N�� .fx; yg/,
where x; y are the endpoints of q. Property .Fat2/ implies that dist .fx; yg; q0/ � 	� .
Therefore dist.a; q0/ � .	 � �/� � 3�� � 3� . This contradicts the assumption that
dist.a; q0/ < � . �

The following lemma describes a situation in which given two consecutive edges
of a geodesic polygon, any two points on each of these edges which are at distance
at least 2� from the common vertex are at distance at least � from one another.

Lemma 4.7. Let P be a geodesic polygon with two consecutive edges Œx; y� and Œy; z�

such that dist.x; Œy; z�/ D dist.x; y/. Then both the distance from Œx; y� n B.y; 2�/

to Œy; z�, and the distance from Œy; z� n B.y; 2�/ to Œx; y� are at least � .

Proof. The distance from Œx; y� n B.y; 2�/ to Œy; z� is 2� because of the hypothesis
that dist.x; Œy; z�/ D dist.x; y/.

Now assume that there exists p 2 Œy; z� n B.y; 2�/ and p0 2 Œx; y� such that
dist.p; p0/ < � . Then dist.y; p0/ � dist.y; p/ � dist.p; p0/ > � > dist.p; p0/.
It follows that dist.x; p/ � dist.x; p0/ C dist.p0; p/ < dist.x; p0/ C dist.p0; y/ D
dist.x; y/. This contradicts the fact that dist.x; Œy; z�/ D dist.x; y/. �

We shall also need in the sequel a way of obtaining from a fat k-gon a fat .k C 1/-
gon. This is described in the next lemma.
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Lemma 4.8. Let P be a geodesic k-gon with two consecutive edges Œx; y� and Œy; z�,
such that dist.x; Œy; z�/ D dist.x; y/. If P is .�; 	/-fat then the .k C 1/-gon P 0
obtained from P by adding as a vertex the point v 2 Œx; y� with dist.v; y/ D ��

2
is�

� ; �
2

�
-fat.

Proof. Property .Fat1/ for P 0 follows easily from property .Fat1/ for P .
Property .Fat2/ holds for all the vertices different from x; v; y, by property .Fat2/

in P .
The polygonal line Ox.P 0/ D Ox.P / [ Œv; y� is in the ��

2
-tubular neighborhood

of Ox.P /, hence at distance at least ��
2

from x.
The polygonal line Oy.P 0/ is equal to Oy.P / [ Œx; v�. The line Oy.P / is at

distance � 	� from y and Œx; v� is at distance ��
2

from y.

Finally, Ov.P 0/ D Oy.P / [ Œy; z�. Since dist.v; y/ D ��
2

it follows that
dist

�
v; Oy

� � ��
2

. If there exists p 2 Œy; z� such that dist.v; p/ < ��
2

then
dist.x; p/ � dist.x; v/Cdist.v; p/ < dist.x; v/C ��

2
D dist.x; y/. This contradicts

the hypothesis that dist.x; Œy; z�/ D dist.x; y/. �

A metric space X can be defined to be asymptotically tree-graded with respect to a
collection of subsets A without using asymptotic cones, simply by putting conditions
on intersections of tubular neighborhoods of subsets in A, and on the behavior of
geodesics and of fat polygons with respect to such neighborhoods.

Theorem 4.9 ([DS05b], Theorem 4.1 and Remark 4.2 (3)). Let .X; dist/ be a geodesic
metric space and let A D fAi j i 2 I g be a collection of subsets of X . The metric
space X is asymptotically tree-graded with respect to A if and only if the following
properties are satisfied:

.˛1/ For every ı > 0 the diameters of the intersections Nı.Ai / \ Nı.Aj / are uni-
formly bounded for all i ¤ j .

.˛2/ There exists " in
�
0; 1

2

�
and M > 0 such that for every geodesic g of length ` and

every A 2 A with g.0/; g.`/ 2 N"`.A/ we have that g.Œ0; `�/ \ NM .A/ ¤ ;.

.˛3/ For every k � 2 there exist � > 0, 	 � 8 and 
 > 0 such that every k-gon
P in X with geodesic edges which is .�; 	/-fat satisfies P � N�.A/ for some
A 2 A.

Remarks 4.10 ([DS05b], Theorem 4.1 and Remark 4.2). (1) Property .˛2/ from
Theorem 4.9 is a slight modification of the similar property appearing in Theorem 4.1
in [DS05b]. Nevertheless it implies property

�
˛"

2

�
from [DS05b, Remark 4.2, (3)],

which accounts for the accuracy of the modified statement.
(2) As a necessary condition, .˛2/ can be strengthened to “for every " from

�
0; 1

2

�

there exists M > 0 such that etc.”
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Notation 4.11. We denote by diamı a uniform bound provided by property .˛1/ for
an arbitrary ı � 0.

Remarks 4.12 (on the condition that pieces cover the space). (1) In property (T2)
of the definition of a tree-graded space (Definition 3.1), we might allow for trivial
geodesic triangles, that is, we might ask that pieces cover the space. This would also
change the definition of an asymptotically tree-graded space; in Theorem 4.9 in order
for the equivalence to hold the following condition would have to be added:

.˛0/ there exists � � 0 such that X D S
A2A N� .A/.

The difference between these definitions of (asymptotically) tree-graded spaces
and the ones that are actually used in the paper consists in the addition of a set of
singletons to the collection of pieces P (respectively, to the collection of subsets A).
Indeed, if .X; A/ satisfy only .˛1/, .˛2/, .˛3/ but not .˛0/ then it suffices to add some
singletons to A in order to ensure .˛0/. For some � > 0 consider in X nS

A2A N� .A/

a maximal subset } with the property that dist.p; p0/ � � for every p; p0 2 }.
The space X coincides with

S
A2A N� .A/ [ S

p2} N� .fpg/. Properties .˛1/ and
.˛2/ are obviously satisfied by singletons, whence X is ATG with respect to A0 D
A [ ffpg j p 2 }g; moreover A0 also satisfies .˛0/.

(2) Let H3 be the 3-dimensional real hyperbolic space and let .Hbon/n2N be
a countable collection of pairwise disjoint open horoballs. The complementary
set X0 D X n F

n2N Hbon and the collection of boundary horospheres A D
f@Hbon j n 2 Ng is the typical example one has in mind when trying to define rel-
ative hyperbolicity for metric spaces. The pair .X0; A/ does not in general satisfy
.˛0/, one has to add singletons to A to ensure that property. In order to remove
this inconvenient, we have given up the condition that pieces cover the space in the
Definition 3.1 of tree-graded spaces.

Remark 4.13. If X is a metric space ATG with respect to A, and a group G acts
K-transitively (in the sense of Definition 2.1, with K � 0) by isometries on X , G

permuting the subsets in A, then property .˛0/ is satisfied with � D K .
It is for instance the case when X is itself a group and A is the collection of left

cosets of a family of subgroups.

4.2. Property .T2/ and polygons with limit edges. Property .˛3/ in the definition
of a metric space X ATG with respect to a collection A (requiring that fat polygons stay
in tubular neighborhoods of subsets in A) is used to prove property .T2/ in an arbitrary
asymptotic cone of X with respect to the collection of limit sets A! (requiring that
simple non-trivial geodesic triangles are contained in pieces from A!). If X is such
that any geodesic in an asymptotic cone of it is a limit geodesic (for instance if X is a
CAT(0) metric space) then it suffices to have property .˛3/ for fat hexagons, that is:
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.ˇ3/ there exists � > 0, 	 � 8 and 
 > 0 such that any geodesic hexagon .�; 	/-fat
is contained in N�.A/, for some A 2 A.

This is due to the following general fact.

Proposition 4.14. Let .X; dist/ be a geodesic metric space and let � > 0 and 	 � 8

be two arbitrary constants. In any asymptotic cone Con! .X I e; d/, any simple non-
trivial triangle whose edges are limit geodesics is the limit set lim! .Hn/ of a sequence
.Hn/ of geodesic hexagons that are .�; 	/-fat !-almost surely.

Proof. Consider a non-trivial simple geodesic triangle � in an asymptotic cone
Con! .X I e; d/, whose edges Œa; b�, Œb; c� and Œc; a� appear as limit sets of sequences
Œan; b0

n�, Œbn; c0
n� and Œcn; a0

n� of geodesics in X . We have that dist.an; a0
n/; dist.bn; b0

n/

and dist.cn; c0
n/ are of order o.dn/ !-almost surely.

Let d A
n be the maximum between dist.Œan; b0

n�; Œa0
n; cn�/ and 	� . Note that d A

n > 0

and that d A
n D! o.dn/. Take a1

n to be the farthest from an point on Œan; b0
n� at distance

d A
n from Œa0

n; cn�. Consider then a2
n the farthest from a0

n point on Œa0
n; cn� at distance

d A
n from a1

n. Obviously dist.a1
n; a2

n/ D d A
n .

The pairs of points .b1
n; b2

n/ in Œbn; c0
n� 	 Œb0

n; an�, and respectively .c1
n; c2

n/ in
Œcn; a0

n� 	 Œc0
n; bn� are chosen similarly. Since the limit triangle � is simple, it fol-

lows that the sets fan; a0
n; a1

n; a2
ng, fbn; b0

n; b1
n; b2

ng and fcn; c0
n; c1

n; c2
ng have !-almost

surely diameters of order o.dn/. Hence the sequence of geodesic hexagons Hn of
vertices a1

n; b2
n; b1

n; c2
n; c1

n; a2
n with edges Œa1

n; b2
n� � Œan; b0

n�, Œb1
n; c2

n� � Œbn; c0
n�,

Œc1
n; a2

n� � Œcn; a0
n�, has the property that lim! .Hn/ is �. It remains to prove that Hn

is !-almost surely .�; 	/-fat.

.Fat1/: The fact that the edge Œa1
n; a2

n� is at distance O.dn/ from Œb2
n; b1

n� [ Œb1
n; c2

n� [
Œc2

n; c1
n� and Lemma 4.7 imply that Œa1

n; a2
n� satisfies property .Fat1/.

In the same manner it can be shown that the edges Œb1
n; b2

n� and Œc1
n; c2

n� satisfy
.Fat1/.

The edge Œa1
n; b2

n� is at distance O.dn/ from Œc1
n; c2

n�. The choice of a1
n and of the

pair .b1
n; b2

n/ implies that Œa1
n; b2

n� is at distance at least 	� from Œb1
n; c2

n� [ Œc1
n; a2

n�.
Lemma 4.7 allows to conclude that Œa1

n; b2
n� satisfies .Fat1/.

Similar arguments show that the edges Œb1
n; c2

n� and Œc1
n; a2

n� satisfy .Fat1/.

.Fat2/: The distance from a1
n to Œa2

n; c1
n� is at least 	� by the choice if a1

n, while the
distance to Œb2

n; b1
n� [ Œb1

n; c2
n� [ Œc2

n; c1
n� is O.dn/. The same kind of argument shows

that .Fat2/ is satisfied !-almost surely by all the vertices of Hn. �

In general not every geodesic in an asymptotic cone is a limit geodesic (see the
example in the end of Section 2.2). Thus, in order to ensure that in every asymptotic
cone every non-trivial simple geodesic triangle is contained in some limit set from
A! (i.e. property .T2/), in [DS05b] property .˛3/ is required for all fat polygons, not
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just for hexagons, and it is combined with the fact that limit sets are closed, and with
the following result.

Lemma 4.15 ([DS05b], Proposition 3.34). Let � be an arbitrary simple geodesic
triangle in Con! .X I e; d/. For every " > 0 sufficiently small there exists k0 D k0."/

and a simple geodesic triangle �" with the following properties:

(a) distH .� ; �"/ � ";

(b) �" contains the midpoints of the edges of �;

(c) for every � > 0 and 	 � 8 the triangle �" is the limit set lim!

�
P "

n

�
of a

sequence .P "
n / of geodesic k-gons in X , for some k � k0, that are .�; 	/-fat

!-almost surely.

Remark 4.16. If � is non-trivial then the set of midpoints of edges of � has cardi-
nality 3, hence the triangles �" are also non-trivial.

In this section we prove that if in every asymptotic cone property .T1/ holds for
the collection of limit sets A! (that is, two distinct sets in A! intersect in at most
one point), then property .ˇ3/ for the collection A, granting that fat hexagons stay in
tubular neighborhoods of subsets in A, suffices to deduce property .T2/ for A! (i.e.
that every simple non-trivial geodesic triangle is contained in a set from A!). To this
end, we define the following property in an asymptotic cone Con! .X I e; d/:

.…k/ every simple non-trivial k-gon with edges limit geodesics is contained in a
subset from A! .

Corollary 4.17. Assume that in an asymptotic cone Con! .X I e; d/ a collection A!

of closed subsets satisfies properties .T1/ and .…k/ for every k 2 N; k � 3. Then
A! satisfies .T2/.

Proof. Consider a simple non-trivial geodesic triangle � in Con! .X I e; d/. By
Lemma 4.15 for every large enough k 2 N there exists a simple non-trivial geodesic
triangle �k at Hausdorff distance at most 1

k
from �, containing the midpoints of

the edges of �, moreover �k D lim!

�
P

.k/
n

�
, where P

.k/
n is n-!-almost surely a

geodesic m-gon, m D m.k/. By property .…m/ the triangle �k is contained in some
Ak 2 A! . All Ak contain the midpoints of the edges of �. Property .T1/ implies
that there exists A 2 A! such that Ak D A for all k. All �k are in A, � is the limit
of �k with respect to the Hausdorff distance, and A is closed, therefore � � A. �

In view of Corollary 4.17 it suffices to prove that A! satisfies .…k/ for all k � 3

to deduce that A! satisfies property .T2/.
Obviously .…k/ implies .…i / for every i < k. It turns out that with the additional

assumption that .T1/ is satisfied, the converse implication also holds.



Vol. 84 (2009) Relatively hyperbolic groups: geometry and quasi-isometric invariance 523

Lemma 4.18. Assume that in an asymptotic cone Con! .X I e; d/, the collection of
subsets A! satisfies the properties .T1/ and .…3/. Then A! satisfies property .…k/

for every k � 3.

Proof. We prove property .…k/ by induction on k. The cases k D 2 and k D 3 hold
by hypothesis. Assume that the statement is true for every k � m � 1 and consider
a simple non-trivial geodesic m-gon P in Con! .X I e; d/, m � 4, with edges limit
geodesics.

Let Œx; y� and Œy; z� be two consecutive edges of P , in clockwise order. Denote
by L1 the union of the two edges Œx; y� [ Œy; z� of P , and by L the union of the other
m � 2 edges of P , in clockwise order.

Consider a limit geodesic g joining x and z. If g coincides with L1 or with L

then P is a simple geodesic polygon with at most m � 1 edges, all of them limit
geodesics. By the inductive hypothesis P is contained in a subset A in A! .

Assume that g does not coincide either with L1 or with L.

Step 1. We prove that g [ L is contained in some A 2 A! .
Let ˛ 2 L n g. Lemma 3.7 implies that ˛ is in the interior of a simple T -bigon

formed by L and g, of endpoints a and b, with a closer to x than b on L. This
T -bigon is a geodesic polygon with at most m � 1 edges which are limit geodesics,
therefore by the inductive hypothesis it is contained in a subset A 2 A! .

If a D x and b D z then g [ L is a simple T -bigon and it is contained in some
A 2 A! by the inductive hypothesis. Assume therefore that .a; b/ ¤ .x; z/. Without
loss of generality we may assume that a ¤ x.

We apply Proposition 3.9 to L1, g1 D g, and g2 D L2 the sub-arc of L in
between x and ˛. Property (3) is satisfied by the hypothesis of the induction. It
follows that the T -bigon formed by g and L of endpoints x and a is contained in
some A1 2 A! .

The point a is in L n L1, hence it is in g n L1. By Lemma 3.7, a is in the interior
of some simple T -bigon formed by L1 and g, and by .…3/ this T -bigon is in a subset
A0

1 2 A! . Since A0
1 \ A and A0

1 \ A1 contain non-trivial sub-arcs of g property .T1/

implies that A D A0
1 D A1.

If moreover b ¤ z, a similar argument gives that the T -bigon formed by g and
L of endpoints z and b is contained in A (see Figure 4).

x z

a ˛
b

AA1 A2

A0
1 A0

2

L

g

L1

Figure 4. Step 1 in the proof of Lemma 4.18.
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We conclude that g [ L is contained in A.

Step 2. We prove that L1 is also contained in A. Property .…3/ implies that any
non-trivial simple T -bigon formed by L1 and g is contained in a subset in A! . We
apply Lemma 3.8 to L1 and g � A and we conclude that L1 � A. Consequently A

contains L1 [ L D P . �

Corollary 4.19. Assume that in an asymptotic cone Con! .X I e; d/, the collection of
closed subsets A! satisfies properties .T1/ (two distinct subsets from A! intersect in
at most one point) and .…3/ (simple non-trivial triangles with edges limit geodesics
are contained in subsets from A!). Then A! satisfies property .T2/ (i.e., all simple
non-trivial geodesic triangles are contained in subsets from A!).

Corollary 4.20. Let X be a geodesic metric space and A a collection of subsets in X ,
such that property .ˇ3/ is satisfied (i.e., fat hexagons are contained in tubular neigh-
borhoods of subsets from A), and such that in any asymptotic cone Con! .X I e; d/,
the collection of limit subsets A! satisfies property .T1/. Then A! satisfies prop-
erty .T2/.

Note that the only thing missing in Corollary 4.20 to conclude that X is ATG with
respect to A is that A! is composed of geodesic subsets.

Another useful consequence of Proposition 4.14 is the following.

Corollary 4.21. Let .X; dist/ be a geodesic metric space. Assume that for some
� > 0 and 	 � 8 the set of .�; 	/-fat geodesic hexagons is either empty or composed
of hexagons of uniformly bounded diameter. Then X is hyperbolic.

Proof. Proposition 4.14 implies that in any asymptotic cone of X any simple triangle
with edges limit geodesics is trivial. This statement can be extended by induction to
all polygons. Indeed, suppose that in any asymptotic cone of X for all 3 � k � m�1

all simple k-gons with edges limit geodesics are trivial. Consider P a simple m-gon
with edges limit geodesics in some Con! .X I e; d/. Let Œx; y� and Œy; z� be two
consecutive edges of P and let g be a limit geodesic joining x and z. All simple
T -bigons formed by Œx; y� [ Œy; z� and g must be trivial by the inductive hypothesis,
thus g D Œx; y� [ Œy; z�. It follows that P is a simple .m � 1/-gon with edges limit
geodesics, hence by the inductive hypothesis it is trivial.

Lemma 4.15 and Remark 4.16 imply that in any Con! .X I e; d/ any simple
geodesic triangle must be trivial. It follows that Con! .X I e; d/ is a real tree, and
since this holds for all asymptotic cones we conclude that X is hyperbolic ([Gro93,
�2:A], see also [Dru02, �3]). �

4.3. New definitions, useful for the rigidity of relatively hyperbolic groups. In
this section new versions of the definition of an ATG metric space are stated and
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proved. They play an important part later on, in the proof of the quasi-isometric
invariance of relative hyperbolicity.

Theorem 4.22. In Theorem 4.9 the following modifications can be made in the list
of properties defining an asymptotically tree-graded metric space:

.Modif1/ property .˛3/ requiring that fat polygons stay in tubular neighborhoods of
subsets in A can be replaced by property .ˇ3/ requiring the same thing but
only for hexagons;

.Modif2/ property .˛2/ can be either maintained or replaced by one of the following
two properties:

.ˇ2/ there exists � > 0 and M � 0 such that for any geodesic g of length ` and
any A 2 A satisfying g.0/; g.`/ 2 N�`.A/, the middle third g

��
`
3

; 2`
3

��
is

contained in NM .A/;

.Qconv/ (uniform quasi-convexity of pieces) there exists t > 0 and K0 � 0 such
that for every A 2 A, K � K0 and x; y 2 NK.A/, every geodesic joining
x and y in X is contained in NtK.A/.

Proof. Assume that X is ATG with respect to A. We prove that .X; A/ satisfies
properties .ˇ2/ and .Qconv/. Property .ˇ3/ is obviously satisfied, as it is a particular
case of property .˛3/.

The uniform quasi-convexity condition .Qconv/ is satisfied by Lemma 4.3 in
[DS05b].

Property .ˇ2/ can be obtained for any � < 1
6t

, where t is the constant from
.Qconv/, as follows. Consider a geodesic g of length ` and A 2 A as in .ˇ2/. We
may assume that �` � K0, otherwise g would be contained in N K0

2�

. By .Qconv/ the

geodesic g is then contained in Nt�`.A/. If � D t� < 1
6

then by Theorem 4.9 and
Remark 4.10 there exists M D M.�/ such that g

��
0 ; `

3

��
and g

��
2`
3

; `
��

intersect

NM .A/. Uniform convexity implies that g
��

`
3

; 2`
3

��
is contained in NtM 0.A/, where

M 0 D max.M; D0/.
It remains to prove the converse statements in Theorem 4.22, i.e., that any of

the triples of properties .˛1/&.˛2/&.ˇ3/, .˛1/&.ˇ2/&.ˇ3/ or .˛1/&.Qconv/&.ˇ3/

implies that X is ATG with respect to A. We begin by proving that the first two triples
of properties are equivalent to the last one.

The implication .˛1/&.˛2/ ) .Qconv/ is proved in [DS05b, Lemma 4.3].

.˛1/&.ˇ2/ ) .Qconv/: The constant K0 in .Qconv/ is taken equal to the constant
M in .ˇ2/.

Suppose by contradiction that for every n 2 N� there exists An 2 A, Kn � M

and xn; yn 2 NKn
.An/ such that a geodesic Œxn; yn� is not contained in NnKn

.An/.
For each n 2 N� we define Dn to be the infimum over the distances dist.xn; yn/
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between pairs of points satisfying the properties above for some set in A. In what
follows we assume that we chose xn; yn at distance ın � Dn C1 of each other. Since
Œxn; yn� is in Nın=2.fxn; yng/ � Nın=2CKn

.An/ it follows that 1
2n�2

ın � Kn. In
particular for n large enough Kn < �ın, where � > 0 is the constant in .ˇ2/. It follows
that the middle third Œan; bn� of Œxn; yn� is contained in NM .An/. Since Kn � M , the
fact that Œxn; yn� 6� NnKn

.An/ implies that either Œxn; an� or Œbn; yn� is not contained
in NnKn

.An/. It follows that Dn � ın

3
� DnC1

3
, hence that the sequence .Dn/ is

uniformly bounded. This contradicts the fact that Dn � .2n � 2/M .

.˛1/&.Qconv/&.ˇ3/ ) .˛2/; .ˇ2/: Let g W Œ0; `� ! X be a geodesic with endpoints
x D g.0/ and y D g.`/ contained in N"`.A/ for some A 2 A. We shall prove that
for a fixed positive constant D, the geodesic g intersects ND.A/.

According to .Qconv/, the geodesic g is contained in Nt"`.A/.

Notation 4.23. We denote t " by � and we assume in what follows that � < 1
8

. We
denote by D the maximum between tK0 C4	� , 
 and diamı (with the notation 4.11)
for ı D max.
; tK0/. Here t and K0 are the constants appearing in .Qconv/, while
	; �; 
 are the constants appearing in .ˇ3/.

Suppose by contradiction that g does not intersect ND.A/. Note that since �` � D

it follows that ` > 8D.
Consider x0 and y0 points in A such that dist.x; x0/ and dist.y; y0/ are at most "`.

By .Qconv/, a geodesic g0 joining x0 and y0 is contained in NtK0
.A/.

Let c 2 g and c0 2 g0 be two points such that dist.c; c0/ D dist.g; g0/. Without
loss of generality we may suppose that dist.x; c/ � `

2
. We may also suppose that

dist.x; x0/ D dist.x; g0/. In order to transform the 4-gon of vertices x; x0; c; c0; into
a fat polygon we make the following choices. Let x1 be the point on g between x

and c which is farthest from x and at distance at most 2	� from Œx; x0�. Let x2 be the
farthest from x point on Œx; x0� which is at distance 2	� from x1.

We prove in the sequel that the geodesic pentagon of vertices x1; x2; x0; c0; c is
.�; 2	/-fat. To simplify we shall denote its edges by Œv; w� if v; w are two consecutive
vertices, keeping in mind that Œx1; c� � g and that Œx0; c0� � g0.
.Fat1/: A point in Œc; c0� n N2� .fc; c0g/ is at distance at least

�
1
2

� 2�
�

` from Œx; x0�,
hence at distance at least

�
1
2

� 2�
�

` � 2	� of Œx1; x2�. Since ` > 8D > 32	� , it
follows that Œc; c0� n N2� .fc; c0g/ is at distance at least � from Œx1; x2� [ Œx2; x0�.

The choice of c; c0 implies that all points in Œc; c0� n N2� .fc; c0g/ are at distance
at least 2� from g and from g0.

The points in Œx1; c�nN2� .fx1; cg/ are at distance at least D � tK0 from g0, and at
distance at least 2	� from Œx2; x0�. Lemma 4.7 allows to conclude that Œx1; c� satisfies
property .Fat1/.

The distance between Œx1; x2� and Œc; c0� is at least
�

1
2

� 2�
�

` � 2	� , and the one
between Œx1; x2� and Œx0; c0� is at least D � tK0 � 2	� . Thus, it suffices to verify
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that the distance between Œx1; x2� n N2� .fx1; x2g/ and Œc; x1� [ Œx2; x0� is at least � .
According to the choices of x1; x2 this distance is 2� . This, and Lemma 4.7 also
imply that Œx2; x0� satisfies .Fat1/.

The fact that the edge Œx0; c0� is at distance at least D�tK0�2	� from g[Œx1; x2�,
together with Lemma 4.7, imply that Œx0; c0� satisfies .Fat1/.

.Fat2/: The vertex c0 is at distance at least D � tK0 � 2	� from Œc; x1� [ Œx1; x2�

and at distance at least
�

1
2

� 2�
�

` from Œx2; x0�.
The vertex c is at distance at least D � tK0 from Œx0; c0� and at distance at least�

1
2

� 2�
�

` � 2	� from Œx1; x2� [ Œx2; x0�.
We have chosen x1 at distance 2	� from Œx2; x0�. The same vertex is at distance

at least D � tK0 from Œx0; c0�, and at least
�

1
2

� 2�
�

` � 2	� from Œc; c0�.
Similarly, x2 is at distance 2	� from Œx1; c�, at distance at least

�
1
2

� 2�
�

` � 2	�

from Œc; c0� and at least D � tK0 � 2	� from Œx0; c0�.
The vertex x0 is at distance at least D � tK0 � 2	� from Œc; x1� [ Œx1; x2� and at

least
�

1
2

� 2�
�

` from Œc; c0�.
The pentagon of vertices x1; x2; x0; c0; c is .�; 2	/-fat. Lemma 4.8 and the fact that

dist.c; c0/ D dist.c; Œc0; x0�/ implies that by adding a vertex on Œc; c0� this pentagon
becomes a hexagon .�; 	/-fat. Therefore by .ˇ3/ it is contained in N�.A0/ for some
A0 2 A. In particular the edge Œx0; c0� is contained in N�.A0/ \ NtK0

.A/. This edge
has length at least `

4
> 2D and D is at least diamı for ı D max.
; tK0/. It follows

that A D A0 and that D < 
, which is a contradiction.
We conclude that property .˛2/ is satisfied for " < 1

8t
and for D chosen above.

Property .ˇ2/ is obtained as follows. If a geodesic g W Œ0; `� ! X joins two points
in Nı`.A/ then it is contained in Ntı`.A/ by .Qconv/. If ı < "

3t
then by .˛2/ the sub-

geodesics g
��

0; `
3

��
and g

��
2`
3

; `
��

intersect NM .A/. Then by .Qconv/, g
��

`
3
; 2`

3

��

is contained in NtM .A/.
In order to finish the proof of Theorem 4.22 it now suffices to prove the following.

.˛1/&.˛2/&.Qconv/&.ˇ3/ ) X is ATG with respect to A in the sense of Defini-
tion 4.1.

In an asymptotic cone Con! .X I e; d/, the limit sets in A! are closed. Property
.Qconv/ easily implies that all subsets in A! are geodesic.

The fact that two distinct limit subsets from A! intersect in at most a point (i.e.,
property .T1/) is deduced from .˛1/ and .˛2/ as in [DS05b, Lemma 4.5]. Properties
.T1/&.ˇ3/ imply that non-trivial simple geodesic triangles are contained in subsets
from A! (i.e. property .T2/) by Corollary 4.20. �

In the new definitions of ATG metric spaces provided by Theorem 4.22 property
.ˇ3/ can be still weakened, in the following sense.

Proposition 4.24. For any  > 0 property .ˇ3/ can be replaced in Theorem 4.22 by
the following version of it, in which only large hexagons are taken into account:
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.ˇ
	
3 / there exists � > 0, 	 � 8 and 
 > 0 such that any geodesic hexagon .�; 	/-fat

of diameter at least  is contained in N�.A/, for some A 2 A.

Proof. Indeed, as a sufficient condition .ˇ3/ is used in combination with Proposi-
tion 4.14 to prove that in any asymptotic cone property .…3/ holds (i.e., every simple
non-trivial triangle with edges limit geodesics is contained in a limit set lim! .An/

with An 2 A).
Given, in an asymptotic cone, such a simple non-trivial triangle with edges limit

geodesics, and the sequence of hexagons Hn provided for this triangle by Proposi-
tion 4.14, the sequence of diameters of Hn has !-limit 1. Property .ˇ

	
3 / suffices

therefore to obtain property .…3/.
Property .ˇ3/ is also used in the proof of Theorem 4.22, combined with .˛1/ and

.Qconv/, to deduce property .˛2/. There also it can be replaced by .ˇ
	
3 /, for any large

. Indeed, it suffices to take, in the proof of the implication .˛1/&.Qconv/&.ˇ3/ )
.˛2/, the constant D larger than tK0 C  to obtain that the geodesic pentagon with
vertices x1; x2; x0; c0; c has diameter at least dist.c; c0/ � D � tK0 > . That
pentagon is .�; 2	/-fat, hence by Lemma 4.8 it can be made into a hexagon .�; 	/-
fat of diameter larger than ; therefore by .ˇ

	
3 / it is contained in N�.A0/ for some

A0 2 A. The rest of the argument is carried out similarly. �

Corollary 4.25. Let A
	
red be the set of A 2 A such that N�.A/ contains a .�; 	/-fat

geodesic hexagon of diameter at least . Then the space X is ATG with respect
to A

	
red.

Proof. Since A
	
red � A, and A satisfies .˛1/ and .ˇ2/, the same properties are

satisfied by A
	
red. Property .ˇ

	
3 / is also satisfied by A

	
red, hence by Proposition 4.24,

X is ATG with respect to A
	
red. �

Corollary 4.26. For every � > 0 the space X is also ATG with respect to the subset
A
 in A composed of all the subsets of diameter at least � in A.

Proof. Indeed A
 � A implies that properties .˛1/ and .ˇ2/ are satisfied by A
.
Let  D � C 2
. Then A

	
red � A
, which implies that property .ˇ

	
3 / is satisfied

by A
. By Proposition 4.24, X is ATG with respect to A
. �

4.4. New definition, closer to the definition of hyperbolicity. In [DS05a] a version
for groups of the following notion has been introduced.

Definition 4.27. Let X be a geodesic metric space and let A be a collection of
subsets of X . We say that X is .�/-asymptotically tree-graded with respect to A if
for every C � 0 there exist two constants � and ı such that every triangle xyz with
.1; C /-almost geodesic edges is in one of the following two cases:
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(C) there exists a 2 X such that xB.a; �/ intersects each of the sides of the triangle;

(P) there exists A 2 A such that xN � .A/ intersects each of the sides of the trian-
gle, and the entrance (resp. exit) points x1; y1; z1 (resp. y2; z2; x2) of the sides
Œx; y�; Œy; z�; Œz; x� in (from) xN � .A/ satisfy

dist.x1; x2/ < ı; dist.y1; y2/ < ı; dist.z1; z2/ < ı:

See Figure 5, taken from [DS05b].

x

y

z

x1

y1

z1

y2

z2

x2

� �

����

xN � .A/

Figure 5. Case (P) of Definition 4.27.

In Definition 4.27, (C) stands for “center”, since the point a is in some sense a
center of the triangle xyz; (P) stands for “piece”, since in this case the triangle xyz

has a central piece.

Remark 4.28. If X is a geodesic metric space in which for some constant � > 0 every
geodesic triangle satisfies property (C), then X is a hyperbolic space. Conversely, in
a hyperbolic geodesic metric space for every L � 1 and C � 0 there exists � > 0

such that every triangle with .L; C /-quasi-geodesic edges satisfies property (C).

Remarks 4.29. (1) If a metric space X is ATG with respect to a collection of subsets
A then X is .�/-ATG with respect to A; this follows from [DS05b, Corollary 8.14
and Lemma 8.19].

Moreover, according to [DS05b, Corollary 8.14] if a geodesic triangle is in case
(P) then for every � 0 � � there exists ı0 such that the pairs of entrance points in
xN � 0.A/ are at distance at most ı0.
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(2) The notion of .�/-ATG space is weaker than the one ofATG space. For instance
if X is a geodesic hyperbolic space and if A is any collection of subsets covering
X , then X is .�/-ATG with respect to A, and the collection A needs not satisfy
property .˛1/ requiring uniformly bounded diameter for intersections of bounded
radius tubular neighborhoods of distinct subsets in A, or property .Qconv/ requiring
uniform quasi-convexity for subsets in A.

It turns out nevertheless that one can formulate an equivalent definition of ATG
metric spaces using the .�/-property.

Theorem 4.30. Let .X; dist/ be a geodesic metric space and let A be a collection of
subsets of X . The metric space X is asymptotically tree-graded with respect to A if
and only if .X; A/ satisfy properties .˛1/ and .˛2/ from Theorem 4.9, and moreover
X is .�/-ATG with respect to A.

Proof. The direct implication has already been discussed, we now prove the converse
statement, that is, we prove that .˛1/&.˛2/&.�/ imply that X is asymptotically tree-
graded with respect to A.

In order to simplify some technical arguments, we make the assumption that for
all C > 0 the constant � in the .�/-property is larger than the constant M appearing in
property .˛2/. By Remark 4.29, (1), if X is ATG then such a choice of � is possible.

By [DS05b, Lemma 4.3] properties .˛1/&.˛2/ imply property .Qconv/ on the
quasi-convexity of subsets in A. From this property follows that in any asymptotic
cone Con! .X I e; d/ the collection A! is composed of closed geodesic subsets.

Again .˛1/&.˛2/ imply property .T1/ for A! (i.e. that distinct subsets from A!

intersect in at most one point). According to Corollary 4.19, in order to conclude
that Con! .X I e; d/ is tree-graded with set of pieces A! (and thus finish the proof of
Theorem 4.30), it suffices to prove property .…3/, i.e., that simple non-trivial triangles
with edges limit geodesics are contained in subsets from A! .

We split the proof of .…3/ into several steps, which we formulate as separate lem-
mata. The main and most difficult step is Lemma 4.33 stating that .˛1/&.˛2/&.�/ im-
ply that fat quadrilaterals stay close to subsets in A. From Lemma 4.33 it may be first
deduced that property .…2/ is satisfied by A! in any asymptotic cone (Lemma 4.35),
then that property .…3/ is satisfied by A! (Lemma 4.36).

Lemma 4.31 (entrance points in nested tubular neighborhoods). Let .X; dist/ be a
geodesic metric space and let A be a collection of subsets of X satisfying property
.˛2/ for some " 2 Œ0; 1=2/ and M > 0.

Let � � 	 � M , let g be a geodesic and A a subset in A such that g intersects
xN �.A/. If e� and e� are the entrance points of g in xN �.A/ and respectively xN �.A/

then dist.e�; e�/ � �
"

.
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Proof. If "dist.e�; e�/ > � then by .˛2/ the sub-arc of g between e� and e� intersects
NM .A/ � N�.A/, which contradicts the definition of e� . �

Lemma 4.32. If .X; A/ satisfy properties .�/ and .˛2/ then for every C � 0 there
exist � � 0 and � � 0 such that for any two geodesics g and g0 in X with g� D g0�
and dist.gC; g0C/ � C the following holds:

(1) any point z on g0 is either contained in xN �.g/ or it is contained in xN �.A/ for
some A 2 A such that xN �.A/ intersects g;

(2) if xN �.A/ intersects g and g0, and e; f and e0; f 0 are the entrance and exit points
from xN �.A/ of g and respectively g0, then dist.e; e0/; dist.f; f 0/ � �.

Proof. Let p be the path gt �
gC; g0C

�
, where

�
gC; g0C

�
is a geodesic segment joining

gC and g0C. It is a .1; 2C /-almost geodesic. Let � and ı be the constants of property
.�/ for 2C , and let z be an arbitrary point on g0, dividing g0 into two sub-arcs, g1

and g2. The triangle � of edges g1, g2 and p is either in case (C) or in case (P) of
Definition 4.27.

If it is in case (C) then there exist a1 2 g1, a2 2 g2 and b 2 p such that the set
fa1; a2; bg has diameter at most 2� . The point z is on a geodesic joining a1 and a2,
hence it is at distance at most 3� from b, thus it is contained in xN 3�CC .g/.

If � is in case (P) then there exists A 2 A with xN � .A/ intersecting g1, g2 and p.
Let x1; z1, z2; y1 and x2; y2 be the entrance and exit points from xN � .A/ of g1, g2

and p respectively. Then dist.x1; x2/; dist.y1; y2/ and dist.z1; z2/ are all at most ı.
Since z is on a geodesic joining z1 and z2, z 2 xN �Cı=2.A/. Note that xN � .A/

intersects p, therefore xN �CC .A/ intersects g.
Take � D max

�
3� C C ; � C ı

2
; � C C

�
.

The points x1 and y1 are the entrance and respectively the exit point of g0 from
xN � .A/. If we consider e0 and f 0 the entrance and exit points of g0 from xN �.A/,

Lemma 4.31 implies that dist.x1; e0/ and dist.y1; f 0/ are at most �
"

. Hence dist.e0; x2/

and dist.f 0; y2/ are at most �
"

C ı.
Let e and f be the entrance and exit points of g into (from) xN �.A/. If either x2

or both x2 and y2 are in g then they are the entrance and respectively the exit point
of g from xN � .A/. Lemma 4.31 implies that either dist.x2; e/ or both dist.x2; e/ and
dist.y2; f / are at most �

"
, hence that either dist.e; e0/ or both dist.e; e0/; dist.f; f 0/

are O.1/.
Assume that y2 2 ŒgC; g0C�. Then gC is in xN �.A/, hence gC D f . It follows

that dist.f; y2/ � C and that dist.f; f 0/ � C C �
"

C ı.
Assume that x2 2 ŒgC; g0C�. The point gC is in xN �.A/, and if "dist.e; gC/ > �

then g intersects NM .A/ between e and gC.
In the beginning of the proof of Theorem 4.30 we made the assumption that for

all C > 0 the constant � in the .�/-property is larger than the constant M in property
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.˛2/. It follows that NM .A/ � N� .A/, hence g intersects N� .A/ between e and
gC. This contradicts the fact that x2 is the entrance point of p into xN � .A/. Thus
dist.e; gC/ � �

"
and dist.e; x2/ � �

"
C C , whence dist.e; e0/ � 2�

"
C C C ı. �

Lemma 4.33. Assume that .X; dist/ is .�/-ATG with respect to A, and that .X; A/

satisfies properties .˛1/, .˛2/ from Theorem 4.9 and the uniform quasi-convexity
condition .Qconv/.

Then there exist � > 0, 	 � 8 and 
 > 0 such that any geodesic quadrilateral
which is .�; 	/-fat is contained in N�.A/ for some A 2 A.

Proof. Let P be a .�; 	/-fat geodesic quadrilateral with vertices x; y; z; w in coun-
terclockwise order. Let Œx; z� be a geodesic joining the opposite vertices x and z.

Case 1. Assume that both geodesic triangles xyz and xzw have a center, that is, they
are in case (C) of Definition 4.27. Then there exists a1 2 Œx; y� ; a2 2 Œy; z� and
a3 2 Œx; z� such that the set fa1; a2; a2g has diameter at most 2� . Likewise there
exists b1 2 Œz; w� ; b2 2 Œw; x� and b3 2 Œz; x� such that fb1; b2; b3g has diameter at
most 2� . If � > 2� then a1; a2 2 B.y; 2�/ and b1; b2 2 B.w; 2�/.�

�

�

�

x

y z

w

a1
a3

xN �.A0/

xN �.A/

a2

a4 a5

a6

b3

b2

b1

a7

Figure 6. Case 1 in the proof of Lemma 4.33.

Without loss of generality we may assume that a3 2 Œx; b3�.

Notation 4.34. For C D max .2� ; ı/ we denote by � and � the constants given by
Lemma 4.32.

Lemma 4.32 applied to Œx; b2� and to a3 2 Œx; b3� implies that either a3 2
xN �.Œx; b2�/, or a3 2 xN �.A/ such that the entrance respectively exit point, a4; a5, of

Œx; b3� into (from) xN �.A/ are at distance at most � from Œx; b2�. If � > 2� C � then
by Lemma 4.6 the first case cannot occur.
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In the second case we have that dist .a3; fa4; a5g/ is at least ��2���. Lemma 4.32
applied to Œz; a2� and to a5 2 Œz; a3� implies that either a5 2 xN �.Œz; a2�/ or that a5 2
xN �.A0/ such that the entrance and the exit point a6; a7, of Œa3; z� from xN �.A0/ are at

distance at most � from Œz; a2�. The first case cannot occur if � > �C�. In the second
case dist .a5; fa6; a7g/ � � � 2�. The intersection Œa3; a5� \ Œa6; a5� has length at
least � � 2� � 2�. By the uniform quasi-convexity of subsets in A .Qconv/ this
intersection is contained in Nt�C1.A/\Nt�C1.A0/. If � > 2� C2�Cdiamt�C1 C1

then A D A0.
The point a4 is the entrance point of Œx; b3� in xN �.A/ while a6 is the entrance

point of Œa3; z� in xN �.A/. If a4 2 Œa3; b3� then a4 D a6, and this point is at distance
at most � from both Œx; w� and Œy; z�. If � > 2� then this cannot occur. Thus we may
assume that a4 2 Œx; a3�. Likewise we have that a7 2 Œb3; z� (see Figure 6).

We apply Lemma 4.32 to Œx; a1� and to a4 2 Œx; a3�. If we are in the second case of
the conclusion then a4 2 xN �.A00/, and the entrance and exit point, a0

4; a00
4, of Œx; a3�

from xN �.A00/ are at distance at most � from Œx; a1�. If dist.a4; a00
4/ � diamt�C1 C 1

then A00 D A and a4 D a0
4. Thus, in all cases a4 is at distance O.1/ from Œx; a1�.

Recall that a4 is at distance at most � from Œx; w�. It follows that if � is large enough
then a4 2 B.x; 2� C �/.

A similar argument gives that a7 2 B.z; 2� C �/.
We have thus that fx; zg � xN 2�C
C�.A/. Also, since fa3; b3g � Œa4; a7� �

xN t�.A/ it follows that fy; wg � xN 2�C2�Ct�.A/. The quasi-convexity property
.Qconv/ applied to A implies that P � xN �.A/ , where 
 D t .2� C � C 2� C t�/.

Case 2. Assume that the triangle xyz has a central piece, i.e., it is in case (P) of
Definition 4.27, while xzw has a central point, i.e., it is in case (C). Then there exists
A 2 A such that xN � .A/ intersects all the edges of xyz. Moreover if x2; y1 are the
entrance and exit point of Œx; y� in xN � .A/, while y2; z1 and z2; x1 are the entranceand
exit points of Œy; z� and respectively Œz; x� in xN � .A/ then dist.x1; x2/; dist.y1; y2/

and dist.z1; z2/ are at most ı.
Let also b1 2 Œz; w�, b2 2 Œw; x� and b3 2 Œx; z� be such that fb1; b2; b3g

has diameter at most 2� . If � > 2� then property .Fat1/ implies that fb1; b2g �
B.w; 2�/.

Case 2.a. Assume that b3 2 Œx1; z2�. Note that dist.b3; x1/ � dist.w; Œx; y�/ � 2� �
2� � ı � 6� � 2� � ı. Same for dist.b3; z2/. Thus for � large both dist.b3; x1/ and
dist.b3; z2/ are large.

Lemma 4.32 applied to x1 2 Œx; b3� and to Œx; b2� implies that either x1 2
xN �.Œx; b2�/ or x1 2 xN �.A1/ such that the entrance and exit points x0

1; x00
1 of Œx; b3�

from xN �.A1/ are at distance at most � from Œx; b2�. In the latter case if dist.x1; x00
1/ >

diam� where � D t max.�; �/ C 1 then A1 D A and x1 D x0
1. Thus in all cases

dist.x1; Œx; w�/ D O.1/. For � large enough it follows that x2 2 B.x; 2�/, hence
x 2 xN 2�C� .A/. A similar argument gives that z 2 xN 2�C� .A/.
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If � > ı then dist.y; y1/ < 2� and y 2 xN 2�C� .A/.
Also b3 2 Œx1; z2� � xN t� .A/, hence w 2 xN t�C2�C2� .A/. We conclude by the

quasi-convexity property .Qconv/ that P � N�.A/ for some 
 D O.1/.

Case 2.b. Assume that b3 62 Œx1; z2�. Without loss of generality we may assume that
Œx1; z2� � Œx; b3/.

Lemma 4.32 applied to b3 2 Œz2; z� and to Œz1; z� implies that either b3 2
xN �.Œz1; z�/ or that b3 2 xN �.B/ such that xN �.B/ intersects Œz1; z�, and if b4; b5

are the entrance and exit point of Œz2; z� from xN �.B/ then these points are at distance
at most � from Œz1; z�. For � large enough the first case cannot occur. In the second
case dist.b3; fb4; b5g/ � dist.w; Œy; z�/ � � � 2.� C �/ � 6� � � � 2� .

Applying Lemma 4.32 now to b4 2 Œx; b3� and to Œx; b2� gives that for � large
enough b4 2 xN �.B 0/ such that xN �.B 0/ intersects Œx; b3�, and the entrance and exit
points b6; b7 of Œx; b3� from xN �.B 0/ are at distance at most � from Œx; b2� (see
Figure 7). Moreover dist.b4; fb6; b7g/ � � � 2�. Thus xN t�.B/ \ xN t�.B 0/ contains
Œb4; b7� \ Œb4; b3� of length min.6� � � � 2� ; � � 2�/. For � large we conclude that
B D B 0.

�

�

�

�

�

�

�
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x1

x
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z

w

x2

y1

y2
z1

xN � .A/

xN �.B/

xN �.B 0/

b6

z2
b4

b7

b3

b2

b1

b5

Figure 7. Case 2.B in the proof of Lemma 4.33.

The point b6 is the entrance point of Œx; b3� into xN �.B/ while b4 is the entrance
point of Œz2; z� into xN �.B/. If b6 2 Œz2; b3� then b6 D b4 and dist.Œy; z�; Œx; w�/ �
2�. For � large enough this case is impossible. Thus b6 2 Œx; z2�.

The intersection Œx1; z2�\Œb6; z2� is in xN t� .A/\ xN t�.B/. Note that dist.b6; z2/ �
� � � � ı, thus for � large we may assume that dist.b6; z2/ > diam� C 1 with
� D t max.�; �/ C 1.

If dist.x1; z2/ � diam� C 1 then fx2; x1; z1g has diameter O.1/ and we are back
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in Case 1 with a1 D x2; a2 D z1 and a3 D x1 and with the constant � possibly
larger. We may then use the proof in Case 1 to finish the argument.

Assume now that dist.x1; z2/ > diam� C 1. Then A D B and b5, the entrance
point of Œz; z2� into xN �.B/, is also the entrance point of Œz; x� into xN �.A/. As z2 is the
entrance point of Œz; x� into xN � .A/, Lemma 4.31 implies that dist.z2; b5/ D O.1/.

By construction b3 2 Œz2; b5�, hence dist.b3; z2/ D O.1/. On the other hand
dist.b3; z2/ � dist.w; Œy; z�/ � 2� � 2� � ı � 6� � 2� � ı. Thus for � large enough
we obtain a contradiction.

Case 3. Assume that both geodesic triangles xyz and xzw have central pieces, that
is, they are in case (P) of Definition 4.27. Then there exists A1 in A such that xN � .A1/

intersects all the edges of xyz. Moreover the pairs of entrance points in xN � .A1/,
.x1; x2/, .y1; y2/ and .z1; z2/ are all at respective distances less than ı. Likewise
there exists A2 in A such that xN � .A2/ intersects all the edges of xzw, and the pairs
of entrance points in xN � .A2/, .x0

1; x0
2/, .z0

1; z0
2/ and .w1; w2/ are all at distances less

than ı (see Figure 8). �

�

�

�
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y z
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xN � .A1/
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xN � .A2/

x1
x2

y1

y2
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z3

z2

x0
1

w1

w2
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1

z0
2

z4

x0
2

Figure 8. Case 3 in the proof of Lemma 4.33.

If � > ı then y1; y2 2 B.y; 2�/ and w1; w2 2 B.w; 2�/.
If A1 D A2 D A then x1 D x0

2, z2 D z0
1, hence dist.x0

1; x2/ and dist.z1; z0
2/ are

less than 2ı. If � > 2ı it follows that x0
1; x2 2 B.x; 2�/ and that z1; z0

2 2 B.z; 2�/.
Thus x; y; z; w 2 xN 2�C� .A/, which by .Qconv/ implies that P � N�.A/ for

 > t.2� C �/.

Assume that A1 ¤ A2. Then Œx1; z2� and Œx0
2; z0

1� are either disjoint or they
intersect in a sub-geodesic of length at most diamt�C1.
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Let � D t max.�; �/C1. If either Œx1; z2� or Œx0
2; z0

1� is of length at most diam� C1

then either fx2; x1; z1g or fz0
1; z0

2; x0
1g is of diameter at most diam� C1C2ı. Therefore

we find ourselves in Case 2.B, with the constant � possibly larger. We can then finish
the argument as in that case.

If both Œx1; z2� and Œx0
2; z0

1� have length larger than diam� C1 and their intersection
is non-empty then either x0

1 and z1 or x2 and z0
2 are at distance at most 2ıCdiamt�C1.

If � > 2ı C diamt�C1 then this is impossible. We may therefore assume that Œx1; z2�

and Œx0
2; z0

1� do not intersect, and are both of length larger than diam� C 1.
Without loss of generality we may also assume that Œx1; z2� � Œx; x0

2/ holds.
Lemma 4.32 applied to the geodesic Œx; x0

1� and the point z2 2 Œx; x0
2� implies that

either z2 2 xN �.Œx; w�/ or z2 2 xN �.A3/, where xN �.A3/ intersects Œx; x0
1�, and the

entrance and exit points z3; z4 of Œx; x0
2� in xN �.A3/ are at distance at most � from

Œx; x0
1� (see Figure 8). If � > ı C � then the first case cannot occur. In the second

case we have that dist .z2; fz3; z4g/ > � � ı � �. In particular we may assume
that dist.z2; z3/ > diam� C 1. We also have the assumption that dist.x1; z2/ >

diam� C 1. Then Œx1; z2� \ Œz3; z2� has diameter > diam� and it is contained in
xN t� .A1/ \ xN t�.A3/. Therefore A1 D A3. In particular z4, the exit point of Œx; x0

2�

from xN �.A1/, and z2, the exit point of Œx; z� (therefore also of Œx; x0
2�) from xN � .A1/

are at distance O.1/ by Lemma 4.31. It follows that z1 and Œx; w� are at distance
O.1/, and if � is large enough this gives a contradiction. �

Lemma 4.35. Let .X; dist/ and A satisfy the hypotheses of Lemma 4.33. Then in
any asymptotic cone of X property .…2/ is satisfied by the collection of limit sets A!

(i.e., any simple non-trivial bigon with edges limit geodesics is contained in a subset
from A!).

Proof. In an asymptotic cone Con! .X I e; d/ consider a simple bigon of endpoints
x; y whose edges are limit geodesics. Then there exist two sequences of geodesics
Œxn; yn� and Œx0

n; y0
n� such that !-almost surely dist.xn; x0

n/ and dist.yn; y0
n/ are of

order o.dn/, while dist.xn; yn/ and dist.x0
n; y0

n/ are of order O.dn/. Let mn and m0
n

be the middlepoints of Œxn; yn� and respectively of Œx0
n; y0

n�. Let ın be the maximum
between dist.Œxn; mn�; Œx0

n; m0
n�/ and 	� , where � and 	 are the constants provided by

Lemma 4.33. Then ın D !o.dn/. Similarly, ı0
n D max fdist.Œmn; yn�; Œm0

n; y0
n�/; 	�g

satisfies ı0
n D! o.dn/. Let x1

n be the farthest from xn point on Œxn; mn� at distance
ın from Œx0

n; m0
n�, and let x2

n be the farthest from x0
n point on Œx0

n; m0
n� at distance ın

from x1
n. We choose in a similar manner y1

n 2 Œyn; mn� and y2
n 2 Œy0

n; m0
n�. Since

the limit bigon is simple, it follows that the sets fxn; x0
n; x1

n; x2
ng and fyn; y0

n; y1
n; y2

ng
have diameters of order o.dn/ !-almost surely.

We prove that any quadrilateral having as two opposite edges Œx1
n; y1

n� � Œxn; yn�

and Œx2
n; y2

n� � Œx0
n; y0

n� is .�; 	/-fat. This suffices to finish the argument, making use
of Lemma 4.33.
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.Fat1/: By construction dist.Œx1
n; y1

n�; Œx2
n; y2

n�/ � 	� , while the edges Œx1
n; x2

n� and
Œy1

n; y2
n� are at distance O.dn/ from each other. The rest of the property follows by

Lemma 4.7.

Property .Fat2/ follows immediately from the fact that dist.Œx1
n; y1

n�; Œx2
n; y2

n�/ �
	� and that dist.Œx1

n; x2
n�; Œy1

n; y2
n�/ D O.dn/. �

The following statement ends the proof of Theorem 4.30.

Lemma 4.36. Let .X; dist/ be .�/-ATG with respect to A. If .X; A/ moreover satisfy
properties .˛1/ and .˛2/ then in any asymptotic cone of X property .…3/ is satisfied.

Proof. Let Con! .X I e; d/ be an arbitrary asymptotic cone of X and let A! be the
collection of limit sets of sequences from A. Since .˛1/&.˛2/ ) .Qconv/ it follows
that the sets in A! are geodesic. Also .˛1/&.˛2/ imply that distinct limit sets from
A! intersect in at most one point, i.e. property .T1/.

Let � be a non-trivial simple geodesic triangle in Con! .X I e; d/, whose edges
Œx; y�, Œy; z� and Œz; x� appear as limits of sequences Œxn; y0

n�, Œyn; z0
n� and Œzn; x0

n� of
geodesics in X . Then !-almost surely dist.xn; x0

n/; dist.yn; y0
n/ and dist.zn; z0

n/ are
of order o.dn/, while the lengths of Œxn; y0

n�, Œyn; z0
n� and Œzn; x0

n� are of order O.dn/.
Let Tn be a geodesic triangle with vertices xn; yn; zn. We denote its edges by Œu; v�,
with u; v 2 fxn; yn; zng. The three limit geodesics gx D lim! .Œyn; zn�/, gy D
lim! .Œxn; zn�/ and gz D lim! .Œxn; yn�/ compose the limit triangle T D lim! .Tn/.

Case 1. Assume that !-almost surely the triangle Tn is in case (C) of Definition 4.27.
Then there exists a1

n 2 Œxn; yn�, a2
n 2 Œyn; zn� and a3

n 2 Œzn; xn� such that the set
fa1

n; a2
n; a3

ng has !-almost surely diameter at most 2� for some constant � . It follows
that lim!

�
a1

n

� D lim!

�
a2

n

� D lim!

�
a3

n

� D a. The point a is on the three edges
of T .

Without loss of generality we may assume that a 62 fx; yg. The fact that a ¤ x

implies that either gz ¤ Œx; y� or gy ¤ Œx; z�. Property .…2/ implies that we may
apply Proposition 3.9 to L1 D Œx; y�, L2 D Œx; z�, g1 D gz , g2 D gy and to the
intersection point a 2 gz \ gy . We conclude that the T -bigon formed by gz and gy

of endpoints a; x is contained in a subset Ax 2 A! .
Similarly we deduce that the T -bigon formed by gz and gx of endpoints a; y is

contained in a subset Ay 2 A! .
If a D z then gx � Ay , gy � Ax . Also a 62 Œx; y�, which by Lemma 3.7 implies

that a is contained in the interior of a simple T -bigon formed by Œx; y� and gz . By
property .…2/ this T -bigon is contained in some A 2 A! . The intersections A \ Ax

and A \ Ay contain non-trivial sub-arcs of gz therefore by .T1/ we conclude that
A D Ax D Ay . The subset A contains also gz .

Property .…2/ allows us to apply Lemma 3.8 to the pairs of arcs .gx; Œy; z�/,
.gy ; Œx; z�/ and .gz; Œx; y�/ and deduce that � D Œx; y� [ Œy; z� [ Œz; x� is contained
in A.
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If a ¤ z then again by Proposition 3.9 the T -bigon formed by gx and gy of
endpoints a; z is contained in a subset Az 2 A! . Since a is not a vertex in � it
is contained in at most one edge of �. Without loss of generality we assume that
a 62 Œx; y� [ Œy; z�.

The fact that a 62 Œx; y�, Lemma 3.7, properties .…2/ and .T1/ imply as above
that Ax D Ay . Likewise from a 62 Œy; z� we deduce that Ay D Az . Thus A D Ax D
Ay D Az contains T . Property .…2/ and Lemma 3.8 imply that � is also contained
in A.

Case 2. Assume that !-almost surely Tn is in case (P) of Definition 4.27. Then there
exist An in A such that xN � .An/ intersects all the edges of Tn. Moreover if .x2

n; y1
n/,

.y2
n; z1

n/ and .z2
n; x1

n/ are the pairs of entrance and exit points from xN � .A/ of Œxn; yn�,
Œyn; zn� and Œzn; xn� respectively, then dist.x1

n ; x2
n/ ; dist.y1

n ; y2
n/ and dist.z1

n ; z2
n/

are less than ı.
Let x0 D lim!

�
x1

n

� D lim!

�
x2

n

�
, y0 D lim!

�
y1

n

� D lim!

�
y2

n

�
and z0 D

lim!

�
z1

n

� D lim!

�
z2

n

�
.

Assume that fx0; y0; z0g has cardinality at most 2. Assume for instance that x0 D
y0. Then the point a D x0 D y0 is in gx \ gy \ gz . With the same argument as in
Case 1 we deduce that both T and � are contained in some A 2 A! .

Assume now that fx0; y0; z0g has cardinality 3. The geodesic triangle T 0 of vertices
x0; y0; z0 and with edges contained in the edges of T is included in the piece A D
lim! .An/.

Proposition 3.9 implies that the T -bigon of endpoints x; x0 formed by gz and gy

is either trivial or contained in some Ax 2 A! . Similarly, the T -bigon of endpoints
y; y0 formed by gz and gx is either trivial or in some Ay , and the T -bigon of endpoints
z; z0 formed by gx and gy is either trivial or in some Az .

If x0 ¤ x then x0 cannot be contained both in Œx; y� and in Œx; z�. Suppose that
x0 62 Œx; y�. Then x0 is in the interior of a non-trivial simple T -bigon formed by gz

and Œx; y�. This T -bigon is contained in some Bx 2 A! by .…2/, and its intersections
with Ax and with A contain a non-trivial sub-arc of gz . Hence Ax D Bx D A. Thus
the T -bigon of endpoints x; x0 is contained in A.

In the same way we obtain that the T -bigons of endpoints y; y0 and z; z0 are
contained in A. Thus in all cases T � A, which by Lemma 3.8 implies that � � A.

�

5. Quasi-isometric rigidity of relatively hyperbolic groups

In this section we prove one of our main results: that if a group is asymptotically
tree-graded then it is relatively hyperbolic (Theorem 5.4). We begin by proving an
intermediate result: if a group has an equivariant asymptotically tree-graded structure
then it is relatively hyperbolic.
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Proposition 5.1 (equivariant ATG structure implies relative hyperbolicity). Consider
a finitely generated group endowed with a word metric .G; dist/, which is ATG with
respect to a collection of subsets B. Assume moreover that G permutes the subsets
in B.

Then G is either hyperbolic, or hyperbolic relative to a family of subgroups
fH1; : : : ; Hmg such that for each Hi there exists a unique Bi 2 B satisfying Hi �
Bi � NK.Hi / , where K is a constant depending only on .G; dist/ and B.

Proof. Step 1. We first prove that only finitely many subsets in B may contain 1.
According to the quasi-convexity property .Qconv/ of B (see Theorem 4.22) there

exists � > 0 such that for any x; y in some B 2 B any geodesic Œx; y� is contained
in N� .B/. Property .˛1/ for B implies that there exists D� such that for B ¤ B 0,
N� .B/ \ N� .B 0/ has diameter at most D� .

Assume that B 2 B contains 1 and has diameter at most 3D� . Then B �
xB.1; 3D� /. As xB.1; 3D� / is finite, only finitely many B 2 B can be in this case.

Assume that B contains 1 and has diameter larger than 3D� . Then B contains
some point x with dist.1; x/ > 3D� . The geodesic Œ1; x� is contained in N� .B/ and
it intersects the sphere around 1 of radius 2D� , S.1; 2D� /. We define a map from the
set fB 2 B j 1 2 B; diam B > 3D�g to the set of subsets of S.1; 2D� /, associating
to each B the non-empty intersection N� .B/\S.1; 2D� /. By .˛1/ and the choice of
D� , two distinct subsets B; B 0 have disjoint images by the above map, in particular
the map is injective. Since the set of subsets of S.1; 2D� / is finite, so is the considered
subset of B.

Notation 5.2. Let F D fB1; B2; : : : ; Bkg be the set of B 2 B containing 1. For
every i 2 f1; 2; : : : ; kg let

�i D fj 2 f1; 2; : : : ; kg j gBi D Bj for some g 2 Gg:
For every j 2 �i we fix gj 2 G such that gj Bi D Bj .

Define the constants Ki D maxj 2�i
dist.1; gj / and K D max1�i�k Ki .

Step 2. We show that for every B 2 B the stabilizer Stab .B/ D fg 2 G j gB D Bg
is a subgroup of G acting K-transitively on B (in the sense of Definition 2.1).

Let x and b be arbitrary points in B . Both subsets b�1B and x�1B contain 1 and
are in B. It follows that b�1B D Bi and x�1B D Bj for some i; j 2 f1; 2; : : : ; kg.
Since b�1xBj D Bi it follows that j 2 �i and that Bj D gj Bi . The last equality
can be re-written as x�1B D gj b�1B which implies that xgj b�1 2 Stab.B/, hence
that x is at distance at most dist.1; gj / from Stab.B/b. This finishes the proof of the
fact that Stab .B/ acts K-transitively on B .

In particular we have that

Stab.Bi / � Bi � NK .Stab.Bi // for all i 2 f1; 2; : : : ; kg. (3)



540 C. Druţu CMH

Let diam2K be the uniform bound given by property .˛1/ for .G; B/ and ı D 2K

(see Notation 4.11).
If all the subsets in B have diameter at most diam2K C 1 then G is hyperbolic

by Corollary 4.21. Thus, in what follows we may assume that B contains subsets of
diameter larger than diam2K C 1.

Notation 5.3. Denote by B 0 the set of B 2 B of diameter larger than diam2K C 1.
Let F 0 D F \ B 0. Let F0 be a subset of F 0 such that for every B 2 F 0, its orbit

G 
 B intersects F0 in a unique element (such a subset can be obtained for instance
by considering one by one the elements Bi in F 0, and deleting from F 0 all Bj with
j 2 �i ; j ¤ i ). It follows that for every B 2 B 0, the orbit G 
 B intersects F0 in
only one element.

Let NB1; : : : ; NBm be the elements of F0.

Corollary 4.26 implies that G is ATG with respect to B 0. Obviously G also
permutes the subsets in B 0.
Step 3. We prove that for every B 2 B 0 there exists a unique j 2 f1; 2; : : : ; mg and
a unique left coset gStab

� xBj

�
such that

gStab
� xBj

� � B � NK

�
gStab

� xBj

��
: (4)

Step 3.a. Existence. Let g 2 B . Then g�1B 2 B 0 and 1 2 g�1B , and so g�1B D xBj

for some j 2 f1; 2; : : : ; mg. The double inclusion (3) implies the double inclusion (4).

Step 3.b. Unicity. Assume that gStab
� xBj

�
and g0Stab

� xBl

�
both satisfy (4), for

j; l 2 f1; 2; : : : ; mg. Then

g xBj � NK

�
gStab

� xBj

�� � NK .B/ � N2K

�
g0Stab

� xBl

�� � N2K

�
g0 xBl

�
:

Both g xBj and g0 xBl are in B 0, in particular g xBj has diameter at least diam2K C1.
Property .˛1/ implies that g xBj D g0 xBl . According to the definition of F0 this can
only happen if j D l . Then g�1g0 is in Stab

� xBj

�
, and g0Stab

� xBl

�
coincides with

gStab
� xBj

�
.

Step 4. We prove that the group G is hyperbolic relative to fH1; : : : ; Hmg, where
Hj D Stab

� xBj

�
.

The fact that G is ATG with respect to B 0, Step 3 and Remark 4.2, (2), imply
that G is ATG with respect to

˚
gHj j g 2 G=Hj ; j 2 f1; 2; : : : ; mg� : In particular

by .Qconv/ each Hj is quasi-convex in G, hence each Hj is finitely generated.
Theorem 1.5 implies that G is hyperbolic relative to H1; : : : ; Hm.

If G D Hj D Stab
� xBj

�
then (3) implies that G D xBj . �

We are now ready to prove that the existence of an asymptotically tree-graded
structure on a group implies relative hyperbolicity.
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Theorem 5.4. Let .G; dist/ be an infinite finitely generated group endowed with a
word metric, which is asymptotically tree-graded with respect to a collection A of
subsets of G.

Then the group G is either hyperbolic or relatively hyperbolic with respect to a
family of subgroups fH1; : : : ; Hmg, such that each Hi is contained in N~.Ai / for
some Ai 2 A, where ~ is a constant depending only on .G; dist/ and A.

Remark 5.5. If G is hyperbolic then it is hyperbolic relative to H D f1g. Still, in this
case one cannot state that H is contained in some N~.A/ with A 2 A, because in the
definition that we adopt of asymptotically tree-graded metric spaces the finite radius
tubular neighborhoods of sets A 2 A do not cover the whole space (see Remark 4.12).

Remark 5.6. The constant ~ in Theorem 5.4 can be taken to be the maximum between
the constant M in property .ˇ2/ (formulated in Theorem 4.22), and the constant 
 in
property .ˇ3/ (formulated in Section 4.2) of .G; A/.

Proof. In view of Proposition 5.1, our goal is to construct a new collection of subsets
B with respect to which the group G is ATG, and which is moreover G-equivariant.

Step 1. We begin by constructing the collection B.
The pair .G; A/ satisfies properties .˛1/, .ˇ2/ and .ˇ3/. By Corollary 4.21, if

for � > 0 and 	 � 8 from .ˇ3/ either there exists no .�; 	/-fat geodesic hexagon in
the Cayley graph of G, or the .�; 	/-fat geodesic hexagons have uniformly bounded
diameter, then G is hyperbolic.

Assume from now on that for every  > 0 there exists a .�; 	/-fat geodesic
hexagon of diameter at least .

For ~ as in Remark 5.6 and diam~ given by property .˛1/ of A (according to
Notation 4.11), consider the set

ˆ D fP geodesic hexagon j P is .�; 	/-fat, diam.P / � diam~ C 1g:
Let g be an arbitrary element in the group G. The metric space .G; dist/ is asymp-

totically tree-graded with respect to the collection of subsets gA D fgA j A 2 Ag,
moreover the constants in the properties .˛1/, .ˇ2/ and .ˇ3/ for gA are the same as
for A.

Let P 2 ˆ. Then P is contained in N~.gA/ for some A 2 A. If P is also
contained in N~.gA0/ for A0 2 A then N~.A/ \ N~.A0/ has diameter at least the
diameter of P , hence at least diam~ C 1, consequently A D A0. Thus P defines a
map

AP W G ! A; AP .g/ D A such that P � N~.gA/:

We may then define

A W ˆ ! Map .G; A/; A.P / D AP ;
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where Map .G; A/ is the set of maps from G to A. Consider the equivalence relation
on ˆ induced by A, that is

P � P 0 () A.P / D A.P 0/ () P and P 0 are in the same N~.gA/ for all g 2 G.

Let ŒP � be the equivalence class of a hexagon P in ˆ. To it we associate the set

BŒP � D
\

g2G

N~ .g AP .g// :

We consider the whole collection of such sets

B D fBŒP � j ŒP � 2 ˆ= �g :

Step 2. We prove that .G; dist/ is ATG with respect to B.
According to Proposition 4.24 it suffices to prove that .G; B/ satisfy property

.˛1/ from Theorem 4.9, property .ˇ2/ from Theorem 4.22, and property .ˇ
	
3 / from

Proposition 4.24, for some  > 0. The proof relies on the simple remark that for
every r > 0,

Nr .BŒP �/ �
\

g2G

NrC~ .g AP .g// :

We begin by proving property .˛1/ on the uniformly bounded diameter of inter-
sections of tubular neighborhoods of distinct subsets in B. Let ŒP � ¤ ŒP 0�, which
is equivalent to the fact that there exists g0 2 G such that P � N~ .g0A/ and
P 0 � N~ .g0A0/ with A ¤ A0. For every ı > 0,

Nı .BŒP �/ \ Nı

�
BŒP 0�

� � NıC~ .g0A/ \ NıC~

�
g0A0�

D g0

�
NıC~ .A/ \ NıC~

�
A0�� :

Property .˛1/ for A implies that the diameter of Nı .BŒP �/ \ Nı .BŒP 0�/ is
uniformly bounded.

We now prove .ˇ2/. Let � be the constant appearing in .ˇ2/ for A. Take �0 D �
2

and take M 0 D �C1
�

~. We prove that .ˇ2/ holds for B with the constants �0 and M 0.
Let g be a geodesic of length ` and let ŒP � 2 ˆ= � be such that g.0/ and g.`/ are in

N�0` .BŒP �/. It follows that for every g 2 G, g.0/ and g.`/ are in N�0`C~ .g AP .g//.
If ~ � �

2
` , ` � 2~

�
then g � xN ~

�
.fg.0/; g.`/g/ � N ~

� C~ .BŒP �/ D
NM 0 .BŒP �/.

Assume that ~ < �
2
`. Then for every g 2 G the geodesic g�1g of length ` has its

endpoints in N�` .AP .g//. Property .ˇ2/ implies that g�1g
��

`
3

; 2`
3

��
is contained

in NM .AP .g// � N~ .AP .g//.
We have thus obtained that g

��
`
3
; 2`

3

��
is contained in N~ .gAP .g// for every

g 2 G. It follows that g
��

`
3
; 2`

3

��
is contained in BŒP �.
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Property .ˇ
	
3 / holds for the constants � and 	 same as in .ˇ3/ for A, for the

constant 
 equal to 0, and  D diam~ C1. Indeed every P 2 ˆ is contained in BŒP �.

Step 3. We now show that the group G permutes the subsets in B.
First we note that if P � P 0 then gP � gP 0 for every g 2 G. Consequently G

acts on the left on ˆ= � .
Indeed, the set AP .�/ is defined by the inclusion P � N~ .�AP .�//. For every

g 2 G, gP � N~ .g�AP .�//, hence AgP .g�/ D AP .�/. From this can be deduced
that P � P 0 ) gP � gP 0.

Next we prove that for every g 2 G and P 2 ˆ, gBŒP � D BŒgP �, thereby ending
the proof of the fact that G permutes the subsets in B.

The translate gBŒP � D T
2G N~ .g� AP .�// is equal to

\

2G

N~

�
g� AgP .g�/

� D
\

 02G

N~

�
� 0 AgP .� 0/

� D BŒgP �:

Proposition 5.1 and the statements proved in Steps 2 and 3 imply the conclusion
of Theorem 5.4. �

An important consequence of Theorem 5.4 is the following.

Theorem 5.7. Let G be a group hyperbolic relative to a family of subgroups H D
fH1; : : : ; Hng. If a group G0 is .L; C /-quasi-isometric to G then G0 is hyperbolic
relative to H 0 D fH 0

1; : : : ; H 0
mg, where each H 0

i can be embedded .�; �/-quasi-
isometrically in Hj for some j D j.i/ 2 f1; 2; : : : ; ng. The constants .�; �/ depend
only on .L; C / and on .G; H /.

Proof. If the group G is finite then the group G0 is also finite. We assume henceforth
that both groups are infinite.

Let q be an .L; C /-quasi-isometry from G to G0, and let Nq be its quasi-converse,
such that dist.q B Nq; idG0/ � D and dist. Nq B q; idG/ � D, where D D D.L; C /.
By Theorem 1.5, G is ATG with respect to the collection of left cosets A D fgHi j
g 2 G=Hi ; i 2 f1; 2; : : : ; ngg. Theorem 5.1 in [DS05b] implies that G0 is ATG
with respect to q.A/ D fq.A/ j A 2 Ag. Moreover all constants appearing in the
properties .˛i /, i D 1; 2; 3 (formulated in Theorem 4.9), . ǰ /, j D 2; 3; and .Qconv/

(formulated in Theorem 4.22) for .G0; q.A// can be expressed as functions of .L; C /

and of the constants in the similar properties for .G; A/.
Theorem 5.4 implies that G0 is either hyperbolic or relatively hyperbolic with

respect to a family of subgroups fH 0
1; : : : ; H 0

mg; moreover each H 0
i is contained

in N~ .q .Ai // for some Ai 2 A, where ~ is a constant depending on .L; C /, on
the constant M in .ˇ2/ for .G; A/, and on the constant 
 in .ˇ3/ for .G; A/ (see
Remark 5.6).
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Let �1 W N~ .q .Ai // ! q .Ai / be a map such that dist.x; �1.x// � ~. Then �1

is a .1; 2~/-quasi-isometric embedding. Let �2 W ND.Ai / ! Ai be a .1; 2D/-quasi-
isometric embedding constructed similarly. The restriction to H 0

i of �2 B Nq B �1 is a
.�; �/-quasi-isometric embedding of H 0

i into Ai D gHj , for some j 2 f1; 2; : : : ; ng,
with .�; �/ depending on .L; C /, ~ and D.

If G0 is hyperbolic then G0 is relatively hyperbolic with respect to f1g ¤ fG0g
and all the statements in the theorem hold.

If G0 D H 0
i then G0 D N~ .q .Ai //, which implies that G � NC . Nq.G0// �

NL~C2C CD.Ai /. By Theorem 1.5, this contradicts the fact that G is (properly)
hyperbolic relative to H . �
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