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Hamiltonian pseudo-representations

Vincent Humilière

Abstract. The question studied here is the behavior of the Poisson bracket under C 0-pertur-
bations. For this purpose we introduce the notion of pseudo-representation and prove that the
limit of a converging pseudo-representation of any normed Lie algebra is a representation.

An unexpected consequence of this result is that for many non-closed symplectic manifolds
(including cotangent bundles), the group of Hamiltonian diffeomorphisms (with no assumptions
on supports) has no C�1 bi-invariant metric. Our methods also provide a new proof of the
Gromov–Eliashberg Theorem, which says that the group of symplectic diffeomorphisms is C 0-
closed in the group of all diffeomorphisms.
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1. Statement of results

1.1. Poisson brackets and C 0-convergence. We consider a symplectic manifold
.M;!/. A functionH onM will be said normalized if

R
M
H!n D 0 forM closed or

if H has compact support otherwise. We will denote C1
0 .M/ the set of normalized

smooth functions. Endowed with the Poisson brackets f �; �g, it has the structure of a
Lie algebra.

In the whole paper, we will denote XH the symplectic gradient of a smooth
function H , i.e., the only vector field satisfying dH D �XH

!. Then the Poisson
brackets are given by fH;Kg D dH.XK/.

Let g be a Lie algebra of finite dimension.

Definition 1. A sequence of linear maps

�n W g ! C1
0 .M/

is called a pseudo-representation if for any elements f; g 2 g, the sequence of smooth
functions

Bn.f; g/ D f�n.f /; �n.g/g � �n.Œf; g�/
converges uniformly to 0.
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If a pseudo-representation has a limit (i.e., if for any f 2 g there exists �.f / 2
C1
0 .M/, such that .�n.f // C 0-converges to �.f /), we may ask whether this limit

is a representation. If so, we would have

f�n.f /; �n.g/g ! f�.f /; �.g/g; for all f; g 2 g:

This has been proved in [2] for abelian Lie algebras. The main result of this paper is
that it holds for all finite dimensional Lie algebras.

Theorem 2. For any finite dimensional Lie algebra, the limit of a converging pseudo-
representation is a representation.

Remark 1. This result generalizes Gromov–Eliashberg’s theorem of C 0 closure of
the symplectomorphism group in the group of diffeomorphisms.

Indeed, a diffeomorphism of R2n is symplectic if and only if its coordinate func-
tions .fi /; .gi / satisfy

ffi ; gj g D ıij ; ffi ; fj g D fgi ; gj g D 0:

Thus we can easily see that a sequence of symplectomorphisms gives a pseudo-
representation of a 2-nilpotent Lie algebra. If the support of the coordinate functions
were compact, we could immediately apply Theorem 2. In fact, for compactly sup-
ported symplectomorphisms, these functions are affine at infinity, and we have to
adapt the proof to this case (See Appendix 2.3 for details).

Remark 2. Consider the following question: If Fn, Gn and fFn; Gng respectively
converge to F , G and H (all function being smooth and normalized, and all conver-
gence being in the C 0 sense), is it true that fF;Gg D H?

Theorem 2 states that the answer is positive when there is some Lie algebra
structure. Nevertheless, in general, the answer is negative, as shows the following
example, which is derived from Polterovich’s example presented in Section 2.3. Let
� be a compactly supported smooth function on R, and set the following functions
on R2:

Fn.q; p/ D �.p/p
n

cos.nq/;

Gn.q; p/ D �.p/p
n

sin.nq/:

It is easy to see that Fn and Gn converge to 0, but that their Poisson brackets equal
�.p/�0.p/ ¤ 0.

This example shows that when the Poisson brackets C 0-converge, then their limit
is not necessarily the brackets of the respective limits. But in that case, we can see
that the Hamiltonians Fn and Gn do not generate a pseudo-representation.
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Remark 3. It will be clear from the proof that, in fact, Theorem 2 holds for Lie
algebras that are not necessarily finite dimensional, but for which there exits a norm
that makes the Lie bracket continuous. In these settings, a pseudo-representation will
be a sequence of bounded linear maps �n W g ! C1

0 .M/, such thatBn converges to 0
as bilinear forms on g taking their values in C1

0 . Here, of course, C1
0 is endowed

with the C 0 norm. A pseudo-representation will also be converging if it converges
as a sequence of bounded linear maps.

Remark 4. The theorem holds if we replace the symplectic manifold with a general
Poisson manifold. Indeed, Poisson manifolds are foliated by Poisson submanifolds
that are symplectic, and we just have to apply Theorem 2 to each leaf.

Remark 5. The theorem leads us to the following definition:

A continuous Hamiltonian representation of a finite dimensional Lie algebra g
is a linear map g ! C 0.M/ which is the C 0-limit of some pseudo-representation
of g.

We will not study this notion further in this paper. Nevertheless let us give some
example.

Let � W g ! C1
0 .M/ be a smooth Hamiltonian representation in the usual sense,

and let ' be a homeomorphism of M which is the C 0-limit of a sequence of sym-
plectomorphisms. Then �0 W g ! C 0.M/, given by �0.g/ D �.g/ B ', is clearly a
continuous Hamiltonian representation.

Remark 6. A very similar proof would give the following statement (we denote
ad.G/ the map F 7! fF;Gg):

If we have sequences of smooth functions Fn, Gn that converge uniformly to
smooth functions F , G, if for any integer k,

ad.Gn/
kFn converges uniformly in C1

0 .M/;

and if these convergences are uniform in k, then

fF;Gg D lim
n!1fFn; Gng:

Remark 5 above is a motivation for stating Theorem 2 in its given form instead of
this one.

Question 1. Given two sequences of Hamiltonians .Fn/, .Gn/ that C 0-converge to
smooth F and G, is there some sufficient condition for the bracket fF;Gg not to be
the limit of the brackets fFn; Gng? Propositions 11 and 12 give restrictions on the
possible counter-examples.
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Question 2. Let us consider the following number introduced by Entov, Polterovich
and Zapolsky in [3]:

‡.F;G/ D lim inf
"!0

˚kfF 0; G0gk j kF � F 0kC0 < "; kG �G0kC0 < "
�

The result of Cardin and Viterbo mentioned above which is exactly Theorem 2 in the
abelian case can be restated as follows:

‡.F;G/ > 0 if and only if fF;Gg ¤ 0:

With various methods, Buhovski, Entov, Polterovich and Zapolsky have improved
this result by proving ‡.F;G/ D kfF;GgkC0 (see [3], [18], [4] and [1]). We may
wonder whether there exist similar results in the non abelian case.

1.2. Bi-invariant distances. Recall that a bi-invariant distance on a group G is a
distance d on G such that for any �; ; � in G,

d.�;  / D d.��; �/ D d.��; � /:

We now introduce the concept of C�1 distance. We denote H .M/ the group of
Hamiltonian diffeomorphisms on M . If we denote �tH the flow generated by XH (if
it exists), and �H D �1H the time-1 map, H .M/ is the set of all diffeomorphisms
� for which there exists a path of Hamiltonian functions Ht 2 C1.M/ such that
� D �H . We also denote Hc.M/ the subgroup of diffeomorphisms generated by
compactly supported Hamiltonian functions.

Definition 3. We will say that a distance d on H .M/ is C�1 if its composition
with the map ˆ W H 7! �1H is a continuous map ˆ�1.G / � ˆ�1.G / ! R, where
ˆ�1.G / � C1.R �M/ is endowed with the compact-open topology.

IfM is not compact, and if d is only defined on Hc.M/we will say that d isC�1
if the restriction of the above map to compactly supported Hamiltonian functions is
continuous.

There are several examples of C�1 bi-invariant distances defined on Hc.M/,
as, for example, Hofer’s metric defined for any M (see [9] or [8]), Viterbo’s metric
defined for M D R2n (see [17]), and its analogous version defined by Schwarz in
[14] for symplectically aspherical closed symplectic manifolds.

As far as we know, if we remove the assumption of the compactness of the support,
the question whether there exist such distances is still open. Here we prove that the
answer is negative for a large class of symplectic manifolds.

Let .N; �/ be a contact manifold with contact form ˛ (i.e., a smooth manifold
N with a smooth hyperplane section � which is locally the kernel of a 1-form ˛

whose differential d˛ is non-degenerate on �). Its symplectization is by definition the
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symplectic manifold �N D R �N endowed with the symplectic form ! D d.es˛/,
where s denotes the R-coordinate in R � N . For any contact form ˛, one can
define the Reeb vector field XR by the identities �XR

d˛ D 0 and ˛.XR/ D 1. The
trajectories ofXR are called characteristics. The question of the existence of a closed
characteristic constitutes the famous Weinstein’s conjecture. It has now been proved
for large classes of contact manifolds (see e.g. [5], [6], [7], [13], [12], [16], [15],...).

Let us now state our result that will be proved in Section 2.3

Theorem 4. If M is the symplectization of a contact manifold whose dimension is
at least 3 and that admits a closed characteristic, then there is no C�1 bi-invariant
metric on H .M/.

Corollary 5. If N is a smooth manifold whose dimension is at least 2 and if T �N is
its cotangent bundle, then there is no C�1 bi-invariant metric on H .T �N/.

Remark. At least in the case of manifolds of finite volume, there probably exists
non closed manifolds with such distances. Indeed, it follows from our previous work
[10] that Viterbo’s metric extends to Hamiltonian functions smooth out of a “small”
compact set. Replacing Viterbo’s metric with Schwarz’s metric, we can reasonably
expect to have: If M 2n is a closed symplectically aspherical manifold and K is a
closed submanifold of dimension 6 n� 2, then Schwarz’s metric on H .M/ extends
to H .M �K/.

2. Proofs

2.1. Identities for Hamiltonian pseudo-representations. The following lemma
concerns not only converging, but also bounded pseudo-representations, i.e., pseudo-
representations .�n/ such that the sequence of norms

k�nk D sup
kgk61

k�n.g/kC0

is bounded, for some norm k � k on g.

Lemma 6. Let .�n/ be a bounded pseudo-representation of a finite dimensional Lie
algebra g. Let f; g 2 g, then the sequence of Hamiltonian functions

�n.f / B �s�n.g/
�

C1X
jD0

�n.ad.g/jf /
sj

j Š

converges to zero for the C 0-norm onM . Moreover, the convergence is uniform over
the s’s in any compact interval.
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Remark. For a representation equality holds. It recalls the Baker–Campbell–Haus-
dorff formula.

Proof. First remark that the considered sum converges. Indeed, the C 0-norm of its
remainder can be bounded by the remainder of a converging sum, as follows:

���
C1X
jDN

�n.ad.g/jf /
sj

j Š

��� 6
C1X
jDN

Rkf k .sCkgk/j
j Š

:

where k � k is a norm on g, R is an upper bound for the sequence k�nk, and C the
induced norm of the Lie bracket.

Now, let us prove our lemma. Poisson equation gives

d

ds
.�n.f / B �s�n.g/

/ D f�n.f /; �n.g/g B �s�n.g/

and hence

�n.f / B �s0
�n.g/

D �n.f /C
Z s0

0

f�n.f /; �n.g/g B �s1
�n.g/

ds1

D �n.f /C
Z s0

0

�n.Œf; g�/ B �s1
�n.g/

ds1 C
Z s0

0

Bn.f; g/ B �s1
�n.g/

ds1:

Then, by a simple induction, we get for all integer N that

�n.f / B �s0
�n.g/

D
NX
jD0

�n.ad.g/jf /
s0
j

j Š
CRN;n.s0/C SN;n.s0/;

where

RN;n.s0/ D
Z s0

0

Z s1

0

� � �
Z sN

0

�n.ad.g/NC1f / B �sN C1

�n.g/
dsNC1 : : : ds1

and

SN;n.s0/ D
NX
jD0

Z s0

0

Z s1

0

� � �
Z sj

0

Bn.ad.g/jf; g// B �sj C1

�n.g/
dsjC1 : : : ds1:

Let us now denote

kBnk D supfkf�n.f /; �n.g/g � �n.Œf; g�/kC0 j kf k D kgk D 1g:
By assumptions kBnk converges to 0.
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Then

kRN;n.s0/kC0 6
Z s0

0

Z s1

0

� � �
Z sN �1

0

RkgkNCN kf k dsN : : : ds1;

6 Rkf kkgkNCN sN0
NŠ

;

which proves that RN;n.s0/ converges to 0 with N , uniformly in n.
In addition,

kSN;n.s0/k 6
N�2X
jD0

Z s0

0

Z s1

0

� � �
Z sj

0

kBnkkf kkgkj dsjC1 : : : ds1:

We thus have kSN;n.s0/k 6 kBnk kf k exp.sokgk/ for any N . As a consequence,
letting N converge to C1, we get

�����n.f / B �s�n.g/
�

C1X
jD0

�n.ad.g/jf /
sj

j Š

���� 6 kBnk kf k exp.sokgk/:

This achieves the proof because the right hand side converges to 0. �

2.2. Proof of Theorem 2. Let f; g 2 g. We want to prove that f�.f /; �.g/g D
�.Œf; g�/. We can assume without loss of generality that kgk < 1.

By Lemma 6,

�n.f / B �s�n.g/
�

C1X
jD0

�n.ad.g/jf /
sj

j Š

C0

��! 0:

Each term of the sum converges with n. Since the sum converges uniformly in n, we
get that for any s,

�n.f / B �s�n.g/

C0

��!
C1X
jD0

�.ad.g/jf /
sj

j Š
:

As a consequence, the flow generated by �n.f / B �s
�n.g/

� -converges to the flow

generated by
PC1
jD0 �.ad.g/jf / s

j

j Š
.

But on the other hand, the flow of�n.f /B�s�n.g/
is t 7! ��s

�n.g/
�t
�n.f /

�s
�n.g/

, which

� -converges to ��s
�.g/

�t
�.f /

�s
�.g/

. Indeed, �n.g/
C0

��! �.g/ and �n.f /
C0

��! �.f /

which implies that there respective flow � -converges.
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Therefore, t 7! ��s
�.g/

�t
�.f /

�s
�.g/

is the flow of
PC1
jD0 �.ad.g/jf / s

j

j Š
. The func-

tions being normalized,

�.f / B �s�.g/ D
C1X
jD0

�.ad.g/jf /
sj

j Š
:

Now, taking first derivative with respect to s, we get f�.f /; �.g/g D �.Œf; g�/. �

2.3. Proof of Theorem 4. Let us consider the following Hamiltonian functions
on R2 (this example is due to Polterovich) with symplectic form written in polar
coordinates rdr ^ d	 :

Fn.r; 	/ D rp
n

cos.n	/;

Gn.r; 	/ D rp
n

sin.n	/:

We see that fFn; Gng D 1 and that Fn and Gn converge to 0. Now, consider g
the 3-dimensional Heisenberg Lie algebra (i.e., the Lie algebra with basis ff; g; hg
such that Œf; g� D h and Œf; h� D Œg; h� D 0) and set �n.f / D Fn, �n.g/ D Gn
and �n.h/ D 1. Then �n is a pseudo-representation of g. The limit � of �n satisfies
�.f / D 0, �.g/ D 0, �.h/ D 1. Since f�.f /; �.g/g ¤ �.h/, � is not a representation
of g.

Since g has finite dimension, this example shows that Theorem 2 is false in general
if we replace C1

0 .M/ with C1.M/ for a non-compact manifold M , and uniform
convergence with the uniform convergence on compact sets (compact-open topology).

If we carefully read the proof of Theorem 2, we see that the whole proof can be
repeated in these settings except for the three following points where the compactness
of supports is needed

� Each time we consider the flows of the Hamiltonians, they must be complete. This
is automatic for compactly supported Hamiltonians, but false in general. With the
notation of the proof, the flows needed are those of �n.f /, �.f /, �n.g/, �.g/ andPC1
jD0 �.ad.g/jf / s

j

j Š
.

� The functions �n.f /, �.f /, �n.g/, �.g/ have to be normalized in some sense.

� We use a C�1 bi-invariant metric. This exists on Hc.M/, but we do not know
whether it exists on H .M/.

The following lemma follows from the above discussion.

Lemma 7. Let M be a non-compact symplectic manifold, g a normed Lie algebra,
and �n a pseudo-representation of g in C1.M/, with limit �. Suppose there exist
two elements f and g in g, such that:
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� all the Hamiltonian functions �n.f /, �.f /, �n.g/, �.g/ and
PC1
jD0 �.ad.g/jf / s

j

j Š

exist and have complete flows,

� there exists an open set on which all the functions �n.f /, �.f /, �n.g/, �.g/ vanish
identically.

� f�.f /; �.g/g ¤ �.Œf; g�/.

Then the group of Hamiltonian diffeomorphisms H .M/ admits noC�1 bi-invari-
ant metric. �

Proof of Theorem 4. We want to apply Lemma 7. We first consider the case of S1.
In that case we are not able to get the second requirement of Lemma 7, but let us
show how we get the others.

We just adapt Polterovich’s example by setting:

�n.f /.s; 	/ D es=2p
n

cos.n	/;

�n.g/.s; 	/ D es=2p
n

sin.n	/:

The symplectic form being defined on R � S1 by d.esd	/ D esds ^ d	 , we get
f�n.f /; �n.g/g D 2. Since �.f / D �.g/ D 0 we have a pseudo-representation of
the 3-dimensional Heisenberg Lie algebra, and its limit is not a representation. We
can also verify that all elements �n.f /, �.f /, �n.g/, �.g/ and

PC1
jD0 �.ad.g/jf / s

j

j Š

exist and have complete flows for f , g generators of the 3-dimensional Heisenberg
Lie algebra, and �n; � as in the example.

Since �.f / D 0, �.g/ D 0 and
PC1
jD0 �.ad.g/jf / s

j

j Š
D 2s, this is obvious for

them.
The Hamiltonian vector field of �n.f / is

�
e�s=2pn sin.n	/

� @
@	

�
�

1

2
p
n
e�s=2 cos.n	/

�
@

@s
;

which is equivalent through the symplectomorphism

.R � S1; d.esd	// ! .R2 � f0g; rdr ^ d	//; .s; 	/ 7! .e�s=2; 	//;

to the vector field

�
r
p
n sin.n	/

� @

@	
C

�
1p
n

cos.n	/
�
@

@r
:

The norm of this vector field is bounded by a linear function in r . Therefore, it is a
consequence of Gronwall’s lemma that it is complete.
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Let us consider now the case d D dim.N / > 3. There, we will be able to get all
the requirements of Lemma 7. Denote by � a closed characteristic, parameterized by
	 2 S1. Since the Reeb vector field is transverse to the contact structure � , there exists
a diffeomorphism that maps a neighborhood V0 of the zero section in the restricted
bundle �j� onto a neighborhood V1 of � in the contact manifold N . Since �j� is a
symplectic bundle over S1, it is trivial. We thus have a neighborhood U of 0 in R2n

and a diffeomorphism  W S1 � U ! V1 � N . The pull back of � by  is a contact
structure on S1�U which is contactomorphic (via Moser’s argument) to the standard
contact structure d	 �pdq on S1 �U . Therefore, the above diffeomorphism  can
be chosen as a contactomorphism.

Then the symplectization �� of the closed characteristic gives a symplectic em-
bedding �S1 ,! �N . This embedding admits �.S1�U/ as a neighborhood. More-
over, if we denote s, 	 and x the coordinates in �.S1 � U/,  has been constructed
so that s and 	 are conjugated variables and the direction of x is symplectically
orthogonal to those of s and 	 . That will allow the following computations.

Just like in the above example, we have a pseudo-representation of g if we consider

.�n.f //.s; 	; x/ D �.x/es=2p
n

cos.n	/;

.�n.g//.s; 	; x/ D �.x/es=2p
n

sin.n	/; (1)

and .�n.h//.s; 	; x/ D 2�.x/2. Indeed, we have again f�n.f /; �n.g/g D �n.h/, but
its limit � satisfies f�.f /; �.g/g D 0 ¤ 1 D �.h/ and is not a representation. The
fact that the elements �n.f /, �.f /, �n.g/, �.g/ and

PC1
jD0 �.ad.g/jf / s

j

j Š
exist and

have complete flows follows from the case d D 1. �

Proof of Corollary 5. LetM be a smooth manifold, and choose a Riemannian metric
on it. Then, consider the symplectization �ST �M of the sphere cotangent bundle
ST �M . The cotangent bundle can be seen as the compactification of �ST �M , the
set at infinity being the zero section of T �M (or f�1g � ST �M if we see �ST �M
as R � ST �M ).

The Reeb flow of ST �M projects itself to the geodesic flow on M , and the
closed characteristics are exactly the trajectories that project themselves to closed
geodesics. Since any closed manifold carries a closed geodesic (see [11]), we can
consider Example (1). It clearly extends to the compactification (the Hamiltonian
functions involved and all their derivatives converges to 0 when s goes to �1), and
we can achieve the proof as for Theorem 4. �
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Appendix A. A proof of the Gromov–Eliashberg theorem

In this section we show how our methods allow to recover the Gromov–Eliashberg
theorem.

Theorem 8 (Gromov, Eliashberg). The group of compactly supported symplectomor-
phisms Sympc.R

2n/ is C 0-closed in the group of all diffeomorphisms of R2n.

Proof. Let �n be a sequence of diffeomorphisms that converges uniformly to a
diffeomorphism �. Denote .f ni /; .g

n
i / (resp. fi ; gi ) the coordinate functions of �n

(resp. �). These coordinate functions can be seen has Hamiltonian functions affine
at infinity (i.e., that can be written H C u with H 2 C1

c .R
2n/ and u affine map).

Moreover, for a given sequence .f ni / or .gni /, the linear part does not depend on n.
Since �n is symplectic, we have

ff ni ; gnj g D ıij ; ff ni ; f nj g D fgni ; gnj g D 0:

Thus the coordinate functions of �n give a pseudo-representation of the 2-nilpotent
Lie algebra g generated by elements ai ; bi ; c, with the relations

Œai ; bj � D ıij ; Œai ; aj � D Œbi ; bj � D 0; and Œai ; c� D Œbi ; c� D 0:

Since � is symplectic if and only if

ffi ; gj g D ıij ; ffi ; fj g D fgi ; gj g D 0

the proof will be achieved if we prove that the limit of this pseudo-representation is
a representation. Consequently, we have to adapt the proof of Theorem 2 to the case
of Hamiltonian functions affine at infinity, for 2-nilpotent Lie algebras. Gromov–
Eliashberg Theorem then follows from the next two lemmas.

Lemma 9. Letu, v be two affine maps R2n ! R andHn,Kn be compactly supported
Hamiltonians, such that

Hn ! H; Kn ! K; fHn C u;Kn C vg ! 0:

Then fH C u;K C vg D 0.

Lemma 10. Let u, v, w be linear forms on R2n, and let Hn, Kn, Gn be compactly
supported Hamiltonians such that

Hn ! H; Kn ! K; Gn ! G;

fHn C u;Gn C wg ! 0; fKn C v;Gn C wg ! 0;

fHn C u;Kn C vg � .Gn C w/ ! 0:

Then fH C u;G Cwg D 0, fK C v;G Cwg D 0 and fH C u;K C vg D G Cw.
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Let us consider aC�1 bi-invariant distance � on Hc.R2n/which is invariant under
the action of affine at infinity Hamiltonians (such a condition is clearly satisfied by
Hofer’s distance). For a sequence of Hamiltonian functions that are affine at infinity
with the same affine part, we can speak of its limit for � by setting:

.�HnCu/
�! �HCu if and only if �..�HCu/�1�HnCu; Id/ ! 0:

Moreover, if .�HnCu/
�! �HCu and .�KnCv/

�! �KCv then

.�HnCu�KnCv/
�! �HCu�KCv:

Indeed, we have

�..�HnCu�KnCv/�1.�HCu�KCv/; Id/
D �.��1

KCv.��1
HCu�HnCu/�KCv.��1

KCv�KnCv/; Id/
6 �.��1

HCu�HnCu; Id/C �.��1
KCv�KnCv; Id/:

Finally notice that if kHn �HkC0 ! 0, then �HnCu
�! �HCu.

We are now ready for our proofs.

Proof of Lemma 9. We just adapt the proof of Cardin and Viterbo [2] to the “affine
at infinity” case.

First remark that the assumptions imply fu; vg D 0. Then a simple computation
shows that the flow

 tn D �tHnCu�sKnCv��t
HnCu��s

KnCv
is generated by the Hamiltonian function affine at infinityZ s

0

fHn C u;Kn C vg.��KnCv�tHnCu.x// d
;

which C 0-converges to 0 D fu; vg by assumption. Therefore,  tn converges for
any s and any t to Id. But on the another hand, according to the above remark, it
converges to �tHCu�sKCv��t

HCu��s
KCv . Hence �tHCu�sKCv��t

HCu��s
KCv D Id which

proves fH C u;K C vg D 0. �

Proof of Lemma 10. First notice that the assumptions imply fu; vg D w, fu;wg D 0

and fv;wg D 0, and that the equalities fH C u;G Cwg D 0, fK C v;G Cwg D 0

follow from Lemma 9. Here we consider the flow

 tn D ��ts
GnCw�tHnCu�sKnCv��t

HnCu��s
KnCv

which is generated by
�

� s.Gn C w/C
Z s

0

fHn C u;Kn C vg.��KnCv�tHnCu/ d

�

B �tsGnCw :
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This expression can be written�Z s

0

.An C Bn/ d


�
B �tsGnCw ;

where

An D Gn �Gn.��KnCv�tHnCu/
and

Bn D .fHn C u;Kn C vg � .Gn C w//.��KnCv�tHnCu/:

By assumption, Bn C 0-converges to 0 and An can be written:

An D .Gn �Gn.�tHnCu//C .Gn �Gn.��KnCv// B �tHnCu

D
Z t

0

fGn;Hn C ug d� C
�Z �

0

fGn; Kn C vg d�
�

B �tHnCu

D
Z t

0

fGn C w;Hn C ug d� C
�Z �

0

fGn C w;Kn C vg d�
�

B �tHnCu;

which implies that An C 0-converges to 0 too. It follows that the generating Hamil-
tonian of  tn C

0-converges to 0, and hence that  tn � -converges to Id. Since it also
converges to  t WD ��ts

GCw�tHCu�sKCv��t
HCu��s

KCv , we get  t D Id for any s and t .

Thus, the generating Hamiltonian of  t vanishes identically:�
�s.G C w/C

Z s

0

fH C u;K C vg.��KCv�tHCu/d

�

B �tsGCw D 0:

But since G C w commutes with H C U and K C v, we getZ s

0

.fH C u;K C vg � .G C w//.��KCv�tHCu/d
 D 0:

Taking derivative with respect to s, we obtain fH Cu;KC vg � .GCw/ D 0. �

Appendix B. A few additional remarks using the theory of distributions

The following results on Poisson brackets are obtained with the help of distribu-
tions. No assumptions are made on the Lie algebra generated by the Hamiltonian
functions. They show in a certain way why it is difficult to find examples of pseudo-
representations whose limit is not a representation.

Proposition 11. IfFn C 2-converges toF andGn C 0-converges toG. Then fFn; Gng
converges to fF;Gg in the sense of distributions. As a consequence, if fFn; Gng C 0-
converges to H , then fF;Gg D H .
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Proof. For any smooth compactly supported function �,

hfFn; Gng; �i D
Z
@Gn

@q

@Fn

@p
� �

Z
@Gn

@p

@Fn

@q
�

D �
Z
Gn

@

@q

�
@Fn

@p
�

�
C

Z
Gn

@

@p

�
@Fn

@q
�

�
:

By assumption, the integrands C 0-converge and hence the integrals converge to
� R

G @
@q

�
@F
@p
�

� C R
G @
@p

�
@F
@q
�

�
which equals hfF;Gg; �i. �

Proposition 12. If Fn C 0-converges to F , Gn C 0-converges to G and fFp; Gqg
C 0-converges to H when p and q go to infinity, then fF;Gg D H .

Proof. Take once again a compactly supported smooth function �. Write

hfFp; Gqg � fF;Gg; �i D hfFp � F;Gqg; �i C hfF;Gq �Gg; �i:
By Proposition 11, the first term converges to 0. Hence for all " > 0, there exists an
integer q0 such that for any q > q0, jhfF;Gq �Gg; �ij 6 ".

Similarly, for each fixed q, there exists an integer p0 such that for any p > p0,ˇ̌hfFp � F;Gqg; �iˇ̌ 6 ".
Therefore, for all " and all integers p1; q1, we can find p > p1; q > q1 such thatˇ̌hfFp; Gqg � fF;Gg; �iˇ̌ 6 2".
Thus we can construct two extractions�; such that hfF�.n/; G .n/g�fF;Gg; �i

converges to 0. Since we have hfF�.n/; G .n/g�H;�i ! 0, it implies hfF;Gg; �i D
hH;�i, and this equality holds for any �. �
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