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Totally umbilic surfaces in homogeneous 3-manifolds
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Abstract. We discuss existence and classification of totally umbilic surfaces in the model
geometries of Thurston and the Berger spheres. We classify such surfaces in H2 � R, S2 � R
and the Sol group. We prove nonexistence in the Berger spheres and in the remaining model
geometries other than the space forms.
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1. Introduction

During the recent years, there has been a rapidly growing interest in the geometry of
surfaces in S2 � R and H2 � R focusing on minimal and constant mean curvature
surfaces. This was initiated by H. Rosenberg, [16]. More generally many works are
devoted to studying the geometry of surfaces in homogeneous 3-manifolds. See for
example [14], [6], [7], [17], [15], [12], [13], [11], [9], [4], [2], [10], [5] and [8].

In the space forms the classification of totally umbilic surfaces is well known and
very useful, see [21]. In R3 they are planes and round spheres and in S3 they are round
spheres. In H3 they are totally geodesic planes and their equidistants, horospheres
and round spheres. In particular they all have constant mean curvature.

A natural question is to understand the totally umbilic surfaces in the remaining
homogeneous 3-manifolds. Until now the only known result in this direction was the
non-existence of totally umbilic surfaces in the Heisenberg space due to A. Sanini,
see [17]. In this paper we study totally umbilic surfaces in simply connected and
homogeneous 3-manifolds. More precisely we first consider the manifolds having a
4-dimensional isometry group, denoted by M3.�; �/ (see Section 2). Namely these
manifolds are S2.�/ � R (� > 0; � D 0), H2.�/ � R (� < 0; � D 0), the Berger
spheres (� > 0; � 6D 0) and the manifolds having the isometry group of either the
Heisenberg space (� D 0; � 6D 0) or CPSL2.R/ (� < 0; � 6D 0), see [3], [19] or [22].
Except for the Berger spheres, these manifolds are four of the eight model geometries
of Thurston [22]. The remaining model geometries are the three space forms and the
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Sol geometry which has a 3-dimensional isometry group. As a matter of fact we also
consider the Sol geometry.

In Section 2 we prove (Theorem 1) the non-existence of totally umbilic surfaces, in
particular the non-existence of totally geodesic ones, in the homogeneous manifolds
M3.�; �/ for � 6D 0, that is those which are not Riemannian products. This extends
the result of Sanini, [17].

In Section 3 we construct and classify all rotational and totally umbilic surfaces
in S2.�/ � R. In Section 4 we construct and classify all totally umbilic surfaces in
H2.�/ � R which are invariant under a one-parameter group of ambient isometries.
Except for the totally geodesic ones, these surfaces do not have constant mean cur-
vature. In Section 5, we prove that the surfaces obtained in Sections 3 and 4 are the
only totally umbilic surfaces in respectively S2.�/ � R and H2.�/ � R.

In Section 6 we show that there exist, up to ambient isometries, only two totally
umbilic surfaces in Sol, one of them being totally geodesic.

Finally, in Section 7 we apply our results to prove that any conformal diffeomor-
phism of H2 � R; S2 � R and Sol is an isometry.

Throughout this paper all the surfaces are assumed of class C 3, see however the
remark 18.

We are grateful to H. Rosenberg for valuable comments and to the referee for his
observations which improved the paper.

2. Non-existence of totally umbilic surfaces in some homogeneous 3-manifolds

In this section we consider the connected and simply connected homogeneous Rie-
mannian 3-manifolds, whose isometry group has dimension 4 and which are not Rie-
mannian products. We recall that such a manifold is a fibration over some complete
and simply connected surface, M2.�/, of constant curvature � 2 R, with geodesic
fibers. Actually, for each �, there is a one-parameter family M3.�; �/ of such fibra-
tions, parametrized by the bundle curvature � 2 R�. The unit vector field � tangent
to the fibers is a Killing field and satisfies

rX� D �.X ^ �/; (1)

for any tangent vector X in T M3.�; �/, where r is the connection on M3.�; �/.
The field � defines the vertical direction of the Riemannian submersion M3.�; �/ !
M2.�/. As a matter of fact, the bundle curvature � can be zero, but in this case
M3.�; 0/ is just a Riemannian product M2.�/ � R. These product manifolds will be
considered in the following sections. Moreover we assume � � 4�2 6D 0, otherwise
the manifold is a space form and its isometry group has dimension 6. These manifolds
are of three types: when � > 0 they are the Berger spheres, for � D 0 they have the
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isometry group of the Heisenberg space, Nil3, and for � < 0 they have the isometry
group of CPSL2.R/.

For more details we refer to [3], [19] and [22].
We can now state our result.

Theorem 1. There exist no totally umbilic surfaces (even non complete) in the 3-
manifolds M3.�; �/, with � 6D 0 and � � 4�2 6D 0. In particular, there are no totally
geodesic surfaces.

For the special case of the Heisenberg space ( � D 0; � D 1=2), we recover the
result proved by A. Sanini, see [17].

Proof. Let S be an immersed totally umbilic surface in M3.�; �/. Locally S is the
image of an embedding X W � ! M3.�; �/, where � is an open disk in R2. Call
.u; v/ the coordinates on � and consider a unit normal field N on X.�/. As X is
totally umbilic, there exists a function � W � ! R such that

rXu
N D �Xu;

rXv
N D �Xv:

Therefore
rXv

.rXu
N / D �vXu C �rXv

Xu;

rXu
.rXv

N / D �uXv C �rXu
Xv:

Subtracting the second equation from the first one we get

rXv
.rXu

N / � rXu
.rXv

N / D �vXu � �uXv;

that is,
R.Xu; Xv/N D �vXu � �uXv; (2)

where R denotes the curvature tensor of M3.�; �/.
We define the function � on � setting � WD hN; �i. We denote by T the projection

of � on S , that is T D � � �N .
As the projection M3.�; �/ ! M2.�/ is a Riemannian submersion, we have the

following formula derived by Daniel, see [7]:

R.Xu; Xv/N D .� � 4�2/� .hXv; T iXu � hXu; T iXv/ :

Taking into account the relation (2) we get

r� D .� � 4�2/�T; (3)

where r denotes the gradient on S .
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Observe that if T D 0 on a nonempty open set, then we can take N D � on this
set and we deduce from (1) that this surface cannot be umbilic. We can thus assume
that T does not vanish on �.

Set JT D N ^ T , thus JT is tangent to S and horizontal.

Claim. We have ŒT; JT � � 0.
We need to show that rT JT D rJT T . Since JT D N ^T D N ^ .� ��N / D

N ^ �, we have using (1)

rT JT D rT .N ^ �/ D rT N ^ � C N ^ rT � D �.T ^ �/ C �.N ^ .T ^ �//:

As T ^ � D T ^ .T C �N / D �.T ^ N / D ��JT , we deduce that

rT JT D ���JT C ��T:

On the other hand,

rJT T D rJT .� � �N / D �.JT ^ �/ � JT:.�/N � ��JT: (4)

We have

JT ^ � D JT ^ .T C �N / D JT ^ T C �JT ^ N D �jT j2N C �T; (5)

and
JT:.�/ D JT:hN; �i D hrJT N; �i C hN; rJT �i

D �hJT; �i C �hN; JT ^ �i D �hN; JT ^ �i:
Using (5) we obtain

JT:.�/ D �� jT j2: (6)

Inserting (5) and (6) in (4) we end with

rJT T D ��T � ��JT D rT JT;

which proves the claim.
Now (3) implies

JT:.�/ D 0;

T:.�/ D .� � 4�2/�jT j2 D .� � 4�2/�.1 � �2/

Since ŒT; JT � D 0, we get .� � 4�2/JT:.� � �3/ D 0. As � � 4�2 6D 0 we infer that
.1 � 3�2/JT:.�/ D 0. This implies easily

JT:.�/ D 0:

As JT:.�/ D �� jT j2, see (6), and � 6D 0, we deduce that T � 0, which is a
contradiction. This concludes the proof. �
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3. Symmetric totally umbilic surfaces in S2.�/ � R

In this section we classify totally umbilic surfaces which are rotationally invariant in
S2 �R. The classification in M2.�/�R, for any � > 0 is completely analogous. We
will see that besides the obvious totally geodesic ones, up to isometries of S2 � R,
there are two one-parameter families of complete totally umbilic rotationally invariant
surfaces homeomorphic to the two-sphere and a unique complete surface which has
the topology of R2. The surfaces of the first family are homologous to zero and those
of the second family are not. Moreover these surfaces are embedded, analytic and
any totally umbilic rotationally invariant surface is a part of one of these complete
surfaces.

A rotational surface in S2 � R is by definition a surface obtained by rotating a
curve in a totally geodesic cylinder C WD 	 �R, where 	 � S2 is a geodesic, around
an axis R D fpg � R where p is a fixed point of 	 .

In the coordinates .x; y; t/ given by the stereographic projection with respect to
the north pole, the metric on S2 � R reads as follows:

d Qs2 D
�

2

1 C x2 C y2

�2

.dx2 C dy2/ C d t2;

where x; y; t 2 R.
Up to an ambient isometry we can assume that 	 � S2 corresponds to the complete

geodesic defined by y D 0 and that p D .0; 0; 0/ 2 	 is the south pole of S2.
Therefore the axis is R D f.0; 0; t/; t 2 Rg.

Remark 2. Let us remark that for any given curve ˛ in the cylinder C , the surface
generated by rotating ˛ around the axis through the south pole, that is R, is the same
as the one generated by rotating ˛ around the axis through the north pole.

We consider the vertical (noncomplete) geodesic plane P D fy D 0g � C , that
is C D P [ .fN g � R/, where N 2 S2 is the north pole.

Let 
 2 ���; �Œ denote the signed distance to the origin .0; 0/ on 	 \ P . Thus
we have x D tan.
=2/. In the coordinates .
; t/ the metric on the plane P writes

ds2 D d
2 C d t2:

Consider now a smooth curve ˛.s/ D .
.s/; t.s// parametrized by arclength in
P . Let �.s/ be the oriented angle between the 
-axis and ˛0.s/. Therefore, we have


0.s/ D cos �.s/;

t 0.s/ D sin �.s/:
(7)

In the plane P we consider the unit normal N to the curve ˛ so that the basis
(˛0.s/; N.s// is positively oriented for each s. We orient by N the symmetric surface
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generated by ˛. The principal curvatures computed with respect to this orientation
are as follows:

�1.s/ D � 0.s/;

�2.s/ D sin �.s/

tan 
.s/
:

Thus, the umbilicity condition is

� 0.s/ D sin �.s/

tan 
.s/
: (8)

A priori the equation (8) makes sense only for 
 6D 0, but as we will see later the
surfaces we obtain are regular even at such points.

Differentiating the first equation in (7) and using equation (8) we get


00 D .
02 � 1/

tan 

: (9)

Assume that 
0.s0/ D 1 for some s0 where 
.s0/ 6D 0. Note that the function
f .s/ D 
.s0/Cs �s0 is a solution of (9) with the same initial conditions at s0 than 
.
Therefore 
 � f and t 0 � 0 and the surface is part of a slice S2 � ft0g. The same
happens in case where 
0.s0/ D �1. Henceforth we will assume that 
02.s/ 6D 1 for
all s and (9) is equivalent to


00

.
02 � 1/
D cos 


sin 

:

Multiplying both sides by 2
0 and integrating we get


02 � 1 D � sin2 
;

for some nonzero real constant �. Since the curve ˛ is parametrized by arclength we
must have 
02 < 1. Thus � D �a2 for some a > 0.

Conversely, any solution 
 of (9) satisfying 
02 � 1 defines a function �.s/ setting
cos �.s/ D 
0.s/. Consider the function t defined by setting t 0.s/ D a sin 
.s/ and
t .s0/ D t0 for some s0 in the domain of 
 and some real number t0. Then t satisfies
the second equation of (7) and therefore the curve ˛.s/ D .
.s/; t.s// 2 C generates
a rotational totally umbilic surface in S2 � R.

Let 
 be a solution of (9) satisfying 
02 < 1. Observe that equations (7) and
(8) show that 
0 cannot be identically zero on an open interval unless the generated
surface is part of the totally geodesic cylinder 
 � �=2. Henceforth we assume that

 is not this trivial solution and so, up to restricting the domain of 
, we can suppose
that 
 takes its values in �0; �=2Œ or ��=2; �Œ.
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So, we can consider an interval on which 
0 never vanishes. Changing s into �s

if needed we can suppose that 
0 > 0. Therefore we get


0 D
q

1 � a2 sin2 
: (10)

It is interesting to note that, when a 6D 1, the function 
 is the Jacobi amplitude
function 
.s/ D am.s; a2/ and, up to the sign, we have t 0.s/ D a sn.s; a2/ and
� 0.s/ D a cn.s; a2/, where sn.s; a2/ D sin am.s; a2/ and cn.s; a2/ D cos am.s; a2/

are respectively the sinus and cosinus amplitudinis elliptic Jacobi functions, see for
instance [1, Chapter 16] and [18, pp. 286–307]. However, for the reader’s convenience
and to be self-contained, we will treat in a direct and elementary way this ODE.

Now observe that the transformation .
; t/ 7! .� � 
; t/ is an isometry which
changes rotations around the axis through the south pole into rotations around the
axis through the north pole. Therefore, taking into account Remark 2, we can assume
that, up to an ambient isometry, 
 takes its values in �0; �=2Œ.

Let us call 
a the maximal solution of (10) extending 
 without restrictions on its
values, that is for the moment we do not require that 
a takes its values in ���; �Œ.

Lemma 3. Up to a reparametrization of the form s ! s C c for some real con-
stant c, the maximal solution 
a is defined on an interval ��ı; ıŒ, where ı 2 �0; C1�.
Furthermore 
a is odd and so satisfies 
a.0/ D 0 and 
0

a.0/ D 1.

Proof. Let us call �u; vŒ the domain of 
a where �1 � u < v � C1.
We first show that 
a vanishes at some point. Since 
0

a � 1 such a point clearly
exists if u D �1. In case u is finite, 
a has a limit l 2 Œ�1; C1Œ at u as it is
nondecreasing.

If l < 0 then 
a vanishes at some point since 
 is positive.
Consider now the case where l � 0 and call I � �u; vŒ the domain of 
. Suppose

that, as s decreases starting from I , 
a never vanishes. Then the function 
0
a increases

(since 
.I / � �0; �=2Œ) and thus has a positive limit at u. But then we could extend
the solution 
a of equation (10) beyond u, which contradicts the maximality of 
a.

Therefore 
a.s0/ D 0 for some point s0. Changing s into s � s0 we can assume
that 
a.0/ D 0. The function f .s/ WD �
a.�s/ is then also a solution of (10)
satisfying f .0/ D 0. We conclude that f � 
a, which means 
a is odd. �

Lemma 4. Suppose a 2 �0; 1Œ. Then 
a is defined on the whole of R and it gives rise to
a unique, up to an ambient isometry, curve ˛a generating a rotational totally umbilic
surface. This curve is an analytic Jordan curve in the cylinder C , it is nonhomologous
to zero and symmetric with respect to the axis of rotation R. The rotational totally
umbilic surface, S1.a/, generated by ˛a is analytic, embedded and homeomorphic
to the sphere. Moreover S1.a/ is nonhomologous to zero in S2 � R.
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Proof. With the notations of Lemma 3, if ı < C1 then, since 
0
a takes its values in

�0; 1�, 
a would have a finite limit l at ı. Since a 2 �0; 1Œ, we have 1 � a2 sin2 l > 0

which allows to extend 
a beyond ı, contradicting the maximality of 
a. This shows
that ı D C1.

Since 
0
a � p

1 � a2 > 0 and 
a.0/ D 0, there is a smallest s1 > 0 such that

a.s1/ D � .

Now let us consider the function f .s/ WD 2��
a.2s1�s/, s 2 R. We observe that
f is also a solution of equation (10) and satisfies f .s1/ D 2��
a.s1/ D � D 
a.s1/.
Consequently f � 
a, that is,


a.2s1 � s/ D 2� � 
a.s/ for all s 2 R. (11)

As we are interested in curves generating rotational totally umbilic surfaces, we look
for a function t satisfying t 02 D 1 � 
02

a D a2 sin2 
a. Let ta be the function defined
on R by setting t 0

a.s/ D a sin 
a.s/ and ta.0/ D 0.
Since 
a is an odd function and ta.0/ D 0 we deduce that ta is an even function.

Observe that the function g.s/ WD ta.2s1 � s/ satisfies g0.s/ D t 0
a.s/ (using equation

(11)) and g.s1/ D ta.s1/. Thus g � ta, that is ta.2s1 � s/ D ta.s/ for any s 2 R.
Using the evenness of ta we get

ta.s C 2s1/ D ta.s/ for all s 2 R. (12)

Using equation (11) and the oddness of 
a we obtain for any s 2 R


a.s/ D �
a.�s/ D �.2� � 
a.2s1 C s//;

and so

a.s C 2s1/ D 2� C 
a.s/ for all s 2 R. (13)

Now the curve Q̨a.s/ D .
a.s/; ta.s//, s 2 R, is a curve in the Riemannian
universal cover zC of C . Observe that the equations (12) and (13) show that restricting
s to Œ�s1; s1�, Q̨a gives rise to an analytic closed curve ˛a in C . Since 
a is increasing
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on Œ�s1; s1� and 
a.�s1/ D �
a.s1/ D �� we deduce that ˛a is embedded and
nonhomologous to zero.

As 
a is odd and ta is even, the curve ˛a has the desired symmetry.
It is clear that the other choice t 0

a.s/ D �a sin 
a.s/ leads to the curve deduced
from ˛a by the isometry .
; t/ 7! .
; �t /. �

Remark 5. We observe that the curve ˛a is globally invariant under the isometry
.
; t/ 7! .� � 
 mod.2�/; ta.2s0/ � t /.

Lemma 6. Assume a D 1. Then 
1.s/ D �=2 � 2 arctan e�s , s 2 R. This gives rise
to a unique, up to an ambient isometry, curve ˛1 in P � C generating a rotational
totally umbilic surface. The curve ˛1 is complete, open, embedded and symmetric with
respect to the axis of rotation R. The rotational totally umbilic surface, S1, generated
by ˛1 in S2 � R is complete, properly embedded, analytic and homeomorphic to R2.

Proof. Since 
1 is the maximal solution of 
0 D
p

1 � sin2 
 satisfying 
.0/ D 0,
we deduce that 
1 is solution of 
0 D cos 
. A straightforward computation shows
that the maximal solution of this last equation with the initial condition 
.0/ D 0 is


1.s/ D �

2
� 2 arctan e�s for all s 2 R.

Note that 
1 takes its values in ���=2; �=2Œ.
As in the proof of Lemma 4, we can assume that t satisfies t 0.s/ D sin 
1.s/, up to

an ambient isometry. We consider the function t1 defined by setting t 0
1.s/ D sin 
1.s/

and t1.0/ D 0. It is straightforward to check that sin 
1.s/ D tanh.s/ and then
t1.s/ D log cosh.s/.

As 
1 is odd and t1 is even, the curve ˛1 has the desired symmetry. As a matter
of fact, ˛1 is the graph of the function t .
/ D � log cos 
; 
 2 ���=2; �=2Œ. This
concludes the proof. �

Lemma 7. Assume a > 1. Then the maximal solution 
a is defined on a bounded
interval ��ıa; ıaŒ where ıa is a positive number. It gives rise to a unique, up to an
ambient isometry, Jordan curve ˛a in P � C generating a rotational totally umbilic
surface. The curve ˛a is analytic and symmetric with respect to the axis of rotation R.
The rotational totally umbilic surface, S2.a/, generated by ˛a is analytic, embedded
and homeomorphic to the sphere. Furthermore, S2.a/ is homologous to zero in
S2 � R.

Proof. Since a > 1 we deduce that 
a.s/ 2 �� arcsin 1=a; arcsin 1=aŒ. Recall that

a is defined on an open interval ��ıa; ıaŒ, see Lemma 3. We first show that ıa is
finite. Assume by contradiction ıa D C1. Since 
a is nondecreasing it admits a
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limit l 2 �0; arcsin 1=a� as s ! C1. Necessarily l D arcsin 1=a since otherwise
it would follow from the equation (10) that 
0

a >
p

1 � a2 sin2 l > 0 for all s > 0.
Therefore 
a would not be bounded.

Using the equation (9) we see that for s big enough, 
00
a.s/ � �1=.2 tan l/ < 0.

Consequently 
0
a would be negative for s big enough which is a contradiction. This

proves that ıa is finite.
Let us call again l the limit of 
a as s ! ıa. If l < arcsin 1=a then we could extend

the solution 
a, which is maximal, beyond ıa, which is absurd. So l D arcsin 1=a

and 
0
a ! 0 as s ! ıa.

Observe that, since the function 
a satisfies equations (9) and (10), it satisfies also
the following equation


00 D �a2 sin 
 cos 
: (14)

As the second member of (14) is bounded, its maximal solutions are defined on
the whole of R. Call Q
a the maximal solution of (14) extending 
a. Set f .s/ WD
Q
a.2ıa � s/. It is clear that f and Q
a satisfy equation (14) with the same initial
conditions at ıa. Thus we have

Q
a.2ıa � s/ D Q
a.s/ for all s 2 R. (15)

As we are interested in curves generating rotational totally umbilic surfaces, we
look for a function t satisfying t 02 D 1 � Q
02

a D a2 sin2 Q
a. Let ta be the function
defined by t 0

a D a sin Q
a and ta.0/ D 0. As Q
a is an odd function we deduce that ta is
even. Observe that the function g.s/ WD 2ta.ıa/ � ta.2ıa � s/ satisfies g0.s/ D t 0

a.s/

(using equation (15)) and g.ıa/ D ta.ıa/. Thus g � ta, that is

ta.2ıa � s/ D 2ta.ıa/ � ta.s/ for all s 2 R. (16)
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It follows from (15) and the oddness of Q
a that

Q
a.s C 4ıa/ D Q
a.s/ for all s 2 R.

In the same way, using (16) and the evenness of ta, we get

ta.s C 4ıa/ D ta.s/ for all s 2 R.

Now the curve ˛a.s/ D . Q
a.s/; ta.s//, s 2 R, parametrizes a closed analytic
curve in P � C . Taking into account (15), the oddness of Q
a, (16) and the evenness
of ta, we deduce that the curve ˛a is symmetric with respect to the axis R.

Considering the fact that ta is increasing on Œ0; 2ıa� and the symmetry of ˛a, we
infer that ˛a defines a Jordan curve in P .

To conclude the proof observe that the other choice for ta, that is t 0
a D �a sin Q
a,

leads to the curve deduced from ˛a by the isometry .
; t/ 7! .
; �t /. �
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Remark 8. The relations (15) and (16) show that the curve ˛a in Lemma 7 is sym-
metric with respect to the horizontal reflection .
; t/ 7! .
; 2ta.ıa/ � t / in P . Con-
sequently, the surface S3.a/ is symmetric with respect to the slice S2 � fta.ıa/g.

Furthermore, we observe that each surface S3.a/ is contained in S2� � R where
S2� is the south hemispshere.
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Summarizing we can state the following result.

Theorem 9. Besides the totally geodesic slices S2 � ft0g and the vertical cylinder
	 � R where 	 � S2 is a geodesic, the surfaces introduced in Lemmas 4, 6 and 7
are, up to ambient isometries, the only complete totally umbilic rotational surfaces
in S2 � R. In particular they are all embedded and homeomorphic either to R2 or
to S2. Among the surfaces homeomorphic to S2 some are homologous to zero and
some are not.

Remark 10. It is interesting to observe that unlike in the case of space forms, the
totally umbilic surfaces we obtained do not have constant mean curvature, except for
the totally geodesic ones.

4. Symmetric totally umbilic surfaces in H2.�/ � R

In this section, we classify the totally umbilic surfaces in H2 � R which are invariant
under a one-parameter group of isometries. The case of M2.�/ � R, � < 0, is
completely similar.

We recall that in H2 there are three kinds of one-parameter families of positive
isometries: the rotations around a fixed point (elliptic isometries), the translations
along a fixed geodesic (hyperbolic isometries) and the “translations” along the horo-
cycles sharing the same point at infinity (parabolic isometries). An isometry of H2

obviously induces an isometry of H2 � R fixing the factor R pointwise. Such an
isometry of H2 � R obtained from an elliptic (resp. parabolic, hyperbolic) isometry
of H2 will thus be called elliptic (resp. parabolic, hyperbolic).

We will see that for each of the associated families of isometries of H2 � R there
exist complete and globally invariant totally umbilic surfaces. In fact, we are going
to classify all of them. More precisely, we prove they are all embedded, those which
are invariant under elliptic isometries are either totally geodesic slices H2 � ft0g or
homeomorphic to the sphere and the remaining ones are all homeomorphic to the
plane. In particular the only totally geodesic ones are the slices and the products
	 � R where 	 � H2 is a geodesic.

We will work with the disk model for H2, so that

H2 D f.x; y/ 2 R2; x2 C y2 < 1g;

and the metric is

ds2
H D

�
2

1 � .x2 C y2/

�2

.dx2 C dy2/:
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Therefore the product metric on H2 � R reads as follows:

d Qs2 D
�

2

1 � .x2 C y2/

�2

.dx2 C dy2/ C d t2;

where .x; y/ 2 H2 and t 2 R. We consider the following particular geodesics of
H2:

	 D f.x; 0/; x 2 ��1; 1Œ g � H2;

L D f.0; y/; y 2 ��1; 1Œ g � H2:

Up to ambient isometries, we can assume that the symmetric surfaces are generated
by curves in the geodesic plane P WD 	 � R � H2 � R.

On the geodesic 	 we denote by 
 2 R the signed distance to the origin .0; 0/,
thus x D tanh 
=2. Therefore the metric on P is

ds2 D
�

2

1 � x2

�2

dx2 C d t2 D d
2 C d t2:

Given a curve ˛.s/ D .
.s/; t.s// parametrized by arclength in P , we let �.s/ be
the oriented angle between the 
-axis and ˛0.s/. Therefore, we have


0.s/ D cos �.s/;

t 0.s/ D sin �.s/:
(17)

In the elliptic case, the isometries of H2 �R under consideration are the rotations
around the vertical axis R WD f.0; 0/g � R. In the parabolic case, the isometries
are the ones corresponding to the point at infinity .�1; 0/ 2 @1H2. Finally, the
hyperbolic isometries correspond to translations along L in H2.

In the plane P we consider the unit normal N to the curve ˛ so that the basis
(˛0.s/; N.s// is positively oriented for each s. In the three cases we orient by N the
symmetric surface generated by ˛. The principal curvatures computed with respect
to this orientation are as follows:

�1.s/ D � 0.s/

and

�2.s/ D

8̂
<̂
ˆ̂:

sin �.s/

tanh 
.s/
(elliptic case),

sin �.s/ (parabolic case),

sin �.s/ tanh 
.s/ (hyperbolic case).
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4.1. Elliptic case. The umbilicity condition is

� 0.s/ D sin �.s/

tanh 
.s/
:

This case is similar to the case a > 1 in S2 � R, so we will omit the details.
Differentiating the first equation in (17) and using the umbilicity condition we get


00 D .
02 � 1/

tanh 

: (18)

Discarding the trivial totally geodesic surfaces H2 � ft0g, we can show as in the
case of S2 � R that 
02.s/ 6D 1 for any s such that 
.s/ 6D 0. Therefore we may
assume that 
02 < 1.

We can state the following.

Proposition 11. Any local solution of (18) satisfying 
02 < 1 gives rise to a unique,
up to ambient isometries, complete rotational totally umbilic and nongeodesic surface
in H2 � R. Moreover, there exists a one-parameter family of such surfaces and all
of them are analytic, embedded and homeomorphic to the sphere.

Besides the totally geodesic slices H2 � ftg, these surfaces are the only complete
rotational and totally umbilic surfaces in H2 � R.

Furthermore, any rotational umbilic (including geodesic) surface in H2 � R is,
up to an ambient isometry, part of one of the above surfaces.

Proof. Let 
 be a local solution of (18). Proceeding as in the case of S2 � R, we can
suppose that 
0 > 0 and so


0 D
q

1 � b2 sinh2 
; (19)

for some real number b > 0. As in the case of S2 �R, the functions 
.s/ and t .s/ are
related to the Jacobi elliptic functions as follows: 
.s/ D �iam.is; �b2/ and, up to
the sign, t 0.s/ D ib sn.is; �b2/, see [1, Chapter 16]. Again, we prefer to give direct
and elementary arguments.

Let 
b be the maximal solution of (19) extending 
. As in the proof of Lemma 3,
we can prove that 
b vanishes at some point. Thus, up to a reparametrization we
can assume that 
b.0/ D 0, consequently we prove as in Lemma 3 that 
b is an odd
function. Therefore 
b is defined on an interval ��ıb; ıbŒ. As in Lemma 7, it can be
shown that ıb is a finite positive number, that 
b has a finite limit l D argsinh 1=b at
ıb and that 
0

b
.s/ ! 0 as s ! ıb .

From equations (18) and (19) we deduce that 
b satisfies


00 D �b2 cosh 
 sinh 
 (20)
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with the initial conditions 
.0/ D 0 and 
0.0/ D 1. Therefore we can extend the
solution 
b of (20) beyond ıb . Let Q
b be the maximal solution of (20) extending 
b .
Observe that for any s0 where Q
0

b
.s0/ D 0 we have the symmetry Q
b.2s0�s/ D Q
b.s/.

As Q
0
b
.ıb/ D 0 and Q
b is odd, we deduce that Q
b is defined on all of R and that it is

4ıb-periodic.
As we are interested in curves generating rotational totally umbilic surfaces, we

look for a function t satisfying t 02 D 1 � Q
02
b

D b2 sinh2 Q
b . Let tb be the function
defined by t 0

b
D b sinh Q
b and tb.0/ D 0, thus tb is an even function. As in the proof

of Lemma 7, we can show that tb satisfies tb.2ıb � s/ D 2tb.ıb/ � tb.s/ for any
s 2 R and that it is also 4ıb-periodic.

Taking into account that tb is increasing on Œ0; 2ıb�, we deduce that the curve
˛b.s/ D . Q
b.s/; t.s//, s 2 R, parametrizes an analytic Jordan curve in P , symmetric
with respect to the axis R.

To conclude the proof we just observe that the other choice for tb , that is t 0
b

D
�b sinh Q
b , leads to the curve deduced from ˛b by the isometry .
; t/ 7! .
; �t /. �

4.2. Parabolic case. The umbilicity condition is

� 0.s/ D sin �.s/

Integrating this equation we get

�.s/ D 2 arctan �es for all s 2 R,

for some real constant �.
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First observe that � D 0 leads to the curve 	 which generates a slice H2 � ft0g.
Now if � < 0 then � is a negative function. Note that the symmetry .
; t/ 7!

.
; �t / changes � into �� . Therefore, up to an ambient isometry, we can assume
that � is positive and then � > 0. Finally observe that up to the reparametrization
s 7! s � log � we can assume � D 1 and then

�.s/ D 2 arctan es for all s 2 R. (21)

Taking into account the first equation in (17) and (21) we obtain


0.s/ D cos 2 arctan es D � tanh s for all s 2 R.

Thus

.s/ D � log cosh s C 
 for all s 2 R,

for some real constant 
. Note that the isometries of H2 � R obtained from the
hyperbolic translations along the geodesic 	 in H2 send any surface invariant under
the parabolic isometries fixing the point at infinity .�1; 0/ 2 @1H2 to a surface of
the same type. Consequently, up to an ambient isometry, we can assume 
 D 0.
Thus


.s/ D � log cosh s for all s 2 R.

As for the function t , taking into account the second equation in (17) and (21) we
obtain

t 0.s/ D sin 2 arctan es D 2es

1 C e2s
for all s 2 R.

Integrating we get

t .s/ D 2 arctan es C ˇ for all s 2 R,

for some real constant ˇ. Up to a vertical translation we can take ˇ D ��=2 so that
t .0/ D 0 and

t .s/ D 2 arctan es � �

2
for all s 2 R.

Note that t .�s/ D �t .s/ and 
.�s/ D 
.s/ for any s 2 R so that the curve Lpar

parametrized by .
.s/; t.s//; s 2 R, is symmetric with respect to 	 .
Summarizing we state the following proposition.

Proposition 12. Besides the slices H2 � ftg, up to ambient isometries, there exists
a unique complete totally umbilic surface SP in H2 � R invariant under parabolic
isometries. This surface is analytic, properly embedded, homeomorphic to a plane
and is invariant under reflection with respect to a horizontal slice.

Moreover, any totally umbilic surface invariant under parabolic isometries is
either part of a slice or, up to an ambient isometry, part of this surface.
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Remark 13. Consider the surface M in H2�R generated by the same curve Lpar � P

under parabolic isometries fixing, now, the point at infinity .1; 0/ 2 @1H2 (and not
.�1; 0/ as before). Observe that at each point of M the principal curvatures Q�1, Q�2

of M are given by Q�1 D �1 and Q�2 D ��2. Therefore we get

Q�1 C Q�2 D �1 � �2 � 0:

We deduce that M is a complete minimal surface of H2 �R, embedded and invariant
under parabolic isometries. Consequently, M is foliated by horocycles. This minimal
surface was considered by B. Daniel [6], R. Sa Earp [8] and L. Hauswirth [12].

4.3. Hyperbolic case. The umbilicity condition is

� 0.s/ D sin �.s/ tanh 
.s/:

Proceeding as in the elliptic case, we discard the totally geodesic surfaces H2�ftg
and therefore we can assume that 
 satisfies 
02 < 1 and


00 D .
02 � 1/ tanh 
; 
02 � 1 D �c2 cosh2 
; (22)

for some real constant c 2 �0; 1Œ. Again, invoking the Jacobi elliptic functions, it can
be shown that, up to the sign, we have 
.s/ D iam.is C K; c2/ � i�=2 and t 0.s/ D
c sn.is C K; c2/ where K D R �=2

0
dtp

1�c2 sin2 t
, see [1, Chapter 16]. Nevertheless, as

in the previous cases, we prefer to give direct and elementary arguments.



690 R. Souam and E. Toubiana CMH

We deduce from (22) that


00 D �c2 cosh 
 sinh 
: (23)

If 
 � 0, then the generated surface is the vertical totally geodesic plane, that is,
f.0; y; t/; �1 < y < 1; t 2 Rg. Discarding this case, we consider only the nontrivial
solutions of (23).

Again, as in the elliptic case, it can be shown that any maximal solution of the
last equation is defined on the whole of R, is periodic, vanishes at some point and,
up to a reparametrization, is odd. We can therefore assume that there exists a unique
maximal solution 
c satisfying 
.0/ D 0 and 
0.0/ D p

1 � c2.
As we are interested in curves generating totally umbilic surfaces, we look for a

function t satisfying t 02 D 1 � 
02
c D c2 cosh2 
c . Let tc be the function defined

by t 0
c D c cosh 
c and tc.0/ D 0. The function tc is odd. Moreover consider any

s0 2 R such that 
0
c.s0/ D 0, then it can be shown that 
c.2s0 � s/ D 
c.s/. Set

T .s/ WD �tc.2s0 � s/ C 2tc.s0/, s 2 R. We have T 0 � t 0
c and T .s0/ D tc.s0/,

therefore T D tc . As the function tc is odd, we have tc.s C 4s0/ D 4tc.s0/ C tc.s/

for every s 2 R. We can deduce that tc is an increasing and nonbounded function on
R. This shows that the curve ˛c D .
c ; tc/ is properly embedded.

Observe that the other choice t 0 D �c cosh 
c changes the curve ˛c D .
c ; tc/

into the symmetric curve .
c ; �tc/ with respect to 	 .
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We summarize stating the following.

Proposition 14. Any non identically zero local solution of (23) satisfying 
02 < 1

gives rise to a unique, up to ambient isometries, complete totally umbilic and non-
geodesic surface Sc ; c > 0, in H2 �R invariant under hyperbolic isometries. More-
over, there exists a one-parameter family of such surfaces and all of them are analytic,
properly embedded and homeomorphic to the plane. These surfaces are periodic in
the vertical direction and symmetric with respect to a discrete set of horizontal slices.

Furthermore, any umbilic surface in H2�R invariant under hyperbolic isometries
is either part of a vertical totally geodesic plane, a slice H2 �ftg or, up to an ambient
isometry, part of one of the surfaces Sc .

5. Unicity of totally umbilic surfaces in H2.�/ � R and S2.�/ � R

In this section M2 stands for H2 or S2. The cases M2 D M2.�/ for � < 0 and � > 0

are completely analogous.
We will need the following result which is of independent interest.

Proposition 15. Let S � M2 � R be an orientable surface transversal to each slice
M2 � ftg. We suppose the following:

(1) The geodesic curvature of each horizontal curve St WD S \ .M2 � ftg/ in M2

is constant (depending on t ).

(2) The angle between S and M2 � ftg is constant along St for each t .

Then:
In case M2 D S2 the surface S is part of rotational surface.
In case M2 D H2 the surface S is part of either

(a) a rotational surface,

(b) or a surface invariant by a family of parabolic isometries having the same fixed
point at infinity,

(c) or a surface invariant by a family of hyperbolic isometries along the same fixed
geodesic of H2.

Proof. Let N be a unit normal field along S . We define the function � on S setting
� WD hN; @

@t
i. We denote by T the projection of @

@t
on S , that is T D @

@t
� �N .

As the angle between S and M2 � ftg is constant along St , we deduce that St is a
line of curvature. Indeed let � W s 2 I � R ! �.s/ 2 St be a regular parametrization
of St , then taking into account that @

@t
is a parallel field and the definition of T ,

0 D d

ds

�
N;

@

@t

�
D

�
r� 0.s/N;

@

@t

�
D hr� 0.s/N; T i;
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where r is the connection on M2 � R. It follows that T is a principal direction on S .
Let c W u 2 I � R ! c.u/ 2 S be a line of curvature associated to the field T .

We are going to show that c.I / is contained in a vertical totally geodesic plane. This
is equivalent to showing that the horizontal projection ch W I � R ! M2 of c is a
geodesic.

Assume first that c is never vertical, that is � 6D 0 along c. Thus c0
h

does not
vanish.

Let r be the connection on M2. It is sufficient to show that rc0

h
c0

h
is always

parallel to c0
h
. As c0 D c0

h
C .1 � �2/ @

@t
we have

rT T D rc0c0 D rc0

h
c0

h C d

du
.1 � �2/

@

@t

D rc0

h
c0

h � 2��0 @

@t
:

As T is a principal direction there exists a function � such that rT N D �T . Therefore

�0 D d

du

�
N;

@

@t

�
D

�
rT N;

@

@t

�
D �.1 � �2/:

Thus we obtain

rT T D rc0

h
c0

h � 2��.1 � �2/
@

@t
:

Moreover we have

rT T D rT

�
@

@t
� �N

�
D �rT �N

D ��0N � ��T

D
�

�0
�

� ��

�
c0

h C .��0� � ��.1 � �2//
@

@t

D
�

�0
�

� ��

�
c0

h � 2��.1 � �2/
@

@t
:

Thus we get

rc0

h
c0

h D
�

�0
�

� ��

�
c0

h;

which shows that ch.I / is a geodesic in M2.
We denote by w a unit horizontal field along c tangent to S and for each u 2 I

we let P.u/ be the vertical totally geodesic plane containing c.u/ and orthogonal at
c.u/ to w.u/.

Suppose now that � vanishes on an open interval J � I . Let u0 2 J . Observe
that along the horizontal curve of S through c.u0/ the vector field N is horizontal.
This means that an open set of S , including c.J /, is part of a cylinder � � R where
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� � M2 is some horizontal curve. Clearly this implies that w is constant along J ,
and thus so is P .

Combining those two arguments we see that P is locally constant on an open and
dense subset of I . As P.u/ depends in a differentiable way on u, we conclude that
P is constant.

Let us now consider a horizontal curve � W I ! St parametrized by arclength.
Let s1; s2 2 I and call c W ��"; "Œ! S the integral curve of T such that c.0/ D �.s1/

and Qc W ��"; "Œ! S the integral curve of T such that Qc.0/ D �.s2/.
Let us call c3 (resp. Qc3) the vertical coordinate of c (resp. Qc). Calling again u the

parameter in ��"; "Œ, we have

c0
3.u/ D

�
c0.u/;

@

@t

�
D

�
T .c.u//;

@

@t

�
D 1 � �2.c.u// D 1 � �2.c3.u//:

Thus c3 and Qc3 verify the same first order differential equation with the same initial
condition at u D 0. We conclude that c3 � Qc3.

Recall that c and Qc are contained in vertical totally geodesic planes P and zP .
Let us call 	 � M2 the complete constant geodesic curvature line defined by � ,

that is � � 	 .
Observe that there is a unique positive isometry ' of M2 such that '.	/ D 	 ,

'.c.0// D Qc.0/ and preserving the orientation of 	 . Therefore the isometry ˆ.z; t/ D
.'.z/; t/ of M2�R sends P to zP . Note that the curves Qc and ˆBc in the vertical plane
zP have the same vertical component and make the same angle with the horizontal for

each u 2 ��"; "Œ. We deduce that these curves coincide: ˆ B c D Qc. This concludes
the proof. �

We now state the main result of this section.

Theorem 16. Let S � M2 � R be an immersed totally umbilic surface. Then S

is part of a complete and embedded totally umbilic surface zS which is invariant by
a one-parameter group of isometries of M2 � R. More precisely, up to an ambient
isometry, in case M2 D S2, then zS is one of the examples described in Section 3,
and in case M2 D H2 then zS is one of the examples described in Section 4.

In particular, any totally geodesic surface is part of a slice M2 � R or part of a
product 	 � R where 	 � M2 is a geodesic.

Proof. Locally S is the image of an embedding X W � ! M2 � R, where � is an
open disk in R2. As X is totally umbilic, there exists a function � W � ! R such that

rwN D �w;

for any vector w tangent to S .
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Proceeding as in the proof of Theorem 1, as � D 0 we obtain

r� D ��T; (24)

where � is the Gaussian curvature of M2, that is � D 1 if M2 D S2 and � D �1 if
M2 D H2.

Assume for the moment that � has no critical point. In particular each level curve
of � is orthogonal to T and is therefore horizontal, that is belongs to some M2 �ft0g.
Let � W I � M2 � ft0g be such a curve parametrized by arclength. We have

d�

ds
D

�
r� 0.s/N;

@

@t

�
C

�
N; r� 0.s/

@

@t

�
D �.�.s//

�
� 0.s/;

@

@t

�
D 0;

therefore � is constant along � .
We now call n the unit normal field in T .M2 � ft0g/ along � with the orientation

induced by N . Let � be the oriented angle between n and N , hence N.�.s// D
cos �.s/n.�.s// C sin �.s/ @

@t
.�.s//, we deduce that � is constant along � .

On the other hand,

�.�.s// D hr� 0.s/N; � 0.s/i
D hr� 0.s/

�
cos � n C sin �

@

@t

�
; � 0.s/i

D cos �hr� 0.s/n; � 0.s/i C sin �

�
r� 0.s/

@

@t
; � 0.s/

�

D cos �hr� 0.s/n; � 0.s/i:

Now observe that hr� 0.s/n; � 0.s/i is the geodesic curvature of � in M2 � ft0g.
Since � and � are constant along � we deduce that � has constant geodesic curvature.
We conclude using Proposition 15 and results in Sections 3 and 4 that S is as stated.

Suppose now that � has some critical points.
Let U � S be a connected component, if any, of the interior of the set of critical

points of �. The formula (24) shows that N is either always vertical or always
horizontal in U . In the former case U is part of a slice M2 � ft0g and in the latter
case U is part of a cylinder, that is part of a product 	 � R where 	 is some curve in
M2. As S is totally umbilic, 	 has to be a geodesic and so U is totally geodesic.

Let now V � S be a connected component, if any, of the set of regular points of
�. From the first part of the proof, we know that V is part of one of the symmetric
examples given in Sections 3 and 4.

Therefore S is obtained by gluing pieces of totally geodesic surfaces and pieces
of the symmetric examples constructed in Sections 3 and 4. A closer look at these
different types of surfaces shows that the whole of S is either totally geodesic or part
of one of the complete symmetric examples, which concludes the proof. �
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Remark 17. The local existence of totally umbilic surfaces in S2 � R and H2 � R
can be seen in an alternate way. Indeed, it is known that umbilicity is preserved
by conformal diffeomorphisms, see [21], Volume 4. It can be shown that S2 � R
is conformally diffeomorphic to R3 n f.0; 0; 0/g, see Section 7. This implies the
umbilic surfaces in S2 � R correspond through this conformal diffeomorphism to
those of R3 n f.0; 0; 0/g. However to classify them in S2 � R up to congruences,
and to understand their geometry requires a nontrivial work. Regarding H2 � R, it
can be shown that H2 � �0; �Œ is conformally diffeomorphic to H3, see Section 7.
Nonetheless this is not enough to understand the global geometry and topology of
the umbilic surfaces in H2 � R.

Remark 18. It can be proved that any twice differentiable totally umbilic surface in
a space form, in S2.�/ � R or in H2.�/ � R, is in fact C 3 and then analytic by the
previous discussions, see [20].

6. Totally umbilic surfaces in Sol

The Sol geometry is the eighth model geometry of Thurston, see [22]. It is a Lie
group endowed with a left-invariant metric, it is a homogeneous simply connected 3-
manifold with a 3-dimensional isometry group, see [3]. It is isometric to R3 equipped
with the metric

ds2 D e2z dx2 C e�2z dy2 C dz2:

The group structure of Sol is given by

.x0; y0; z0/ ? .x; y; z/ D .e�z0

x C x0; ez0

y C y0; z C z0/:

The isometries are

.x; y; z/ 7! .˙e�cx C a; ˙ecy C b; z C c/

and

.x; y; z/ 7! .˙e�cy C a; ˙ecx C b; �z C c/;

where a; b and c are any real numbers. We set E1 D e�z @
@x

, E2 D ez @
@y

and

E3 D @
@z

. Thus .E1; E2; E3/ is a global orthonormal frame. A straightforward
computation gives

rE1
E1 D �E3; rE2

E1 D 0; rE3
E1 D 0;

rE1
E2 D 0; rE2

E2 D E3; rE3
E2 D 0; (25)

rE1
E3 D E1; rE2

E3 D �E2; rE3
E3 D 0:
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We deduce from (25) that the vertical planes fx D x0g and fy D y0g are totally
geodesic complete surfaces and that the horizontal planes fz D z0g are not totally
umbilic surfaces (in fact they are minimal surfaces).

We now look for totally umbilic surfaces which are invariant under the one pa-
rameter group of isometries .x; y; z/ 7! .x C c; y; z/. Clearly, such a surface is
generated by a curve � in the totally geodesic plane fx D 0g. Discarding the trivial
case of a vertical plane fy D y0g, we can assume that � locally is a graph over the
y-axis. Thus � is given by �.y/ D .0; y; z.y//. Therefore the generated surface is
parametrized by

X.t; y/ WD .t; y; z.y//:

We have Xt D .1; 0; 0/ D ezE1 and Xy D .0; 1; z0/ D e�zE2 C z0E3. As a unit
normal field we can take

N D ezz0p
1 C e2zz02

E2 � 1p
1 C e2zz02

E3:

We have

rXt
N D � 1p

1 C e2zz02
Xt ;

rXy
N D e�z

.1 C e2zz02/3=2
.1 C 2e2zz02 C e2zz00/E2

C z0

.1 C e2zz02/3=2
.1 C 2e2zz02 C e2zz00/E3:

So that X is a totally umbilic immersion if and only if

rXy
N D � 1p

1 C e2zz02
Xy ;

that is, if and only if
z00 C 3z02 C 2e�2z D 0: (26)

A first integral of (26) is
z02 D ae�6z � e�2z;

where a is any positive real number.
Assume z0.y0/ D 0 for some y0. Considering the function f .y/ D z.2y0�y/, we

can see that the curve � is symmetric with respect to the vertical geodesic fy D y0g.
Therefore, up to the isometry .x; y; z/ 7! .x; �y; z/ and restricting the domain of z

if needed, we can assume z0 > 0. Therefore z satisfies

z0 D e�z
p

ae�4z � 1: (27)
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We consider the maximal solution of (27) defined by z and we call it again z, it
is defined on an open interval �y1; y2Œ; �1 � y1 < y2 � C1. By (27) the
function z is bounded above and is increasing we deduce using (26) that z00 has a
negative limit at y2. Taking into account the fact that z0 is positive, we deduce that
y2 is finite, y2 < C1. Moreover, since z0 is a positive and decreasing function,
it has a nonnegative limit at y2. If this limit were positive, we could extend the
solution z of (27) beyond y2 which contradicts the maximality of z. Thus we have
limy!y2

z0.y/ D 0 and consequently limy!y2
z.y/ D 1

4
log a.

Consider now the maximal solution of (26) defined by z and call it za. Since
z0

a.y2/ D 0 we have za.2y2 � y/ D za.y/. Up to the horizontal translation
.x; y; z/ 7! .x; y �y2; z/, which is an ambient isometry, we can assume that y2 D 0

and therefore za is an even function and is defined on an interval ��ya; yaŒ where 0 <

ya � C1. Observe that there exist A > 0 and y3 > 0 such that z00
a.y/ < �A < 0

for any y > y3. Therefore, if ya D C1 we have limy!C1 za.y/ D �1. Suppose
now that ya is finite. If za had a finite limit at ya then z0

a would have also a finite limit
but then we could extend the solution za beyond ya, which is absurd. We deduce that
in both cases, that is ya < C1 and ya D C1, we have limy!ya

za.y/ D �1.
Now we show that ya < C1. Indeed, as za is a solution of (26) satisfying

za.0/ D 0 we have

z0.y/ D �p
ae�3z

r
1 � e4z

a
;

for any y > 0. Since limy!ya
za.y/ D �1, we deduce that for some y4 > 0 we

have
1p
a

z0e3z < �1

2

for any y > y4. Therefore we have

1

3
p

a
e3z < �y

2
C c

for some real constant c and for any y > y4. This implies that ya < C1.
Call �a the graph of the function za, �a WD f.0; y; za.y//; �ya < y < yag and

call Fa the totally umbilic complete surface generated by �a:

Fa WD f.x; y; za.y//; x 2 R; �ya < y < yag:
Let za and zb be two maximal solutions of (26) where a and b are any real numbers.

Set c D 1
4

log b
a

and consider the ambient isometry .x; y; z/ 7! .e�cx; ecy; z C c/.
Observe that this isometry maps the planar curve �a onto the planar curve �b and
maps any Euclidean line parallel to the x-axis onto a line of the same type. Therefore
this isometry maps the totally umbilic surface Fa onto the totally umbilic surface Fb .

Summarizing, we state the following result.
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Proposition 19. Up to ambient isometries, there exist only two complete totally um-
bilic surfaces in the Sol group invariant under the horizontal translations .x; y; z/ 7!
.x C t; y; z/; t 2 R. The first one is the totally geodesic plane fy D 0g. The second
one is nongeodesic, is contained in a slab delimited by two totally geodesic planes
fy D ˙y0g; y0 > 0, and is asymptotic to these planes. Moreover it is symmetric
with respect to the totally geodesic plane fy D 0g.

1.5

1.6

1.7

1.8

1.9

2

–4 –2 0 2 4

The generating curve in Sol for a D exp 8

z

y

As a matter of fact we have the following.

Theorem 20. Up to ambient isometries, any totally umbilic surface in the Sol group
is part of one of the two complete totally umbilic surfaces given in Proposition 19. In
particular, up to ambient isometries, there exists a unique complete totally geodesic
surface in the Sol group.

Proof. Let S be an immersed totally umbilic surface in the Sol group. Locally S is
the image of an embedding X W � ! Sol, where � is an open disk in R2. Call .u; v/

the coordinates on � and consider a unit normal field N on X.�/. As X is totally
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umbilic, there exists a function � W � ! R such that

rXu
N D �Xu;

rXv
N D �Xv;

where r is the Riemannian connection of the Sol group. As in the proof of Theorem 1
we find

R.Xu; Xv/N D �vXu � �uXv; (28)

where R denotes the curvature tensor of the Sol group. Let us express the latter. Let
X; Y; Z and W be any vector fields. Proceeding as in [7], Proposition 2.1, after some
computations and using (25) we obtain the following:

hR.X; Y /Z; W i D .hX; ZihY; W i � hX; W ihY; Zi/
C 2

�
hX; W i

�
Y;

@

@z

� �
Z;

@

@z

�
C hY; Zi

�
X;

@

@z

� �
W;

@

@z

�

� hX; Zi
�
Y;

@

@z

� �
W;

@

@z

�
� hY; W i

�
X;

@

@z

� �
Z;

@

@z

��
:

We define the function � on � setting � WD hN; @
@z

i. We denote by T the projection
of @

@z
on S , that is T D @

@z
� �N . We then have

R.Xu; Xv/N D 2�

��
Xv;

@

@z

�
Xu �

�
Xu;

@

@z

�
Xv

�

D 2�.hXv; T iXu � hXu; T iXv/;

wherefrom we deduce, using (28), that

r� D 2�T: (29)

Assume first that � and T do not vanish on �. Thus T is of the form

T D ˛E1 C ˇE2 C �E3;

where ˛ and ˇ do not vanish simultaneously. Since jT j2 D 1��2 we have ˛2Cˇ2 D
�2.1 � �2/. We thus have

N D �˛

�
E1 � ˇ

�
E2 C �E3:

We set

JT D �ˇ

�
E1 C ˛

�
E2;
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so JT is tangent to S , orthogonal to T and E3 and satisfies jJT j2 D jT j2. Further-
more we have

N ^ T D JT; T ^ JT D .1 � �2/N; JT ^ N D T:

We now compute the derivative ŒT; JT �.�/ in two different ways.
We first compute ŒT; JT � D rT JT � rJT T . We have

rT JT D rT N ^ T C N ^ rT T

D N ^ rT T .since rT N D �N /

D N ^ rT .E3 � �N /

D N ^ rT E3 � ��JT:

Furthermore, using (25) we obtain

rT E3 D ˛rE1
E3 C ˇrE2

E3 C .1 � �2/rE3
E3

D ˛E1 � ˇE2;

wherefrom we deduce after some straightforward computations that

rT E3 D ˛2 � ˇ2

1 � �2
T � 2

˛ˇ

�.1 � �2/
JT � �.1 � �2/N:

Consequently

rT JT D 2
˛ˇ

�.1 � �2/
T C ˛2 � ˇ2

1 � �2
JT � ��JT:

In the same way we obtain

rJT T D rJT E3 � rJT �N;

D � 2
˛ˇ

�.1 � �2/
T C �JT � ��JT:

We deduce that

ŒT; JT � D 4
˛ˇ

�.1 � �2/
T C

�
˛2 � ˇ2

1 � �2
� �

�
JT:

Using this last expression and (29), we find

ŒT; JT �.�/ D 8˛ˇ: (30)
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On the other hand, using again (29) we have

ŒT; JT �.�/ D T .JT .�// � JT .T .�//

D � JT .hr�; T i/
D 2.�1 C 3�2/JT .�/

D 4
˛ˇ

�
.�1 C 3�2/

(31)

since an easy computation gives JT .�/ D 2˛ˇ=�. From (30) and (31) we deduce

˛ˇ.3�2 � 2� � 1/ D 0:

Observe that if � is constant on an open subset then JT .�/ � 0 which implies
˛ˇ � 0. So in all cases we have ˛ˇ � 0.

Recall that ˛ and ˇ do not vanish simultaneously since by our assumption � 6D 0.
Therefore we have either ˛ � 0 or ˇ � 0.

Considering the isometry .x; y; z/ 7! .y; x; �z/ we can assume that ˛ � 0.
Then the surface is part of a product R � 	 where 	 is a curve in the geodesic plane
fx D 0g. This case is considered in Proposition 19.

Let us suppose now that T � 0 on an open set. Then this open set is part of a
horizontal plane fz D z0g, but this contradicts the assumption of umbilicity.

To finish the proof we consider the case where � � 0 on an open subset. Therefore
T � E3 and so this piece of the surface is part of a product L � R where L is a curve
in the horizontal plane fz D 0g. If L is contained in a line parallel to the y-axis, then
the surface is contained in a totally geodesic plane fx D x0g. Discarding this trivial
case, we can assume that L is a graph over the x-axis. Consequently, the embedding
X is given by

X.x; t/ D .x; y.x/; t/:

As a unit normal we take

N D 1p
e�2ty02 C e2t

.e�2ty0; �e2t ; 0/

D y0p
y02 C e4t

E1 � 1p
e�4ty02 C 1

E2:

As Xt D E3, using (25) we obtain

rXt
N D �2

y0e4t

.y02 C e4t /3=2
E1 � 2

e�4ty02

.e�4ty02 C 1/3=2
E2:

The condition rXt
N D �Xt is therefore equivalent to � � 0 and y0 � 0. So L is part

of a line parallel to the x-axis and the surface is part of a geodesic plane fy D y0g.
This concludes the proof. �
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7. An application

As an application of the classification of totally umbilic surfaces obtained in the
previous sections, we can prove the following result:

Theorem 21. Any conformal diffeomorphism of H2 � R; S2 � R and Sol is an
isometry.

Proof. The result for S2 � R is a consequence of the fact that the mapping

S2 � R ! R3 � f.0; 0; 0/g;
.p; t/ 7! etp

is a conformal diffeomorphism -here S2 is viewed as the unit sphere of R3 centered
at the origin. Indeed the conformal diffeomorphisms of R3 � f.0; 0; 0/g are the
Möbius transformations fixing .0; 0; 0/ or sending .0; 0; 0/ to the point at infinity and
these transformations correspond through the above conformal diffeomorphism to
isometries of S2 � R: We leave the details to the reader.

We now prove the result for the space H2 �R: We claim that, except for the slices
H2 � ft0g; all the non-compact maximal (for the inclusion) totally umbilic surfaces
in H2 � R are conformal to C: This is clear for the products � � R; where � � H2

is a geodesic. As for the surfaces invariant under a one parameter group of parabolic
transformations and which are all congruent to the surface SP described in 4.2, this
is seen as follows. Consider in H3 a totally geodesic plane which we call H2 and
denote by N a unit normal along it. We let exp denote the exponential map in H3:

Then the map
H2 � �0; �Œ ! H3;

.p; t/ 7! expp

�
ln

�
tan

�
t

2

��
N.p/

�

is a conformal diffeomorphism (cf. [20] for the details) which sends SP onto a totally
umbilic surface of H3 with one point at infinity, that is a horosphere. It remains to
consider the case of the surfaces invariant under a one parameter group of hyperbolic
transformations. Consider such a surface †: We know that † is invariant under a
set of reflections of H2 � R through horizontal slices H2 � ft D a C nbg; for all
n 2 Z; and a; b 2 R depending on †: Suppose by contradiction that † is conformal
to H2: The isometries of † induced by those reflections correspond then to conformal
diffeomorphisms of H2 and so to isometries of H2: In particular all the horizontal
curves † \ ft D an C bg correspond to geodesics of H2: Now observe that all these
curves are invariant by the hyperbolic isometries leaving † invariant. We thus get
isometries of H2 which leave (globally) invariant more than one geodesic. This is a
contradiction as only the identity of H2 has this property.
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Take now a conformal diffeomorphism � of H2 �R: Then � sends any horizontal
slice H2 �ft0g to a maximal totally umbilic non-compact surface which is conformal
to H2: From what precedes it follows that � sends H2 � ft0g conformally to some
horizontal slice H2 � ft1g and so isometrically. As � is conformal this implies that
for any x 2 H2 � ft0g; the tangent map Dx� is an isometry. So � is an isometry of
H2 � R:

The case of the Sol group is treated analogously. There are two maximal totally
umbilic surfaces up to congruences. With the notations of Section 6, the first one is
the totally geodesic plane fx D x0g and is easily seen to be isometric to H2: The
second one is the surface parametrized by X.t; y/ D .t; y; z.y//, where t 2 R; y 2
��y1; y1Œ and z is the maximal solution to the equation z0 D e�z

p
e�4z � 1 (we have

chosen a D 1 with the notations of Section 6). The metric on this surface writes

ds2 D e2z d t2 C e�z dy2:

Making the change of coordinate � D R
e�4z.y/ dy; the metric writes

ds2 D e2z.d t2 C d�2/:

As the function z is bounded from above (cf. Section 6), the flat metric d t2 C d�2 is
complete. It follows that the surface is conformal to C: As the totally geodesic planes
fx D const:g fill the whole space Sol, we conclude as before that any conformal
diffeomorphism of Sol is an isometry. �
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