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Some topological properties of quotients modulo semisimple
algebraic groups
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Abstract. We will prove a general result in Invariant Theory, viz. for a quotient Cn==G, where G

is a connected complex semisimple algebraic group, the local first homology group at any point
in the quotient Cn==G is trivial and the local second homology group is finite. Using this we
will prove that the completion of the local ring of any point in Cn==G is a unique factorization
domain (UFD).
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Introduction

The aim of this paper is to prove the following general result in Invariant Theory.

Theorem. Let G be a complex linear algebraic group such that its connected compo-
nent of identity G0 is semisimple. Suppose G acts on Cn regularly and W WD Cn==G

is the quotient corresponding to the ring of invariants CŒX1; X2; : : : ; Xn�G such that
dim W > 1. Then we have the following assertions:

(a) For any point p 2 W the local first homology group H
p
1 .W / is finite. If G is

connected then H
p
1 .W / D .0/.

(b) If W has isolated singularities then the fundamental group at infinity, �1
1 .W /,

is trivial.

(c) The local second homology group H
p
2 .W / is finite. Further, H2.W n Sing W /

is finite.

Remark. The proof of the second part of (c) above plays an important role in many
arguments.

For the necessary topological definitions and notations, see Section 1.
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Remarks. (a) It is proved in [8] that the local fundamental group �
p
1 .W / is always

finite whenever G is (not necessarily connected) reductive. But even if G is connected
semisimple �

p
1 .W / can be non-trivial. The author is thankful to T. N. Venkataramana

for showing a construction of examples of this. See remark at the end of the proof of
the theorem.

(b) If G0 is not semisimple then H
p
2 .W / can be of rank > 0. An example of this

is given after the proof of theorem.

We have the following useful consequence of the theorem.

Corollary. Let G be a connected semisimple group and let W; p be as in the statement
of the theorem. Then the analytic local ring OW;pan

is a UFD.

The example given after the proof of the theorem shows that for G connected
reductive this is not always true. In the corollary, presumably even the completion
of OW;p w.r.t. its maximal ideal is factorial. The example mentioned above can be
modified to show that the local ring of a rational singular point on an algebraic variety
can be a UFD but its completion may not be so.

V. B. Mehta has informed the author that there exists an example of a quotient
Cn==G which has a factorial local ring but whose completion is not factorial. In this
example G is a torus.

Acknowledgements. The author is thankful to T. N. Venkataramana for showing
some interesting representations of semisimple groups which illustrate that we cannot
expect triviality of the local fundamental group of quotients in the theorem. He would
also like to thank V. L. Popov for showing an example where the complement of the
principal stratum in the Luna stratification can have divisors even for connected
semisimple groups. The author is thankful to the referee for carefully reading the
manuscript, pointing out many inaccuracies in the earlier version and making useful
suggestions for improving the readability of the paper.

1. Preliminaries

All the varieties considered in this paper are complex algebraic or analytic varieties.
For any topological space T we will denote by Hi .T / (resp. H i .T /) the singular

homology (resp. cohomology) with integer coefficients.
For any normal algebraic variety or a normal complex space Z and p 2 Z the

local mth homology group H
p
m.Z/ is defined as the group Hm.U � Sing U /, where

U is a suitable small neighborhood of p in Z. This notion is well-defined. There are
arbitrarily small such neighborhoods of p. One way to see this is to use a triangulation
of Z such that Sing Z is a closed subcomplex and use local properties of simplicial



Vol. 84 (2009) Topological properties of quotients modulo semisimple algebraic groups 795

complexes (see [6]) or [17], Chapter II, §6). If p is a simple point of Z then we
consider Hm.U � p/ for the definition of H

p
m.Z/. If dim Z D d and p is a simple

point then U �p has the homotopy type of the sphere S2d�1. Similarly we can define
the local fundamental group, �

p
1 .Z/, for any normal complex space and p 2 Z.

If Z is affine of dimension � 2 and has only isolated singularities then the fun-
damental group at infinity, �1

1 .Z/, is defined as the fundamental group of the com-
plement of a sufficiently large compact subset K with C 1 boundary in Z. It can be
calculated using a suitable compactification of Z as in the proof of assertion (b) of
the theorem below.

Recall that if a reductive algebraic group H acts regularly on a normal affine
variety X then the ring of invariants �.X; O/H is finitely generated and normal. The
corresponding normal affine variety is denoted by X==H . The morphism � W X !
X==H is called the quotient map. For many standard properties of the map � , see [16].

We will abbreviate by RDP a rational double point singularity of a complex ana-
lytic surface. It is well known that if .V; p/ is a germ of an RDP then the homology
group H1.V � fpg/ is finite and H2.V � fpg/ D .0/. A small open neighborhood
V of p behaves like a topological manifold, at least when we use rational homology.

We will use the following results about rational and canonical singularities ([19]).

(1) A general hyperplane section of a variety with only rational singularities again
has only rational singularities ([19], §1).

(2) The singularities of a Gorenstein variety V with at most rational singularities
are canonical singularities. This follows from the definition of a canonical
singularity in [19], §1, and the fact that on a d -dimensional variety V with only
rational singularities any rational d -form which is regular on V nSing V remains
regular on a resolution of singularities of V (Kempf’s criterion).

If further dim V � 3 then outside a codimension 3 subvariety, V is locally ana-
lytically a product of a germ of an RDP and a smooth germ. This uses repeated
applications of Theorem 1.13 and the proof of Corollary 1.14 from [19].

We will use the following Lefschetz hyperplane section theorems.

Lemma 1. Let .V; p/ be a germ of an n-dimensional normal singular point of a
complex analytic variety with n > 2. Then we have the following assertions.

(i) For a general hyperplane section L passing through p it holds that the pair
.V n Sing V; L n Sing V / is .n � 2/-connected.

(ii) For c 2 C with jcj ¤ 0 sufficiently small, the pair .V nSing V; fL D cgnSing V /

is .n � 1/-connected ([11], Remark II.1.5).

Lemma 2. Let V be a smooth quasi-projective variety of dimension n embedded in
CN . Then for a general hyperplane L in CN , the pair .V; V \L/ is .n�1/-connected.
([10], Theorem 1.1.1).
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The next result was conjectured by P. Deligne and proved first in [7]), Part II,
Theorem 1.1, and also later in [12], Theorem 3.1.1.

Lemma 3. Let Z be a smooth quasi-projective irreducible variety of dimension n

with a dominant morphism f W Z ! V , where V is an affine variety embedded as a
closed subvariety in an affine space CN . Let L be a general linear subspace of CN

of codimension c. Then the pair .Z; .f �1.L// is n1-connected, where

n1 WD 2n � supŒ2k C �.k/ C inf.�.k/; c � 1/� � 1:

Here �.k/ is the dimension of the set of points p 2 CN � L such that dim f �1.p/

is equal to k. (The dimension of an empty set is defined to be �1).
A similar statement is true for homology instead of homotopy groups.

Remark. With the notation of Lemma 3, if the set where dim f �1.p/ D k is empty
then �.k/ D �1 and we need not consider such terms while calculating the supre-
mum.

The theory of tubular neighborhoods is a well-developed theory in Stratified Morse
Theory ([7], Part II, Chapter 2). In our proof we need to take tubular neighborhoods
of singular subvarieties of singular algebraic varieties. Because of the singularities
of the subvariety (or because of “non-equisingular” points of the subvariety) the
arguments are somewhat technical but the underlying idea is not difficult. The proof
of the theorem is less technical if the singular locus of W is finite.

2. Proof of the theorem

We use the notation from the statement of the theorem from the introduction.
If Cn==G0 is a surface then it is proved in [9] that Cn==G0 Š C2. From this,

using the argument given at the beginning of the proof of (a) below we deduce easily
that the theorem is true if dim W D 2. Hence theorem is proved if dim W D 2. From
now onwards we will assume that dim W � 3.

If G is connected and semisimple then it is well known that the coordinate ring
R of W is a UFD and for any subvariety S of codimension � 2 in W its inverse
image ��1.S/ has codimension � 2 in Cn ([13]). Since we want to use this result in
a more general situation later on we will indicate the argument briefly. Let D be an
irreducible divisor in W . Then ��.D/ D .r/ for some regular function on Cn. Then
r is a semi-invariant. Hence for the action of G we have �g.r/ D ug � r , where ug is
a unit in the coordinate ring of Cn. This implies that ug is a non-zero constant. Now
ug gives a character on G. Since G is connected and semisimple ug is a constant
which is independent of g. Hence ug � 1. Thus r is an invariant regular function
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and .D/ D .r/. By the same argument we show that if S � W is an irreducible
subvariety of codimension � 2 then ��1S has codimension � 2 in Cn.

W has rational singular points ([2]) and it is contractible (for this latter property
it suffices for G to be reductive, see [14]). We will use these results in what follows.

It will be clear from the proof of the theorem that we will only use �1.Cn/ D
.1/; Hi .Cn/ D .0/ for 1 � i � 3. This remark will be implicitly used later in more
general situations.

Proof of (a). As remarked in the introduction, it is proved in [8] that the group �
p
1 .W /

is finite if G is reductive. Hence H
p
1 .W / is also finite.

For the proof of part (b) below we need only reductivity of G. Suppose that
G0 is semisimple. Then we have a factorization Cn ! Cn==G0 ! Cn==G. If
H

p
2 .Cn==G0/ is finite for any point p 2 Cn==G0 then this is also true for Cn==G.

For this we use the fact that if Z ! Y is a proper morphism with finite fibers
from a normal complex space Z onto a normal complex space Y then the induced
homomorphism Hi .Z/ ! Hi .Y / has image of finite index for i � 0. This can be
proved using triangulations of Y , Z (or using the transfer map, [6]).

In view of these observations for the rest of the proof of the theorem, except in
(b), we will assume that G is connected and semisimple.

First we will prove that for any point p 2 W the local first homology group
H

p
1 .W / D .0/.

This is obvious if p is a smooth point of W since dim W > 1 so we will assume
that p 2 Sing W . Let S WD Sing W .

We can find a suitable contractible open neighborhood N of p in W , a slightly
bigger contractible open neighborhood N 0 of p such that the closure xN � N 0 and we
use the covering W n .S \ xN /; N 0 of W by open subsets of W and the corresponding
Mayer–Vietoris sequence for homology

H2.W / ! H1.N 0 n .S \ xN // ! H1.W n .S \ xN // ˚ H1.N 0/ ! H1.W / ! � � � :

Since W , N , N 0 are contractible we have H1.W / D .0/ D H2.W / D H1.N 0/.
Hence we get H1.N 0n.S \ xN // Š H1.W n.S \ xN //. Since ��1.S/ has codimension
� 2 we also have �1.Cn n ��1.S// D .1/ and using the fact that � has connected
fibers we get �1.W n S/ D .1/. Now S is a proper simplicial subcomplex of W

of real codimension � 4 and since W is normal S does not disconnect W at any
point. Hence any 1-cycle in W n .S \ xN / can be deformed to a 1-cycle lying in
W n S . Therefore the map H1.W n S/ ! H1.W n .S \ xN // is onto. Hence
H1.W n .S \ xN // D .0/. Thus, H1.N 0 n .S \ xN // D .0/. Finally, using the
same argument as above we see that the map H1.N 0 n .S \ xN // ! H1.N 0 n S/ is
surjective. Hence H1.N 0 n S/ Š H

p
1 .W / D .0/. �

Proof of (b). For this part we only need reductivity of G.
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Now assume that W has isolated singularities. Let W � X be an embedding
into a normal projective variety X such that X is smooth outside W and X n W is a
simple normal crossing divisor D. Let N be a suitable tubular neighborhood of D

in X . Then �1.N n D/ is the fundamental group at infinity of W . A Lefschetz-type
result of Hamm- Lê Dũng Tráng says that X n .S [ D/ D W n S has the homotopy
of a space obtained from N n D by attaching cells of dimension � 3 ([10]). Since
�1.W n S/ D .1/, we conclude that �1.N n D/ D .1/. �

Proof of (c). The proof of this main part of the theorem is rather involved.
First we will prove that H2.W n S/ is finite. This result and its proof plays a

crucial role in the proof of finiteness of H
p
2 .W / at any point.

Since H2.Cn n ��1S/ D .0/ it suffices to show that the map H2.Cn n ��1S/ !
H2.W n S/ has image of finite index. Let U � W n S be the principal Luna stratum
for � ([16], Chapter III, §3). U is a non-empty Zariski-open subset of W n S such
that � W ��1.U / ! U is a locally analytically trivial fiber bundle.

Case 1. W n U does not contain any divisor.

In this case codimension W n U � 2. It is shown in the proof of part (a) that
H1.W n S/ D .0/. From these two it follows that �1.U / D �1.��1U / D
.1/; �2.��1U / D .0/. By Hurewicz’s theorem H2.��1U / D .0/. Let F be a
general fiber of � . It is known that F has the homotopy type of a closed fiber G=H ,
where H is a closed reductive subgroup of G ([16], III, §3]). Consider the long exact
homotopy sequence

�2.F / ! �2.��1U / ! �2.U / ! �1.F / ! � � � :

For �1.F / we have the exact sequence

�1.H/ ! �1.G/ ! �1.G=H/ ! �0.H/:

Since G is semisimple, �1.G/ is finite and �0.H/ has the cardinality of the set of
connected components of H . Thus �1.G=H/ is finite. This implies that �1.F / is
finite. It follows that �2.U / is finite. Since �1.U / D .1/ D �1.��1U /, by the
Generalized Whitehead Theorem on the relation between homotopy and homology
([20], [Chapter 9, §6 ]) the map H2.��1U / ! H2.U / has image of finite index. So
we get that H2.U / is finite. Since W n S is smooth and .W n S/ n U has no divisors,
H2.U / Š H2.W n S/, proving that H2.W n S/ is finite.

Case 2. W n U has divisors.

We will let U be an affine open subset of W such that U is contained in the
principal stratum for � . Let D WD W n U . Let D D [Di be the decomposition of
D into irreducible components Di . Since the coordinate ring of W is a UFD each
Di is a principal divisor, say Di D .fi /.
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Now let L be a general hyperplane in the affine space in which W is embedded as
a closed subvariety and let Y WD W \ L. By Lemma 2, �i .W n S; Y n S/ D .0/ for
i � d � 1, where d D dim W . In particular, �2.Y n S/ ! �2.W n S/ is onto and
�1.Y nS/ Š �1.W nS/ D .1/. This implies that the map H2.Y nS/ ! H2.W nS/

is onto, again by Whitehead’s theorem. For general L, X WD ��1.Y / is smooth and
irreducible by Bertini theorems. X is G-stable and Y D X==G.

Since ��1S has codimension � 2 in Cn, we have H2.Cn n ��1S/ D .0/. Since
the compositions of the morphisms X ! Cn ! W and X ! Y ! W are same
the compositions of the induced maps on homology groups are the same. Therefore
it suffices to show that the map H2.X n ��1S// ! H2.Y n S/ has image of finite
index.

In order to illustrate the crucial idea we will assume that dim W D 3. The
general case is proved exactly similarly by taking general hyperplane sections of W

till we get a 3-dimensional variety. Since X is smooth, by Boutot’s result Y also has
rational singularities. Since W is Cohen–Macaulay and �.W; O/ is a UFD, W is
also Gorenstein. It follows that Y is a Gorenstein surface with rational singularities.

We claim that Y has at most E8-singularities.
By part (a), the group H

p
1 .W / D .0/. If W has only isolated singularities then

Y is smooth. So we can assume that Sing W contains a curve. It is well known that
RDPs have no moduli ([1], §1). Hence at a point in Sing Y , W is locally analytically
a product of the germ .Y; p/ and a disc in C. It follows from H

p
1 .W / D .0/ that

H
p
1 .Y / D .0/. The only RDP which has trivial local H1 is E8.

Thus Y has only E8 singularities. Hence Y is a topological manifold at each of
its points. For general L, the divisor Di \ L is irreducible and defined by fi jY .

Claim. The homomorphism H2.U \ L/ ! H2.Y / has image of finite index.

This will follow by induction on the number of irreducible components of D from
the following result. Using the observation that Y is a topological manifold, for the
purpose of illustrating the crucial idea we can assume that Y is smooth.

Lemma 4. Let Z be a smooth affine surface and let C � Z an irreducible curve
which is a principal divisor .f /. Then the homomorphism H2.Z n C / ! H2.Z/ is
a surjection.

Proof. First we will give the proof when C is smooth. Let N be a suitable tubular
neighborhood of C in Z. Since Z, C are affine N is a topologically trivial 2-disc
bundle over C and hence its boundary is a trivial S1-bundle over C . We use the open
cover Z n C; N of Z and consider the corresponding Mayer–Vietoris sequence

! H2.@N / ! H2.ZnC /˚H2.N / ! H2.Z/ ! H1.@N / ! H1.ZnC /˚H1.N /:

We will prove that the map H1.@N / ! H1.Z n C / ˚ H1.N / is injective. Now
@N D C � S1 and C is a strong deformation retract of N . The function f gives a



800 R. V. Gurjar CMH

morphism Z n C ! C� such that the image of a small loop � around C in Z maps
onto the generator of H1.C�/. Hence � has infinite order in H1.Z n C /. From this
injectivity of the map H1.@N / ! H1.Z n C / ˚ H1.N / is easy to deduce.

Again, since C is a strong deformation retract of N and C is an affine curve we
see that H2.N / D .0/. Hence H2.Z n C / ! H2.Z/ is surjective.

This proves the result when C is smooth. If C has (finitely many) singular points
then we work with C n Sing C and Z n Sing C . Now Z n Sing C is not affine but
C n Sing C is affine. Also, H2.Z n Sing C / Š H2.Z/ since Sing C is a finite set.
Since C n Sing C is affine H2.C n Sing C / D .0/. This is enough for the above
proof. �

Remark. The assumption that C is a set-theoretically principal divisor is necessary.
As an example we consider the affine quadric Q WD fx2 C y2 C z2 D 1g � C3. It
contains C2 as an affine open subset such that Q n C2 Š A1. But H2.Q/ Š Z and
H2.C2/ D .0/. It is easy to see that Q n C2 generates the infinite cyclic divisor class
group of Q.

Now U \ L � Y is contained in the principal stratum for �jX . Hence all the
fibers of X ! Y for points in U \ L are mutually isomorphic. We can now use the
following result which follows from a general result due to Kraft–Russell ([15], §3,
Proposition).

Lemma 5. There is an étale dominant morphism h W V ! U such that the induced
map V �U ��1.U / ! V is a trivial bundle V � F , where F is a general fiber of � .

Using the fact that �.W; O/ is a UFD we can now find an affine open subset
U0 � U \ L such that the complement .U \ L/ n U0 is a union of irreducible curves
�i each of which is a principal divisor in Y . Further, we can assume that the map
h W V0 WD h�1.U0/ ! U0 is a finite morphism. By Lemma 4 we know that the map
H2.U0/ ! H2.Y / is onto. Clearly the map H2.V0 � F / ! H2.V0/ is onto. Since
the map V0 ! U0 is finite the induced map H2.V0/ ! H2.U0/ has image of finite
index. This follows from the observation that V0; U0 can be triangulated so that the
map V0 ! U0 is simplicial ([6]). Alternatively, we can use the Transfer map in the
theory of finite group actions on simplicial complexes. It follows now that the map
H2.X n ��1S/ ! H2.Y n S/ has image of finite index.

We use this to prove (c) first in the case when W has isolated singularities.
Let p1; p2; : : : ; pr be all the singular points of W and let Ni be a small con-

tractible neighborhood of pi in W . We use the covering W n S; [ Ni of W and the
corresponding Mayer–Vietoris sequence

H3.W / ! H2.[.Ni n pi // ! H2.W n S/ ˚ H2.[Ni / ! H2.W / ! � � � :
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Since W; Ni are contractible and H2.W n S/ is finite as proved above we deduce
that H2.Ni n pi / is finite for i D 1; 2; : : : ; r . This means the local second homology
groups H

pi

2 .W / are all finite. This proves (c) when W has isolated singular points.
For the general case, again first we give the argument when dim W D 3.
Now the singular locus of W can be assumed to be a disjoint union of a curve C

and a finite set of points, say fq1; q2; : : : ; qsg. We have shown earlier that a general
hyperplane section W \ L is Gorenstein and has only E8 singularities. Clearly, a
general hyperplane does not pass through any of the qj . Similarly, there is a finite
set fp1; p2; : : : ; prg � C such that a general hyperplane section W \ L not passing
through any pi has at worst E8 as singularities (here, we are using Lemma 1 (ii)
and part (a) of the theorem which is already proved). It is well known that a flat
deformation of an RDP is locally trivial outside the special fiber. Hence by removing
finitely many more points in C , if necessary, we deduce that the variety W is locally
analytically a product of a 1-dimensional disc in C and the germ of the E8 singularity
for any p 2 C n fp1; : : : ; prg.

Let P WD fp1; : : : ; pr ; q1; : : : ; qsg. At each point in W n P; W is a topological
manifold. The previous proof works without any change to show that H2.W n P /

is finite. Using the open cover W n P , [Ni , where Ni are suitable contractible
neighborhoods of the points in P , and the Mayer–Vietoris sequence we deduce that
H

qj

2 .W / is finite for any qj .

Remark. The proof also shows that H2.Ni � pi / is finite. But we have H
pi

2 .W / D
H2.Ni n C / so we cannot conclude immediately that H

pi

2 .W / D .0/.

Let N be a suitable tubular neighborhood of C in W . Let Si be a general hy-
perplane section of W at pi for 1 � i � r . Since W is 3-dimensional, normal
and Cohen–Macaulay, Si is analytically irreducible at pi by Flenner’s local Bertini
theorem ([3]). Now N n [iSi is a tubular neighborhood of C n fp1; : : : ; prg in
W n [Si .

Claim. H2.N n C / is finite.

For proving this we consider the cover W nC; N of W . Using the Mayer–Vietoris
sequence for this cover and the result that H2.W n S/ D .0/ proved above proves
the claim.

Now we can write N D U1 [ U2, where U1 is a disjoint union of neighborhoods
of p1; : : : ; pr in N and U2 is a bundle over C n�, where � is a disjoint union of small
neighborhoods of p1; : : : ; pr in C , whose fiber is a germ of an E8 singularity. Then
U1 nC; U2 nC is an open cover of N nC . The intersection .U1 nC /\.U2 nC / has the
homotopy type of a bundle over @� (which is a disjoint union of finitely many circles)
whose fiber has the homotopy type of the link of E8 singularity. Now the link of the
E8 singularity is a quotient of the 3-sphere S3 by the binary icosahedral group P of
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order 120. We have an exact sequence .1/ ! P ! �1.E/ ! �1.S1/ ! .1/, where
S1 is one of the connected components of @� and E is the total space of the bundle
over this S1. This sequence splits since �1.S1/ Š Z. Write �1.E/ D P � .�/, where
P is normal in �1.E/ and .�/ maps isomorphically onto Z in the above short exact
sequence. Since .�/ has finite index (equal to 120) in �1.E/, we can find a subgroup
of finite index, say .� 0/ � .�/ such that .� 0/ is normal in �1.E/. This implies that
there is a finite normal covering E 0 ! E whose fundamental group is the normal
subgroup P � .� 0/ of �1.E/. There is a fiber bundle E 0 ! S1 with fiber the link
of the E8 singular point. Further, since P � .� 0/ is normal in �1.E/ by taking the
universal covers of the fibers of the bundle E 0 ! S1 we get an S3-bundle over S1. It
follows that there is an orientable S3-bundle over @� such that .U1 n C / \ .U2 n C /

has the homotopy type of the quotient of this S3-bundle over @�. Since an orientable
sphere bundle over S1 is trivial we see that the total space of this S3-bundle has trivial
second homology and hence H2..U1 n C / \ .U2 n C // is also finite. Using the fact
that �1.C n�/ is a free group we observe similarly that the space U2 nC is a quotient
of an orientable S3-bundle E 0 ! C 0, where C 0 is a finite-sheeted covering space
C 0 ! C n �. Using the Gysin sequence of an S3-bundle over C 0 we first see that
H2.E 0/ is finite and hence H2.U2 nC / is also finite. Now we use the Mayer–Vietoris
sequence for the covering U1 n C; U2 n C of N n C and the result that H2.N n C /

is finite as proved above to conclude that H2.U1 n C / is finite. This proves that the
local second homology group of each pi is finite.

This completes the proof of part (c) of the theorem when dim W D 3.
Next we indicate the modification of the above proof when dim W D 4.

Case 1. Assume that W has only isolated singularities.

We have already shown that H2.W n S/ is finite.
Since W has isolated singularities, as in the case dim W D 3 we prove that the

local second homology group at any point of W is finite.

Case 2. Assume that Sing W is a disjoint union of a curve C and finitely many points
fpig.

Let N be a suitable tubular neighborhood of C and let Ni be suitable contractible
neighborhoods of pi . Consider the open cover X nSing W; N [ .[iNi / of W and the
corresponding Mayer–Vietoris sequence. Using the finiteness of H2.W n Sing W /

proved earlier we conclude that H2.N n C /; H
pi

2 .W / are all finite.
Let Y be a general hyperplane section of W and let X WD ��1.Y /. Then X is

smooth, G stable and Y D X==G. We will apply Lemma 3 to the map � W Cn ! W

with c D 1.
The integer n1 D 2n � 1 � supkŒ2k C �.k/�, where the supremum is taken over

those k such that there is at least one fiber of � of dimension k. We claim that n1 � 3.
This is equivalent to 2n�4 � supkŒ2kC�.k/�. We have observed in the beginning of
the proof of the theorem that the inverse image of any subvariety of W of codimension
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� 2 has codimension � 2 in Cn. Since dim W � 4, any fiber of � has codimension
� 2. This implies that k C �.k/ � n � 2, so that 2k C 2�.k/ � 2n � 4.

Now by Lemma 3, Hi .X/ D .0/ for i D 1; 2: Similarly, �1.X/ D .1/ so that
a smooth compactification of X is also simply-connected and X does not have non-
constant regular invertible functions. Now for any smooth compactification X of
X we have H1.X/ D .0/, so that P ic0.X/ D 0. From H1.X/ D .0/ D H2.X/

we observe that H 2.X/ D .0/. The group Ĥ2.X/ defined in [5], §1, is a subgroup
of H 2.X/, which in our situation is trivial. Now it follows that the coordinate ring
of X is a UFD ([5], Corollary 1.20). Since G is connected and semisimple, as
seen in the beginning, the coordinate ring of Y is also a UFD. Now Y has isolated
singularities. Let p 2 Sing Y . By Lemma 1 the homomorphism H

p
2 .Y / ! H

p
2 .W /

is an isomorphism. It suffices to show that H
p
2 .Y / is finite. The inverse image in

X of any subvariety of codimension � 2 of Y has codimension � 2 in X . From
this we see that there are only finitely many points in Y whose inverse image has
codimension 2 in X .

Let Z be a general linear space section of X of dimension 3. By Bertini’s theorem
Z is smooth and irreducible. By abuse of notation we denote � W Z ! Y to be
the restriction morphism. Now � is a generically finite morphism and there are
only finitely many points, say p1; p2; : : : ; pr , in Y whose inverse image in Z is
codimension 2 (the intersection of Z with some codimension 2 subvarieties of X ),
i.e. it is 1-dimensional. Let p D p1. If ��1.p/ is finite then Y has a quotient
singularity at p and hence H

p
2 .Y / is finite. So let D WD ��1.p/. Then D is a

(possibly reducible) curve. Since � is generically finite we infer that there are finitely
many irreducible divisors �1; : : : ; �l in Y such that � restricts to a proper morphism
with finite fibers Z n ��1.[�i / ! Y n .[�i /. Since we are only interested in the
topology of a small neighborhood of p we will assume, for simplicity, that p is the
only singular point of Y and p 2 �i for each i .

Let U be a suitable Stein contractible neighborhood of p in Y . Each �i is a
principal divisor in Y since the coordinate ring of Y is a UFD.

We use Lemma 1. If H is a general hyperplane section of U , not passing through
p, then the natural map H2.H/ ! H2.U nfpg/ is a surjection. H is a 2-dimensional
Stein manifold. Since each �i is a principal divisor, by the proof of Lemma 4 we
see that the map H2.H n [�i / ! H2.H/ is a surjection. Hence the composite
map H2.H n [�i / ! H2.U n fpg/ is also a surjection. Let T be a suitable tubular
neighborhood of D in Z such that D is a strong deformation retract of T and �.T / �
U . It follows that H2.T / D .0/. Let U1 � U be a slightly smaller neighborhood of
p which is a strong deformation retract of U , so that H2.U1 n fpg/ Š H2.U n fpg/.
By shrinking U1 we can assume that the inverse image ��1.U1/ is contained in T .
The map H2.��1..H \ U1/ n [�i // ! H2..H \ U1/ n [�i / has image of finite
index since the morphism ��1..H \ U1/ n [�i / ! .H \ U1/ n [�i is proper with
finite fibers. Hence the composite map H2.��1..H \ U1/ n [�i // ! H2.U n fpg/
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also has image of finite index. Now H2.T n D/ D .0/ since D is an affine curve and
has codimension � 2 in T . The map H2.��1..H \ U1/ n [�i // ! H2.U n fpg/
factors through H2.T n D/, which is trivial. Hence we conclude that H2.U n fpg/
is finite.

This completes the proof of Case 2.

Case 3. Assume finally that Sing W contains a surface S .

A general hyperplane section W \ L1 is Gorenstein of dimension 3 and has
rational singularities. Its singular locus is Sing W \ L1. In the terminology of [19],
W \ L1 is a Gorenstein canonical singularity. Another general hyperplane section
gives W \ L1 \ L2, which is also Gorenstein and has rational singularities. As seen
before, the singularities of W \ L1 \ L2 are E8-singularities. At any such point
W \ L1 \ L2 is topologically a manifold. Using the observation that RDPs have no
moduli, it is shown in [19], Corollary 1.14, that outside a codimension 3 subvariety,
say F , W is locally analytically a product of an RDP and the unit disc in C2. Now
F is a disjoint union of a curve C � W and a finite set of points such that any
point p 62 F is either a smooth point of W or W is locally analytically a product
(disc in C2/ � germ of E8. Hence H

p
2 .W / is trivial for any such point p. Clearly

W is a topological manifold at any point in W n F . We prove that H
p
2 .W / is finite

for any p 2 C exactly by the same argument as in Case 2.
This completes the proof of assertion (c) of the theorem when dim W D 4.
Consider the case when dim W > 4. We will indicate the proof when dim W D 5

and leave the general case to the reader.
Arguing as in the case dim W D 4 above, we see that there is a codimension 3

subvariety, say F , of W such that W is at any point p 2 W n F locally analytically
a product .disc in C3/ � germ of E8 singularity. In particular, W is a topological
manifold at any point in W n F . Now F is a union of a surface S , a curve C and
finitely many points not contained in S [ C . We prove that H2.W n F / is finite as
before. We ignore the finitely many isolated points in F . Next, if N is a suitable
tubular neighborhood of F in W then using a Mayer–Vietoris sequence for the cover
.W nF /; N we deduce that the natural map H2.N nF / ! H2.N / is an isomorphism.

Let Y WD W \ L, where L is a general linear subspace of CN of codimension 2.
Let X WD ��1.Y /. Now dim Y D 3 and Y \ F is a finite set of points. If we apply
Lemma 3 with c D 2 then we see as in the proof of Case 2 (when dim W D 4) that
the pair .Cn; X/ is 3-connected. Then Hi .X/ D .0/ for i D 1; 2, the coordinate ring
of X is a UFD and has no regular invertible functions. This implies as in the proof
of Case 2 (dim W D 4) that the coordinate ring of Y is a UFD, the inverse image
of any codimension � 2 subvariety of Y has codimension � 2 in X , etc. We prove
that H

p
2 .Y / is finite exactly as in the proof of Case 2 (dim W D 4). Finally, using

Lemma 1 we deduce that H
p
2 .W / is finite.

This completes the proof of the theorem. �
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Remark. T. N. Venkataramana has shown us an interesting construction of the fol-
lowing phenomenon.

Let � be a non-trivial finite perfect group. Then there is a suitable linear action
of G D SL.N; C/ (for N >> 0) on CN such that for a suitable point p in CN ==G

the local fundamental group of CN ==G at p is � . On the other hand, it is easy to see
from our proof that in assertion (a) of the theorem the local fundamental group at the
vertex in CN ==G is trivial.

3. Proof of the corollary

Let G; W D Cn==G; p 2 W be as in the statement of the corollary of the theorem
as stated in the Introduction. As remarked in the beginning W has rational singular-
ities. For rational singularities (in arbitrary dimension) Flenner has shown ([4], §6,
Satz 6.1) that the analytic local ring OW;pan

is a UFD if and only if there exists
a fundamental system of Stein contractible neighborhoods U of p in W such that
H 2.U n Sing W / D .0/. This is equivalent to the two conditions H1.U n Sing W /

is torsion-free and H2.U n Sing W / is finite. By the parts (a) and (c) of the theorem
these are both true for W .

An example. Let C� act on C4 by �t .X1; X2; X3; X4/ D .tX1; tX2; t�1X3; t�1X4/.
The ring of invariants is CŒX1X3; X1X4; X2X3; X2X4�. The corresponding affine
variety W WD C4==C� is the hypersurface fY1Y2 � Y3Y4 D 0g � C4. Clearly W is
homogeneous and has an isolated singular point at the vertex w. The inverse image of
w in C4 has codimension 2. Hence �w

1 .W / D .1/. It is easy to see that H w
2 .W / has

rank > 0. Further, CŒX1X3; X1X4; X2X3; X2X4� has infinite cyclic divisor group.
It is proved in [18] that the affine 3-fold W 0 given by

fY1Y2 � Y3Y4 C F.Y1; Y2; Y3; Y4/ D 0g
in C4 is a UFD if F is a sufficiently general homogeneous polynomial of large degree.
The analytic type of the singularity of W 0 at the origin is the same is that of W , hence
a rational singularity. The local ring of W 0 at the origin is a UFD but its completion
has infinite divisor class group.

This example illustrates that the hypothesis on G0 in the theorem is necessary.
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