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Abstract. In this paper we consider a graded Lie algebra, L, of finite depth m, and study the
interplay between the depth of L and the growth of the integers dim Li . A subspace W in a
graded vector space V is called full if for some integers d , N , q, dim Vk � d

PkCq

iDk
dim Wi ,

i � N . We define an equivalence relation on the subspaces of V by U � W if U and W are full
in U CW . Two subspaces V , W in L are then called L-equivalent (V �L W ) if for all ideals
K � L, V \K � W \K. Then our main result asserts that the set L of L-equivalence classes
of ideals in L is a distributive lattice with at most 2m elements. To establish this we show that
for each ideal I there is a Lie subalgebra E � L such that E \ I D 0, E ˚ I is full in L, and
depth E C depth I � depth L:
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1. Introduction

We work over a ground field k of characteristic ¤ 2. A graded Lie algebra, L, is a
graded vector space equipped with a Lie bracket Œ ; � W L˝ L! L, satisfying

Œx; y�C .�1/degx�degy Œy; x� D 0

and

Œx; Œy; z�� D ŒŒx; y�; z�C .�1/degx�degy Œy; Œx; z��;

and Œx; Œx; x�� D 0, x 2 Lodd if char k D 3. (This condition is automatic if char k is
not 3.)

As in the classical case, L has a universal enveloping algebra UL, and we define

depth L D least m (or1) such that Extm
UL.k; UL/ ¤ 0:
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Similarly, if M is an L-module, then

gradeL M D least q (or1) such that Extq
UL.M; UL/ ¤ 0:

The graded Lie algebra, L, is connected if L D fLigi�0 and of finite type if each
dim Li <1; graded Lie algebras satisfying both condition are called cft graded Lie
algebras.

Suppose now X is a simply connected CW complex of finite type. Then the
rational homotopy Lie algebra, LX D ��.�X/˝Q (with Lie bracket given by the
Samelson product) is a cft graded Lie algebra. The motivation for the study of cft
graded Lie algebras of finite depth is the following result.

Theorem ([1]). If X is a simply connected CW complex of finite type, then

depth LX � cat0 X;

where cat0 X denotes the rational Lusternik–Schnirelmann category of X . In partic-
ular, if X is a finite CW complex, then depth LX is finite.

For more details for all of the above, the reader is referred to [5].
An important question connected with the Lie algebra LX is the behavior of the

integers dim.LX /i , since

dim.LX /i D rank �iC1.X/:

In this regard, we have the following growth result.

Theorem ([9]). Let X be a simply connected CW complex of finite type such that the
sequence dim Hk.X IQ/ grows at most exponentially. If cat0 X < 1, then either
dim LX < 1, or else there is a positive integer d and a number ˛ > 0 such that
given " > 0,

e.˛�"/k �
kCdX
iDk

.dim LX /i � e.˛C"/k; k � K."/:

Note that e�˛ is just the radius of convergence of the power series
P

dim.LX /iz
i .

In this paper we focus on the structure of cft graded Lie algebras of finite depth,
with particular attention to the interplay between depth and growth of the integers
dim Li , and to the structure of the ideals in L. Our aim is a classification theory
for the ideals in a cft graded Lie algebra of finite depth, and in particular for the
homotopy Lie algebras LX of a space of finite Lusternik–Schnirelmann category. A
crucial notion is that of full subspace.
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Definition. A subspace W of a graded vector space V D fVigi�0 is full in V if for
some fixed �, q and N (all positive)

dim Vk � �

kCqX
iDk

dim Wi ; k � N:

An easy argument (Proposition 2.5) then shows that an equivalence relation on
the subspaces of V is defined by

U � W () U and W are full in U CW :

Two subspaces V; W in a graded Lie algebra L are called L-equivalent (V �L W )
if for all ideals K � L, V \ K � W \ K. As we show in Section 5, the set L of
L-equivalence classes ŒI � of ideals I � L is a distributive lattice under the operations
ŒI � � ŒJ � if I \ J �L I , ŒI � _ ŒJ � D ŒI C J � and ŒI � ^ ŒJ � D ŒI \ J �. In such a
lattice each maximal chain of strict inequalities 0 < ŒI.1/� < � � � < ŒI.r/� D ŒI � has
the same length r ; the number r is the height htŒI � of ŒI �.

Now our main result (Theorem 5.7) reads as follows:

Theorem. Let L be a cft graded Lie algebra of finite depth m and suppose htŒL� D r .
Then r � m. Moreover, the number�L ofL-equivalence classes of ideals inL satisfies
�L � 2r and equality holds if and only if L �L I.1/˚ � � � ˚ I.r/ where the I.i/ are
ideals of height 1.

The main step in the proof of this theorem is the following (Theorem 4.3).

Theorem. Let I be an ideal in a cft graded Lie algebra L of finite depth. Then there
is a Lie subalgebra E � L such that,

(ii) E \ I D 0 and E ˚ I is full in L, and,

(ii) depth E C depth I D depth.E ˚ I / � depth L.

Call an inclusion W � V of graded vector spaces strongly proper if W is not
full in V . Then the theorem above has the following consequence (Corollary to
Theorem 4.3).

Proposition. If I is a strongly proper ideal in a graded Lie algebra L, then depth I <

depth L. Thus the length of a sequence I.1/ � � � � � I.r/ � L of strongly proper
inclusions of ideals has length at most depth L (r � depth L).

The proof of the theorem requires certain technology for the study of the relative
size of graded vector spaces, which we set up in Section 2. Then in Section 3 we carry
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out a careful analysis of the relationship between depth L and gradeL M , showing
that under certain hypotheses depth L D gradeL M (Theorem 3.6). These hypotheses
hold for the modules appearing in the Hochschild–Serre spectral sequence, which then
constitute the main ingredient in the proof of the theorem.

The results in Sections 3 and 4 have a number of applications. First we note that
upper and lower bounds on the rate of exponential growth of a graded vector space
V are given by

log index V D lim sup
k

log dim Vk

k

and

lower log index V D lim
q!1 lim inf

k

log
PkCq

iDk
dim Vi

k
:

In Section 5 we note that if W is full in V , then W and V have the same log index
and the same lower log index. Thus the Lie subalgebra E ˚ I in the theorem above
has the same growth properties as L.

We then show that the sum, R, of the ideals I � L with log index I < log index L

also satisfies log index R < log index L; thus R (called the hyperradical of L) has
strictly lower depth. Define a sequence Rr � Rr�1 � � � � � R1 D R � L by
defining Ri to be the hyperradical of Ri�1. Since each inclusion is strongly proper,
it follows that r � depth L; moreover, clearly for any ideal I � L,

log index I D log index Ri for some i:

It follows that at most depth LC1 numbers appear as the log index of an ideal I in L.
In Section 7 we show that in any cft graded Lie algebra of finite depth, either

dim Lodd is finite or else for some d the integers
PkCd

j DkC1 dim.Lodd/j grow faster
than any polynomial.

Finally, the authors would like to thank the referee for the many helpful suggestions
and comments.

2. Large and full subspaces

2.1. Definitions and characterization. Suppose V D fVigi�0 is a graded vector
space of finite type, and let � D .�i / be a sequence of non-negative numbers.

Definition 2.1. A subspace W � V is � -large in V if for some fixed q; �; K � 0,

dim.V=W /k � �

kCqX
iDk

�i ; k � K: .1/
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If Z is a graded vector space and W is .dim Zi /-large in V , we shall say simply
that W is Z-large in V .

For instance W � V has polynomial codimension if W is � -large in V with
�i D im for some m.

Lemma 2.2. (i) If U � W is � -large in W and if W � V is � -large in V , then U is
� -large in V .

(ii) The finite intersection of � -large subspaces of V is also � -large in V .

(iii) If W � V is � -large in V , then for each r � 0,

kCrX
iDk

dim.V=W /i � �.q C 1/

kCrCqX
iDk

�i ; k � K;

where q; �; K are as in Definition 2.1.

Proof. (i) Choose �; q; K so that Definition 2.1 is satisfied for both U � W and
W � V . Then

dim.V=U /k D dim.W=U /k C dim.V=W /k � �

kCqX
iDk

�i C�

kCqX
iDk

�i D 2�

kCqX
iDk

�i :

(ii) Suppose W.1/; : : : ; W.r/ are � -large subspaces of V , and choose q; �; K so
that Definition 1 holds for each of the W.j /. The linear map V ! V=W.1/˚ � � � ˚
V=W.r/ factors to give an injection

V=W.1/ \ � � � \W.r/! V=W.1/˚ � � � ˚ V=W.r/;

and so

dim

�
V

W.1/ \ � � � \W.r/

�
k

�
rX

j D1

dim

�
V

W.j /

�
k

� r�

kCqX
iDk

�i ; k � K:

(iii)
kCrX
iDk

dim.V=W /i �
kCrX
iDk

�

iCqX
j Di

�j � �.q C 1/

kCrCqX
iDk

�i : �

Definition 2.3. A subspace W � V is full in V if for some q; �; K � 0,

dim Vk � �

kCqX
iDk

dim Wi ; k � K:
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Lemma 2.4. Suppose U � W � V .

(i) The following conditions are equivalent :

– W is full in V .

– W is W -large in V .

– The zero subspace is W -large in V .

(ii) If U is full in W and W is full in V , then U is full in V .

(iii) If W is S -large in V for some S � V , then W C S is full in V .

(iv) If W is full in V and �, q, K satisfy dim Vk � �
PkCq

iDk
dim Wi , k � K (cf. (i)),

then for any r � 0,

kCrX
j Dk

dim Vj � �.q C 1/

kCrCqX
j Dk

dim Wj ; k � K:

Proof. (i) The third condition simply states the definition of fullness, and trivially
implies the second. If the second holds, then (for some �; q; K)

dim Vk D dim Wk C dim.V=W /k � .�C 1/

kCqX
iDk

dim Wi :

(ii) For suitable ˛; ˇ; r; s; K,

dim Vk � ˛

kCrX
iDk

dim Wi � ˛

kCrX
iDk

�
ˇ

iCsX
j Di

dim Uj

�

� ˛ˇ.r C 1/

kCrCsX
j Dk

dim Uj ; k � K:

(iii) For suitable �; q; K and for k � K,

dim Vk D dim.V=W /k C dim Wk

� �

kCqX
iDk

dim Si C dim Wk

� 2�

kCqX
iDk

dim.Si CWi /; k � K;

because dim.Sk CWk/ � 1
2

.dim Sk C dim Wk/.
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(iv)

kCrX
iDk

dim Vi � �

kCrX
iDk

iCqX
j Di

dim Wj D .q C 1/�

kCrCqX
j Dk

dim Wj ; k � K: �

Proposition 2.5. An equivalence relation on the subspaces of V is defined by U � W

if and only if U and W are full in U CW .

Proof. We have only to check transitivity. Suppose that U; W; Y are subspaces of V

and U � W and W � Y . The injection W CY ! U CW CY induces a surjection

.W C Y /=W ! .U CW C Y /=.U CW /:

Since W is full in W C Y this implies that U CW is full in U CW C Y . But U is
full in U CW and hence (Lemma 2.4 (ii)) U is full in U CW C Y . Therefore U is
certainly full in U C Y . Similarly Y is full in U C Y and so U � Y . �

Definition 2.6. The equivalence relation above will be called full equivalence and
will be denoted by U � W .

Proposition 2.7. If Ui � Wi are pairwise fully equivalent subspaces of V , then
U1 C � � � C Ur � W1 C � � � CWr .

Proof. It is clearly sufficient to prove the proposition when r D 2; in this case we
need show that U1 C U2 � W1 C U2 � W1 C W2. Thus we are reduced to show
that U1 C W � U2 C W if U1 � U2. By hypothesis, U1 is full in U1 C U2. It
follows from the obvious surjection .U1 C U2/=U1 ! .U1 C U2 CW /=.U1 CW /

that U1 CW is U1-large in U1 C U2 CW . Thus it is certainly .U1 CW /-large in
U1CU2CW , and hence full in this space. Similarly U2CW is full in U1CU2CW

and so U1 CW � U2 CW . �

2.2. Log index and lower log index. Again suppose V D fVigi�0 is a graded vector
space of finite type. The log index of V is the number given by

log index V D lim sup
k

log dim Vk

k
I

it is the least number ˛ such that for all " > 0, there is a K such that dim Vk � e.˛C"/k ,
k � K. Thus it provides a sharp upper bound for exponential growth.

Note that if � D log index V < 1, then e�� is the radius of convergence of the
Hilbert series

P
dim Vkzk . One should also observe that if � > 0, then the sumPk

iD1 dim Vi grows exponentially with k.
In the applications we shall use the following, seemingly more refined, measures.
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Definition 2.8. The upper and lower log indexes of V are given, respectively, by

upper log index V D lim
q!1 lim sup

k

log
� PkCq

iDk
dim Vi

�
k

and

lower log index V D lim
q!1 lim inf

k

log
� PkCq

iDk
dim Vi

�
k

:

Remark. The limits above exist because the sequences increase with q.

Lemma 2.9. (i) For any q,

log index V D lim sup
k

log
� PkCq

iDk
dim Vi

�
k

D upper log index V:

(ii) If L is a cft graded Lie algebra of finite depth then for some d ,

lim inf
k

log
� PkCq

iDk
dim Li

�
k

D lower log index L; q � d:

Proof. (i) This is straightforward.
(ii) By [9], Lemma 7, there is an integer d so that Z D fu j Œu; L�d � D 0 g is

finite dimensional. Choose D so that Z�D D 0.
Next, for any s > d and k > s CD, write

kCsX
iDk

dim Li D e�.k;s/k :

Then for some j 2 Œk� s; k�, dim Lj � 1
sC1

e�.k�s;s/.k�s/. Let u1; : : : ; up be a basis
for L�d and note that, since j � D, for some � we have dimŒu�; Lj � � 1

p
dim Lj .

Proceeding in this way yields an infinite sequence .u��
/ such that

dimŒu�q
; Œu�q�1

; Œ: : : Œu�1
; Lj � : : : � �

�
1

p

�q

dim Lj for all q:

But for some q � s, we have
Pq

�D1 deg u��
C j 2 Œk; k C d�. It follows that

�.k; d/ � .1 � s=k/�.k � s; s/ � Q.s/

k
;

for some Q.s/ independent of k. Letting k ! 1, we see that lim infk �.k; d/ D
lim infk �.k; s/. Thus for s � d

lim inf
k

log
� PkCd

iDk dim Li

�
k

D lim inf
k

log
� PkCs

iDk dim Li

�
k

;

and this is then obviously the lower log index of L. �
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Remark. Lemma 2.9 shows that log index L and lower log index L give precise
upper and lower bounds on the exponential growth of

PkCq

iDk
dim Li .

Proposition 2.10. Suppose U and W are fully equivalent subspaces of V . Then U

and W have the same log index and the same lower log index.

Proof. We need to show that if W is full in V then W and V have the same log index
and lower log index. But then

sup
j �k

log dim Vj

j
� sup

j �k

log dim Wj

j

� sup
j �k

log
�

1
qC1

Pj Cq
iDj dim Wi

�
j

� sup
j �k

log
�

1
qC1

1
�

dim Vj

�
j

:

Take limits as k !1 to see that log index V D log index W .
On the other hand,

kCrX
iDk

dim Vi � �.q C 1/

kCrCqX
iDk

dim Wi .Lemma 2.4(iv)/

� �.q C 1/

kCrCqX
iDk

dim Vi :

Thus

lim inf
k

log
� PkCr

iDk dim Vi

�
k

� lim inf
k

�
log �.q C 1/

k
C log

� PkCrCq

iDk
dim Wi

�
k

�

� lim inf
k

�
log �.q C 1/

k
C log

� PkCrCq

iDk
dim Vi

�
k

�
:

Let aj D log.
Pj CqCr

iDj
dim Wi /

j
. Then

inf
j �k

aj � inf
j �k

�
log �.q C 1/

j
C aj

�
� log �.q C 1/

k
C inf

j �k
aj :

Taking limits as k !1 gives

lim inf
k

�
log �.q C 1/

k
C log

� PkCqCr

iDk
dim Wi

�
k

�
D lim inf

k

log
� PkCqCr

iDk
dim Wi

�
k

:
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Hence

lim inf
k

log
PkCr

iDk dim Vj

k
� lim inf

k

log
PkCrCq

iDk
dim Wi

k

� lim inf
k

log
PkCrCq

iDk
dim Vi

k
:

Taking limits as r !1 gives

lower log index V D lower log index W: �

3. Growth and depth in a graded Lie algebra

Let L be a cft graded Lie algebra, let � D .�i / be a sequence of non-negative integers
and let M D fMigi2Z be a Z-graded L-module.

3.1. Thin modules

Definition 3.1. Given subspaces V; W � M , the isotropy Lie subalgebra LV and
the co-isotropy Lie subalgebra LW are defined by

LV D fx 2 L j x � V D 0g and LW D fx 2 L j x �M � W g:
The L-module M is � -thin if LV and LW are � -large Lie subalgebras of L

whenever dim V <1 and codim W <1.

Remark. If V and W are subspaces of a � -thin L-module such that dim V <1 and
codim W <1, then E D LV \ LW is a � -large Lie subalgebra satisfying

E � V D 0 and E �M � W:

Lemma 3.2. Let L be a cft graded Lie algebra and let � D .�i /i�0 be a sequence
of non-negative numbers. Then:

(i) The direct sum and the finite tensor product of � -thin L-modules are � -thin.

(ii) Any subquotient of a � -thin L-module is � -thin.

(iii) If M is a � -thin L-module, then each ^qM is also � -thin.

(iv) If M is a � -thin L-module, then M # D Hom.M; k/ is also � -thin.

Proof. Elementary linear algebra suffices to prove the lemma, since a finite intersec-
tion of � -large Lie subalgebra is � -large. �
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Lemma 3.3. Suppose L is a cft graded Lie algebra, � D .�/i�0 is a sequence of non-
negative numbers, and M D fMigi�0 is an L-module concentrated in non-negative
degrees. Then

(i) M is � -thin if and only if LV is � -large in L, whenever V is a finite dimensional
subspace of M .

(ii) The sum, N , of all the � -thin submodules N.˛/ �M is itself � -thin.

(iii) M is � -thin if for some �; q; K, dim Mk � �
PkCq

iDk
�i ; k � K.

(iv) M is � -thin if and only if for some set fvig of generators for M (as an L-module)
each Lvi

is � -large in L.

Proof. (i) is immediate from the fact that M D fMigi�0.
(ii)Any finite dimensional subspace V � N satisfies V � N.˛1/C� � �CN.˛r/ for

some finite subset ˛1; : : : ; ˛r . Thus there are finite dimensional subspaces V.˛i / �
N.˛i / such that V � V.˛1/C � � � C V.˛r/. Hence LV � \iLV.˛i /. Since the finite
intersection of � -large Lie subalgebras is � -large, it follows that LV is � -large.

(iii) Let V be a finite dimensional subspace of M and .xi /1�i�N be a basis of V .
Then the action of L on the xi induces a linear injection

.L=LV /k !˚N
iD1 MkCdeg xi

:

This implies that LV is large in L.
(iv) We first show that if, for some v 2 V , Lv is � -large then La�v is � -large for

all a 2 UL. In fact, because of (ii), it is sufficient to show this when a D x1 � � � xr

(xi 2 L) and we proceed by induction on r .
Set w D x2 � � � xr � v and let S � L be the graded subspace of L defined by

S D fy 2 L j Œy; x1� 2 Lwg. Since Lw is � -large, by the induction hypothesis, we
have for some �; q; K that

dim.L=Lw/k � �

kCqX
iDk

�i ; k � K;

and also

dim.L=S/k � dim.L=Lw/kCdeg x1
� �

kCdeg x1CqX
iDkCdeg x1

�i :

On the other hand, for z 2 L we have

z � x1 � � � xr � v D z � x1 � w D Œz; x1� � w ˙ x1 � z � w
and so Lx1�w � S \ Lw . Now the inequalities above yield

dim.L=Lx1�w/k � 2�

kCdeg x1CqX
iDk

�i ; k � K:



818 Y. Félix, S. Halperin and J.-C. Thomas CMH

Thus Lx�w is � -large and the induction is closed.
Finally we have shown that if Lv is � -large then UL � v is � -thin, and so we may

apply (ii) to complete the proof of (iv). �

Lemma 3.4. Let L be a cft graded Lie algebra, and let � D f�igi�0 be a sequence
of non negative numbers.

(i) If E is a � -large Lie subalgebra of L, then the L-module UL˝UE k is � -thin.

(ii) If L acts by derivations in a Lie algebra F , and if Lw˛
is � -large for a set fw˛g

of generators for the Lie algebra F , then F is a � -thin L-module.

Proof. (i) The vector space UL ˝UE k is generated as an L-module by the single
element v D 1˝ 1. Since Lv D E, which is � -large, (i) follows from Lemma 3.3
(iv).

(ii) Let W be the linear span of the w˛ . Then UL �W is a � -thin L-module by
Lemma 3.3 (iv). The natural linear map UL �W ! F extends to an L-linear algebra
surjection T .UL �W /! UF . But T .UL �W / is � -thin by Lemma 3.2 (i), and hence
F , as a subquotient of T .UL �W / is � -thin by Lemma 3.2 (ii). �

3.2. The Hochschild–Serre spectral sequences. The invariants Ext�
UL.M; N / and

TorUL� .M; N / will play an important role in this paper, when L is a cft graded Lie
algebra and M and N are L-modules.

Let V D fVigi�0 be a graded vector space of finite type. We denote by V # the
dual vector space, V #

k
D Hom.V�k; k/, and by ^V # the free graded commutative

algebra on V #. Then ^qV # is the linear span of the products f1 � � �fq , fi 2 V #, and
its dual 	V D .^V #/# is the free divided powers algebra on V .

The graded vector spaces TorUL� .M; N / and Ext�
UL.M; N / may be computed

as the homology of complexes respectively of the form 	�.sL/ ˝k M ˝k N and
Homk.	�.sL/˝kM; N / with twisted differentials ([11]). (Here sL is the suspension
of L; .sL/k D Lk�1.) Now suppose E � L is a Lie subalgebra and write L D
E˚S . Then there is a first quadrant spectral sequence (the Hochschild–Serre spectral
sequence), that converges from

E1
p;q D TorUE

q .	ps.L=E/˝M; N / to TorUL
pCq.M; N /:

When E is an ideal then

E2
p;q D TorUL=E

p .k; TorUE
q .M; N //:

There is also a Hochschild–Serre spectral sequence for Ext,

Extq
UE .	ps.L=E/˝M; N / H) ExtpCq

UL .M; N /:
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For more details on the Hochschild–Serre spectral sequences, see [5] and [9].
Now we recall two results obtained in [9] and related to cft graded Lie algebras

of finite depth, that we will use several times in the text.

Lemma 3.5 ([9], Lemma 4). Suppose M and N are L-modules where L is a cft
graded Lie algebra and each Ni is finite dimensional. If Extm

UL.M; N / ¤ 0 then
for some finitely generated Lie subalgebra E � L and for some finitely gener-
ated L-submodule P � M the restrictions Extm

UL.M; N / ! Extm
UE .M; N / and

Extm
UL.M; N /! Extm

UL.P; N / are nonzero.

Lemma 3.6 ([9], Lemma 6). Let E � L be a Lie subalgebra of a cft graded
Lie algebra L. Suppose for some m, that the restriction map Extm

UL.k; UL/ !
Extm

UE .k; UL/ is non-zero. Let Z be the centralizer of E in L. Then Z is finite
dimensional.

3.3. Minimal subalgebras

Definition 3.7. Let � D .�i /i�0 be a sequence of non-negative numbers.

	 A cft graded Lie algebra L is � -minimal with respect to an ideal I if every
� -large Lie subalgebra E with I � E � L satisfies depth E � depth L.

	 A cft graded Lie algebra L is � -minimal if L is � -minimal with respect to 0,
i.e., if depth E � depth L for all � -large subalgebras E of L.

	 If Z is any graded vector space and L is .dim Zi /-minimal (resp. .dim Zi /-
minimal with respect to I ), we shall say that L is Z-minimal (resp. Z-minimal
with respect to I ) .

Theorem 3.8. Let � D .�i /i�0 be a sequence of non-negative numbers and let I

be an ideal in a cft graded Lie algebra L. If M D fMigi2Z is a � -thin L-module
satisfying M ¤ 0 and I �M D 0, and if L is � -minimal with respect to I , then

depth L D gradeL M:

We begin with two preliminary lemmas.

Lemma 3.9. Let I be an ideal in a cft graded Lie algebra L, and let � D .�i /i�0 be
a sequence of non-negative numbers. If M D fMigi2Z is any � -thin L-module for
which I �M D 0 and M ¤ 0, then I extends to a � -large Lie subalgebra E � L

such that

depth E � gradeL M:
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Proof. Let m D gradeL M . Then for some finitely generated submodule N �M , the
restriction Extm

UL.M; UL/! Extm
UL.N; UL/ is non-zero. Denote by v1; : : : ; vr a set

of generators of N . Then the short exact sequence 0! UL � v1 ! N ! N=.UL �
v1/ ! 0 induces an exact sequence Extm

UL.UL � v1; UL/ ! Extm
UL.N; UL/ !

Extm
UL.N=.UL � v1/; UL/. It follows that there exists a subquotient module of N , of

the form UL � v, for which Extm
UL.UL � v; UL/ ¤ 0. Moreover, as a subquotient of

M , UL � v is � -thin (Lemma 3.2 (ii)).
Consider the short exact sequence of L-modules

0! K ! UL˝ULv
k! UL � v ! 0:

Since UL � v is � -thin, Lv is � -large in L. Hence UL˝ULv
k and K are also � -thin

(Lemma 3.2 (i) and Lemma 3.2 (ii) respectively). Note also that since UL � v is a
subquotient of M , I � UL � v D 0. In particular, I � Lv and since I is an ideal, it
follows that I � .UL˝ULv

k/ D 0 and hence I �K D 0.
On the other hand from the short exact sequence above, we deduce that either

Extm�1
UL .K; UL/ ¤ 0 or else Extm

UL.UL ˝ULv
k; UL/ ¤ 0. In the first case the

lemma follows by induction on m. In the second one we use the standard isomorphism

Extm
UL.UL˝ULv

k; UL/ Š Extm
ULv

.k; UL/

to conclude that depth Lv � m. Set E D Lv in this case. �

Lemma 3.10. Suppose I � E with I and E respectively an ideal and a Lie subal-
gebra in a cft graded Lie algebra L. If L is � -minimal with respect to I , and if E

is � -large in L, then depth L D depth E. In particular, E is � -minimal with respect
to I .

Proof. It follows from the Hochschild–Serre spectral sequence that

TorUE
p .	qsL=E; .UL/#/ H) TorUL

pCq.k; .UL/#/

that there exist p; q with p C q D depth L, and such that

gradeE 	qsL=E � p:

Since L=E is a � -thin E-module and I �L=E D 0, Lemma 3.9 gives a Lie subalgebra
F , � -large in E, with I � F � E, and satisfying

depth F � gradeE 	qsL=E:

Since L is � -minimal with respect to I , depth L � depth F ; i.e., p C q � p. Thus
q D 0 and depth F � depth E. But L was � -minimal with respect to I , so that
depth L � depth E. This gives depth L D depth E. �
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Proof of Theorem 3.8. By Lemma 3.9, L contains a � -large Lie subalgebra F con-
taining I , and such that depth F � gradeL M . Now take a Lie subalgebra E

of F that is � -minimal with respect to I . Then, depth E � depth F , and so
depth E � gradeL M . Since depth E D depth L (Lemma 3.8), it follows that
depth L � gradeL M .

Next, let MC D fMigi�0 and set N D M=MC; both MC and N are � -thin
L-modules. If MC ¤ 0, we can find a short exact sequence of L-modules of the
form

0! K !MC ! kx ! 0:

As observed at the start of the proof of the theorem (applied to K instead of M ),
depth L � gradeL K. Thus if m D depth L we have the exact sequence

0! Extm
UL.kx; UL/! Extm

UL.MC; UL/;

which implies that gradeL MC � depth L. It follows that gradeL MC D depth L and
so, if N D 0, the theorem is proved.

Next, suppose N ¤ 0. Since N is concentrated in negative degrees, and since
.UL/# is also concentrated in negative degrees, it follows that .N ˝ .UL/#/# D
N # ˝ UL as L-modules with diagonal action.

On the other hand TorUL� .N; .UL/#/ D TorUL� .k; N ˝ .UL/#/, and dualizing
gives Ext�

UL.N; UL/ D Ext�
UL.k; N #˝UL//. Since N #˝UL is a free UL-module

(diagonal action) this shows that gradeL N D depth L. Thus if MC D 0, the theorem
is proved.

Finally, suppose that MC ¤ 0 and N ¤ 0. Since depth L D gradeL MC D
gradeL N D m, the short exact sequence

0!MC !M ! N ! 0

and the consequent exact sequences

Exti
UL.M; UL/ Exti

UL.M; UL/ Exti
UL.N; UL/ 0; i � m;

imply that gradeL M D m D depth L. �

4. Weak complements

Theorem 4.1. Let E and I be respectively a Lie subalgebra and an ideal in a cft
graded Lie algebra L, such that E \ I D 0, and let � D .�i /i�0 be a sequence of
non-negative numbers.

(i) If E is � -minimal and I is a � -thin E-module (adjoint representation), then
E ˚ I is � -minimal with respect to I , and

depth.E ˚ I / D depth E C depth I:
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(ii) If, moreover, L=.E ˚ I / is a � -thin E-module, then

depth.E ˚ I / � depth L:

Proof. (i) Use the inclusions E; I ! .E ˚ I / and multiplication in U.E ˚ I / to
write U.E ˚ I / D UI ˝ UE. Then for x 2 E, a 2 UI , b 2 UE, we have

x � .a˝ b/ D .ad x/a˝ b C .�1/deg a deg xa˝ x � b:

It follows that TorUI .k; U.E ˚ I /#/ D TorUI .k; .UI /#/˝ .UE/# as E-modules.
Thus the Hochschild–Serre spectral sequence converges from

E2
p;q D TorUE

p .TorUI
q .k; .UI /#/; .UE/#/ to TorU.E˚I/

pCq .k; .U.E ˚ I //#/:

Now since I is a � -thin E-module so is each 	qsI ˝ .UI /#, and hence so are the
subquotients TorUI

q .k; .UI /#/. By Theorem 3.6, either TorUI
q .k; .UI /#/ D 0, or

else depth E D gradeE TorUI
q .k; .UI /#/. Hence E2

p;q D 0 for q < depth I or for
p < depth E, and E2

p;q ¤ 0 when q D depth I and p D depth E. A standard corner
argument now shows that depth.E ˚ I / D depth E C depth I .

Finally, we show that E ˚ I is � -minimal with respect to I . In fact let F � E

be any � -large Lie subalgebra. Form the Hochschild–Serre spectral sequence

E2
p;q D TorUF

p .TorUI
q .k; .UI /#/; .UF /#/ H) TorU.F ˚I/

pCq .k; .U.F ˚ I //#/:

We deduce that for some q � depth I , gradeF TorUI
q .k; .UI /#/ � depth.F ˚I /�q.

But according to Lemma 3.9 there is a � -large Lie subalgebra E 0 � F such that
depth E 0 � gradeF TorUI

q .k; .UI /#/. Thus

depth E 0 � depth.F ˚ I / � q � depth.F ˚ I / � depth I

� depth.E ˚ I / � depth I D depth E:

Since E is � -minimal these inequalities are equalities; in particular depth.F ˚ I / D
depth.E ˚ I / and E ˚ I is � -minimal with respect to I .

(ii) Consider the Hochschild–Serre spectral sequence converging from

E
p;q
1 D Extq

U.E˚I/
.	psL=.E ˚ I /; UL/ to ExtpCq

UL .k; UL/:

Since L=.E ˚ I / is a � -thin E-module annihilated by I , it is also a � -thin E ˚ I -
module. Thus each 	psL=.E ˚ I / is a � -thin .E ˚ I /-module annihilated by I .
Thus, since E ˚ I is � -minimal with respect to I , Theorem 3.8 asserts that either
	psL=.E ˚ I / D 0, or else

depth.E ˚ I / D gradeE˚I .	psL=.E ˚ I //:

Since Extq

U.E˚I/
.	psL=.E˚ I /; UL/ ¤ 0 for some pCq D depth L, the theorem

follows. �
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Definition 4.2. Let I be an ideal in a cft graded Lie algebra of finite depth. A weak
complement for I in L is a Lie subalgebra E � L such that E \ I D 0, E ˚ I is
full in L, and for some sequence � D .�i /i�1 satisfying 0 � �i � dim Ii , i � 1: E

is � -minimal, and I and L=.E ˚ I / are � -thin E-modules.

Theorem 4.3. Let I be an ideal in a cft graded Lie algebra of finite depth.

(i) There is an I -large Lie subalgebra F � L such that F \ I D 0. If E is any
I -minimal, I -large Lie subalgebra of F then E is a weak complement for I

in L.

(ii) If E is any weak complement for I in L, then

depth E C depth I D depth.E ˚ I / � depth L:

Proof. (i). Since depth I < 1, there are elements x1; : : : ; xr 2 I such that the
Lie subalgebra , G, generated by the xi satisfies Ext�

UI .k; UL/! Ext�
UG.k; UL/ is

non-zero (Lemma 3.5). This implies that A D fy 2 I j Œy; xi � D 0; 1 � i � r g is a
finite dimensional Lie subalgebra (Lemma 3.6). Choose n so that A is concentrated
in degrees < n and set

F D fy 2 L�n j Œy; xi � D 0; 1 � i � r g:
Evidently F \ I D 0.

On the other hand, F is the kernel of the linear map L�n ! I ˚ � � � ˚ I given
by x 7! .Œx; x1�; : : : ; Œx; xr �/. Thus

dim Lk=Fk �
rX

iD1

dim IkCdeg xi
:

It follows that F is I -large in L, and so E is also I -large in L. Thus for some
�; q; N we have dim.L=E/k � �

PkCq

iDk
dim Ii , k � N . It follows that dim Lk �

.�C 1/
PkCq

iDk
dim.Ei ˚ Ii /, k � N and so E ˚ I is full in L. Finally, since E is

I -large in L, Lemma 3.3 (iii) asserts that L=.E ˚ I / is I -thin. �

Proposition 4.4. Let J and K be ideals in a cft graded Lie algebra L of finite depth.
Then there is a weak complement, E, for J \K in K that is also a weak complement
for J in J CK.

Proof. By Theorem 4.3 (i) we may choose E to be J\K-minimal and such that J\K

and K=.E˚J\K/ are .J\K/-thin E-modules. Note that E\J D .E\K/\J D 0.
Set �i D dim.J \K/i and note that because ŒE; J � � ŒK; J � � J \K it follows

that J is a � -thin E-module. Moreover, K=.E˚J \K/ maps onto .KCJ /=.E˚J /

and so .K C J /=.E ˚ J / is also a � -thin E-module. Finally, this surjection also
shows that E ˚ J is full in K C J since E ˚ J \K is full in K. �
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Proposition 4.5. Let I � L be an ideal in a cft graded Lie algebra, and suppose
that for some p, the restriction map

Extp
UL.k; UL/! Extp

UI .k; UL/

is non-zero. Then I is full in L.

Proof. Suppose ˛ 2 Extp
UL.k; UL/ restricts to a non-zero element in Extp

UI .k; UL/.
This in turn would restrict to a non-zero element in Extp

UE .k; UL/, where E is a
finitely generated Lie subalgebra of I , see Proposition 3.1 in [3]. Let x1; : : : ; xr

generate E. Then by [9], Lemma 6, the centralizer of E in L is finite dimensional.
Therefore for n enough large, the map

Ln !˚r
j D1 InCdeg xj

; y !
X

Œy; xi �

is injective. This gives the result. �

5. L-equivalence

It is immediate from Proposition 2.5 that an equivalence relation on the ideals of a
cft graded Lie algebra, L, is defined by:

I �L J () for all ideals K � L, I \K � J \K:

Definition and notation. The relation above will be called L-equivalence and the
set of L-equivalence classes of ideals in L will be denoted by L. If I is an ideal in L

its L-equivalence class will be denoted by ŒI �. Finally, the number (possibly1) of
L-equivalence classes of ideals will be denoted by �L, and for any subspace V � L

the number of L-equivalence classes represented by L-ideals contained in V will be
denoted by �L.V /.

Our next aim is to establish the following two results.

Proposition 5.1. LetLbe a cft gradedLie algebra. Then the structure of a distributive
lattice in L is defined by

ŒI � � ŒJ � () J \ I �L I; ŒI � _ ŒJ � D ŒI C J �

and
ŒI � ^ ŒJ � D ŒI \ J �:

Proposition 5.2. Let J � I be ideals in a cft graded Lie algebra L. Then any
maximal chain of strict inequalities in L of the form

ŒJ � < ŒI.1/� < � � � < ŒI.r/� D ŒI �
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has the same length. Moreover

r � depth I � depth J:

Definition. The length r in the chain above in Proposition 5.2 is called the height of
ŒI � over ŒJ �. When ŒJ � D Œ0�, r is called the height of ŒI � and denoted by htŒI �.

Remark. Clearly the height of ŒI � over ŒJ � is just htŒI � � htŒJ �.

Before proving Proposition 5.1 we establish some preliminary lemmas.

Lemma 5.3. Suppose I and J are ideals in a cft graded Lie algebra. Then,

(i) depth I � depth.J C I /,

(ii) if depth I D depth.J C I / then J \ I is full in J .

In particular, if I � J and depth I D depth J , then I is full in J .

Proof. By Proposition 4.4 there is a weak complement, E, for J \ I in J that is also
a weak complement for I in I C J . Thus

depth E C depth I D depth.E ˚ I / � depth.J C I /:

It follows that depth I � depth.J C I / and if equality holds then depth E D 0. This
implies that E is finite dimensional ([1]). Since E ˚ .J \ I / is full in J it follows
that J \ I is full in J . �

Lemma 5.4. Let L be a cft graded Lie algebra of finite depth m. Then ŒL; L� is full
in L. In particular, if I and J are ideals in L then ŒI; J � is full in I \ J .

Proof. Let E be a weak complement for ŒL; L� in L. Since ŒE; E� � E \ ŒL; L�,
E is abelian. Since E has finite depth it is finite dimensional [1]. Now because
E ˚ ŒL; L� is full in L, ŒL; L� is full in L. Finally, note that

ŒI \ J; I \ J � � ŒI; J � � I \ J

to derive the last assertion. �

Lemma 5.5. If I , J , K are ideals in L, then

.I C J / \K � I \K C J \K:

Proof. .I C J / \K � ŒI C J; K� D ŒI; K�C ŒJ; K� � I \K C J \K. �

Lemma 5.6. Let I; J be ideals in a cft graded Lie algebra of finite depth. Then:
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(i) I �L J () I �L .I C J / �L J .

(ii) I �L J () I �L .I \ J / �L J .

(iii) If I � J and depth I D depth J , then I �L J .

(iv) If I.i/ �L J.i/ are pairs of L-equivalent ideals in L, then

I.1/C � � � C I.r/ �L J.1/C � � � C J.r/:

(v) For any ideal K, .I C J / \K �L I \K C J \K.

(vi) If I �L J and K is any ideal in L then I \K �L J \K.

Proof. (i) We need only show that I �L J H) I �L .I C J /. If K is any ideal in
L, then by Lemma 5.5 and Proposition 2.7,

I \K � I \K C I \K � I \K C J \K � .I C J / \K:

Thus I �L I C J .

(ii) We need only prove that I �L J H) I �L I \ J . Again let K be an ideal
in L. Then

.I \ J / \K D I \ .J \K/ � J \ .J \K/ D J \K:

Thus I \ J �L J .

(iii) Let K be an ideal in L. Since I � I C .J \K/ � J we have

depth I � depth.I C .J \K// � depth J;

and so depth I D depth.I C .J \K//. It follows from Lemma 5.3 that I \ .J \K/

is full in J \K. But I \J D I and so I \K is full in J \K. Thus I \K � J \K

for all K; i.e., I �L J .

(iv) We need only show that if I �L J and H is an ideal in L, then I CH �L

J CH . But for any ideal K we have by Lemma 5.5 and Proposition 2.7

K \ .I CH/ � .K \ I /C .K \H/ � .K \ J /C .K \H/ � K \ .J CH/:

Thus I CH �L J CH .

(v) For any ideal H � L we have by Lemma 5.5

.I C J /\K \H � .I \K \H/C .J \K \H/ � ..I \K/C .J \K//\H:

Thus .I C J / \K �L I \K C J \K.

(vi) For any L-ideal H , .I \ K/ \ H D I \ .K \ H/ � J \ K \ H D
.J \K/ \H . �
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Proof of Proposition 5.1. If follows from Lemma 5.6 (vi) that the condition I\J �L

I depends only on ŒI � and ŒJ �; thus the partial order is well defined. Clearly Œ0� and
ŒL� are initial and terminal elements. It follows from Lemma 5.6 (iv) and Lemma 5.6
(vi) that ŒI �_ ŒJ � and ŒI �^ ŒJ � only depend on ŒI � and ŒJ � and Lemma 5.6 (v) shows
that the lattice is distributive. �

Proof of Proposition 5.2. The first assertion is a standard fact about distributive lat-
tices. The second follows from Lemma 5.6 (iii), which asserts that if ŒJ � < ŒI �

thendepth J < depth I . �

Theorem 5.7. Let L be a cft graded Lie algebra of finite depth m and height r . Then

(i) r � m.

(ii) �L � 2r .

(iii) �L D 2r if and only if L �L I.1/ ˚ � � � ˚ I.r/ where the I.i/ are infinite
dimensional ideals. In this case I.i/ has height 1.

(iv) If �L D 2m then htŒL� D depth L and the I.i/ are infinite dimensional ideals
of depth 1.

For the proof of Theorem 5.7 we require one more lemma.

Lemma 5.8. Let L be a cft graded Lie algebra.

(i) If I � J are L-ideals then �L.I / � �L.J /.

(ii) If I and J are L-ideals and I �L J then �L.I / D �L.J /. In particular, �l ŒI �

is well defined.

(iii) if I is the direct sum of L-ideals J and K (I D J ˚ K), then �L.I / D
�L.J /�L.K/.

Proof. (i) The set of L-equivalence classes of L-ideals in I is clearly a subset of the
L-equivalence classes of L-ideals in J . Thus �L.I / � �L.J /.

(ii) Since I �L .I \ J / (Lemma 5.6) any L-ideal H contained in I satisfies
H D .H \ I / �L .H \ I \ J / (Lemma 5.6 (vi)). Thus the set of L-equivalence
classes of L-ideals in I coincides with the set of L-equivalence classes of L-ideals
in I \ J , and so �L.I / D �L.I \ J / D �L.J /.

(iii) Any L-ideal H in I satisfies H �L .H \ J / ˚ .H \ K/, and if G is
another L-ideal in I such that G \ J �L H \ J and G \ K �L H \ K then
G �L .G \ J / ˚ .G \ K/ �L .H \ J / ˚ .H \ K/ �L H . It follows that
�L.I / D �L.J /�L.K/. �
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Proof of Theorem 5.7. Proposition 5.2 asserts that htŒL� � depth L D m <1. This
is statement (i).

Next let 0 < ŒJ.1/� < � � � < ŒJ.r/� D ŒL� be a maximal chain of strict inclusions
in L, and let L.k/ denote the subset of L of elements ŒJ � � ŒJ.k/�. Then, for any
k, 1 � k � r , let ŒK� 2 L be an element of minimum height satisfying the two
conditions:

ŒK� � ŒJ.k/� and ŒK� 6� ŒJ.k � 1/�:

We shall show that the map '.k/ W L.k � 1/ 
 Z2 ! L.k/ given by

.ŒJ �; 0/ 7! ŒJ � and .ŒJ �; 1/ 7! ŒJ � _ ŒK�

is a surjection.
In fact, our conditions above imply that ŒJ.k � 1/�_ ŒK� D ŒJ.k/�. Thus for any

ŒJ � 2 L.k/ we have ŒJ � D .ŒJ �^ ŒJ.k�1/�/_ .ŒJ �^ ŒK�/. If ŒJ �^ ŒK� 6� ŒJ.k�1/�

then it too satisfies the conditions above and has height � htŒK�. But htŒK� was a
minimum; thus ŒJ � ^ ŒK� D ŒK� in this case and it follows that '.k/ is indeed a
surjection. In particular, �LŒJ.k/� � 2�LŒJ.k � 1/� and so �L.L/ � 2r�L.0/ D 2r .
This proves (ii).

For (iii), suppose first that �L D 2r . Reversing the argument above we see that
�LŒJ.k/� D 2�LŒJ.k � 1/�, each k, and so each '.k/ is a bijection. But clearly

'.k/.Œ0�; 1/ D ŒK� D .ŒJ.k � 1/� ^ ŒK�/ _ ŒK� D '.k/.ŒJ.k � 1/� ^ ŒK�; 1/:

Thus J.k � 1/ \ K � 0; i.e., it is finite dimensional and concentrated in degrees
< n, some n. Now set I.k/ D J.k/ \ K�n. Then I.k/ �L K�n �L K and so
ŒJ.k/� D ŒJ.k � 1/˚ I.k/�. This also implies that I.k/ is not L-equivalent to zero;
i.e., dim I.k/ is infinite. Finally, by construction ŒL� D ŒI.1/˚ � � � ˚ I.r/�.

Conversely, suppose L �L I.1/ ˚ � � � ˚ I.r/, where each I.i/ is an infinite
dimensional ideal. Then Œ0� < ŒI.i/�, each i , and so �LŒI.i/� � 2. By Lemma 5.8
(iii), and part (ii), 2r � �L D Qr

iD1 �LŒI.i/� � 2r . Thus these inequalities are
equalities and 2r D �L and 2 D �LŒI.i/�, 1 � i � r . This implies that each I.i/ has
height 1.

(iv) If �L D 2m we must have m D r . Since the I.i/ are infinite dimensional,
depth I.i/ � 1 and because m D depth L D Pm

iD1 depth I.i/ (by Lemma 5.8) we
have depth I.i/ D 1, each i . �

Corollary. Let L be a cft graded Lie algebra and assume L �L I.1/˚ � � � ˚ I.r/,
where the I.i/ are infinite dimensional ideals of height 1. Then htŒL� D r and every
element ŒI � 2 L of height s � 1 is uniquely of the form ŒI � D ŒIi1 � _ : : : ŒIis �.

Proof. It is a trivial consequence of the distributive law that

ŒIi1 � _ � � � _ ŒIis � D ŒIj1
� _ � � � _ ŒIjq

�
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if and only if s D q and fi1; : : : ; isg D fj1; : : : ; jqg. Thus the elements of the form
ŒIi1 � _ � � � _ ŒIis �, 1 � s � r are 2r � 1 distinct elements of L, and so �L � 2r .

On the other hand, because each I.i/ has height 1, it is also an immediate conse-
quence of the distributive law that 0 < ŒI.1/� < � � � < ŒI.1/�_� � �_ŒI.k/� < � � � < ŒL�

is a chain of maximum length, so that htŒL� D r and �L � 2r . Thus �L D 2r and
L D fŒ0�; ŒIi1 � _ � � � _ ŒIis �g. �

Remark. Theorem 5.7 and its corollary show that the cft graded Lie algebras L

satisfying htŒL� D r and �L D 2r are the analogues in this setting of the classical
semi-simple Lie algebras. Note that this includes as a special case the cft graded Lie
algebras L with depth L D m and �L D 2m.

Proposition 5.9. Let L be a cft graded Lie algebra. If

2htŒL� � depth L � 1

then L contains a free Lie algebra on two generators.

Lemma 5.10. Suppose J � I are ideals in a cft graded Lie algebra satisfying
ŒJ � < ŒI � and depth J C 1 D depth I . Then I contains an infinite dimensional Lie
subalgebra of depth 1.

Proof. Since ŒJ � < ŒI � there is an ideal H � L such that J \H is not full in I \H .
Set K D I \H ; then J \K is not full in K. Thus a weak complement, E, for J \K

in K is infinite dimensional.
Next note that since J � J C K � I , either depth J D depth.J C K/ or

depth.JCK/ D depth I . The first equality would imply J �L .JCK/ (Lemma 5.7)
and thus (intersection with K) J \K �L K, which is impossible because J \K is
not full in K. Thus

depth.J CK/ D depth J C 1:

But since E may be chosen to also be a weak complement for J in J C K

(Proposition 4.4), Theorem 4.3 yields

depth E C depth J � depth.J CK/ D depth J C 1:

This gives depth E � 1. But E is infinite dimensional and thus depth E D 1. �

Proof of Proposition 5.9. Let 0 < ŒI.1/ < � � � < ŒI.r/� D ŒL� be a chain of strict
inclusions in L, with r D htŒL�. We may assume I.1/ � � � � � I.r/, and then it
follows from Lemma 5.7 that 0 < depth I.1/ < � � � < depth I.r/. In view of our
hypothesis either depth I.1/ D 1 or for some i , depth I.i C 1/ D depth I.i/ C 1.
Lemma 5.8 then implies that I.iC1/ contains an infinite dimensional Lie subalgebra
of depth 1. Finally according to [7] each infinite dimensional Lie subalgebra of depth
1 contains a free Lie algebra on two generators. �
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6. The hyperradical

Recall that the radical of a cft graded Lie algebra L is the sum of its solvable ideals.
In [1], Theorem C, it is shown that if depth L < 1, then the radical of L is finite
dimensional.

Definition 6.1. The hyperradical R of cft graded Lie algebra, L, is the sum of the
ideals I � L satisfying

log index I < log index L:

By convention, R D f0g if there is no infinite dimensional ideal I of L with
log index I < log index L. Clearly R is an ideal.

Theorem 6.2. Let R be the hyperradical of an infinite dimensional cft graded Lie
algebra L of finite depth, and let .x/ denote the ideal in L generated by x 2 L. Then

(i) x 2 R if and only if log index.x/ < log index L,

(ii) log index R < log index L, and depth R < depth L.

Proof. (i) Suppose x is a finite sum x D Pp
iD1 xi where xi belongs to an ideal Ii

with log index Ii < log index L. There is then an integer N and a non negative real
number " such that for n � N and i � p, we have

log dim.Ii /n

n
� log index L � ":

If I D I1 C � � � C Ip , this implies that log index I < log index L. In particular,
log index.x/ < log index L.

(ii) By [9], Lemma 4, R contains a finitely generated Lie subalgebra E for which
Ext�

UR.k; UR/ ! Ext�
UE .k; UR/ is non-zero. Let x1; : : : ; xr 2 R generate E. If

I D .x1/ C � � � C .xr/, it follows a fortiori that Ext�
UR.k; UR/ ! Ext�

UI .k; UR/

is non-zero. Thus by Proposition 4.4, I is full in R. Now Proposition 2.10 and the
argument in (i) above give log index R D log index I < log index L. Thus R is not
full in L, and so Lemma 4.6 shows that depth R < depth L. �

Corollary 6.3. Let L be an infinite dimensional cft graded Lie algebra of finite depth.
For any � � 0, let J � L be the sum of all the ideals I satisfying log index I � �.
Then log index J � �.

Proof. If log index J > �, then J is its own hyperradical, which is impossible by
Theorem 6.2 (ii) . �

Proposition 6.4. Let L be a cft graded Lie algebra of finite depth. Then L contains
a full Lie subalgebra whose hyperradical is zero.
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Proof. Let E � L be a full Lie subalgebra of minimal depth, let R be the hyperradical
of E, and let F be a weak complement for R in E. Since R˚F is full in E and since
log index R < log index E, it follows that F is full in E. Moreover, Theorem 4.2
asserts that depth F C depth R � depth E.

But our hypothesis on E yields that depth F � depth E, and it follows that
depth R D 0; i.e., R is finite dimensional and concentrated in odd degrees. Choose
n so that R�n D 0. Then E�n is a full Lie subalgebra of E and, since it is an
ideal, depth E�n � depth E; thus E�n also has minimal depth among its full Lie
subalgebra s. Thus if S � E�n is its hyperradical, S is also finite dimensional and
concentrated in odd degrees.

The ideal I in E generated by S is the image of the linear map UE ˝UE�n
S !

UE, and hence has polynomial growth. Since depth I < 1 this implies ([6]) that
dim I < 1; i.e., I � R. Thus S � R�n D 0 and so the hyperradical of E�n is
zero. �

Proposition 6.5. Let L be an infinite dimensional cft graded Lie algebra of finite
depth m. Then at most m pairs .˛; ˇ/ can satisfy

˛ D log index I and ˇ D log index I

for some ideal I .

Proof. Suppose I1; : : : ; Ir are ideals with respective log indices and lower log indices
ordered by lexicographic order .˛1; ˇ1/ < � � � < .˛r ; ˇr/. Then we can replace the
sequence of ideals by the following sequence with the same sequence of log indices
I1 � I1C I2 � � � � � I1C � � � C Ir . Since the .˛i ; ˇi / are distinct, no I1C � � � Ij is
full in I1 C � � � C Ij C1. Therefore, by Lemma 4.6, r � m. �

Example 6.6. Let X be the space

S3
a _ S3

b _ S5
z [Œa;z� e8 [Œa;Œa;z�� e10 [Œb;Œa;z�� e10 :

Then LX has depth 2 and the lattice L has exactly three elements.
The Sullivan minimal model of X is quasi-isomorphic to the differential graded

algebra .A; d/ D .^.x; y; z; t/=.xy; tz/; d/ where deg x D deg y D 3, deg z D 5,
deg z D 7, dx D dy D dz D 0, d.t/ D yz. The algebra .A; d/ is a semifree
.^.x; y/=.xy/; 0/-module ([5]). This gives a rational fibration

F D S5 _ S7 ! X ! B D S3 _ S3:

The ideal LF has not the same log index as LX , and so is neither L-equivalent to LX

or to 0. The exact sequence 0! LF ! LX ! LB ! 0 implies at once that

Œ0� < ŒLF � < ŒLX �

are the only elements of L. In particular LF is the hyperradical of LX .
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7. The odd and even part of a graded Lie algebra

Theorem 7.1. Let L be a cft graded Lie algebra of finite depth.

(i) Either Lodd is contained in a finite dimensional ideal of L, or else for some d

the integers
PkCd

j DkC1 dim.Lodd/j grow faster than any polynomial in k.

(ii) The Lie subalgebra Leven is full in L.

Proof. Let I be the Lie subalgebra generated by Lodd; I is clearly an ideal in L and
hence has finite depth. Choose x1; : : : ; xn of odd degrees e1 � � � � � en that generate
a Lie subalgebra F for which ExtUI� .k; UI / ! ExtUF� .k; UI / is non-zero. The
centralizer of the xi in I is therefore finite dimensional, which implies that for some
N the linear map x 7! .Œx; x1�; : : : ; Œx; xn�/ is an injection Ik ! IkCe1

˚� � �˚IkCen
,

k � N . Since the ei are odd, it follows that, for k � N ,

dim.Iodd/k �
kCenX

j DkCe1

dim.Ieven/j and dim.Ieven/k �
kCenX

j DkCe1

dim.Iodd/j ;

which implies that both Iodd and Ieven are full in I .
Now suppose I is infinite dimensional. Then according to [6] for some d the

integers
PkCd

j Dk dim Ij grow faster than any polynomial in k. Since dim I2j �P2j Cen

iD2j Ce1
dim.Iodd/i , it follows that .d C 2/

PkCdCen

j Dk
dim.Iodd/j grow faster than

any polynomial in k. And, of course, Iodd D Lodd.
Finally, let E be a weak complement for I in L. Then E � Leven and E ˚ I is

full in L. Since Ieven is full in I it follows that E ˚ Ieven is full in L and so Leven is
full in L. �
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