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Abstract. In this paper we consider a graded Lie algebra, L, of finite depth m, and study the
interplay between the depth of L and the growth of the integers dim L;. A subspace W in a

graded vector space V is called full if for some integers d, N, ¢, dim Vi < d Zf:f dim W;,
i > N. We define an equivalence relation on the subspaces of VV by U ~ W if U and W are full
in U + W. Two subspaces V', W in L are then called L-equivalent (V ~7 W) if for all ideals
K C L, VNK ~ Wn K. Then our main result asserts that the set £ of L-equivalence classes
of ideals in L is a distributive lattice with at most 2’ elements. To establish this we show that
for each ideal [ there is a Lie subalgebra E C L suchthat ENJ =0, E @ [ is full in L, and
depth E + depth / < depth L.
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1. Introduction

We work over a ground field k of characteristic # 2. A graded Lie algebra, L, is a
graded vector space equipped with a Lie bracket [, |: L ® L — L, satisfying

[x, y] + (—1)der e[y x] =0
and
[x, [y, z]] = [[x, y]. z] + (=D)*&e [y [x, 7],

and [x, [x,x]] = 0, x € Lyqgq if char k = 3. (This condition is automatic if char k is
not 3.)
As in the classical case, L has a universal enveloping algebra UL, and we define

depth L = least m (or oo) such that Extyj; (k, UL) # 0.
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Similarly, if M is an L-module, then
grade; M = least ¢ (or 0o) such that Ext{,; (M, UL) # 0.

The graded Lie algebra, L, is connected if L = {L;};>o and of finite type if each
dim L; < oo; graded Lie algebras satisfying both condition are called cft graded Lie
algebras.

Suppose now X is a simply connected CW complex of finite type. Then the
rational homotopy Lie algebra, Ly = m.(R2X) ® Q (with Lie bracket given by the
Samelson product) is a cft graded Lie algebra. The motivation for the study of cft
graded Lie algebras of finite depth is the following result.

Theorem ([1]). If X is a simply connected CW complex of finite type, then
depth Ly < catg X,

where catg X denotes the rational Lusternik—Schnirelmann category of X. In partic-
ular, if X is a finite CW complex, then depth Ly is finite.

For more details for all of the above, the reader is referred to [5].
An important question connected with the Lie algebra Ly is the behavior of the
integers dim(Ly);, since

dim(Ly); = rank 7r;+1(X).
In this regard, we have the following growth result.

Theorem ([9]). Let X be a simply connected CW complex of finite type such that the
sequence dim Hy (X ; Q) grows at most exponentially. If catg X < oo, then either
dim Ly < oo, or else there is a positive integer d and a number o > 0 such that
given ¢ > 0,
k+d
e@ K < 3" (dim Ly); < etk k= K(e).
i=k

Note that e~ is just the radius of convergence of the power series Y dim(Ly);z".

In this paper we focus on the structure of cft graded Lie algebras of finite depth,
with particular attention to the interplay between depth and growth of the integers
dim L;, and to the structure of the ideals in L. Our aim is a classification theory
for the ideals in a cft graded Lie algebra of finite depth, and in particular for the
homotopy Lie algebras Ly of a space of finite Lusternik—Schnirelmann category. A
crucial notion is that of full subspace.
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Definition. A subspace W of a graded vector space V = {V;};>¢ is full in V if for
some fixed A, ¢ and N (all positive)

k+q
dim Ve <A ) dimW;. k= N.
i=k

An easy argument (Proposition 2.5) then shows that an equivalence relation on
the subspaces of V is defined by

U~W < Uand W arefullinU + W.

Two subspaces V, W in a graded Lie algebra L are called L-equivalent (V ~p W)
if for all ideals K € L, VN K ~ W N K. As we show in Section 5, the set £ of
L-equivalence classes [/] of ideals I C L is a distributive lattice under the operations
Ul <[J]itINJ ~p I,IIVv[J]=[I+J]and [I]A[J] =[I NJ]. Insucha
lattice each maximal chain of strict inequalities 0 < [I/(1)] < --- < [I(r)] = [/] has
the same length r; the number r is the height ht[/] of [/].

Now our main result (Theorem 5.7) reads as follows:

Theorem. Let L be a cft graded Lie algebra of finite depth m and suppose ht[L] = r.
Thenr < m. Moreover, the number vy, of L-equivalence classes of ideals in L satisfies
v < 2" and equality holds if and only if L ~p, I1(1) @ --- ® I(r) where the 1(i) are
ideals of height 1.

The main step in the proof of this theorem is the following (Theorem 4.3).

Theorem. Let I be an ideal in a cft graded Lie algebra L of finite depth. Then there
is a Lie subalgebra E C L such that,

() ENI =0and E ® I isfullin L, and,

(ii) depth E + depth I = depth(E & 1) < depth L.

Call an inclusion W C V of graded vector spaces strongly proper if W is not
full in V. Then the theorem above has the following consequence (Corollary to
Theorem 4.3).

Proposition. If1 is a strongly proper ideal in a graded Lie algebra L, then depth I <
depth L. Thus the length of a sequence 1(1) C --- C I(r) C L of strongly proper
inclusions of ideals has length at most depth L (r < depth L).

The proof of the theorem requires certain technology for the study of the relative
size of graded vector spaces, which we set up in Section 2. Then in Section 3 we carry
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out a careful analysis of the relationship between depth L and grade; M, showing
that under certain hypotheses depth L = grade; M (Theorem 3.6). These hypotheses
hold for the modules appearing in the Hochschild—Serre spectral sequence, which then
constitute the main ingredient in the proof of the theorem.

The results in Sections 3 and 4 have a number of applications. First we note that
upper and lower bounds on the rate of exponential growth of a graded vector space
V are given by

log dim V;
logindex V' = lim sup %
k

and
log Zf‘:,? dim V;
. )

In Section 5 we note that if W is full in V, then W and V have the same log index
and the same lower log index. Thus the Lie subalgebra £ & I in the theorem above
has the same growth properties as L.

We then show that the sum, R, of theideals I C L withlogindex / < logindex L
also satisfies logindex R < logindex L; thus R (called the hyperradical of L) has
strictly lower depth. Define a sequence R, C R,—; C - C Ry = R C L by
defining R; to be the hyperradical of R;_;. Since each inclusion is strongly proper,
it follows that r < depth L; moreover, clearly for any ideal I C L,

lower logindex V = lim liminf
gk

logindex I = logindex R; for some i.

It follows that at most depth L + 1 numbers appear as the log index of an ideal [ in L.
In Section 7 we show that in any cft graded Lie algebra of finite depth, either
dim Lyyq is finite or else for some d the integers Zf:,f 41 dim(Logq); grow faster
than any polynomial.
Finally, the authors would like to thank the referee for the many helpful suggestions

and comments.

2. Large and full subspaces

2.1. Definitions and characterization. Suppose V = {V;};>¢ is a graded vector
space of finite type, and let 0 = (0;) be a sequence of non-negative numbers.

Definition 2.1. A subspace W C V is o-large in V if for some fixed ¢, A, K > 0,

k+q
dim(V/ W)k <X Y o1, k=K. (1)
i=k
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If Z is a graded vector space and W is (dim Z;)-large in V', we shall say simply
that W is Z-large in V.

For instance W C V has polynomial codimension if W is o-large in V' with
o; = i™ for some m.

Lemma 2.2. () IfU C Wiso-largein W and if W C V iso-largein V, then U is
o-largein V.

(i1) The finite intersection of o-large subspaces of V is also o-large in V.
i) If W C V iso-large in V, then for each r > 0,

k+r k+r+q
Do dm(V/W)i=Ag+1) Y, o k=K,
i=k i=k

where q, A, K are as in Definition 2.1.

Proof. (i) Choose A, ¢, K so that Definition 2.1 is satisfied for both U C W and
W C V. Then

k+q k+q k+q
dim(V/U)i = dim(W/U)g +dim(V/ W) <A Y oi+4 Y 0i =21 Y 0.
i=k i=k i=k

(ii) Suppose W (1), ..., W(r) are o-large subspaces of V, and choose ¢, A, K so
that Definition 1 holds for each of the W (). The linearmap V — V/W({1) & --- @
V/ W(r) factors to give an injection

viwyn---aoWwe) > V/Wl)&---&V/Wr),

and so
d'm( 4 ) <zr:d'm( V) <A]§I k>K
1 = 1 —_— =r oj, = .
W N 0w )y~ \WD T T
(ii1)
k+r k+r it+q k+r+q

Y dim(V/ W) <Y AY o <Ag+D) Y. o O
i=k i=k j =i i=k

Definition 2.3. A subspace W C V is full in V if for some g, A, K > 0,

k+q
dimVe <A Y dim W, k=K.
i=k
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Lemma 2.4. Suppose U C W C V.
(1) The following conditions are equivalent :
- WisfullinV.
- Wis W-largeinV.
— The zero subspace is W-large in V.
@) IfU isfullin W and W is fullin V, then U is full in V.
(iii) If W is S-large in V for some S C V, then W + S is full in V.

(V) IfW is fullin V and A, g, K satisfy dim Vi, < A Y ¥4 dim W, k > K (f. (),
then for any r > 0,

k+r k+r+q
Y dimV; <A(g+1) Y dimW;, k=K.
j=k j=k

Proof. (i) The third condition simply states the definition of fullness, and trivially
implies the second. If the second holds, then (for some A, ¢, K)

k+q
dim Vi = dim Wy + dim(V/ W) < (A + 1) ) dim W;.
i=k
(ii) For suitable «, B, 7,5, K,
k+r k+r i+s
dmVy <o dimW <o) (,3 ZdimUj)
i=k i=k j=i
k+r+s
<af(r+1) > dimU;. k=K.
i=k
(iii) For suitable A, ¢, K and for k > K,
dim V = dim(V/ W) + dim Wy
k+q
<A ) dimS; + dim W
i=k
k+q
<24 ) dim(S; + W), k=K,
i=k

because dim(Sk + W) > 3 (dim S + dim W).
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(iv)
k+r k+rit+q k+r+q
D odimV; <A) DY dimW =(g+ DA Y dimW;, k=K. O
i=k i=k j=i j=k

Proposition 2.5. An equivalence relation on the subspaces of V' is defined by U ~ W
ifand only if U and W are full in U + W.

Proof. We have only to check transitivity. Suppose that U, W, Y are subspaces of V/
andU ~ Wand W ~ Y. The injection W +Y — U + W +Y induces a surjection

W +Y)/W— U+W+Y)/ U +W).

Since W is full in W 4 Y this implies that U + WisfullinU + W + Y. But U is
fullin U + W and hence (Lemma 2.4 (i1)) U is fullin U + W + Y. Therefore U is
certainly full in U 4 Y. Similarly Y isfullin U + Y andso U ~ Y. O

Definition 2.6. The equivalence relation above will be called full equivalence and
will be denoted by U ~ W.

Proposition 2.7. If U; ~ W; are pairwise fully equivalent subspaces of V, then
U+ +U ~Wi+--+ W

Proof. 1t is clearly sufficient to prove the proposition when r = 2; in this case we
need show that U; + Uy, ~ W1 4+ Uy ~ Wi + W,. Thus we are reduced to show
that Uy + W ~ U, + W it Uy ~ U,. By hypothesis, U; is full in Uy + U,. It
follows from the obvious surjection (U; 4+ U,)/ Uy — (Uy + U, + W) /(U + W)
that Uy + W is Up-large in Uy + U, + W. Thus it is certainly (U; + W)-large in
U, 4+ U, + W, and hence full in this space. Similarly U, + W is fullinU; + U, + W
andsoU; + W ~ Uy + W. O

2.2. Logindex and lower logindex. Againsuppose V = {V;};>¢ is a graded vector
space of finite type. The log index of V is the number given by

. . log dim Vj
logindex V = lim sup ————;
k k
itis the least number « such that for all ¢ > 0, thereis a K such thatdim Vj, < e(“+€)k,
k > K. Thus it provides a sharp upper bound for exponential growth.

Note that if A = logindex IV < oo, then e~* is the radius of convergence of the
Hilbert series Y dim Vi z*. One should also observe that if A > 0, then the sum
Zf;l dim V; grows exponentially with k.

In the applications we shall use the following, seemingly more refined, measures.
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Definition 2.8. The upper and lower log indexes of V are given, respectively, by

k+q .
lo 1 dim V;
upper logindex V = lim lim sup g (Xick )
q—00

& k

and

k+q ;-
lo c 2 dim V;
lower logindex V = Km liminf — (Xizg dim Vi)
g—>oo  k k

Remark. The limits above exist because the sequences increase with g.

Lemma 2.9. (i) For any q,

k+q 4.
lo c_dimV;
IOg index V = lim sup g ( Zl=kk l)
k

(ii) If L is a cft graded Lie algebra of finite depth then for some d,
log ( Zk:kq dim L;)

l

k

Proof. (i) This is straightforward.

(ii) By [9], Lemma 7, there is an integer d so that Z = {u |[u, L<4] = 0} is
finite dimensional. Choose D so that Z>p = 0.

Next, forany s > d and k > s + D, write

= upper logindex V.

limkinf = lower logindex L, ¢ >d.

k+s
> dimL; = e?®Ik,
i=k
Then for some j € [k —s,k],dim L; > ﬁe”(k_s’s)(k_s). Letuy,...,up, be abasis

for L4 and note that, since j > D, for some A we have dim[u,, L;] > % dim L;.
Proceeding in this way yields an infinite sequence (u,,,) such that

1 q
dimfuy,, [wa,_ [ [ua, Lyl 1> (—) dim L; forallgq.
D

But for some ¢ < s, we have Y .7_ degu,, + j € [k,k + d]. It follows that

yk.d) = (1= s/ Ryt —s.5) = 2,
for some Q(s) independent of k. Letting k — oo, we see that liminfg y(k,d) =
liminfy y(k,s). Thus for s > d
k+d 5. k+s q-
lo - dim L; lo . dim L;
lim inf e(Limic dimLi) _ e o8 (2ioe di ’),

k k k
and this is then obviously the lower log index of L. O
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Remark. Lemma 2.9 shows that log index L and lower log index L give precise
upper and lower bounds on the exponential growth of Zf:,? dim L;.

Proposition 2.10. Suppose U and W are fully equivalent subspaces of V. Then U
and W have the same log index and the same lower log index.

Proof. We need to show that if W is full in V' then W and V have the same log index
and lower log index. But then

logdim V} log dim W;
og l,m]ZsupOg im W,

sup ;
jzk J izk J
+
log <q+1 Z’ H dlmW)
Z sup -
izk J
> sup .
izk J
Take limits as k — oo to see that logindex V = logindex W.
On the other hand,
k+r k+r+q
d dimV; <AMg+1) Y dimW; (Lemma 24(iv))
i=k i=k
k+r+q
<AMg+1D Y dimV.
i=k
Thus
log (Y17 dim V; logh(g +1) log (X744 dimw;
tim inf 22 (2= ) < timing (2@ D) loe (X )
k k k k
k+r+q
log A 1 lo dim V;
 liming (022G D | log (Xisy )\
k k k
Jratr g f
Leta; = logQi=; — 4mW0) Then

J

inf a; < inf

logA(g + 1 logA(g + 1
( gAlg+1) j)< gAlg+1) inf a;.

j k j>k

Taking limits as k — oo gives

k+q+r
log A 1) lo dim W;
liminf(og (¢ +1)  log (3% )

log (X507 dim W)
k r: ‘

i
k

) = lim inf
k
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Hence

k+r . k+r+q ;-
I T dim V; lo c dim W;
lim inf [0€ izt 9 Vi 1082y ’

k k k k

k+r+q 4
< liming (02 2=k d4im Vi
-k k '

Taking limits as r — oo gives

lower logindex V' = lower log index W. O

3. Growth and depth in a graded Lie algebra

Let L be a cft graded Lie algebra, let 0 = (0;) be a sequence of non-negative integers
and let M = {M;},cz be a Z-graded L-module.

3.1. Thin modules

Definition 3.1. Given subspaces V, W C M, the isotropy Lie subalgebra Ly and
the co-isotropy Lie subalgebra L' are defined by

Ly={xeL|x-V=0 and LYW ={xelL|x-McWw}.

The L-module M is o-thin if Ly and LY are o-large Lie subalgebras of L
whenever dim V' < oo and codim W < oo.

Remark. If VV and W are subspaces of a o-thin L-module such thatdim V' < oo and
codim W < oo, then E = Ly N LW is a o-large Lie subalgebra satisfying

E- V=0 and E-M CW.

Lemma 3.2. Let L be a cft graded Lie algebra and let 0 = (0;);>0 be a sequence
of non-negative numbers. Then:

(i) The direct sum and the finite tensor product of o-thin L-modules are o -thin.
(i) Any subquotient of a o-thin L-module is o -thin.
(iii) If M is a o-thin L-module, then each N4 M is also o-thin.
(iv) If M is a o-thin L-module, then M* = Hom(M, k) is also o-thin.

Proof. Elementary linear algebra suffices to prove the lemma, since a finite intersec-
tion of o-large Lie subalgebra is o-large. O
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Lemma 3.3. Suppose L is a cft graded Lie algebra, 0 = (0);> is a sequence of non-
negative numbers, and M = {M;};>o is an L-module concentrated in non-negative
degrees. Then
(1) M iso-thinifandonly if Ly is o-large in L, whenever V' is a finite dimensional
subspace of M.

(ii) The sum, N, of all the o -thin submodules N(«) C M is itself o-thin.
(i) M is o-thin if for some A,q, K, dim My < 2 Y514 o;, k > K.

(iv) M is o-thinif and only if for some set {v; } of generators for M (as an L-module)
each Ly, is o-large in L.

Proof. (i) is immediate from the fact that M = {M;};>o¢.

(ii) Any finite dimensional subspace V' C N satisfies V' C N(wq)+---+ N(«;) for
some finite subset o1, ..., «,. Thus there are finite dimensional subspaces V(o;) C
N(a;) suchthat V' C V(ay) + -+ + V(a,). Hence Ly D N; Ly (q,). Since the finite
intersection of o-large Lie subalgebras is o-large, it follows that Ly is o-large.

(iii) Let V' be a finite dimensional subspace of M and (x;);<;<n be abasis of V.
Then the action of L on the x; induces a linear injection

(L/Lv)k — 69zN=1 Mk+degxi-

This implies that Ly is large in L.

(iv) We first show that if, for some v € V, L, is o-large then L., is o-large for
all a € UL. In fact, because of (ii), it is sufficient to show this when a = xq--- x,
(x; € L) and we proceed by induction on r.

Set w = x---X,-v and let S C L be the graded subspace of L defined by
S ={y € L|[y,x1] € Ly}. Since Ly, is o-large, by the induction hypothesis, we
have for some A, ¢, K that

k+q
dim(L/Ly)k <A ) o1, k=K,
i=k
and also
k+degx1+q
dim(L/S) < dim(L/Ly)ktacgx; <> Y, Oi.
i=k-+degx]

On the other hand, for z € L we have
ZeX1Xprv=z-x1-w=[z,x1]-wtx;-z-w
and so Lx,.,w D S N Ly,. Now the inequalities above yield

k+degx1+q
dim(L/Lyyw)k <24 Y 0i. k=K.
i=k
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Thus L., is o-large and the induction is closed.
Finally we have shown that if L, is o-large then UL - v is o-thin, and so we may
apply (ii) to complete the proof of (iv). O

Lemma 3.4. Let L be a cft graded Lie algebra, and let 0 = {0; }i>0 be a sequence
of non negative numbers.

(1) If E is a 6-large Lie subalgebra of L, then the L-module UL QuEg Kk is o-thin.

(ii) If L acts by derivations in a Lie algebra F, and if Ly, is o-large for a set {wq }
of generators for the Lie algebra F, then F is a o-thin L-module.

Proof. (i) The vector space UL ®uE k is generated as an L-module by the single
elementv = 1 ® 1. Since L, = E, which is o-large, (i) follows from Lemma 3.3
@iv).

(i1) Let W be the linear span of the w,. Then UL - W is a o-thin L-module by
Lemma 3.3 (iv). The natural linear map UL - W — F extends to an L-linear algebra
surjection T(UL-W) — UF. But T(UL - W) is o-thin by Lemma 3.2 (i), and hence
F, as a subquotient of T(UL - W) is o-thin by Lemma 3.2 (ii). O

3.2. The Hochschild—Serre spectral sequences. The invariants Extj;, (M, N) and
Tori”‘ (M, N) will play an important role in this paper, when L is a cft graded Lie
algebra and M and N are L-modules.

Let V = {V;}i>o be a graded vector space of finite type. We denote by V* the
dual vector space, V; = Hom(V_g, k), and by AV* the free graded commutative
algebra on V*. Then A?V* is the linear span of the products f -+ f4, f; € V¥, and
its dual 'V = (AV#*)* is the free divided powers algebra on V.

The graded vector spaces Tor?Z (M, N) and Exty;; (M, N) may be computed
as the homology of complexes respectively of the form I'*(sL) ®x M ®x N and
Homy (I'* (s L) ®k M, N) with twisted differentials ([11]). (Here s L is the suspension
of L; (sL)x = Lyx—1.) Now suppose E C L is a Lie subalgebra and write L =
E ®S. Then there is a first quadrant spectral sequence (the Hochschild—Serre spectral
sequence), that converges from

1 _ . UE UL
E,,=Tor,”(I'’s(L/E) ® M,N) to Tor,,(M,N).

When E is an ideal then
2 _ m..UL/E UE
E, , = Tor, (k, Tor, ™ (M, N)).
There is also a Hochschild—Serre spectral sequence for Ext,

Ext, . (T'?s(L/E) ® M, N) = Ext{ % (M, N).
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For more details on the Hochschild—Serre spectral sequences, see [5] and [9].
Now we recall two results obtained in [9] and related to cft graded Lie algebras
of finite depth, that we will use several times in the text.

Lemma 3.5 ([9], Lemma 4). Suppose M and N are L-modules where L is a cft
graded Lie algebra and each N; is finite dimensional. If Ext{;; (M, N) # O then
Jor some finitely generated Lie subalgebra E C L and for some finitely gener-
ated L-submodule P C M the restrictions Exty;; (M, N) — Ext[;z(M,N) and
Exty;; (M, N) — Exty;; (P, N) are nonzero.

Lemma 3.6 ([9], Lemma 6). Let E C L be a Lie subalgebra of a cft graded
Lie algebra L. Suppose for some m, that the restriction map Exty;; (k,UL) —
Extf;g (k, UL) is non-zero. Let Z be the centralizer of E in L. Then Z is finite
dimensional.

3.3. Minimal subalgebras

Definition 3.7. Let 0 = (07);>0 be a sequence of non-negative numbers.

e A cft graded Lie algebra L is o-minimal with respect to an ideal I if every
o-large Lie subalgebra E with I C E C L satisfies depth E > depth L.

o A cft graded Lie algebra L is o-minimal if L is o-minimal with respect to 0,
i.e., if depth £ > depth L for all o-large subalgebras E of L.

e If Z is any graded vector space and L is (dim Z;)-minimal (resp. (dim Z;)-
minimal with respect to 1), we shall say that L is Z-minimal (resp. Z-minimal
with respect to I) .

Theorem 3.8. Let 0 = (0i)i>0 be a sequence of non-negative numbers and let |
be an ideal in a cft graded Lie algebra L. If M = {M;};cz is a o-thin L-module
satisfying M # 0and I - M = 0, and if L is o-minimal with respect to I, then

depth L = grade; M.
We begin with two preliminary lemmas.

Lemma 3.9. Let I be an ideal in a cft graded Lie algebra L, and let 0 = (0;);>0 be
a sequence of non-negative numbers. If M = {M;};icz is any o-thin L-module for
which I - M = 0and M # 0, then I extends to a o-large Lie subalgebra E C L
such that

depth E < grade; M.



820 Y. Félix, S. Halperin and J.-C. Thomas CMH

Proof. Letm = grade; M. Then for some finitely generated submodule N C M, the
restriction Exty;; (M, UL) — Ext{;; (N, UL) is non-zero. Denote by vy, ..., v, aset
of generators of N. Then the short exact sequence 0 - UL -vy - N — N/(UL -
v1) — 0 induces an exact sequence Exty;; (UL - v, UL) — Exty;; (N,UL) —
Ext7;; (N/(UL -vy), UL). It follows that there exists a subquotient module of N, of
the form UL - v, for which Ext7;; (UL - v,UL) # 0. Moreover, as a subquotient of
M, UL - v is o-thin (Lemma 3.2 (i1)).
Consider the short exact sequence of L-modules

0—-K—->UL®uL,k—UL-v—0.

Since UL - v is o-thin, L, is o-large in L. Hence UL ®y, k and K are also o-thin
(Lemma 3.2 (i) and Lemma 3.2 (ii) respectively). Note also that since UL - v is a
subquotient of M, I - UL - v = 0. In particular, I C L, and since / is an ideal, it
follows that I - (UL ®ur, k) =0andhence I - K = 0.

On the other hand from the short exact sequence above, we deduce that either
Ext', 1 (K, UL) # 0 or else Ext}}; (UL ®ur, k,UL) # 0. In the first case the
lemma follows by induction on m. In the second one we use the standard isomorphism

Extyy; (UL ®uL, k, UL) = Exty; (k,UL)

to conclude that depth L, < m. Set E = L, in this case. O

Lemma 3.10. Suppose [ C E with I and E respectively an ideal and a Lie subal-
gebra in a cft graded Lie algebra L. If L is o-minimal with respect to I, and if E
is o-large in L, then depth L = depth E. In particular, E is o-minimal with respect
tol.

Proof. Tt follows from the Hochschild—Serre spectral sequence that

Tory®(I'sL/E, (UL)") = Torb{, (k, (UL)")

that there exist p, g with p 4+ ¢ = depth L, and such that
grade; T'IsL/E < p.

Since L/E isao-thin E-moduleand / - L/ E = 0, Lemma 3.9 gives a Lie subalgebra
F,o-largein E, with I C F C E, and satisfying

depth F < gradey I''sL/E.

Since L is o-minimal with respect to I, depth L < depth F';i.e., p + ¢ < p. Thus
q = 0 and depth F < depth E. But L was o-minimal with respect to I, so that
depth L < depth E. This gives depth L = depth E. O
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Proof of Theorem 3.8. By Lemma 3.9, L contains a o-large Lie subalgebra F con-
taining /, and such that depth F < grade; M. Now take a Lie subalgebra E
of F that is o-minimal with respect to /. Then, depth £ < depth F, and so
depth E < grade; M. Since depth £ = depth L (Lemma 3.8), it follows that
depth L < grade; M.

Next, let My = {M;}i>0 and set N = M/M,; both M, and N are o-thin
L-modules. If M4 # 0, we can find a short exact sequence of L-modules of the
form

00— K—> M; - kx —>0.

As observed at the start of the proof of the theorem (applied to K instead of M),
depth L < grade; K. Thus if m = depth L we have the exact sequence

0 — Exty;; (kx,UL) — Exty; (M4, UL),

which implies that grade; M < depth L. It follows that grade; M, = depth L and
so, if N = 0, the theorem is proved.

Next, suppose N # 0. Since N is concentrated in negative degrees, and since
(UL)* is also concentrated in negative degrees, it follows that (N ® (UL)*)* =
N* ® UL as L-modules with diagonal action.

On the other hand TorVZ(N, (UL)*) = TorVE(k, N ® (UL)*), and dualizing
gives Ext};; (N, UL) = Ext};; (k, N*® UL)). Since N* ® UL is a free UL-module
(diagonal action) this shows that grade; N = depth L. Thusif M = 0, the theorem
is proved.

Finally, suppose that My # 0 and N # 0. Since depth L = grade; M, =
grade; N = m, the short exact sequence

O->My—>M—>N—>0
and the consequent exact sequences
Exty;; (M,UL) < Exty;; (M,UL) < Exty;; (N,UL) <0, i <m,
imply that grade; M = m = depth L. O

4. Weak complements

Theorem 4.1. Let E and I be respectively a Lie subalgebra and an ideal in a cft
graded Lie algebra L, such that E NI = 0, and let 0 = (0;)i>0 be a sequence of
non-negative numbers.
(1) If E is o-minimal and I is a o-thin E-module (adjoint representation), then
E & I is o-minimal with respect to I, and

depth(E @ 1) = depth E + depth /.
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(i) If, moreover, L/(E ® I) is a o-thin E-module, then
depth(E @ 1) < depth L.

Proof. (i) Use the inclusions E, I — (E @ [) and multiplication in U(E & I) to
writte U(E® 1) = Ul Q UE. Thenforx € E,a € UIl,b € UE, we have

x-(@a®b)=(adx)a @b + (—1)%e44exy @ x . b.

It follows that TorY (k, U(E @ I)*) = TorV! (k, (UI)*) ® (UE)* as E-modules.
Thus the Hochschild—Serre spectral sequence converges from

E2, = TorYE (TorY! (k, (UD"), (UEY*) to Torp 2%V (k. (UE & 1)").

Now since / is a o-thin E-module so is each I'Ys] ® (UI)*, and hence so are the
subquotients TorY” (k, (UI)*). By Theorem 3.6, either Tor)’ (k, (UI)*) = 0, or
else depth £ = gradeg Tor;” (k, (UI*). Hence Eiq = 0 for ¢ < depth I or for
p <depth E, and E 1%, g 7 Owheng = depth I and p = depth E. A standard corner
argument now shows that depth(E @ 1) = depth E + depth /.

Finally, we show that E & I is o-minimal with respect to /. In factlet F C E
be any o-large Lie subalgebra. Form the Hochschild—Serre spectral sequence

E2, = TorSF (Tor! (k, (UD"), (UF)*) = Torgs @Dk, (U(F & 1))").

We deduce that for some g > depth /, grade i Tor;” (k, (UI*) < depth(F®1)—q.
But according to Lemma 3.9 there is a o-large Lie subalgebra E’ C F such that
depth £’ < grade TorJ’ (k, (UI)*). Thus

depth E' < depth(F & I) — q < depth(F & I) — depth I
< depth(E & I) — depth I = depth E.
Since E is o-minimal these inequalities are equalities; in particular depth(F @ /) =
depth(E @ 1) and E & [ is o-minimal with respect to /.
(i1) Consider the Hochschild—Serre spectral sequence converging from
EP = Bxtfy gy (TPsL/(E® 1), UL) to Ext;(k,UL).

Since L/(E & I) is a o-thin E-module annihilated by 7, it is also a o-thin £ & I-
module. Thus each I'?sL/(E & I) is a o-thin (E & I)-module annihilated by /.
Thus, since E @ I is o-minimal with respect to I, Theorem 3.8 asserts that either
I'P’sL/(E & 1)=0,orelse

depth(E @ I) = gradeg g, (I'?sL/(E & I)).

Since Exth(EEBI)(FPsL/(E @ 1),UL) # 0 for some p + g = depth L, the theorem
follows. u
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Definition 4.2. Let / be an ideal in a cft graded Lie algebra of finite depth. A weak
complement for I in L is a Lie subalgebra E C Lsuchthat ENI =0, E @ [ is
full in L, and for some sequence 0 = (0;);>1 satisfying0 < o; <dim/;,i > 1: E
is o-minimal, and / and L/(E & I) are o-thin E-modules.

Theorem 4.3. Let I be an ideal in a cft graded Lie algebra of finite depth.

(i) There is an I -large Lie subalgebra F C L such that F NI = 0. If E is any
I -minimal, I-large Lie subalgebra of F then E is a weak complement for I
in L.

(1) If E is any weak complement for I in L, then

depth E + depth I = depth(E & 1) < depth L.

Proof. (1). Since depth I < oo, there are elements xq,...,x, € [ such that the
Lie subalgebra , G, generated by the x; satisfies Ext;; (k, UL) — Exty;;(k, UL) is
non-zero (Lemma 3.5). This impliesthat A = {y € I |[y,x;] =0,1 <i <r}isa
finite dimensional Lie subalgebra (Lemma 3.6). Choose n so that A is concentrated
in degrees < n and set

F={ye€Lsylly,xi]=0,1<i<r}.

Evidently F NI = 0.
On the other hand, F is the kernel of the linear map L>, — [ & --- @ I given
by x — ([x, x1],..., [x, x;]). Thus

.
dim Li/Fie ) dim Iy gegx; -

i=1
It follows that F is I-large in L, and so E is also [-large in L. Thus for some
A,q, N we have dim(L/E); < ka:,? dim /;, k > N. It follows that dim L; <

A+1 Zf{:,g dim(E; & I;),k > N and so E & [ is full in L. Finally, since E is
I-large in L, Lemma 3.3 (iii) asserts that L /(E é ) is I -thin. O

Proposition 4.4. Let J and K be ideals in a cft graded Lie algebra L of finite depth.
Then there is a weak complement, E, for J N K in K that is also a weak complement
forJinJ + K.

Proof. By Theorem 4.3 (i) we may choose E tobe J N K-minimal and such that J N K
and K /(E®JNK) are (J NK)-thin E-modules. Notethat ENJ = (ENK)NJ = 0.

Seto; = dim(J N K); and note that because [E, J] C [K, J] C J N K it follows
that J is a o-thin £-module. Moreover, K/(E@® J N K) mapsonto (K+J)/(E®J)
and so (K + J)/(E & J) is also a o-thin E-module. Finally, this surjection also
shows that E @ J is fullin K + J since E & J N K is full in K. O
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Proposition 4.5. Let I C L be an ideal in a cft graded Lie algebra, and suppose
that for some p, the restriction map

Ext?, (k,UL) — Ext?,; (k, UL)
is non-zero. Then I is full in L.

Proof. Suppose a € Ext?,; (k, UL) restricts to a non-zero element in Ext?,; (k, UL).
This in turn would restrict to a non-zero element in ExtlI}E (k,UL), where E is a
finitely generated Lie subalgebra of I, see Proposition 3.1 in [3]. Let xq,...,x,
generate £. Then by [9], Lemma 6, the centralizer of E in L is finite dimensional.
Therefore for n enough large, the map

L, — @;=1 In+degx_/a y = Z [y7xi]

is injective. This gives the result. O

5. L-equivalence

It is immediate from Proposition 2.5 that an equivalence relation on the ideals of a
cft graded Lie algebra, L, is defined by:

I ~;J <= forallideals K C L, INK ~J NK.

Definition and notation. The relation above will be called L-equivalence and the
set of L-equivalence classes of ideals in L will be denoted by &£. If [ is an ideal in L
its L-equivalence class will be denoted by [/]. Finally, the number (possibly co) of
L-equivalence classes of ideals will be denoted by vy, and for any subspace V' C L
the number of L-equivalence classes represented by L-ideals contained in V will be
denoted by v (V).

Our next aim is to establish the following two results.

Proposition 5.1. Let L be acft graded Lie algebra. Then the structure of a distributive
lattice in £ is defined by

<[] & JnI~ I, [IIVv[J]=[+J]

and
IIA[J]=]INJ].
Proposition 5.2. Let J C I be ideals in a cft graded Lie algebra L. Then any

maximal chain of strict inequalities in £ of the form

[T <UD] < <[(r)] = [I]
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has the same length. Moreover
r < depth I —depth J.

Definition. The length r in the chain above in Proposition 5.2 is called the height of
[{] over [J]. When [J] = [0], r is called the height of [I] and denoted by ht[/].

Remark. Clearly the height of [/] over [J] is just ht[/] — ht[J].
Before proving Proposition 5.1 we establish some preliminary lemmas.

Lemma 5.3. Suppose I and J are ideals in a cft graded Lie algebra. Then,
(i) depth I < depth(J + 1),

(ii) ifdepth I = depth(J + I) then J N1 is full in J.

In particular, if I C J and depth I = depth J, then I is full in J.

Proof. By Proposition 4.4 there is a weak complement, E, for J N [ in J thatis also
a weak complement for I in / + J. Thus

depth E + depth I = depth(E @ 1) < depth(J + I).

It follows that depth / < depth(J + I) and if equality holds then depth £ = 0. This
implies that F is finite dimensional ([1]). Since £ & (J N I) is full in J it follows
that J N [ is full in J. O

Lemma 5.4. Let L be a cft graded Lie algebra of finite depth m. Then [L, L] is full
in L. In particular, if I and J are ideals in L then [I,J] is fullin I N J.

Proof. Let E be a weak complement for [L, L] in L. Since [E, E] C E N [L, L],
E is abelian. Since E has finite depth it is finite dimensional [1]. Now because
E®[L,L]isfullin L, [L, L] is full in L. Finally, note that

UnJ,inJjcll,JlcIinJ
to derive the last assertion. O

Lemma 5.5. If I, J, K are ideals in L, then

(I+J)NK~INK+JNK.
Proof (I+J)NK~[I+J.K|=[LK|+[J.K]~INK+JNK. O

Lemma 5.6. Let I, J be ideals in a cft graded Lie algebra of finite depth. Then:
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W~ J =TI~ U+JT)~J.
G) I ~p J<= I~ UNJ)~p J.
(iii) If I C J and depth I = depth J, then I ~p J.
(iv) If I(i) ~1 J(i) are pairs of L-equivalent ideals in L, then

I() 44 1) ~L J() + -+ J(r).

(v) Foranyideal K, (I + J)NK ~p IN K+ J NK.
i) If I ~p J and K is any ideal in L then I N K ~;, J N K.

Proof. (i) We need only show that I ~; J = [ ~; (I + J). If K is any ideal in
L, then by Lemma 5.5 and Proposition 2.7,

INK~INK+INK~INK+JNK~(+J)NK.

Thus I ~p I + J.
(i1) We need only prove that I ~p J = I ~p I N J. Again let K be an ideal
in L. Then
UInJH)NK=INUNK)y~JN({(JNK)=JNK.

Thus I NJ ~p J.
(iii) Let K be an ideal in L. Since I C I + (J N K) C J we have

depth I < depth(I + (J N K)) < depth J,

and so depth I = depth(/ + (J N K)). It follows from Lemma 5.3 that / N (J N K)
isfullin JNK.But/NJ =7andso/ NKisfullinJ NK. ThusI NK ~JNK
forall K;ie., I ~p J.

(iv) We need only show that if / ~; J and H is an ideal in L, then I + H ~,
J + H. But for any ideal K we have by Lemma 5.5 and Proposition 2.7

KN +H) ~(KNDH+(KNH) ~KNJ)+(KNH)~KN(J + H).

Thus! + H ~p J + H.
(v) For any ideal H C L we have by Lemma 5.5

I+IH)NKNH~UNKNH)+(JNKNH)~(INK)+(JNK))NH.

Thus (I + J)NK ~, INK + JNK.
(vi) For any L-ideal H, I NK)NH = IN(KNH) ~JNKNH =
(JNK)NH. O
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Proof of Proposition 5.1. If follows from Lemma 5.6 (vi) that the condition I NJ ~,
I depends only on [/] and [J]; thus the partial order is well defined. Clearly [0] and
[L] are initial and terminal elements. It follows from Lemma 5.6 (iv) and Lemma 5.6
(vi) that [I]V [J] and [I] A [J] only depend on [/] and [J] and Lemma 5.6 (v) shows
that the lattice is distributive. O

Proof of Proposition 5.2. The first assertion is a standard fact about distributive lat-
tices. The second follows from Lemma 5.6 (iii), which asserts that if [J] < [/]
thendepth J < depth 7. a

Theorem 5.7. Let L be a cft graded Lie algebra of finite depth m and height r. Then
1) r <m.
(i) vy <27,
(iii) vy = 2" ifand only if L ~p I(1) ® --- @ I(r) where the 1(i) are infinite
dimensional ideals. In this case 1(i) has height 1.

(iv) If vp = 2™ then ht[L] = depth L and the 1(i) are infinite dimensional ideals
of depth 1.

For the proof of Theorem 5.7 we require one more lemma.

Lemma 5.8. Let L be a cft graded Lie algebra.
(1) IfI C J are L-ideals then vy, (1) < vp(J).

(i) If I and J are L-ideals and I ~y, J then vp (1) = vp(J). In particular, v;[I]
is well defined.

(iii) if I is the direct sum of L-ideals J and K (I = J & K), then vp(I) =
v ()L (K).

Proof. (i) The set of L-equivalence classes of L-ideals in [ is clearly a subset of the
L-equivalence classes of L-ideals in J. Thus vy, (1) < vp(J).

(ii) Since I ~p (I N J) (Lemma 5.6) any L-ideal H contained in I satisfies
H=HNI)~p (HNINJ)(Lemma 5.6 (vi)). Thus the set of L-equivalence
classes of L-ideals in [ coincides with the set of L-equivalence classes of L-ideals
inINJ,andsovy(I) =vp(I NJ)=vr(J).

(iii) Any L-ideal H in [ satisfies H ~; (H NJ) & (H N K), and if G is
another L-ideal in / suchthat G N J ~r HNJ and G N K ~; H N K then
G~ (GNJ)®(GNK) ~, (HNJ)® (HNK) ~p H. It follows that
ve (1) = vp(J)ve (K). O
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Proof of Theorem 5.77. Proposition 5.2 asserts that ht[L] < depth L = m < oo. This
is statement (i).

Nextlet0 < [J(1)] < --- < [J(r)] = [L] be a maximal chain of strict inclusions
in £, and let £ (k) denote the subset of £ of elements [J] < [J(k)]. Then, for any
k,1 <k <r,let [K] € £ be an element of minimum height satisfying the two
conditions:

[K] < [J(k)] and [K]Z[J(k—1)].
We shall show that the map ¢(k): £(k — 1) x Z, — L(k) given by

(/1,0) = [J] and ([J].1) = [J]V [K]

is a surjection.

In fact, our conditions above imply that [J(k — 1)] v [K] = [J(k)]. Thus for any
[J] € £(k) wehave [J] = ([JIA[J (k=D Vv ([JIALK]D. I [J]A[K] £ [J(k—1)]
then it too satisfies the conditions above and has height < ht[K]. But ht[K] was a
minimum; thus [J] A [K] = [K] in this case and it follows that ¢(k) is indeed a
surjection. In particular, vy, [J (k)] < 2vp[J(k — 1)] and so vy, (L) < 2"vp(0) = 2".
This proves (ii).

For (iii), suppose first that v, = 2”. Reversing the argument above we see that
vp[J (k)] = 2vp[J(k — 1)], each k, and so each ¢(k) is a bijection. But clearly

@(k)([0], 1) = [K] = ([J(k = DI A [K]) V [K] = @(k)([J (k = D] A [K], 1).

Thus J(k — 1) N K ~ 0; i.e., it is finite dimensional and concentrated in degrees
< n, some n. Now set I(k) = J(k) N K>,. Then I(k) ~p K>, ~r K and so
[J(k)] = [J(k — 1) @ I(k)]. This also implies that /(k) is not L-equivalent to zero;
i.e., dim / (k) is infinite. Finally, by construction [L] = [I(1) ®--- ® I(r)].

Conversely, suppose L ~p I(1) & --- & I(r), where each /(i) is an infinite
dimensional ideal. Then [0] < [/(i)], each 7, and so vz [I(i)] > 2. By Lemma 5.8
(iii), and part (ii), 2" > vy = ]_[;=1 vp[I(i)] = 2". Thus these inequalities are
equalities and 2" = vy and 2 = v [1(i)], 1 <i < r. This implies that each /(i) has
height 1.

(iv) If v, = 2™ we must have m = r. Since the /(i) are infinite dimensional,
depth 7(i) > 1 and because m = depth L = > -, depth /(i) (by Lemma 5.8) we
have depth 7(i) = 1, each i. O

Corollary. Let L be a cft graded Lie algebra and assume L ~p, I(1) & --- & I(r),
where the 1(i) are infinite dimensional ideals of height 1. Then ht[L] = r and every
element [I] € &£ of height s > 1 is uniquely of the form [I] = [I;,] v ...[1;,].

Proof. 1t is a trivial consequence of the distributive law that

Uil vV ] = ] Ve v,
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ifand only if s = g and {i1,...,is} = {J1,..., jq}. Thus the elements of the form
[L;]Vv---VI[[],1 <s <rare2” — 1 distinct elements of £, and so v; > 2".

On the other hand, because each /(i) has height 1, it is also an immediate conse-
quence of the distributive law that 0 < [I(1)] < --- < [I(D)]Vv---V[I(k)] < --- < [L]
is a chain of maximum length, so that ht[L] = r and vy, < 2". Thus vy, = 2" and
£ = {0 [1] V-V [1,]}. O

Remark. Theorem 5.7 and its corollary show that the cft graded Lie algebras L
satisfying ht[L] = r and vy = 2" are the analogues in this setting of the classical
semi-simple Lie algebras. Note that this includes as a special case the cft graded Lie
algebras L with depth L = m and v, = 2.

Proposition 5.9. Let L be a cft graded Lie algebra. If
2ht[L] < depth L — 1
then L contains a free Lie algebra on two generators.

Lemma 5.10. Suppose J C I are ideals in a cft graded Lie algebra satisfying
[/] < [I] and depth J + 1 = depth I. Then I contains an infinite dimensional Lie
subalgebra of depth 1.

Proof. Since [J] < [I] there is anideal H C L suchthat J N H isnotfullin/ N H.
Set K = I N H;then J N K is not full in K. Thus a weak complement, E, for J/ N K
in K is infinite dimensional.

Next note that since J C J + K C I, either depth J = depth(J + K) or
depth(J + K) = depth /. The first equality would imply J ~p, (J + K) (Lemma5.7)
and thus (intersection with K) J N K ~p K, which is impossible because J N K is
not full in K. Thus

depth(J + K) = depth J + 1.

But since £ may be chosen to also be a weak complement for J in J + K
(Proposition 4.4), Theorem 4.3 yields

depth £ + depth J < depth(J + K) = depth J + 1.
This gives depth £ < 1. But E is infinite dimensional and thus depth £ = 1. O

Proof of Proposition 5.9. Let 0 < [I(1) < --- < [I(r)] = [L] be a chain of strict
inclusions in &£, with r = ht[L]. We may assume /(1) C --- C I(r), and then it
follows from Lemma 5.7 that 0 < depth /(1) < --- < depth I(r). In view of our
hypothesis either depth /(1) = 1 or for some i, depth /(i + 1) = depth I(i) + 1.
Lemma 5.8 then implies that /(i + 1) contains an infinite dimensional Lie subalgebra
of depth 1. Finally according to [7] each infinite dimensional Lie subalgebra of depth
1 contains a free Lie algebra on two generators. O
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6. The hyperradical

Recall that the radical of a cft graded Lie algebra L is the sum of its solvable ideals.
In [1], Theorem C, it is shown that if depth L < oo, then the radical of L is finite
dimensional.

Definition 6.1. The hyperradical R of cft graded Lie algebra, L, is the sum of the
ideals I C L satisfying
logindex I < logindex L.

By convention, R = {0} if there is no infinite dimensional ideal / of L with
logindex I < logindex L. Clearly R is an ideal.

Theorem 6.2. Let R be the hyperradical of an infinite dimensional cft graded Lie
algebra L of finite depth, and let (x) denote the ideal in L generated by x € L. Then

(1) x € R ifand only if logindex(x) < logindex L,
(i) logindex R < logindex L, and depth R < depth L.

Proof. (i) Suppose x is a finite sum x = Zle x; where x; belongs to an ideal [;
with logindex I; < logindex L. There is then an integer N and a non negative real
number ¢ such that forn > N andi < p, we have
logdim(/; ),
n

< logindex L — ¢.

Ifl =1, + -+ + I, this implies that logindex I < logindex L. In particular,
logindex(x) < logindex L.

(i1) By [9], Lemma 4, R contains a finitely generated Lie subalgebra E for which
Exty;r(k, UR) — Exty;p (k, UR) is non-zero. Let xq,...,x, € R generate E. If
I = (x1) + -+ + (x,), it follows a fortiori that Exty;5(k, UR) — Exty;;(k, UR)
is non-zero. Thus by Proposition 4.4, [ is full in R. Now Proposition 2.10 and the
argument in (i) above give logindex R = logindex I < logindex L. Thus R is not
full in L, and so Lemma 4.6 shows that depth R < depth L. O

Corollary 6.3. Let L be an infinite dimensional cft graded Lie algebra of finite depth.
Forany A > 0, let J C L be the sum of all the ideals I satisfying logindex I < A.
Thenlogindex J < A.

Proof. 1f logindex J > A, then J is its own hyperradical, which is impossible by
Theorem 6.2 (ii) . O

Proposition 6.4. Let L be a cft graded Lie algebra of finite depth. Then L contains
a full Lie subalgebra whose hyperradical is zero.
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Proof. Let E C L be afull Lie subalgebra of minimal depth, let R be the hyperradical
of E, and let F be a weak complement for R in E. Since R F is full in E and since
logindex R < logindex E, it follows that F' is full in £. Moreover, Theorem 4.2
asserts that depth F* 4- depth R < depth E.

But our hypothesis on E yields that depth F' > depth E, and it follows that
depth R = 0; i.e., R is finite dimensional and concentrated in odd degrees. Choose
n so that R, = 0. Then E, is a full Lie subalgebra of E and, since it is an
ideal, depth E>, < depth E; thus E>, also has minimal depth among its full Lie
subalgebra s. Thus if S C Es, is its hyperradical, S is also finite dimensional and
concentrated in odd degrees.

The ideal I in E generated by S is the image of the linear map UE Queg.,, S —
UE, and hence has polynomial growth. Since depth / < oo this implies ([6]) that
dim/ < oo;ie., I C R. Thus § C R>, = 0 and so the hyperradical of E, is
Zero. O

Proposition 6.5. Let L be an infinite dimensional cft graded Lie algebra of finite
depth m. Then at most m pairs (o, B) can satisfy

a = logindex I and B = logindex [
for some ideal 1.

Proof. Suppose 11, ..., I, areideals with respective log indices and lower log indices
ordered by lexicographic order (o1, 1) < --- < (&, Br). Then we can replace the
sequence of ideals by the following sequence with the same sequence of log indices
Lch+I1,C---ClIi+---+I,. Since the («;, B;) are distinct, no I; +---1; is
fullin Iy + --- 4+ I;41. Therefore, by Lemma 4.6, r < m. O

Example 6.6. Let X be the space
SaV Sy V82 Upaz1€® Ugazyy '’ Uppazyy e

Then Ly has depth 2 and the lattice £ has exactly three elements.

The Sullivan minimal model of X is quasi-isomorphic to the differential graded
algebra (4,d) = (A(x, y,z,t)/(xy,tz),d) where degx = degy = 3, degz = 5,
degz = 7,dx = dy = dz = 0,d(t) = yz. The algebra (A4, d) is a semifree
(A(x,y)/(xy),0)-module ([5]). This gives a rational fibration

F=5vVvS X —>B=5SVvSs3

The ideal L g has not the same log index as Ly, and so is neither L-equivalent to Ly
or to 0. The exact sequence 0 - Ly — Ly — Lp — 0 implies at once that

[0] <[LF] < [Lx]

are the only elements of £. In particular L g is the hyperradical of Ly.
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7. The odd and even part of a graded Lie algebra

Theorem 7.1. Let L be a cft graded Lie algebra of finite depth.

(i) Either Logq is contained in a finite dimensional ideal of L, or else for some d
the integers Zfi,‘j 41 dim(Loga); grow faster than any polynomial in k.
(i) The Lie subalgebra Leye, is full in L.

Proof. Let I be the Lie subalgebra generated by Lqq; [ is clearly an ideal in L and
hence has finite depth. Choose x1, ..., x, of odd degrees e; < --- < e, that generate
a Lie subalgebra F for which ExtY/(k, UI) — ExtYF (k,UI) is non-zero. The
centralizer of the x; in [ is therefore finite dimensional, which implies that for some
N thelinearmap x — ([x, x1], ..., [x, x,]) isaninjection [y — Ix4¢, B+ DIk 1e,,
k > N. Since the ¢; are odd, it follows that, for k > N,

k+epn k+en
dim(log)e < Y dim(Zeven); and  dim(Zoen)e < Y, dim(Zoaa);
j=k+e; j=k+e;

which implies that both 1,44 and Ieye are full in 7.
Now suppose [ is infinite dimensional. Then according to [6] for some d the
integers Zf:,f dim /; grow faster than any polynomial in k. Since dim/,; <

lei ;Jei ¢, dim(Zoaa);, it follows that (d + 2) Zf :g”Le” dim(Zo4q); grow faster than
any polynomial in k. And, of course, Ioqa = Lodd.

Finally, let E be a weak complement for / in L. Then E C Leye, and E @ 1 is
full in L. Since Iqye, is full in I it follows that E @ L.y, is full in L and so Leye, 18

fullin L. a
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