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Abstract. We prove that a compact minimal surface bounded by two closed convex curves in
parallel planes close enough to each other must be topologically an annulus.
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1. Introduction

Let �1 and �2 be two closed convex curves in parallel planes in euclidean space, and
let M be a minimal annulus with boundary �1 and �2. In a celebrated paper [13],
B. Shiffman proved that M is foliated by convex curves in planes parallel to the planes
of �1 and �2. Moreover, if �1 and �2 are circles, then M is foliated by circles in
parallel planes, and is therefore a piece of a catenoid or a Riemann minimal example.

It is natural to ask whether one can relax the hypothesis that M is an annulus, or
if other topological types are possible:

Can two convex curves in parallel planes bound a compact minimal surface of
genus � 1?

W. Meeks has conjectured that the answer to this question is no. Here is what is
known about this conjecture. Without loss of generality we may assume that �1 and
�2 are in horizontal planes. R. Schoen [12] has proven that the conjecture is true (so
the answer to the question is no) if �1 and �2 are both symmetric with respect to the
vertical planes x1 D 0 and x2 D 0, using the Alexandrov moving plane technique.
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A. Ros [11] has proven that the conjecture is true if �2 is a vertical translate of �1,
using the Lopez–Ros deformation.

Even in the case of two circles with different axes, the conjecture seems to be
open. Also using the bridge principle, one can construct examples of non-convex
curves in parallel planes bounding a minimal surface of genus one.

In this paper, we study this problem in the case of two parallel planes close to
each other. The question can be formulated more precisely as follows: let �1 and �2

be two convex curves in the horizontal plane x3 D 0.

Is it true that if T is a small enough vertical translation, then �1 [ T .�2/ does
not bound any minimal surface of genus k � 1?

How small T must be should depend in some way on the given curves �1 and
�2, because of the invariance by scaling of the minimal surface equation. The main
result of the paper is the following

Theorem1. Let �1 and �2 be two smooth convex Jordan curves in the horizontal plane
x3 D 0, bounding respectively the convex domains �1 and �2. Fix some integer
k � 0. Let .Mn/n be a sequence of compact, connected minimal surfaces of genus k

with boundary �1 and Tn.�2/, where .Tn/n is a sequence of vertical translations. If
k D 0, further assume that Mn is not the stable annulus.

(1) (Compactness) If Tn ! T ¤ 0, then a subsequence of .Mn/n converges
smoothly to a compact minimal surface of genus k bounded by �1 and T .�2/.

(2) (Concentration) If Tn ! 0, then there exists k C 1 distinct points p1; : : : ; pkC1

in �1 \ �2 and a subsequence, still denoted .Mn/n, such that the curvature
of .Mn/n concentrates at p1; : : : ; pkC1, in the following sense: for any small
� > 0 it holds that

lim
n!1 C.Mn \ B.pi ; �// D 4� for all i;

lim
n!1 C

�
Mn n

kC1[
iD1

B.pi ; �/
�

D 0;

where B.p; �/ denotes the euclidean ball and C.U / D R
U

jKjdA denotes the
total curvature of U . Moreover, the configuration p1; : : : ; pkC1 is balanced, in
an electrostatic sense which we explain in the next section.

We will see that near a point of concentration, the surface looks in fact like a small
catenoid, which explains the 4� mass of curvature.

In Section 2.3, we will prove that there are no balanced configurations in the
genus one case (k D 1), so Tn ! 0 is impossible in this case. Hence, there exists
" > 0 (depending on �1 and �2) such that if kT k < ", �1 [ T .�2/ bounds no minimal
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surface of genus one. We will also give several partial results in the higher genus
case, under various assumptions.

It is of course desirable to know how " depends on �1 and �2. For this, one has
to allow the curves �1 and �2 to depend on n. We will prove a more general result in
this case, see Theorem 2.

Remark 1. If �1 [ T .�2/ bounds a (connected) compact minimal surface M , then
�1 \ �2 cannot be empty. Also M is embedded, see Proposition 3 for these two
facts.

Aknowledgements. I had interesting discussions about this problem with L. Haus-
wirth, D. Hoffman, L. Mazet and M. Wolf. I am especially grateful to L. Mazet
for proving that there are no balanced configurations in the case k � 1, �1 D �2,
see Proposition 2. I would like to thank R. Mazzeo for pointing out the fact that
the Robin function of a convex domain is convex, which plays an important role in
Section 2. Finally, I would like to thank the referee for a very careful reading of the
paper, finding two errors, and suggesting reference [5].

2. Balanced configurations

Let �1 and �2 be two bounded domains in the plane with non-empty intersection.
Let Gi;p.z/ denotes the Green function of �i . Recall that Gi;p.z/ is harmonic in
�i n fpg with zero boundary value and a logarithmic singularity at p. One can write

Gi;p.z/ D log jz � pj C Hi;p.z/;

where the regular part Hi;p.z/ is harmonic in �i . It is known that Gi;p.z/ is a
symmetric function of .z; p/.

Given k C 1 distinct points fp1; : : : ; pkC1g in �1 \ �2, let us define forces by

Fi D rH1;pi
.pi / C rH2;pi

.pi / C
X
j ¤i

�rG1;pj
.pi / C rG2;pj

.pi /
�

:

Definition 1. We say the configuration fp1; : : : ; pkC1g is balanced if Fi D 0 for
i D 1; : : : ; k C 1.

When �1 D �2 D �, one can interpret Fi as 2-dimensional electrostatic forces.
The physical model is the following: we have a 2-dimensional vacuum chamber �,
whose boundary is made of a conductor metal. We put inside some unit positive
charges at p1 : : : ; pkC1. These charges induce a continuous charge on the boundary.
Then Fi is the force resulting of the interaction of pi with the other particles and with
the boundary.
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Conjecture 1. If �1 and �2 are convex domains and k � 1, there are no balanced
configuration with k C 1 points.

We will prove that the conjecture is true in the case k D 1, and give some
partial results in the case k � 2. If we relax the convexity condition, then balanced
configurations are possible. We will see an example in Section 2.5.

2.1. Facts about the Green function of a convex domain. In this section we collect
several results about the Green function Gp.z/ of a bounded, convex domain �. We
write Gp.z/ D log jz � pj C Hp.z/, where Hp.z/ is the regular part of the Green
function. The Robin function of � is defined by

Rob.z/ D Hz.z/:

The critical points of the Robin function are called the harmonic centers of �. Since
the Robin function goes to C1 on the boundary, any bounded domain has at least
one harmonic center (a minimum). A very useful fact is the following:

The Robin function of a convex domain is convex.

This has been proven by various authors, see [2] and the references therein. The
referee pointed out that in fact the Robin function of a bounded convex domain is
strictly convex, see [5]. Therefore, a bounded convex domain has a unique harmonic
center.

If f W D ! � is a conformal representation of a domain � on the unit disk, one
can compute the Green function of �, its regular part and the Robin function in term
of f :

Gf .p/.f .z// D log jz � pj � log j1 � Npzj;
Hf .p/.f .z// D � log

ˇ̌̌
ˇf .z/ � f .p/

z � p

ˇ̌̌
ˇ � log j1 � Npzj;

Rob.f .z// D � log jf 0.z/j � log.1 � jzj2/:

Another fact about the Green function of a convex domain which we will use is the
following

Lemma 1. Let � be a convex domain. Then for any p 2 �, the level lines of Gp are
convex curves.

Proof. This is very likely well known, but I could not find a reference in the literature,
so I provide a proof. Fix some point p 2 �. Let f W D ! � be a conformal
representation of � such that f .0/ D p. Then Gp.f .z// D log jzj, so f sends the
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circles centered at the origin to the level lines of Gp . Fix some r 2 .0; 1/ and let
�r.t/ D f .rei t /. The image of �r is convex if arg � 0

r.t/ is increasing. We have

.arg � 0
r.t//0 D .Im log � 0

r.t//0

D Im

�
� 00.t/
� 0.t/

�

D Im

�
i

f 00.rei t /

f 0.rei t /
rei t

�
C 1 ´ g.rei t /;

where the function g is harmonic in D, since f 0 does not vanish. When r D 1,
arg � 0

1.t/ is increasing because � is convex. Hence g is non-negative on the unit
circle. By the maximum principle, g is positive in the disk, so the image of �r is
strictly convex if r < 1. �

2.2. Genus zero. In this section we discuss the case k D 0, so there is only one
point p1. We write Robi .z/ for the Robin function of �i . By symmetry of the Green
function, rRobi .z/ D 2rHi;z.z/, so

F1 D 1

2
.rRob1.p1/ C rRob2.p1//:

The configuration is balanced if p1 is a critical point of Rob1 C Rob2. Now the
function Rob1 C Rob2 is strictly convex on �1 \ �2, so it has a unique critical point
(a minimum).

Returning to minimal surfaces, it is known that two convex curves in parallel
planes bound at most two minimal annuli, one stable and one unstable [8]. Our result
describes what happens to the unstable annulus when the distance between the planes
goes to zero: the curvature concentrates at the minimum of the function Rob1 CRob2.

2.3. Genus one

Proposition 1. Let k � 1. If �1 and �2 are convex, then there are no balanced
configurations with k C 1 points, all on the same line L.

Proof. We may assume that the points p1; : : : ; pkC1 are in this order on L. Let
R D 1

2
.Rob1 C Rob2/. This is a convex function in �1 \ �2. Hence the maximum

value of R at the points p1; : : : ; pkC1 is either achieved at p1 or pkC1, let us say p1.
We have

F1 D rR.p1/ C
X
j >1

rG1;pj
.p1/ C rG2;pj

.p1/:

The point p2 is inside the convex domain R.z/ � R.p1/ so hrR.p1/;
�!

p2p1i � 0.
Regarding the other terms, since pj lies inside the domain G1;pj

.z/ < G1;pj
.p1/
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which is convex by Lemma 1, we have hrG1;pj
.p1/;

�!
pj p1i > 0, and a similar

statement holds for the Green function of �2. Now all vectors
�!

pj p1 are proportional to
�!

p2p1, with a positive coefficient, so we get hF1;
�!

p2p1i > 0. Hence the configuration
cannot be balanced. �

In the case k D 1, since two points are always on a line, there are no balanced
configurations. This gives:

Corollary 1 (Genus one case). Given two smooth convex Jordan curves �1 and �2,
there exists " > 0 (depending on �1 and �2), such that for any vertical translation T

with kT k < ", �1 [ T .�2/ cannot bound any compact minimal surface of genus one.

2.4. Higher genus. In the case k � 2, we have a result under an additional symmetry
assumption to ensure that the points p1; : : : ; pkC1 are on a line:

Corollary 2. Given two smooth convex Jordan curves �1 and �2, both symmetric
with respect to a given line L, and some integer k � 2, there exists " (depending
on k, �1 and �2) such that for any vertical translation T with kT k < ", �1 [ T .�2/

cannot bound any compact minimal surface of genus k.

Note that this corollary applies in particular to the interesting case of two circles.

Proof. Indeed, by a theorem of R. Schoen [12] (using Alexandrov’s moving plane
method), any minimal surface M with boundary �1 [ T .�2/ will be symmetric with
respect to the vertical plane P through L. Moreover, the part of M on each side of P

is a graph over P . Hence if we have a sequence of minimal surfaces .Mn/n of genus
k, with boundary �1 [ Tn.�2/ with Tn ! 0, the curvature will concentrate at points
p1; : : : ; pkC1, all on the line L (this is because in a neighborhood of pi , Mn looks
like a small catenoid, as we shall see). By Proposition 1, we get a contradiction. �

Next we present a result which was discovered by L. Mazet.

Proposition 2. Assume that �1 and �2 have the same harmonic center. Then there
are no balanced configurations with two or more points.

Note that the proposition applies in particular to the case where �1 D �2. (Of
course, in this particular case, the Meeks conjecture is known to be true by the work
of A. Ros [11], so we do not get a new result, regarding minimal surfaces.)

Proof. Let fi W D ! �i be a conformal representation. We transport the hyper-
bolic metric 2jdzj=.1 � jzj2/ on the disk to get a hyperbolic metric �i jdzj on �i .
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Explicitely,

�i .z/ D 1

jf 0
i .f �1

i .z//j.1 � jfi .z/j2/
D 2 exp.Robi .z//; z 2 �i :

The hyperbolic distance d�i
on �i and the Green function are related by

Gi;p.z/ D log tanh
d�i

.z; p/

2
:

This comes from the fact that the hyperbolic distance on the disk is given by

dD.z; p/ D 2arctanh

ˇ̌̌
ˇ z � p

1 � Npz

ˇ̌̌
ˇ :

Without loss of generality, we may assume that 0 is the harmonic center of �1 and
�2, and that jp1j � jpj j for all j (so p1 ¤ 0). Since Robi .0/ < Robi .p1/ and the
Robin function is strictly convex, we have

hrRobi .p1/; p1i > 0:

Let us fix some indices i D 1; 2 and j � 2 and consider the geodesic � from pj

to p1 for the hyperbolic metric on �i . We know that this geodesic is minimizing.
Let � be the tangent vector to this geodesic at p1. I claim that h�; p1i � 0. Indeed,
if this is false, then since jpj j � jp1j, there exists a point p ¤ p1 on � such that
jpj D jp1j, and jzj > jp1j on the sub-arc � 0 of � delimited by p and p1. Then
consider the radial projection � from � 0 to the circle C.0; jp1j/. By convexity, the
Robin function, hence the conformal factor �i , is increasing on the segment Œ0; z	.
Hence �i .�.z// < �i .z/. Since the projection makes euclidean length smaller, the
hyperbolic length of the circular arc from p to p1 is smaller than the hyperbolic length
of � 0, which contradicts the fact that � is minimizing. Now the gradient of Gi;pj

.p1/

is proportional to � , hence

hrGi;pj
.p1/; p1i � 0:

This implies that hF1; p1i > 0, so the configuration cannot be balanced. �

2.5. Explicit computations. When we have an explicit conformal representation
f W D ! � of a domain �, we can compute explicitly the forces using the formulae
in Section 2.1. It is convenient to identify R2 with C and use complex notations, so
r D 2 @

@ Nz . The Robin function of the domain � satisfies

@Rob

@z
.f .z// � f 0.z/ D � f 00.z/

2f 0.z/
C Nz

1 � jzj2 :
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Take �1 D �2 D � and consider a configuration p1; : : : ; pkC1 2 �. Writing
pi D f .zi /, zi 2 D, the forces are given by

SFi � f 0.zi / D �f 00.zi /

f 0.zi /
C 2

X
j ¤i

1

zi � zj

� 2
X

j

1

zi � 1
Szj

:

We use these formula to provide counterexamples in the case of a non-convex domain.
Consider for example

f .z/ D 1

z � a
C 1

z C a
;

where a is some real number. Provided a > 1 this is a conformal representation on
the unit disk D. When a is close enough to 1, the image � D f .D/ is a non convex
domain. Figure 1 shows this domain in the case a D 5=4.

Figure 1. A non-convex domain admitting three harmonic centers.

Assume that z is real. Then using the above formula, f .z/ is a harmonic center if
z3.1 � 3a2/ C z.3a2 � a4/ D 0. Solving for z and taking f .z/ gives three harmonic
centers. These points are represented in Figure 1 when a D 5=4. With a little more
computations, it is possible to check that there are no other harmonic centers (namely,
z 62 R).

We can also compute a balanced configuration with two points, assuming the
following symmetry: z2 D �z1 2 R. The balancing condition boils down to a
degree four equation, which gives two balanced configurations. One of them is
represented in Figure 2, still in the case a D 5=4. I do not know if there are other
balanced configurations.

Figure 2. A balanced configuration with two points.
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3. Proof of Theorem 1

3.1. Preliminaries. Throughout the paper we use the following notations. M is a
compact embedded minimal surface of genus k, with boundary � D �1 [ T .�2/,
where T is a vertical translation of vector .0; 0; t/ and �1, �2 are two convex Jordan
curves in the horizontal plane x3 D 0. �1 and �2 denote the convex domains in
the plane with boundary respectively �1 and �2. In case we have a sequence of
minimal surfaces .Mn/n, we label �n D @Mn, Tn D .0; 0; tn/ and �i;n D @�i;n the
corresponding quantities. (The genus k will always be fixed.)

The following proposition collects several elementary facts about minimal sur-
faces bounded by two convex curves in parallel planes.

Proposition 3. Let M be a compact, connected minimal surface of genus k bounded
by two convex curves �1 and T .�2/. Then the following holds.

(1) The total curvature C.M/ of M is at most 4�.k C 1/.

(2) M is embedded, and for any ball B.p; R/, the area of M \ B.p; R/ is less than
2�R2.

(3) �1 \ �2 is not empty.

(4) M is contained in the intersection of the tubular neighborhood of radius t of
.�1 [ �2/ � R with the horizontal slab 0 < x3 < t .

(5) If M is not a stable annulus, then for any disk D of radius � t included in
�1 \ �2, M intersects the vertical cylinder D � R.

Proof. By the Gauss–Bonnet formula,Z
M

K C
Z

@M


g D 2��.M/ D 2�.2 � 2k � 2/:

This gives

C.M/ D �
Z

M

K D 4�k C
Z

@M


g :

Now it is well known that j
g j � j
j, where 
 denotes the curvature of the boundary.
As each �i is a convex planar curve,

R
�i

j
j D 2� . This proves the first point. The
second point is proven in [4], using the monotonicity formula for minimal surfaces
with boundary. (Indeed, the boundary has total curvature 4� , and the density at p

of the cone with vertex p generated by the boundary is less than 2. The fact that the
boundary is not connected is not a problem, see Section 6 in [4].)

Regarding point 3, let us assume by contradiction that �1 \ �2 D ;. Let P be
a vertical plane separating �1 and �2. Let M 0 be the symmetric of M with respect
to P . Let us translate M 0 horizontally in the direction of P . Since M is connected,
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M and M 0 will eventually intersect (maybe from the very beginning). First assume
that �1 \ �2 D ;. Then the boundary of M and M 0 never intersect, nor does the
boundary of one intersect the interior of the other, since the interiors are in the slab
delimited by the two horizontal planes. Hence at a last contact point, M and M 0
are tangent, contradicting the maximum principle. If �1 and �2 intersect at some
boundary point, one can slightly rotate M 0 about the horizontal line contained in
P , so that the boundaries of M and M 0 do not intersect. The convex hull property
guarantees that the boundaries will not intersect the interiors, and the same argument
applies.

To prove point 4, let C be a horizontal circle of radius t in the horizontal plane
x3 D 0. There exists a catenoid A bounded by C [ T .C /. (The radius t is not
the smallest radius such that such a catenoid exists: the smallest value is about
0:754439 t . The constants in the proposition are not optimal.) If the circle C is
disjoint from the convex hull of �1 \ �2 then A does not intersect M . One can
then slide C horizontally. As long as C remains disjoint from �1 [ �2, A does not
intersect M by the maximum principle. This proves point 4.

To prove point 5, assume by contradiction that there exists a disk D � �1 \ �2

of radius t such that M does not intersect the vertical cylinder D � R. Let C be
the boundary of the disk D. Let us foliate each �i n D, i D 1; 2, by convex curves
�i;s , s 2 Œ0; 1	, so that �i;0 D C and �i;1 D @�i . From the existence of a catenoid
bounded by C and T .C / and Lemma 2.1 in [8], there exists, for each s 2 Œ0; 1	, a
unique stable annulus As bounded by �1;s [ T .�2;s/. Moreover, as As is stable and
unique, it depends continuously on s by standard results (namely, curvature estimates
for stable minimal surfaces). By the maximum principle, M is disjoint from As for
all s 2 Œ0; 1/. By point 1 of Lemma 2.1 in [8], M is contained in the compact domain
bounded by A1, �1 and T .�2/. Hence M D A1. �

3.2. Main theorem. In this section we state a slightly more general result than
Theorem 1, allowing the domains to depend on n.

Let .�1;n/n and .�2;n/n be two sequences of smooth convex Jordan curves in the
plane, bounding the domains �1;n and �2;n respectively. Let Tn be a sequence of
vertical translations and .Mn/n be a sequence of minimal surfaces of fixed genus k

with boundary �1;n [ Tn.�2;n/. If k D 0, assume further that Mn is not a stable
minimal annulus. By point 3 of Proposition 3, each �1;n \ �2;n is non-empty. We
assume that the in-radius of �1;n \�2;n is greater than r > 0, for some r independent
of n. We also assume that �1;n and �2;n are included in the disk D.0; R/ for some R

independent of n. Finally, we assume that the curvature of �1;n and �2;n is bounded
by some constant independent of n. Passing to a subsequence, .�1;n/n and .�2;n/n

converge to two convex Jordan curves �1 and �2, bounding respectively two convex
domains �1 and �2 with non-empty intersection (thanks to the hypothesis on the
in-radius).
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Theorem 2. In the above setup:

(1) (Compactness) If Tn ! T ¤ 0, then a subsequence of .Mn/n converges
smoothly to a compact minimal surface of genus k bounded by �1 and T .�2/.

(2) (Concentration) If Tn ! 0, then there exists k C 1 distinct points p1; : : : ; pkC1

in �1 \ �2 and a subsequence, still denoted .Mn/n, such that the curvature of
.Mn/n concentrates at p1; : : : ; pkC1, in the sense of Theorem 1. Moreover, the
configuration p1; : : : ; pkC1 is balanced, in the sense of Definition 1.

As a consequence, the constant " in Corollaries 1 and 2 depends on the following
quantities: the genus k of M , a bound on the curvature of �1 and �2, a bound on their
diameter, and a lower bound on the in-radius of �1 \ �2.

Proof of point 1 of Theorem 2. By points 1 and 2 of Proposition 3, we have uniform
area and total curvature estimates. By a standard compactness result, (namely by
points 1, 2, 3 of Theorem 3 in [14]), there exists a subsequence of .Mn/n, still denoted
.Mn/n, and a finite set S in R3, such that Mn converges on compact subsets of R3 nS

to an embedded minimal surface M with boundary included in � D �1 [ T .�2/.
Moreover, M must be connected, else Mn is not connected for n large enough. If M

is flat, then its boundary lies in a plane, so M is either in the plane x3 D 0 or x3 D t .
Since t ¤ 0, this contradicts the fact than @Mn D �1;n [ Tn.�2;n/. So M is not
flat. Let us see that the multiplicity of the limit Mn ! M is one. The multiplicity
is well defined and constant in each component of M n � . Let U be a component
of M n � where the multiplicity m is maximal, and assume that m � 2. Let p be a
point on @U � � . For small r > 0, B.p; r/ \ Mn has m components. One of them
meets @Mn. The others do not, and are graphs over TpM of functions which converge
uniformly to the function which expresses locally M as a graph over TpM . Since Mn

lies in the horizontal slab 0 � x3 � tn, TpM must be horizontal. By the boundary
maximum principle, since M lies in the slab 0 � x3 � t , M is flat, a contradiction.
Hence Mn ! M with multiplicity one. By the proof of point 4 in Theorem 3 in [14],
the singular set S is empty. This proves point 1 of Theorem 2. �

The remaining of the paper is devoted to the proof of point 2 of Theorem 2.

3.3. Limits under scaling. Let .Mn/n be a sequence of minimal surfaces as in the
paragraph before Theorem 2. Let .hn/n be a sequence of homotheties of R3, with
ratio diverging to 1 as n ! 1, and let zMn D hn.Mn/. The goal of this section is
to prove that the limit of . zMn/n is either flat or a catenoid.

Let Q�1;n D hn.�1;n/, Q�2;n D hn.Tn.�2;n// and z�n D @ zMn D Q�1;n [ Q�2;n.
Note that since the curvature of �i;n is uniformly bounded, the curvature of Q�1;n

goes to zero as n ! 1. If Q�i;n has an accumulation point, then a subsequence of
. Q�i;n/n converges on compact subsets of R3 to a horizontal line Li . Hence passing
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to a subsequence, .z�n/n converges to a set z� which consists of zero, one or two
horizontal lines. (When z� D ; this means that for any R > 0, z�n is outside the ball
B.0; R/ for n large enough.)

By Theorem 3 in [14], there exists a finite set S in R3 and a subsequence of . zMn/n,
still denoted the same, which converges on compact subsets of R3 n .S [ z�/ to a
minimal surface zM with boundary included in z� . Note that zM can be disconnected.

Proposition 4. If zM has a non-flat component, then S and z� are empty and zM is a
catenoid.

Proof. There are three cases, depending on whether z� is empty, one line or two lines.

First case: z� is empty. Then one component of zM is a complete, embedded, non-
flat minimal surface with finite total curvature. From the area estimate, point 2 of
Proposition 3, it has at most two ends. Therefore it is a catenoid by the Theorem of
R. Schoen [12]. By embeddedness zM has no other component. Since the catenoid
is unstable, the multiplicity of the limit zMn ! zM is one by a standard argument
(Proposition 4.2.1 in [9]), and the singular set S is empty (Proposition 1.0.1 in [9],
see also the end of the proof of Theorem 4.3.2).

Second case: z� consists of one line L. Since Mn lies in the slab 0 � x3 � tn, zM
lies in a half space bounded by the horizontal plane … containing L. Extending zM
by reflection in L, we obtain a non-flat, embedded minimal surface in R3 with finite
total curvature. By Theorem 2.2.1 in [9], a non-flat, embedded minimal surface of
finite total curvature cannot intersect a plane along a line, so we get a contradiction.
(This theorem uses the argument of J. Choe and M. Soret in [3].)

Third case: z� consists of two lines L1 and L2. Since Mn lies in the slab 0 � x3 � tn,
zM lies in the slab bounded by the horizontal planes containing L1 and L2. Since
zM is non-flat, these two lines do not lie in the same horizontal plane. Hence we

may assume that L1 lies in the plane x3 D 0 and L2 lies in the plane x3 D 1. The
horizontal projections of Q�1;n and Q�2;n bound some convex domains z�1;n and z�2;n,
let Hi D lim z�i;n. Then H1 and H2 are half planes, whose boundary lines are the
horizontal projections of L1 and L2. By point 4 of Proposition 3 applied to zMn and
letting n ! 1, zM is inside the tubular neighborhood of radius one of .H1 [H2/�R.
By point 5 of the same proposition, for any disk D of radius 1 contained in H1 \ H2,
zM intersects D � R. Let me call these two properties, respectively, property A and

property B . Roughly speaking, property A means that the horizontal projection of zM
is contained in H1 [ H2, and property B means that it contains H1 \ H2 (although
not quite). As we shall see, properties A and B severely restrict the possibilities for
the limit zM .

Note that in case L1 and L2 are parallel, the boundaries of �1 and �2 are tangent
at some point p. Since �1 and �2 are convex with non-empty intersection, they lie
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on the same side of this tangent line. Therefore, H1 � H2 or H2 � H1 (in other
words, H1 \ H2 is not a strip).

Let � be the angle between L1 and L2. Extending zM by reflection in L1 and L2,
we obtain an embedded minimal surface yM in R3=S2� , where S2� is a vertical screw
motion of angle 2� if � ¤ 0, and a translation (maybe not vertical) in case � D 0.
Since yM has finite total curvature, a theorem of W. Meeks and H. Rosenberg [7] says
that its ends are all simultaneously of type Scherk, helicoid or planar. We deal with
each case separately.

First case: yM has Scherk type ends. Then the horizontal projection of zM stays at
bounded distance from a finite set of half-lines, contradicting property B .

Second case: yM has helicoidal ends. In the case � D 0, the period must be vertical,
since zM lies in a horizontal slab. Each asymptotic half-helicoid intersects the hori-
zontal plane x3 D 0 along a half-line. Since yM intersects the plane x3 D 0 along the
line L1, it has precisely two helicoidal ends. Outside of a vertical cylinder, zM has
two components, each asymptotic to a piece of a helicoid, and having two half-lines
on its boundary. Let us write L1 D L0

1 [ L00
1 and L2 D L0

2 [ L00
2, where L0

1, L0
2,

L00
1 and L00

2 are half-lines defined as in Figure 3. Let E1 and E2 be the two pieces of
helicoid that zM is asymptotic to, labeled so that E1 has L0

1 on its boundary. Note
that by property A, none of them can make a full turn, and by property B , both cover
H1 \ H2. If E1 climbs from L0

1 to L0
2, then E2 must climb from L00

1 to L00
2 (this can

happen only in the non-parallel case). But then none of them covers H1 \H2. Hence
E1 must climb from L0

1 to L00
2, and E2 from L00

1 to L0
2. But then E1 and E2 intersect,

which contradicts embeddedness. Therefore, yM cannot have helicoidal ends.

L00

2

L00

2

L00

1

L00

1

L0

1

L0

1

L0

2

L0

2
H2 n H1

H1 n H2

H1 n H2

H1 \ H2

H1 \ H2

Figure 3. Definition of the four half-lines in the case where L1 and L2 are not parallel (left) or
parallel (right).

Third case: yM has planar ends. Since zM lies in the slab 0 � x3 � 1, the ends must
be asymptotic to horizontal planes. By a theorem ofY. Choe and M. Soret [3], � D 0,
so the lines L1 and L2 are parallel. We may assume without loss of generality that
H1 is the half-plane x1 > 0, then H2 is the half-plane x1 > a for some a. So zM is
asymptotic to the half planes x3 D 0, x1 > 0 and x3 D 1, x1 > a. Note that because
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of this, yM cannot be a Riemann minimal example: indeed the part of a Riemann
minimal example between two consecutive horizontal lines is asymptotic to two half
horizontal planes pointing into opposite directions.

To obtain a contradiction, we use the argument of Choe and Soret, as explained
in [9]. We may assume that the stereographically projected Gauss map g takes on
the value 0 at the end at height x3 D 0. Then by embeddedness, it must take on the
value 1 at the other end. Note that g is real on L1 and L2.

By the boundary maximum principle for zM , g ¤ 0; 1 on L1, so g has constant
sign along L1. Close to the end, zM lies in x2 > 0, x3 > 0, so we have g > 0 on L1.
By a similar argument, g is also positive on L2.

Arguing as in [9], for " > 0 small enough, the intersection of zM with 0 < x3 < "

is conformally an annulus 1 < jzj < r for some r > 1, with x3 D 0 on jzj D 1

and x3 D " on jzj D r . Since x3 is harmonic, it follows that x3 D � log jzj with
� D "= log r , and


3 D 2
@x3

@z
dz D �

dz

z
:

(In [9], the authors claim that � D 1, but this is only the case after a suitable scaling
of the surface.) If � is a closed curve on yM , let us define

F.�/ D i
Z

�

g�1
3 D i
Z

�

g
3:

(These two integrals are equal because � is closed. F.�/ represents the horizontal
part of the flux along � , seen as a complex number.) Let �s be the curve x3 D s on
yM , oriented as a boundary of x3 < s. Then in the conformal representation, �" is the

circle jzj D r , with the positive orientation. Since g is holomorphic in 1 � jzj � r ,

F.�"/ D i
Z

jzjDr

g
3 D i
Z

jzjD1

g
3 D i
Z 2�

�D0

g.ei� /�i d� < 0:

In the same way, we can represent conformally the intersection of zM with 1 � " <

x3 < 1 with an annulus 1 < jzj < r for some other r > 1, with x3 D 1 � � log jzj
and 
3 D ��dz=z. The level curve �1�" corresponds to the circle jzj D r , with the
negative orientation:

F.�1�"/ D �i
Z

jzjDr

g�1
3 D �i
Z

jzjD1

g�1
3 D �i
Z 2�

�D0

.g.ei� //�1�i d� > 0:

However, F.�"/ D F.�1�"/ because the two curves are homologous. Hence we have
a contradiction. �

From Proposition 4 we get the following
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Proposition 5. Let .Mn/n be a sequence of minimal surfaces as in the paragraph
before Theorem 2. Let .hn/n be a sequence of homotheties of R3, and let zMn D
hn.Mn/. There exists a finite set S and a subsequence of . zMn/n (still denoted . zMn/n)
such that the curvature of . zMn/n is uniformly bounded on the compacts of R3 n S .
Moreover, for any p 2 S and any r > 0, it holds that

lim sup C. zMn \ B.p; r// � 4�:

The point of this proposition is that for any point of concentration of curvature,
the amount of total curvature which concentrates at this point is always at least 4� .
This is well known for interior points of concentration (see for instance the proof of
Theorem 3 in [14] or Theorem 4.3.1 in [9]), but wrong in general for boundary points
of concentration. For example, if �1 and �2 are two convex curves which intersect at
a finite number of points and An is the stable annulus bounded by �1 [ Tn.�2/ with
Tn ! 0, then the curvature concentrates at the intersection points of �1 and �2. The
mass of curvature that concentrates at each point is equal to twice the angle between
the curves at this point. (A blow-up would produce pieces of helicoids.)

This proposition can be proven exactly as Theorem 4.3.1 in [9], using a standard
blowup argument. By Proposition 4, the only limits which can appear are catenoids,
whence the 4� . We omit the details.

3.4. Weak limit. In this section, we adapt the weak compactness result of A. Ros
[10] (in the case of complete embedded minimal surfaces of finite total curvature) to
our case, namely when there is a boundary.

Proposition 6. Let .Mn/n be as in the paragraph before Theorem 2 and assume that
Tn ! 0. There exists a subsequence, still denote .Mn/n, and k C 1 sequences of
homotheties .hi;n/n, 1 � i � k C 1, such that the following is true:

1) hi;n.Mn/ converges smoothly on compact subsets of R3 to a vertical catenoid,
with multiplicity one.

2) For any small " > 0, there exists R > 0, independent of n, such that if we let
Bi;n D h�1

i;n.B.0; R//, then C.Mn nSi Bi;n/ � ".

3) For n large enough, the balls Bi;n are disjoint and Mn nSBi;n has two compo-
nents U1;n and U2;n. Each Uj;n is a graph over �j;n minus k C 1 small convex
disks, for j D 1; 2.

U1;n

U2;nB1;n
B2;n

Figure 4. Weak limit, genus one.
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Remark 2. This proposition implies that lim C.Mn/ D 4�.k C 1/.

Proof. We follow the main lines of the argument of A. Ros, adapted to the case of
minimal surfaces with boundary. Passing to a subsequence, we may assume that
lim C.Mn/ exists. We write lim C.Mn/ D 4�` C ˛ with ` 2 N and 0 � ˛ < 4� .
We first prove the following partial statement:

Claim 1. In the above setup, ˛ D 0 and there exists ` sequences of homotheties
.hi;n/n, such that for 1 � i � `, .hi;n.Mn//n converges on compact subsets of R3 to
a catenoid, with multiplicity one.

Proof. The idea of A. Ros to detect where the curvature concentrates is to look at
balls B such that C.Mn \ B/ D 2� , and to select the smallest such ball. It turns
out that the value 2� is not important for this argument: any fixed value � 2 .0; 4�/

works fine. We choose � as follows: if ˛ D 0, we take � D 2� . If ˛ > 0, we take
� D ˛=2, and we want to get a contradiction. (In what follows, when we use the
word “small”, it means: “small compared to �”. It is therefore important that � is
fixed once for all.)

First step. If ` D ˛ D 0, then the claim is trivially true. Else lim C.Mn/ > �,
hence for n large enough, the family of balls B such that C.Mn \ B/ D � is
non-empty. Let B 0

1;n be a ball of minimum radius in this family. Let h1;n be the

homothety such that h1;n.B 0
1;n/ D B.0; 1/ and let zM1;n D h1;n.Mn/. Note that

C. zM1;n \ B.0; 1// D � and that B.0; 1/ is a smallest ball with this property. By
Proposition 5, passing to a subsequence, there exists a finite set S such that . zM1;n/n

converges to a minimal surface zM1 on compact subsets of R3 n S . If p 2 S , then
by Proposition 5, C. zM1;n \ B.p; 1

2
// > � for n large enough. As this contradicts

the choice of B 0
1;n, S must be empty. Since C. zM1;n \ B.0; 1// D � > 0, zM1

cannot be flat. If the ratio of h1;n were bounded, then since Tn ! 0, zM1 would be
included in the horizontal plane, hence flat. Hence the ratio of h1;n is not bounded. By
Proposition 4, zM1 is a catenoid and the multiplicity of the limit is one. Given " > 0,
there exists R1 > 0 such that jC. zM1 \ B.0; R1// � 4�j � "=2. From the smooth
convergence of . zM1;n/n to zM1 on B.0; R1/, we get jC. zM1;n \ B.0; R1// � 4�j � "

for n large enough. Let B1;n D h�1
1;n.B.0; R1//. Then jC.Mn \ B1;n/ � 4�j � ".

In particular lim C.Mn/ � 4� and ` � 1. This concludes the first step of the weak
limit process.

Second step. If ` D 1 and ˛ D 0 then we are done. Else lim C.Mn/ > 4� C �.
By taking " small enough, for n large enough, the family of balls B such that
C.ŒMn n B1;n	 \ B/ D � is non-empty. Let B 0

2;n be a ball of minimum radius
in this family. Let h2;n be the homothety such that h2;n.B 0

2;n/ D B.0; 1/ and let
zM2;n D h2;n.Mn/. Let zB1;n D h2;n.B1;n/. By construction, the radius of B 0

1;n is
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at most the radius of B 0
2;n. Hence zB1;n is a ball of radius at most R1. Passing to a

subsequence, the center of zB1;n either converges, or goes to infinity. We treat each
case separately.

First case: The center of zB1;n diverges. Then we can argue as in the first step and
conclude that . zM2;n/n converges on compact subsets of R3 to a catenoid zM2. There
exists R2 > 0 such that jC.Mn \ B2;n/ � 4�j � ", where h2;n.B2;n/ D B.0; R2/.
For n large enough, B1;n and B2;n are disjoint. Hence lim C.Mn/ � 8� .

Second case: The center of zB1;n converges to a point p. In this case we want to obtain
a contradiction. Passing to a subsequence, the radius of zB1;n has a limit r . If r > 0,
then from the convergence of zM1;n to a catenoid, we obtain that C.Mn \ B 0

2;n/ � ".

This contradicts the definition of B 0
2;n. Hence r D 0 and the sequence of balls . zB1;n/n

collapses into the point p. The sequence . zM2;n/n converges to zM2 with singular set
S . Clearly p 2 S , and in fact S D fpg, else we contradict the choice of B 0

2;n as in

the first step. Since S is non-empty, all components of zM2 are flat by Proposition 4.
If p 62 B.0; 1/, then from the convergence of . zM2;n/ to a flat minimal surface on
compact subsets of R3 n fpg, C. zM2;n \ B.0; 1// ! 0. This contradicts the choice
of B 0

2;n. Hence p 2 B.0; 1/.

Fix a small r > 0. For n large enough, zB1;n � B.p; r/. Let †n D zM2;n \
B.p; r/ n zB1;n. From the smooth convergence of . zM2;n/n to a flat limit on B.0; 1/ n
B.p; r/, we have lim C. zM2;n\B.0; 1/nB.p; r// D 0. Hence lim C.†n\B.0; 1// D
�. If lim C.†n/ > �, then since r < 1 we contradict the minimality of B.0; 1/.
Hence lim C.†n/ D �.

†n

B.p; r/

zB1;n

B.0; 1/

zM2;n

By looking at the Gauss image of †n, we shall see that lim C.†n/ is a multiple
of 4� , thus obtaining a contradiction. The boundary of †n is included in the union
of the boundaries of zB1;n, B.p; r/ and zM2;n. On each component of @†n \ @ zB1;n,
we have from the convergence to a catenoid that the Gauss map is close to a constant
value (in fact arbitrarily close, by taking R1 large enough). On each component of
@†n \ @B.p; r/, the Gauss map is close to a a constant value: this follows from
the convergence to a flat limit on compact subsets of R3 n fpg. Finally, we need
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to understand the Gauss map on @†n \ @ zM2;n, in case this is not empty. On the
boundary of zM2;n, the argument of the Gauss map is equal to the argument of the
horizontal vector normal to the boundary. Since the curvature of the boundary of
zM2;n is bounded, the argument of the Gauss map on @ zM2;n \ B.p; r/ is close to a

constant value (arbitrarily close, by taking r > 0 small enough). We conclude that
the image by the Gauss map of each component of @†n is either a small disk, or a
star-shaped curve bounding a small area on the sphere. Since the Gauss map is open,
the image of †n has area close to a multiple of 4� . This contradicts the fact that
C.†n/ is close to �, and concludes the second step of our weak limit process.

We iterate this process ` times and produce ` sequences of homotheties .hi;n/n

and balls .Bi;n/n as wanted. Moreover, lim C.Mn/ � 4�`. If ˛ > 0, then by taking
" > 0 small enough, we have that for n large enough, the family of balls B such that
C.ŒMn nSBi;n	 \ B/ D � is non-empty. So we can do one more step and conclude
that lim C.Mn/ � 4�.` C 1/, a contradiction. Therefore ˛ D 0. This proves the
claim. �

For n large enough, the balls Bi;n are disjoint, hence

C.Mn n
[̀
iD1

Bi;n/ � `"

which proves point 2 of Proposition 6 (replacing " by "=`).

Claim 2. The Gauss map converges to the vertical on each component of @Mn, in
the following sense:

lim
n!1 min

x2@Mn

jN3.x/j D 1:

Proof. We prove the claim for the bottom component of @Mn, the proof for the top
component is similar. Let xn be a point on �1;n such that jN3.xn/j is minimum. Let
pi;n be the center of Bi;n. Let dn D mini d.xn; pi;n/. Passing to a subsequence,
lim dn

tn
2 Œ0; 1	 exists.

First case: lim dn

tn
> 0 (possibly infinite). Let hn be the homothety of ratio 1=tn

which maps xn to 0. Let zMn D hn.Mn/. By Proposition 5, . zMn/n converges to a
minimal surface zM with singular set S (possibly empty). Moreover, 0 62 S , because
else lim dn

tn
D 0. Let z� D lim @ zMn, then z� is a horizontal line L1 through the

origin, and possibly a line L2 in the horizontal plane x3 D 1. Since z� is not empty,
all components of zM are flat by Proposition 4. If z� D L1 or L1 and L2 are not
parallel, then all components of zM must be planes or half-planes. Since zMn lies in
the horizontal slab 0 � x3 � 1, all must be horizontal. Since zMn ! zM smoothly in
a neighborhood of 0, we conclude that N3.xn/ converges to a vertical vector. If L1
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and L2 are parallel, then one component U of zM might be the (non-horizontal) strip
bounded by L1 and L2. By property B of the proof of Proposition 4, there must be
another component. This other component cannot be a half-plane, because L1 and
L2 already bound U . Hence it must be a horizontal plane, but then we contradict
property A of the proof of Proposition 4. We conclude that again all components of
zM are horizontal planes and half-planes.

Second case: lim dn

tn
D 0. In this case, let hn be the homothety of ratio 1=dn which

maps xn to 0. Let zMn D hn.Mn/. By Proposition 4, . zMn/n converges to a minimal
surface zM with singular set S ¤ ;, and d.0; S/ D 1. Since S ¤ ;, all components
of zM are flat by Proposition 4. Note that lim @ zMn is a horizontal line L containing the
origin. Let us assume that there exists a component U of zM which is not horizontal.
Then since zM lies in the half space x3 � 0, U must be a half-plane with boundary
L, and its multiplicity is one, so p 62 U . The component of zM containing p must
be a horizontal plane x3 D a, and its multiplicity is at least 2. If a > 0, then we
contradict embeddedness. If a D 0, then the density of zM at the origin is greater than
or equal to 5

2
, so we contradict point 2 of Proposition 3. Hence all components of zM

are horizontal, so N3.xn/ converges to a vertical vector. This proves the claim. �

It remains to prove that all catenoids are vertical, the third statement of Proposi-
tion 6, and that ` D k C 1.

Let U be a component of Mn n SBi;n. Since the balls Bi;n do not intersect
�n D @Mn, each component of @U is either a component of �n, or a small circle
included in some @Bi;n (one of the two boundary components of the inside catenoid).
By the previous claim or convergence to a catenoid, on each boundary component,
the Gauss map is close to a constant. Since C.U / is small, the Gauss map is close to a
constant a on U . Let P D a? and let � W U ! P be the projection. Then � is a local
diffeomorphism so � is open. Consider a component of @U of the second type, namely
a small circle � included in some @Bi;n. From the convergence to a catenoid, we can
glue a disk along � in such a way that � remains a local diffeomorphism. Perform
this surgery for all such boundary circles � and call zU the result. Then � W zU ! P is
a local diffeomorphism hence open. If @U does not intersect �n then zU is compact
without boundary, but then � W U ! P cannot be a local diffeomorphism. Hence
@U has a component equal to �1;n or �2;n, so there are at most two such components
U . Since the gauss map is close to a vertical constant on �1;n and �2;n, we conclude
that P is the horizontal plane and all catenoids are vertical.

If Mn n SBi;n has only one component U , then ` D 0. (Indeed, if ` � 1, the
Gauss map is close to a constant on the boundary of B1;n \ Mn, but this contradicts
the convergence to a catenoid inside.) Since � has no critical point on Mn, Mn is
an annulus. Since the Gauss map is close to a constant on Mn, Mn is stable by
the Barbosa do Carmo criterium. This is a contradiction since Mn is not the stable
annulus by hypothesis.
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Hence Mn n SBi;n has precisely two components U1;n and U2;n, with �i;n �
@Ui;n. Gluing disks as above, the projection � from zUi;n to the horizontal plane is
open, and is one to one on @ zUi;n D �i;n, so � W zUi;n ! �i;n is a diffeomorphism.
This proves the third point of Proposition 6. Finally, the genus of Mn is ` � 1, so
` D k C 1. �

3.5. Flux. To make further progress we need the notion of flux. Let � be a curve on
an oriented minimal surface M , and let � be the co-normal along � , chosen so that
the basis f�; � 0g of the tangent plane is direct (so if � is the oriented boundary of some
domain, � is the exterior co-normal). The flux along � is the vector

R
�

�ds. This
is a homology invariant vector. If we denote by X� D .X�

1 ; X�
2 ; X�

3 / the conjugate
minimal immersion, then flux.�/ D R

�
dX�. If M is the graph of a function u.x; y/,

and is oriented by the upwards pointing normal, then one has the following formulae
for the conjugate minimal immersion:

dX�
1 D uxuydx C Œ1 C .uy/2	dyp

1 C .ux/2 C .uy/2
;

dX�
2 D �Œ1 C .ux/2	dx � uxuydyp

1 C .ux/2 C .uy/2
;

dX�
3 D uxdy � uydxp

1 C .ux/2 C .uy/2
:

(1)

When ru is small, these formulae give the following expansions, with z D x C i y:

dX�
1 � i dX�

2 D i d Nz C 2i

�
@u

@z

�2

dz C o.jruj2/; (2)

dX�
3 D Im

�
2

@u

@z
dz

�
C o.jruj/: (3)

3.6. Limit rescaled graph. As we have seen, outside k C1 small balls, Mn has two
components U1;n and U2;n. Each component Ui;n is the graph over �i;n minus small
disks of a function which we call ui;n. We have u1;n D 0 on @�1;n and u2;n D tn on
@�2;n. In this section, we prove that after suitable scaling, these functions converge
to explicit harmonic functions u1 and u2, each having k C1 logarithmic singularities.

Without loss of generality, we may assume (by changing the homotheties hi;n)
that all the limit catenoids are the standard catenoid cosh2 x3 D x2

1 C x2
2 . Let �i;n be

the ratio of hi;n and �n D min �i;n. Passing to a subsequence, we may assume that
�n D �i0;n for some index i0. Passing again to a subsequence, the following limit
exists:

ci D lim
n!1

�n

�i;n

2 Œ0; 1	:
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Note that ci0 D 1, so at least one ci is non-zero. Let pi;n 2 R2 be the horizontal
projection of the center of Bi;n. Passing to a subsequence, pi D lim pi;n 2 �1 \ �2

exists. Note that at this point, we do not know that the points p1; : : : ; pkC1 are
distinct.

Proposition 7. The following limits exist:

u1 WD lim
n!1 �nu1;n D �

kC1X
iD1

ciG1;pi
;

u2 WD lim
n!1 �n.u2;n � tn/.z/ D

kC1X
iD1

ciG2;pi
;

where Gi;p denotes the Green function of �i . The convergence is the smooth con-
vergence on compact subsets of �i n fp1; : : : ; pkC1g.

Note that in this proposition, the points pi do not need to be distinct, and may
also be on the boundary. If p 2 @�i , Gi;p should be understood as zero. Note that
if p converges to a boundary point q of �i , then Gi;p converges uniformly to 0 on
compact subsets of �i nfqg (this is easy to check by explicit formula for the disk, so is
true for any bounded convex domain by conformal invariance of the Green function).
This makes this definition natural.

Proof of the proposition. We orient Mn so that the normal points up in U1;n and down
on U2;n. Let �1;i;n and �2;i;n denote the top and bottom boundary components of
Mn \ Bi;n (oriented as boundaries). From the convergence to catenoids we have

lim
n!1 �nflux.�2;i;n/ D � lim

n!1 �nflux.�1;i;n/ D .0; 0; 2�ci /:

This gives

lim
n!1 �nflux.�1;n/ D � lim

n!1 �nflux.�2;n/ D
kC1X
iD1

.0; 0; 2�ci /:

Now the third coordinate of the co-normal � has constant sign on each curve �1;i;n

and �2;i;n (from the convergence to catenoids), and on �1;n and �2;n (from the convex
hull property). Hence for i D 1; 2 we have the estimateZ

@Ui;n

�njdX�
3 j � C
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for some uniform constant C . Since the normal is close to be vertical on each Ui;n,
we have

p
1 C jrui;nj2 � 2 for n large enough, hence from equation (1), we haveZ

@Ui;n

�njrui;nj � 2C: (4)

From this integral estimate, we must conclude the convergence of a subsequence of
.�nui;n/n. If ui;n were harmonic, this would be quite elementary. So we make a
conformal representation of Ui;n onto a planar domain. Via this representation, ui;n

becomes harmonic and we can conclude.
We shall only consider u1;n, the proof for u2;n is entirely similar. By Koebe’s

theorem on uniformization of planar domains, there exists a conformal representation
fn of U1;n onto the unit disk minus k C1 circular disks, such that fn maps �1;n to the
unit circle. Such a conformal representation is unique up to a Möbius transform of
the disk. Let �n W U1;n ! �1;n be the projection on the horizontal plane and let Qfn D
fn B��1

n . Using a Möbius transform of the disk, we may normalize Qfn by Qfn.z0/ D 0

and @ Qfn

@z
.z0/ > 0, where z0 is a fixed point of �1, away from p1; : : : ; pkC1. Note

that Qfn is defined on compact subsets of �1 nfp1; : : : ; pkC1g for n large enough, and
is 
n-quasi conformal with 
n ! 1 as n ! 1 (because fn is conformal and �n is

n-quasi conformal, since the Gauss map converges to a vertical vector). Since . Qfn/n

is bounded, by a standard normal family result ([6], Theorem 5.1, page 73), passing
to a subsequence, . Qfn/n converges on compact subsets of �1 n fp1; : : : ; pkC1g to
a 1-quasi conformal (hence holomorphic) function f . Moreover, f .z0/ D 0 and
f 0.z0/ � 0. By Riemann’s theorem, f extends holomorphically to p1; : : : ; pkC1.
Let qi D f .pi /, i D 1; : : : ; k C 1. By [6], Theorem 5.5, page 78, f is either a
diffeomorphism, or a constant function onto a boundary point, which is not possible
since f .z0/ D 0. Hence f is the unique conformal representation of �1 onto the
unit disk such that f .z0/ D 0, f 0.z0/ > 0. Since the limit is uniquely determined,
the whole sequence . Qfn/n converges to f .

Let �0
n D fn.U1;n/ and

vn D �nX3;n B f �1
n D �nun B �n B f �1

n ; 
n D @vn

@z
;

where X3;n W Mn ! R denotes the third coordinate of the immersion. Since Mn

is minimal and fn is conformal, vn is a harmonic function so 
n is a holomorphic
function on �0

n. From equation (4) we haveZ
@�0

n

j
nj � C:

Fix a small " > 0 and let U" be the set of points in D.0; 1/ which are at distance
greater than " from @D.0; 1/ and q1; : : : ; qkC1. Observe that for n large enough,
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U" � �0
n and if z 2 U", d.z; @�0

n/ � "=2. By Cauchy’s theorem we have, for n

large enough and z 2 U",

j
n.z/j D 1

2�

ˇ̌̌
ˇ
Z

@�0

n


n.w/

w � z
dw

ˇ̌̌
ˇ � 1

2�

Z
@�0

n

j
nj
"=2

� C

�"
:

Hence .
n/n is bounded on U". By the theorem on normal families, a subsequence
of .
n/n converges on compact subsets of D.0; 1/ n fq1; : : : ; qkC1g to a holomorphic
function 
. From the above estimate, 
 has at most simple poles at each q1; : : : ; qkC1.
Since vn D 2Re

R

n, we obtain that .vn/ converges to a harmonic function v which

has at most logarithmic singularities at q1; : : : ; qkC1 and vanishes on @D.0; 1/. (To
see that v D 0 on the unit circle, we must ensure the convergence of .
n/n on the
boundary. This can be done as follows: since vn is zero on the unit circle, the 1-form
!n D 
ndz is pure imaginary on the unit circle. By the Schwartz reflection principle,
one can extend the holomorphic one form !n by reflection in the circle namely, by
��!n D � S!n, where �.z/ D 1= Nz. Fix some r < 1 close to 1. Then .!n/n is bounded
on the circles jzj D r and jzj D 1

r
, so by the maximum principle, it is bounded in

the annular region r < jzj < 1
r

. Hence, passing to a subsequence, the convergence
holds up to @D.0; 1/.)

Since �nun D vn B fn B ��1
n , .�nun/n converges to a harmonic function u1

which is zero on @�1 and has at most logarithmic singularities at p1; : : : ; pkC1.
By formula (3), the principal part of u1 at pi is �ci log jz � pi j. This proves the
proposition. �

3.7. Thebalancing condition. In this section, we compute the limit of the horizontal
part of the flux, scaled by .�n/2, on @Bi;n \ Mn D �1;i;n [ �2;i;n. Writing that this
flux is zero will give the balancing condition. We assume that the configuration
p1; : : : ; pkC1 is regular, in the following sense:

(1) the points p1; : : : ; pkC1 are distinct,

(2) pi 2 �1 \ �2 for all i .

A configuration is singular when several points are equal, or when some points are
on the boundary of �1 \ �2. The case of singular configurations will be studied in
Section 3.9. Let us define

F.�/ D flux1.�/ � i flux2.�/ D
Z

�

dX�
1 � i dX�

2 :

By formula (2), we have

F.�1;i;n/ D 2i
Z

C.pi ;"/

�
@u1;n

@z

�2

dz C o.jru1;nj2/;
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lim
n!1.�n/2F.�1;i;n/ D 2i

Z
C.pi ;"/

�
@u1

@z

�2

dz D �4� Respi

�
@u1

@z

�2

:

Now
@u1

@z
D � ci

2.z � pi /
� ci

@H1;pi

@z
�
X
j ¤i

cj

@G1;pj

@z
:

This gives, expanding the square and computing the residue,

lim
n!1.�n/2F.�1;i;n/ D �4�

�
c2

i

@H1;pi

@z
.pi / C

X
j ¤i

cicj

@G1;pj

@z
.pi /

�
:

We have the same formula for F.�2;i;n/, replacing H1;pi
by H2;pi

and G1;pj
by G2;pj

.
(Regarding orientations: the normal points down in U2;n, so there is a minus sign in
front of the formulae for dX�, and we must give C.pi ; "/ the negative orientation,
which gives another minus sign in front of the residue. These two minus signs
compensate.) Since �1;i;n C �2;i;n bounds Mn \ Bi;n, the sum of the two fluxes is
zero, so we obtain, for all i D 1; : : : ; k C 1,

c2
i

�
@H1;pi

@z
.pi / C @H2;pi

@z
.pi /

�
C
X
j ¤i

cicj

�
@G1;pj

@z
.pi / C @G2;pj

@z
.pi /

�
D 0:

This is not quite the balancing condition yet. We still must prove that all the ci are
equal to one, which is the goal of the next section.

Remark 3. To prove that balanced configurations do not exist in Sections 2.3 and
2.4, we do not really need that all ci are equal to one: we could very well use the
above balancing condition, provided that all ci are positive. However, the simplest
way to prove that no ci vanishes seems to prove that all are in fact equal to one.

3.8. Equal neck-sizes

Proposition 8. Assume the configuration is non-singular (in the sense explained at
the beginning of Section 3.7). Then all ci are equal to one.

Proof. For each neck, we use catenoidal barriers to estimate the height tn between
the boundary curves as a function of �i;n. From this estimate we conclude that all

ci D lim �i;n

�n
are equal.

Given 0 < r < R, let C.r; R/ be the part of the catenoid of waist radius r defined
by q

x2
1 C x2

2 D r cosh.x3=r/;

q
x2

1 C x2
2 < R;
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so that C.r; R/ is bounded by two horizontal circles of radius R at height ˙r argcosh R
r

.
Let CC.r; R/ and C�.r; R/ denote the upper half (in x3 > 0) and lower half (in
x3 < 0) of C.r; R/.

Let pi;n 2 R2 and �i;n 2 .0; tn/ be respectively the horizontal projection and
the third coordinate of the center of Bi;n, so pi;n ! pi and �i;n ! 0. Since the
configuration is non-singular, there exists " > 0 such that for n large enough, the
disks D.pi;n; "/, i D 1; : : : ; k C 1 are disjoint and inside �1;n \ �2;n. From the
convergence of .�nu1;n/n to u1 on compact subsets of �1 nfp1; : : : ; pkC1g, we have
j�nu1;nj � C on the circles C.pi;n; "/ for some uniform constant C .

Upper bound for �i;n. Fix some ˛ > 1 close to one. Let †i;n be the part of Mn

inside the vertical cylinder D.pi;n; "/ � .0; �i;n/. By convergence of hi;n.Mn/ to a
catenoid, the horizontal projection of the top component of @†i;n is a curve close to
a circle of radius 1=�i;n, so it is inside the disk D.pi;n; ˛=�i;n/. (Here we assume,
without loss of generality, that all limit catenoids are centered at the origin.) Consider
the catenoid C.˛=�i;n; "/. Translate it horizontally so that its axis is the vertical line
through pi;n. Translate it vertically up so that it is disjoint from †i;n, and then move
it down.

†i;n

By the maximum principle, the first contact point will occur when the bottom
circle touches the lower boundary component of @†i;n, so its height will be at most
C=�n. In this situation, the catenoid will be above †i;n. The intersection of †i;n

with x3 D �i;n � 1=�i;n is close to a circle of radius cosh.1/=�i;n, which is greater
than the waist radius of the catenoid, so �i;n � 1=�i;n must be less than the height of
the waist of the catenoid. Using that argcosh.x/ � log.2x/ for x � 1, this gives the
estimate

�i;n � C

�n

C ˛

�i;n

argcosh
"�i;n

˛
� C 0

�n

C ˛
log �i;n

�i;n

for some uniform constant C 0. By the same argument, we have the same upper bound
for tn � �i;n. Adding the two estimates gives

tn � 2˛
log �i;n

�i;n

C 2C 0

�n

: (5)

Lower bound for �i;n. Fix some ˇ < 1 close to one. Consider the lower half-catenoid
C�.ˇ=�i;n; "/. Translate it horizontally so that its axis is the vertical line through
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pi;n. Translate it vertically down so that it is disjoint from Mn and then up. By the
maximum principle, the first contact point will occur when the bottom circle of the
half-catenoid touches the boundary of Mn, and the part of Mn inside the cylinder
D.pi;n; "/ � .0; tn/ will be above the catenoid. Using that argcosh.x/ � log.x/ for
x � 1, this gives the estimate

�i;n � ˇ
log �i;n

�i;n

� C 00

�n

for some uniform constant C 00. By the same argument, we have the same lower bound
for tn � �i;n. Adding the two estimate and taking i D i0 (recall that �n D �i0;n by
definition), we obtain

tn � 2ˇ
log �n

�n

� 2C 00

�n

: (6)

Combining (6) and (5), we obtain

˛
log �i;n

�i;n

� ˇ
log �n

�n

� C 0 C C 00

�n

which holds for any ˛ > 1 and ˇ < 1, both close to one, and for n large enough.
From this we get

˛
�n

�i;n

log

�
�i;n

�n

�
�
�

ˇ � ˛
�n

�i;n

�
log �n � C 0 � C 00:

The left hand side has a finite limit when n ! 1, so ˇ � ˛ �n

�i;n
� 0 for n large

enough, else the right hand side goes to C1. This gives ci � ˇ
˛

. The conclusion
follows by letting ˛ and ˇ go to one. �

3.9. The singular case. Let us introduce some terminology. Let pi be a point of
the configuration. If pj ¤ pi for all j ¤ i then we say that pi is a simple point, else
that pi is a multiple point. If pi is not on the boundary of �1 \ �2 we say that pi is
interior. If ci D 0, then we say that pi is evanescent. Evanescent points correspond
to catenoidal necks which collapse too fast. Multiple points correspond to catenoidal
necks which collapse to the same point. We want to prove that the configuration is
non-singular, namely all points of the configuration are simple and interior.

If .'n/n is a sequence of homotheties of the plane with ratio �n ! 1, we define
z�i;n D 'n.�i;n/, Qpi;n D 'n.pi;n/ and Qui;n D ui;n B '�1

n . Passing to a subsequence,
Qpi D lim Qpi;n exists in C [ f1g, and z�i;n converges to either a half-plane Hi or the

whole plane. We have the following generalization of Proposition 7 to this setup:
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Proposition 9. If lim z�1;n is a half-plane H1, then

lim
n!1 �n Qu1;n.z/ D �

kC1X
iD1

ci log

ˇ̌̌
ˇ z � Qpi

z � �1. Qpi /

ˇ̌̌
ˇ ;

where �1 denotes the symmetry with respect to the boundary line of H1. If lim z�1;n

is the whole plane, then

lim
n!1 �n. Qu1;n.z/ � Qu1;n.z0// D �

kC1X
iD1

ci log

ˇ̌̌
ˇ z � Qpi

z0 � Qpi

ˇ̌̌
ˇ :

The convergence is on compact subsets of H1 or C minus Qp1; : : : ; QpkC1. In case
Qpi D 1, the corresponding term in the above formulae should be understood as
zero. A similar statement holds for Qu2;n.

We start by proving:

Proposition 10. The points which are not evanescent are interior and simple amongst
non-evanescent points (which simply means that they are distinct).

Proof. the proof is by contradiction. If this is not true, then by making blow-ups,
we obtain a balanced configuration as before, with the domains �1 and �2 replaced
by half-planes (in the case of a boundary point) or the whole plane (in the case of a
multiple point). We obtain a contradiction by proving that balanced configuration are
impossible in these cases. Note that forces won’t see evanescent points, which is why
we only get information about non-evanescent points. We will rule out evanescent
points in the next proposition.

Without loss of generality, we may assume that the points which are not evanescent
are p1; : : : ; pr , for some r � 1. Let

ın D min
�fd.pi;n; @.�1;n \ �2;n//; 1 � i � rg [ fd.pi;n; pj;n/; 1 � i < j � rg� :

We want to prove that inf ın > 0. Assume by contradiction that inf ın D 0. Then
we can find a subsequence such that lim ın D 0. Passing to a subsequence, and
maybe changing indices, ın is always equal to the distance of p1;n to the boundary
or to d.p1;n; p2;n/. Let 'n be the homothety of ratio �n D 1=ın in the plane which
maps p1;n to the origin. Then passing to a subsequence and using the notations
before Proposition 9, Qpi D lim Qpi;n 2 C [ f1g and z�` D lim z�`;n exist, ` D 1; 2.
Moreover, Qp1 D 0, and the points Qp1; : : : ; Qpr are at distance at least one from each
other and from the boundary. We may assume that the points Qpi which are finite are
Qp1; : : : ; Qps for some s � 1.
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If z�` D C then arguing as in Section 3.7 and using Proposition 9, we have

lim
n!1

�2
n

�2
n

F.�`;i;n/ D �4� Res Qpi

�
@

@z

sX
j D1

cj log jz � Qpj j
�2

D �2�
X
j ¤i

cicj

Qpi � Qpj

:

If z�` D H` is a half-plane then we have (�`.z/ denotes again the symmetry with
respect to the boundary of H`)

lim
n!1

�2
n

�2
n

F.�`;i;n/ D �4� Res Qpi

�
@

@z

sX
j D1

cj log jz � Qpj j � cj log jz � �`. Qpj /j
�2

D �2�

�X
j ¤i

cicj

Qpi � Qpj

�
sX

j D1

cicj

Qpi � �`. Qpj /

�
:

First case: Both z�1 and z�2 are the whole plane C. Then necessarily s � 2, and the
above formulae give the balancing formula:

2
X
j ¤i

cicj

Qpi � Qpj

D 0 for all i � s:

Since s � 2, it is straightforward to see that there are no balanced configurations
Qp1; : : : ; Qps . (Simply consider an extremal point, namely which is not in the convex

hull of the others. The force on such a point cannot vanish.)

Second case: z�1 D H1 is a half-plane and z�2 is the whole plane. By rotation and
translation, we may assume that H1 is the half plane Im.z/ > 0, so �1.z/ D Nz. The
above formulae give the balancing condition:

X
j ¤i

cicj

Qpi � Qpj

C
sX

j D1

�cicj

Qpi � Qpj

D 0 for all i � s:

If Qpi has the smallest imaginary part amongst Qp1; : : : ; Qps , then all terms in the first
sum have non-negative imaginary part, and all terms in the second have positive
imaginary part, hence the force cannot be zero. The case where z�1 is the whole
plane and z�2 is a half-plane is identical.

Third case: z�1 D H1 and z�2 D H2 are both half-planes. Note that H1 \H2 cannot
be a strip, because this would contradict the fact that �1;n \ �2;n contains a disk of
fixed radius. So by translation and rotation we may assume that for ` D 1; 2, H`

is the half-plane y > tan.˛`/x for some ˛` 2 .��
2

; �
2

/. We obtain the balancing
condition:

2X
`D1

� �c2
i

Qpi � �`. Qpi /
C
X
j ¤i

�
cicj

Qpi � Qpj

� cicj

pi � �`. Qpj /

	�
D 0 for all i � s: (7)
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Fix some ` D 1; 2, and write H D H`, � D �`. If z; w are points in H then we
clearly have Im.�.z// < Im.z/ and j�.w/ � zj > jw � zj. If Im.z/ � Im.�.w//

then we have

Im

�
1

z � w
� 1

z � �.w/

�
D Im.w � z/

jz � wj2 C Im.z � �.w//

jz � �.w/j2

� Im.w � z/

jz � wj2 C Im.z � �.w//

jz � wj2 D Im.w � �.w//

jz � wj2 > 0:

If Im.�.w// < Im.z/ � Im.w/ then the same conclusion holds (this time both terms
are positive).

Now consider the point Qpi which has the smallest imaginary part. It follows
from what we have just seen that the first term and all brackets in (7) have positive
imaginary part. So the force on Qpi cannot vanish. This proves the proposition. �

Proposition 11. The configuration is non-singular.

Proof. If we look at the proof of Proposition 8, we see that to get the upper bound
for �i;n, we only need that the point pi is simple, while for the lower bound of �i;n,
we only need that the point pi is interior. Since ci0 D 1, Proposition 10 says that pi0

is interior. Hence the lower bound for tn, equation (6), holds.
Let pi be a point of the configuration. If pi is simple, then as we observed above,

we can obtain an upper bound for �i;n and conclude that ci D 1 as in Section 3.8, so
pi is interior by Proposition 10. Therefore, to prove the proposition, we only have to
prove that all points are simple.

Assume by contradiction that there exists a multiple point. By changing indices,
we may assume that p1 D p2 D � � � D pm for some integer m � 2. Passing to a sub-
sequence and changing indices, we may assume that �1;n D minf�i;n W 1 � i � mg
for all n. Our first goal is to prove that c1 > 0 by obtaining an upper bound for
�1;n. We estimate the height �1;n using an extremal length argument, which is more
flexible than the use of a catenoidal barrier, although it gives a cruder result.

Let � be a family of curves in the plane. The extremal length �.�/ of � is defined
as follows (see Ahlfors’ book [1]):

�.�/ D sup
�

L.�/2

A.�/
I

L.�/ D inf
�2�

L� .�/; L� .�/ D
Z

�

�jdzj; A.�/ D
“

�2dxdy:

Here � is any measurable non-negative function in the plane, such that A.�/ ¤
0; 1. If � is an annulus and � is the set of curves which connect its two boundary
components, then �.�/ is called the modulus of �. The modulus is a conformal
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invariant and is monotonous, namely � � �0 ) mod.�/ � mod.�0/. The modulus
of the annulus D.0; R/ n D.0; r/ is 1

2�
log R

r
.

There exists " > 0 such that all points of the configuration are either equal to p1 or
at distance greater than 2" from p1. By Proposition 7, we have j�nu1;nj < C on the
circle C.p1;n; "/ for some uniform constant C . Let an D C

�n
. Consider the subset of

�.U1;n/ � �1;n defined by u1;n > an. Let †1 the component which has �.�1;1;n/

on its boundary, see Figure 5. (By slightly perturbing an, the level line u1;n D an

consists of a finite number of regular Jordan curves.) The boundary of †1 consists
of a Jordan curve ˛1 on which u1;n D an, and one or several small convex curves
�.�1;i;n/ with i � m, on which u1;n > an. (The fact that i � m can be ensured by
taking the constant C large enough.)

�1;3;n

�1;2;n �1;1;n

†1

˛1

Figure 5. Definition of †1 and ˛1, here m D 2.

Let �1 be the function which is equal to jru1;nj on †1, and zero elsewhere.
We first estimate the area A.�1/ by the following interesting computation, writing
u D u1;n and � the unit exterior co-normal along @†1:

A.�1/ D
“

†1

jruj2 � p
2

“
†1

jruj2p
1 C jruj2

D p
2

“
†1

div

 
.u � an/

rup
1 C jruj2

!

D p
2

Z
@†1

.u � an/

@u
@	p

1 C jruj2
� 4�

X
i

�i;n � an

�1;n

:

On the first line we have used jruj � 1. On the second line we have used the
minimal surface equation. On the third line, the divergence theorem. For the last
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line, we estimate each boundary term: the term along ˛1 vanishes since u D an.
Along each small convex curve �.�1;i;n/, we have u � �i;n and @u

@	
> 0, so the

integral can be estimated by the flux along this curve, which is close to 2�
�i;n

� 2�
�1;n

.
The sum is on all indices i such that �.�1;i;n/ lies on the boundary of †1. There are
at most m terms. We do the same argument for the function u2;n, considering the set
u2;n > tn � an and writing �2 D jru2;nj, and we obtain

A.�2/ � 4�
X

i

tn � �i;n � an

�1;n

:

Adding the two estimates gives

A.�1/ C A.�2/ � 4�m
tn � 2an

�1;n

:

Let A be the annulus bounded by ˛1 and �.�1;1;n/. We consider the family � of
curves in A which connect the two boundary components. By definition of L.�1/,
there exists a curve � in � such that L� .�1/ is less than say L.�1/ C 1

�1;n
. If �

happens to enter one of the small disks bounded by �.�1;i;n/ (with 2 � i � m), then
we replace the portion of � inside this disk (where �1 D 0) by an arc on the boundary
of the disk (where �1 D jruj). This increases L.�1/ by an amount less than the
flux along this curve. We may also assume that � enters each disk at most once by
shunting all unnecessary circuits. This way, we obtain a curve � which stays inside
†1 and such that L� .�1/ � L.�1/ C C 0

�1;n
for some uniform constant C 0. Then we

write

�1;n � an D
Z

�

du �
Z

�

jruj D L� .�1/ � L.�1/ C C 0

�1;n

:

We do the same thing for u2;n and add the two estimates, we obtain

tn � 2an � L.�1/ C L.�2/ C 2C 0

�1;n

� 2.L.�1/ C L.�2//:

To obtain the last inequality, we observe that if L.�1/ C L.�2/ � 2C 0

�1;n
, then tn �

2C C4C 0

�n
, but this is impossible since tn � 1

�n
by equation (6).

To estimate the modulus of the annulus A, we observe that we can find a uniform R

such that A is contained in the annulus D.p1;n; R/nD.p1;n; 1
�1;n

/. By monotonicity

of the modulus, the modulus of A is bounded by 1
2�

log.R�1;n/, which we can safely
bound by log �1;n for n large enough. All this gives, using the definition of the
modulus as an extremal length,

.tn � 2an/2 � 4.L.�1/ C L.�2//2 � 8.L.�1/2 C L.�2/2/

� 8 log.�1;n/.A.�1/ C A.�2//

� 32�m.tn � 2an/
log �1;n

�1;n

:
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It follows that

tn � 32�m
log �1;n

�1;n

C 2C

�n

:

This upper bound for tn is similar to (5), although the constant is not as good. Using
the lower bound, equation (6), and arguing as in the last paragraph of the proof of
Proposition 8, we obtain that c1 � ˇ

16�m
> 0. This implies in particular that the

point p1 is interior by Proposition 10.
Let ın D minfd.p1;n; pj;n/ W 2 � j � mg. Observe that ın�1;n ! 1. Passing

to a subsequence and changing indices, we may assume that ın D d.p1;n; p2;n/. We
want to prove that c2 > 0. Proposition 10 then implies that p1 ¤ p2, a contradiction.

Let qn be the middle point of p1;n; p2;n. Fix as before some ˛ > 1 and ˇ < 1

close to 1. Using the catenoidal barrier C. ˇ
�1;n

; ın

2
/ as in the proof of Proposition 8,

we can estimate �1;n � u1;n.qn/ and u2;n.qn/ � �1;n. Adding the two estimates gives
the lower bound

u2;n.qn/ � u1;n.qn/ � 2ˇ

�1;n

argcosh
�

ın�1;n

2ˇ

�
� C

�n

� 2ˇ

�1;n

log.ın�1;n/ � C 0

�n

:

Let 'n be the homothety of ratio �n D 1=ın which maps p1;n to 0. Let Qpi;n D
'n.pi;n/. Passing to a subsequence, lim Qpi;n D Qpi exists (possibly infinite), with
Qp1 D 0 and j Qp2j D 1. If all other Qpj are distinct from Qp2, then there exists " 2 .0; 1/

such that the disk D. Qp2; "/ contains no other point Qpj . Going back to the original
scale, we can use the catenoidal barrier C. ˛

�2;n
; ın"/ to estimate �2;n � u1;n.an/ and

u2;n.an/ � �2;n. Adding the two estimates gives the upper bound

u2;n.an/ � u1;n.an/ � 2˛

�2;n

log.ın�2;n/ C C 0

�n

for some uniform constant C 0. Combining the two estimates, we obtain after ele-
mentary operations�

ˇ � ˛
�1;n

�2;n

�
log.ın�1;n/ � C 0 �1;n

�n

C ˛
�1;n

�2;n

log

�
�2;n

�1;n

�
:

The right member has a finite limit (for the first term, this is because c1 > 0). Since
ın�1;n ! 1, we must have ˇ � ˛

�1;n

�2;n
for n large enough. Hence ˇ �n

�1;n
� ˛ �n

�2;n
.

Passing to the limit gives ˇc1 � ˛c2. Since we already know that c1 > 0, we
obtain c2 > 0, hence by Proposition 10, p1 ¤ p2, a contradiction. In case there are
several points Qpj equal to Qp2, we use instead the above extremal length argument
to estimate u2;n.an/ � u1;n.an/, and conclude again that c2 > 0. This proves the
proposition. �
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