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Foliations and global inversion

Eduardo Cabral Balreira

Abstract. We consider topological conditions under which a locally invertible map admits a
global inverse. Our main theorem states that a local diffeomorphism f W M ! Rn is bijective
if and only if Hn�1.M/ D 0 and the pre-image of every affine hyperplane is non-empty and
acyclic. The proof is based on some geometric constructions involving foliations and tools from
intersection theory. This topological result generalizes in finite dimensions the classical analytic
theorem of Hadamard–Plastock, including its recent improvement by Nollet–Xavier. The main
theorem also relates to a conjecture of the aforementioned authors, involving the well-known
Jacobian conjecture in algebraic geometry.
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1. Introduction

In this paper we are concerned with the problem of finding topological conditions
ensuring that a local diffeomorphism is bijective. A classical result in this direction
is the well-known Hadamard–Plastock Theorem (see [5] and [11]). It states that a
Banach space local diffeomorphism f W X ! X is bijective provided

inf
x2X

kDf .x/�1k�1 > 0: (1.1)

The proof of the Hadamard–Plastock Theorem follows from simple arguments
involving covering spaces. In recent years new topological and geometric ideas have
been introduced in the subject of global invertibility, pushing the field in different
directions (see, for instance, [1], [6], [7], [8], [9], [12], [15], [18], [20], and [21]).
The emerging picture reveals that global invertibility is also influenced by more subtle
topological phenomena. In [7], Nollet and Xavier established a substantial improve-
ment to the Hadamard–Plastock Theorem when dim X < 1. Using degree theory,
they showed in [7] that a local diffeomorphism f W Rn ! Rn is bijective if there
exists a complete Riemannian metric g on Rn such that

inf
x2Rn

kDf .x/�vkg > 0 for all v 2 Sn�1: (1.2)
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Notice that (1.2) is an improvement of (1.1) since

kDf .x/�1k�1 D kDf .x/��1k�1 D inf
jvjD1

kDf .x/�vk:

Furthermore, it is easy to produce examples that satisfy (1.2) but not (1.1). Arguments
from elementary Morse theory (see [10, p. 112]) show that if (1.2) holds, then the
pre-images of affine hyperplanes H must satisfy f �1.H/ � R Š Rn (note that
Df .x/�v D rhf .x/; vi). In particular, by the Künneth formula, f �1.H/ is acyclic
(recall that a topological space is called acyclic if it has the homology of a point).

In this paper we show that the above mentioned analytical results are but a mani-
festation of a topological phenomenon.

Theorem 1.1. A local diffeomorphism f W Rn ! Rn is bijective if and only if the
pre-image of every affine hyperplane is non-empty and acyclic.

In Section 3 we will point out a connection between the above theorem and the
Jacobian conjecture in algebraic geometry. The non-trivial half of Theorem 1.1 con-
sists in establishing injectivity and surjectivity. Its proof is based on some geometric
constructions involving foliations, and the computation of intersection numbers of
certain chain complexes. Theorem 1.1 also allows for an analytic corollary that is
stronger than the results in [7], in the sense that one can choose the metric to suit the
unit vector v.

2. Preliminaries

Given a compact smooth manifold M n and a finite cover, we would like to have a
systematic way to describe the intersections of the sets in the cover. Likewise, once
a point is given we want to describe exactly all the sets in the cover that contain
the given point. To this end, we will consider a triangulation of M and view the
top dimensional cells as the sets of the covering. We set our notation as follows.
Denote by T .M/ a triangulation on M (whose existence is guaranteed by [17]) and
let e.k/j be the j th k-cell of T .M/. The set of indexes of k-cells will be denoted by
E.k/ � N. Also, given a triangulation T .M/, let Tk.M/ be the k-skeleton of M .
Whenever the context is clear, we will refer to the triangulated space simply as M .

This combinatorial approach allow us to easily address the properties we men-
tioned above. For instance, given a simplex e.k/j , the star of e.k/j describes all the
simplexes that contain e.k/j . In our results, we will be interested in finding all the
.k C 1/-simplexes that contain e.k/j . This is easily accomplished by looking at the
vertices of the link of e.k/j , denoted by Lk

�
e.k/j

�
.

We now review the basic definitions from intersection theory. We define in M n the
intersection number (mod 2) between Ap a p-cycle and Bq a q-cycle, where pCq D n
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by #.Ap; Bq/. We note that when Ap , Bq represent transverse submanifolds, then
#.Ak; Bn�k/ represents the number of geometric intersections mod 2. The property
that we highlight is that intersection number depends only on the homology class.
For details and formal definitions we refer the reader to [14].

Finally, we can also define linking numbers between cycles. Let Xp and Y q�1

be two nonintersecting cycles in Rn with p C q D n. For ZpC1 a bounding chain of
Xp , i.e. @ZpC1 D Xp , we define the linking number between Xp and Y q�1 as

Lk.Xp; Y q�1/ D #.ZpC1; Y q�1/; (2.1)

which is independent of the choice of the bounding chain of Xp .

3. Injectivity

Let us consider a local diffeomorphism f W M ! Rn, where M is a smooth connected
manifold. Our goal is to understand under which topological conditions the map f

is injective. There is a conceptual link between injectivity and connectedness. For
instance, it is clear that a locally invertible map is injective if and only if the pre-image
of every 0-dimensional affine subspace (i.e., a point) is connected (possibly empty).
An analogous statement can be made if one goes one dimension higher and considers
lines instead of points, that is, a locally invertible map is injective if the pre-image of
every line is connected.

In view of these observations, Nollet and Xavier [7] made the following conjecture.

Conjecture 3.1. A local diffeomorphism f W Rn ! Rn is injective if the pre-images
of every affine hyperplane is connected (possibly empty).

At the present time this conjecture remains open and its significance is better seen
in Algebraic Geometry where it would provide a positive answer for the Jacobian
conjecture (recall that the Jacobian conjecture states that a polynomial local biholo-
morphism F W Cn ! Cn is invertible, see [3], [16]). Indeed, if F W Cn ! Cn is a
polynomial local biholomorphism, and H � Cn is a real hypersurface foliated by
complex hyperplanes V , then by a Bertini type theorem F �1.V / is connected for a
generic V (see [13], Corollary 1 of Theorem 3.7). From this one can easily check
that F �1.H/ is connected and hence one would establish the Jacobian conjecture.

The result below establishes a weaker version of the Nollet–Xavier conjecture,
where connectedness is replaced by acyclicity.

Theorem 3.2. A local diffeomorphism f W Rn ! Rn is injective if the pre-image of
every affine hyperplane is either empty or acyclic.



76 E. Cabral Balreira CMH

In fact, we observe that we may weaken the hypotheses of Theorem 3.2 to obtain
the following stronger result. We say that an affine hyperplane H � Rn is parallel
to a line ` in Rn provided that ` \ H D ; or ` � H .

Theorem 3.3. For n � 3, let f W M ! Rn be a local diffeomorphism where M is a
(necessarily non-compact) connected manifold with Hn�1.M/ D 0. If there exists a
line ` in Rn such that the pre-image of every affine hyperplane parallel to ` is either
empty or acyclic, then f is injective.

The proof of Theorem 3.3 is based on geometric constructions of chain complexes,
the computation of the intersection number between these objects, and the maximal lift
of lines. Since the computation of intersection numbers is done with objects belonging
to the domain of f , we need to require the extra assumption on the homology of M .
Observe that the cases in Theorem 3.3 when n D 1; 2 are trivially true without any
extra assumptions on M .

We stress that in our arguments we will only require the existence of local lifts. In
fact, by the Hadamard–Plastock Theorem [11], if all lines admit global lifts the map
is already bijective. We refer to a local lift of a line ` D ftw j w 2 Rn; t 2 Rg with
respect to f as a path ˛ W .�"; "/ ! M , " > 0 such that f .˛.t// D tw. Observe
that by the Inverse Function Theorem, if f is a diffeomorphism a local lift of a line
always exists in the above sense. We say that ˛ W .�ı; ı/ ! M is the maximal lift
of ` if ı D supf" j ˛ admits a local lift for " > 0g. Furthermore, ` has a global lift
if its maximal lift satisfies ı D 1. Finally, what is important for us is the fact that
the maximal lift of a line is properly embedded in the domain. In our notation, ˛ is
properly embedded if it leaves every compact set of M as jt j increases to ı.

3.1. Beginning of the proof of Theorem 3.3. Assume that there is a point p in
the image of f with at least two distinct points q0 and q1 in its pre-image. Since
translations do not change any of the hypotheses, we assume for simplicity that p D 0.
Our goal is to construct a .n � 1/-cycle �n�1 so that the intersection number of �n�1

with the maximal lift of the line ` passing through the origin will necessarily be zero,
as the maximal lift is properly embedded. A simple argument will then show that f

must have a critical point along the lift, thus establishing the desired contradiction.
First, we give an outline of the proof. Consider " > 0 so that the ball V D

B.0I "/ � f .M/ has diffeomorphic pre-images U0 and U1 around q0 and q1, respec-
tively. Next, let Y be the .n � 1/-equatorial disk of V determined by `, that is, the
intersection of the orthogonal hyperplane to ` and V . The cycle �n�1 we seek will be
constructed to resemble a topological cylinder that connects the induced equatorial
disks of U0 to U1, denoted by X0 and X1, respectively. We construct �n�1 as follows.
Take a hyperplane parallel to ` which intersects @V tangentially at v and is denoted
by Hv . As we change the hyperplane Hv by moving it around @V , the pre-images
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ui 2 @Ui of v, for i D 0; 1, can be continuously connected by paths in f �1.Hv/, at
least for nearby hyperplanes. In this way we construct small lateral pieces of �n�1.

One then tries to put together all those local data. In so doing, one is forced to
consider the situation where, for a fixed hyperplane Hv , there are multiply-defined
paths joining the same pre-images of points in f �1.Hv/. Whenever this occurs, the
topological hypotheses that f �1.Hv/ is acyclic will be used to fill in the gaps. See
Figure 3.1 for a depiction of this process when n D 3.

@X1

q1
u1

f �1.Hv/

`

W n�1

p

@Y v

q0

@X0
u0

Hv

Figure 3.1. Construction of paths connecting @X0 to @X1 by the revolution of affine hyperplanes.

In order to determine how the lateral pieces will fit together and how such gaps
should be filled, we consider a combinatorial decomposition of @Y in terms of a
triangulation. Here we observe that @Y Š Sn�2, so such triangulation always exist.
The process of putting together the pieces of �n�1 will be done in steps according
to the dimension of the carrier of each point. More precisely, first we consider a
point and the .n � 2/-cells it may possibly belong and construct chain complexes
that correspond to the lateral pieces indicated above. Next, points that belong to the
lower dimensional skeleton of @Y will be consider more than once in the initial step.
Hence, in the following step we consider the .n�3/-skeleton of @Y and determine the
bounding chains according to the higher dimensional cells that contain it. We repeat
this process until we consider the 0-skeleton of @Y . The existence and properties of
�n�1 are established in the following lemma.

Lemma 3.4. There exists a geometric (singular) chain complex �n�1 2 Sn�1.M/

that may be represented as �n�1 D X0 C W n�1 C X1 such that W n�1 is a chain
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complex with @W D @X0 C @X1 and for all q 2 suppW n�1 (in its image in M ),
there exists v 2 @Y so that q 2 f �1.Hv/.

The proof of Lemma 3.4 follows the outline above where we will construct all
the singular chain complexes of W n�1 and the attaching maps. This argument uses
ideas from combinatorial topology and we postpone it until next section. We proceed
to establish Theorem 3.3, but first we remark that we are interested in the existence
of a geometric intersection (i.e., number of points in the set theoretical intersection)
between �n�1 and the maximal lift of `. Therefore we consider intersection num-
bers and homology with Z2 coefficients, thus avoiding heavier notational concerns
regarding orientation and leaving the proof simpler and more geometric.

Assuming �n�1 is constructed as in Lemma 3.4, we compute the intersection
number of �n�1 and the maximal lift of ` starting at q0 which we denote by � . We
claim that � must intersect �n�1 in another point besides q0 and we will show that it
is q1. First, we see that � is properly embedded in M . Indeed, if we decompose � as
�� ^ �C as the maximal lift of ` in the negative and positive direction, respectively,
starting at q0. It is then clear that �� and �C are not entirely contained in any compact
subset of M , otherwise the lift would not be maximal.

Now, the fact that �n�1 2 Sn�1.M/, i.e., a cycle and Hn�1.M/ D 0 implies
that there exists a bounding singular chain †n, with @†n D �n�1 and a compact
set K so that †n � K. Thus �n�1 is a representative of the trivial element in
Hn�1.M; M � K/. We also have that � 2 H1.M; M � K/ and from the fact that
intersection numbers depend only on the homology class, we have

#.�n�1; �/ D 0: (3.1)

Indeed, Hn�1.M; M � K/ D Hn�1.M=M � K/ and since †n � K, we have
�n�1 � 0 in Hn�1.M=M � K/ as well.

From Lemma 3.4 and by definition of intersection numbers, we can write (3.1) as
follows:

0 D #.�n�1; �/

D #.X0; �/ C #.W n�1; �/ C #.X1; �/

D 1 C 0 C #.X1; �/,
(3.2)

where the first term is 1 since f is a local diffeomorphism and the images of � and
Xi are orthogonal and the second term is zero since � \ W n�1 D ;. Therefore, it
must be that #.X1; �/ D 1. In particular, � \ X1 ¤ ; and by the choice of ", it must
be that � \ X1 D fq1g. For a geometric depiction see Figure 3.2.

Finally let ˛ � f �1.`/ be the path segment from q0 to q1. The image of ˛ is
a loop in ` that has a point Op 2 ` \ f .M/ that is furthest from p. Now it is clear
that f fails to be locally invertible at the corresponding pre-image of Op, giving us the
desired contradiction. Therefore f must be injective. �
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`

U1

�n�1

f �1.`/

U0

V

q0

q1

p

Figure 3.2. Construction of a closed chain complex �n�1 by revolving affine hyperplanes.

3.2. Reassemblage of hyperplanes and a chain complex construction. We now
establish Lemma 3.4, needed to complete the proof of Theorem 3.3. While outlining
the construction of �n�1 earlier, we encountered a key problem which simply put
is attributed to the lack of uniqueness on the choice of the path used to connect the
pre-images of a point in @Y . In our construction this is reflected as follows: although
each path may be defined continuously within a neighborhood of a fixed point, as
we consider the intersection of two neighborhoods there will possibly be two choices
of paths. We claim that whenever ambiguity occurs, we may use the hypotheses of
acyclicity of the pre-images of hyperplanes to define chain complexes to circumvent
this problem.

We do this by considering a triangulation of @Y with sufficiently small mesh to
be determined during the proof. Heuristically, we view a neighborhood of a generic
point as the top dimensional cell containing it and the triangulation will provide a
way to keep track of the intersection of the multiple neighborhoods. Let e.k/j be the
cells of such triangulation, where k D 0; : : : ; n � 2 denotes the dimension of each
cell and j 2 E.k/ � N is the indexing set of the k-cells. From the initial choice of
" > 0, we may also define an induced triangulation via the local diffeomorphism on
@X0 and @X1 with cells e.k/0

j and e.k/1
j , respectively.

We construct W n�1 in n � 1 steps which we enumerate from 0 to n � 2. In step k

we consider points in the .n � 2 � k/-skeleton of @Y , denoted by @Y.n�2�k/, and
show that the possibly multiply defined chains are obtained by looking at all the higher
dimensional cells containing such points and that these chains give rise to a cycle.
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Then by using the acyclicity hypotheses, we have that such cycle can be realized as
the boundary of another chain complex which will be the building blocks of W n�1.

Step 0. The initial process is analogous to what has been outlined before, but to
establish our notation we provide the formal argument. Given the initial triangulation
of @Y , take v 2 e.n�2/` and let ui be the pre-image of v in @Xi for i D 0; 1. From the
connectedness hypotheses of f �1.Hv/, there is a path W 1

`
.v/ � f �1.Hv/ joining

u0 to u1, that is, W 1
`

.v/ is a 1-chain with @W 1
`

.v/ D u0 C u1.
Next, we can continuously modify W 1

`
.v/ for all points in a neighborhood of

v 2 @Y . This follows because W 1
`

.v/ is compact and f is a local diffeomorphism.
By repeating this construction for every point in @Y , we obtain a cover of @Y from
which we extract a finite subcover as @Y is compact. Then take finitely many barycen-
tric subdivisions of @Y until its mesh is smaller than the minimum diameter of the
subcover.

Finally we redo the assignment of W 1
`

.v/ for each v 2 e.n � 2/` using the newly
obtained triangulation. This has the property that for each .n�2/-cell we may define
a .n � 1/-chain complex denoted by W 1

`
� e.n � 2/` from the continuous family of

paths for each ` 2 E.n � 3/.

Step 1. In this next step, we consider points in the .n � 3/-skeleton of @Y as these are
the points which we possibly assigned two different 1-chain complexes in the previous
step. For v 2 e.n�3/`, we may identify all the .n�2/-cells that contain e.n�3/` by
looking at the vertices of Lk.e.n � 3/`/. In this case, we have precisely two points as
e.n � 3/` belongs to exactly two top dimensional cells say, e.n � 2/1 and e.n � 2/2.
From the previous step, we constructed two possibly distinct chain complexes W 1

1 .v/

and W 1
2 .v/ contained f �1.Hv/ joining u0 to u1. If it is the case they are already the

same, we are done. Otherwise, consider the 1-chain U 1
`

.v/ D W 1
1 .v/ C W 1

2 .v/. We
claim U 1

`
.v/ is a cycle. Indeed, @U 1

`
.v/ D @W 1

1 .v/C@W 1
2 .v/ D u0Cu1Cu0Cu1 D

0, since we are using Z2-coefficients. From the hypotheses that f �1.Hv/ is acyclic,
we have that U 1

`
.v/ is the boundary of a 2-chain denoted by W 2

`
.v/.

Now, using the fact that f is a local diffeomorphism and W 2
`

.v/ is compact, we
can continuously define W 2

`
.u/ for all u in a neighborhood of v in @Y.n�3/. Note

that in this step we are only considering points in the .n � 3/-skeleton. Therefore
we obtain a cover of @Y.n�3/ which by compactness we extract a finite subcover.
Next, we iterate finitely many barycentric subdivisions of the triangulation on @Y

until its mesh is smaller than the minimum diameter of the subcover. We then redo
the construction of the chain complexes up to this point in steps 0 and 1 using the new
triangulation. We do this so the 2-chain complex defined above can be continuously
assigned for each point within a .n � 3/-cell and we obtain a .n � 1/-cell denoted by
W 2

`
� e.n � 3/` for each ` 2 E.n � 3/.

Step k. For a generic step k (1 < k � n � 2), we consider points in the .n � 2 � k/-
skeleton of @Y . For v 2 e.n � 2 � k/`, we look at the .n � 1 � k/-cells that contain
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e.n � 2 � k/`. This is the case because in the previous step k � 1, we have defined
k-chains W k

i .v/ over v these cells that v belong, for some i . A systematic way to
consider these cells is to look at the vertices of Lk.e.n � 2 � k/`/. Let us assume
that those are e.n � 1 � k/1; e.n � 1 � k/2; : : : ; e.n � 1 � k/j . We now define
U k

`
.v/ D W k

1 .v/ C � � � C W k
j .v/ � f �1.Hv/ and we claim that U k

`
.v/ is a cycle.

Indeed,

@U k
` .v/ D @

� jX
iD1

W k
i .v/

�
D

jX
iD1

@W k
i .v/

D
jX

iD1

U k�1
i .v/ D

X
`0

W k�1
`0 .v/;

(3.3)

where the chains U k�1
i .v/ were constructed in the previous step in a similar manner

and `0 corresponds to the index of all .n � k/-cells that contains v.
The chain U k�1

i .v/ is formed by looking at all the .n � k/-cells that contain
e.n � 1 � k/i and hence will contain e.n � 2 � k/`. Therefore, these .n � k/-cells
can also be determined by looking at the edges of Lk.e.n � 2 � k/`/. Observe that
for a fixed i , as we look at the chains of type W k�1

`0
.v/ that comprise U k�1

i .v/ we
can alternatively look at the collection of edges in Lk.e.n � 2 � k/`/ that make
up U k�1

i .v/ and the chains W k�1
`0

.v/ will be the vertices of such edges. However,
because each edge contains exactly two vertices, as we do this for all i each term in the
last summation in (3.3) appears twice. Since our computation uses Z2 coefficients,
we have (3.3) is zero establishing that U k

`
.v/ is a cycle.

Again, from the hypotheses that f �1.Hv/ is acyclic, we find a bounding .k C 1/-
chain W kC1

`
.v/ � f �1.Hv/ of U k

`
.v/, that is, @W kC1

`
.v/ D U k

`
.v/. Next, an

analogous argument as in step 1 is used to find a neighborhood of v in @Y.n�2�k/

where the assignment of W kC1
`

.v/ is continuous for all points within it. This follows

from the local diffeomorphism of f and compactness if W kC1
`

.v/. This induces a
cover of @Y.n�2�k/ and by compactness we extract a finite subcover. Finally, we
take finitely many barycentric subdivisions of @Y until the mesh is smaller than the
minimum diameter of the subcover.

Using the new triangulation, we repeat the assignment of the chain complexes in
each of the previous steps 0 through k. In particular, this defines W kC1

`
.v/ for all

points in e.n � 2 � k/` and by the modification argument indicated above, we obtain
a .n � 1/-chain denoted by W kC1

`
� e.n � 2 � k/` for each ` 2 E.n � 2 � k/.

Once we have completed all the n�1 steps, we put together the singular complexes
constructed from the .n � 1/-chains in each step by means of their attaching maps
along their common boundary which will be explicitly computed. In order to finish
the proof, we show that @W n�1 D @X0 C @X1 and thus once we attach X0 and X1

to the boundary we will have the cycle �n�1 we seek.
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We consider the decomposition of W n�1 from the .n � 1/-chains in each step,
that is,

W n�1 D
n�2X
kD0

X
`2E.n�2�k/

W kC1
`

� e.n � 2 � k/`: (3.4)

For simplicity, let Sk D P
`2E.n�2�k/ W kC1

`
� e.n � 2 � k/`, then @W n�1 DPn�2

kD0 @Sk . We now analyze each term separately. For k D 0,

@S0 D
�
@

X
`2E.n�2/

W 1
` � e.n � 2/`

�

D
X

`2E.n�2/

@W 1
` � e.n � 2/` C

X
`2E.n�2/

W 1
` � @e.n � 2/`

D
X

`2E.n�2/

.e.0/0
` C e.0/1

`/ � e.n � 2/` C
X

`2E.n�2/

X
jn�3

W 1
` � e.n � 3/jn�3

D @X0 C @X1 C
X

`2E.n�2/

X
jn�3

W 1
` � e.n � 3/jn�3

;

where jn�3 denotes the index of all .n � 3/-cells that belong to the boundary of
e.n � 2/`. In general, for 0 < k < n � 2,

@Sk D @
� X

`2E.n�2�k/

W kC1
`

� e.n � 2 � k/`

�

D
X

`2E.n�2�k/

@W kC1
`

� e.n � 2 � k/` C
X

`2E.n�2�k/

W kC1
`

� @e.n � 2 � k/`

D
X

`2E.n�2�k/

X
jn�1�k

W k
jn�1�k

� e.n � 1 � k/`

C
X

`2E.n�2�k/

X
jn�3�k

W kC1
`

� e.n � 3 � k/jn�3�k
;

where jn�1�k denotes the index of all .n � 1 � k/-cells that contain e.n � 2 � k/`

and jn�3�k denotes the index of all .n � 3 � k/-cells that belong to the boundary of
e.n � 3 � k/`. Finally, for k D n � 2,

@Sn�2 D @
� X

`2E.0/

W n�1
` � e.0/`

�

D
X

`2E.0/

@W n�1
` � e.0/` C

X
`2E.0/

W n�1
` � @e.0/`

D
X

`2E.0/

X
j1

W n�2
j1

� e.0/` C 0;
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where j1 denotes the index of all 1-cells that contain e.0/` in its boundary.
Observe that the second summation term of @Sk is the same as the first summation

term of SkC1 as we count each chain twice. Since we are using Z2-coefficients, (3.4)
simplifies to @W n�1 D @X0 C @X1.

Finally, from the construction of W n�1 we see that for each q 2 supp W n�1,
q 2 f �1.Hv/ for some v 2 @Y . This concludes the proof of Lemma 3.4. �

4. Surjectivity

In this section we consider the question of when a local diffeomorphism f W M ! Rn

is surjective, based on the topology of the pre-images of hyperplanes. The trivial
example of an inclusion map of the region between two planes satisfies Theorem 3.3
but it is not surjective. This indicates that further assumptions must be added. On the
other hand, we are able to eliminate the homological assumption on the domain.

Theorem 4.1. Let f W M ! Rn be a local diffeomorphism where M is a connected
manifold. If the pre-image of every affine hyperplane is non-empty and acyclic, then
f is surjective.

The proof is based on geometric constructions involving foliation theory and the
computation of linking numbers between certain singular chain complexes in the
range Rn. We remark that since the computation of linking numbers will occur in
Rn, it is not necessary to make any further assumptions on the homology groups of
M . This is unlike the situation in Theorem 3.3, where we assumed Hn�1.M/ D 0.

Combining Theorem 4.1 and Theorem 3.3, we obtain the following characteriza-
tion of Rn, for n � 2.

Theorem 4.2. A smooth connected manifold M is diffeomorphic to Rn if and only if
Hn�1.M/ D 0 and there exists a local diffeomorphism f W M ! Rn such that the
pre-image of every affine hyperplane is non-empty and acyclic.

4.1. Proof ofTheorem4.1. We establish surjectivity by showing that for each R > 0

the ball of radius R is fully contained in f .M/, that is, xB.0I R/ � f .M/. Since
translations do not change any of our hypotheses, let us assume that 0 2 f .M/ and
single out o 2 f �1.0/ � M .

Next, from the local diffeomorphism assumption, there exists " > 0 such that
xB.0I "/ � f .M/ and f �1.B.0I "// has a diffeomorphic component W n�1."/ which
contains o 2 M . Observe that for R � ", we trivially have xB.0I R/ � f .M/, so we
restrict ourselves to the case R > ".

We argue that we can find a way to expand B.0I "/ within the image of f so
that it will contain a ball of radius any R. To this end, we shall choose directions
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for this expansion as follows. For v 2 Sn�1, let Hv be the canonical codimension
one foliation of Rn by hyperplanes orthogonal to v. Since the leaf space of Hv

is homeomorphic to R, we parameterize the leaves of Hv by Hv.t/ where t is the
distance of the hyperplane Hv.t/ to the origin. Because Hv.t/ D H�v.�t /, we
will only consider t � 0. Let Nv D f �Hv be the pullback foliation of M which,
by definition, has the connected components of f �1 .Hv.t// as leaves. Since our
hypotheses states that the pre-images of hyperplanes are non-empty and connected,
the leaf space of Nv is homeomorphic to R and we then write Nv.t/ D f �1 .Hv.t//.
Next, we claim that for each v 2 Sn�1, we may find a global transversal �v to the
foliation Nv that may be used to expand the image of f . More precisely, we have
the following result.

Lemma 4.3. For each u 2 W n�1."/ with f .u/ D "v, v 2 Sn�1, there exists
a smooth path �v W Œ0; 1/ ! M with �v t Nv such that f

�
�v.t/

� 2 Hv.t/ for
t 2 Œ0; R�.

The proof follows directly from transverse modification arguments in foliation
theory (see [2]) and the fact that the leaves of Nv are non-empty and connected.

As we proceed with the proof of Theorem 4.1, let us fix a canonical identification
of Sn�1 to @B.0I "/ and W n�1."/. By applying Lemma 4.3, we obtain directions �v

from which to expand W n�1."/ up to �v \Nv.R/. Then for a fixed v, we can locally
modify �v so that we can carry an entire neighborhood of v in W n�1."/ along �v

using the compactness of �v

�
Œ0; R�

�
. Repeating this process for each v 2 W n�1."/,

we obtain a cover of W n�1."/. However, because there is no canonical choice for �v ,
points belonging to the intersection of two neighborhoods may have multiply defined
paths. Our approach will be similar to the one in Section 3. The key difference here
is that we also need to control how each neighborhood is pushed along the global
transversal �v .

Intuitively, we will push the cells of W n�1."/ along �v and possibly create broken
pieces at each instant t . Using the hypotheses that Nv.t/ is acyclic and f is a diffeo-
morphism we will define bounding chains filling the gaps in each leaf. Furthermore,
we will argue that these chain complexes constructed for s; t will be homologous,
hence we say that they are homologous relative to t . This process is depicted in
Figure 4.1 and it is stated precisely in the lemma below.

Lemma 4.4. For each R > 0, there exists a family of geometric (singular) chain
complexes W n�1.t/ that are homologous in Mn fog for t 2 .0; R� such that:

i) For t 2 .0; "�, W n�1.t/ D f �1
�
@B.0I t /

�
.

ii) If q 2 supp W n�1.t/, then q 2 Nv.t/ for some v 2 Sn�1.
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0

W n�1."/

W n�1.t/

�v

W n�1.R/

Figure 4.1. A local assemblage of chain complexes based on the triangulation of a sphere.

The proof of Lemma 4.4 uses combinatorial topology and foliation theory to
explicitly construct such cycles. Since the process is lengthy and rather technical, we
postpone it and continue with the proof of Theorem 4.1.

Our strategy to show that xB.0I R/ � f .M/ is by contradiction. Suppose there is
p … f .M /. We compute the linking number between p and f

�
W n�1.t/

� D Zn�1.t/

in two ways, yielding different values. This argument is similar to standard reasoning
in degree theory and is geometric in nature. As before, we work with Z2-coefficients.

Notice that since f is continuous, we have that Zn�1.t/ is a family of homologous
cycles in Rnn f0g. Then for t 2 .0; "�, Zn�1.t/ D @B.0I t / and we have that the origin
is contained in the inside of Zn�1."/, more precisely, the linking number between
the origin and Zn�1."/ is equal to 1.

From (ii) of Lemma 4.4, we have that 0 … Zn�1.t/ for each t 2 .0; R� and
as mentioned above, Zn�1.t/ � Zn�1.R/ in Rnn f0g. Therefore as intersection
numbers, thus linking numbers are invariant under the same homology class, we have

Lk.Zn�1.t/; 0/ D 1 for each " < t � R; (4.1)

where we consider the 0-normal cycle formed by the origin and a suitable point in
the complement of a compact set containing Zn�1.t/.

We claim that p is inside Zn�1.R/, that is, Lk.Zn�1.R/; p/ D 1. Indeed,
consider the segment Y 1 from 0 to p. We have that Y 1 \ Zn�1.R/ D ;, otherwise
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it would imply p 2 f .M/. By definition,

#.Zn�1.R/ � Y 1/ D #.Y 1 � Zn�1.R// D 0: (4.2)

Computing the linking number between the cycle Zn�1.R/ and @Y 1 using the
fact that @Y 1 is a normal 0-cycle, we have

0 D #.Y 1 � Zn�1.R// D Lk.@Y 1; Zn�1.R// D Lk.Zn�1.R/; @Y 1/

D Lk.Zn�1.R/; 0 � p/ D Lk.Zn�1.R/; 0/ � Lk.Zn�1.R/; p/:
(4.3)

Combining (4.3) and Lk.Zn�1.R/; 0/ D 1 we obtain

Lk.Zn�1.R/; p/ D 1: (4.4)

Observe that Zn�1."/ D @B.0I "/, hence Lk.Zn�1."/; p/ D 0. Finally, from the
assumption that p … f .M/, we have Zn�1.R/ � Zn�1."/ in Rn � fpg and again
by the invariance of linking numbers on the homology class we obtain

Lk.Zn�1.R/; p/ D Lk.Zn�1."/; p/ D 0: (4.5)

This is a contradiction, therefore it must be the case that p 2 f .M/ and hence f

is surjective. �

4.2. The construction of a family of homologous cycles. We now complete the
proof of Theorem 4.1 by establishing the technical proof of Lemma 4.4. We employ a
similar technique as in Section 3, that is, we use triangulations as a tool to keep track
of intersections in the coverings. For simplicity, let W n�1."/ D W and consider a
triangulation of W with cells e.k/`; k D 0; : : : ; n � 1 and ` 2 E.k/ � N where
E.k/ is the set of indexes of all the k-cells in W .

The idea of the construction of W n�1.t/ is in essence geometric, and can be
outlined as follows. Consider a triangulation with sufficiently small mesh. For each
top dimensional cell of W , we push it along a global transversal �v emanating from
one of its points up to the level R and use the local modification of �v for points within
the cell to push these points. The key issue is that a point v belonging to the boundary
of a top dimensional cell may be pushed along multiple choices of �v , one for each
top dimensional cell it belongs to. Hence the W n�1.t/ may not be well defined;
geometrically, this will create broken pieces at each level. However, by considering
the collections of cells that contain v, via the link of v, we will show that for each t ,
the multiply defined chain complexes form a cycle in the pre-image of Hv.t/. Thus
by acyclicity, we can fill these gaps with bounding chains. Furthermore, the process
will be done so it is homologous relative to t , that is, as we consider different chain
complexes for each t . Now, as we begin to formally describe W n�1.t/, we will do
so in steps enumerated from 0 to n � 1, outlined below.
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Step 0. For each point v 2 W , suppose v 2 e.n � 1/` for some ` 2 E.n � 1/.
From Lemma 4.3 we obtain a global transversal �v to the foliation Nv . We then
define the following 0-chains, that is, points where �v intersect the leaves of Nv . Let
W 0

`
.v; t/ D �v.t/ 2 Nv.t/ for t 2 Œ"; R�. By compactness of �v

�
Œ0; R�

�
and the fact

that f is a local diffeomorphism, there is a neighborhood Vv � M of �v

�
Œ0; R�

�
such

that we can continuously modify �v to obtain a global transversal �v0 for all v0 in a
neighborhood Ov � W of v, as depicted in Figure 4.2.

0

Ov

v

�v

Figure 4.2. Local modification of global transversals.

Then, by the compactness of W , we obtain a finite subcover of W from fOvg.
Now with such subcover, we iterate finitely many barycentric subdivisions of W until
its mesh is smaller than the minimum diameter of the subcover. In this process, we
obtain a new triangulation of W with the property that, for each v 2 e.n � 1/`, we
may continuously define �v for all points in e.n � 1/`. In fact, we define, for each
t 2 Œ"; R� and ` 2 E.n � 1/, a .n � 1/-chain denoted by W 0

`
.t/ � e.n � 1/` which is

topologically equivalent to W 0
`

.v; t/ � e.n � 1/` and varies continuously on t .

Step 1. Consider points v in the .n � 2/-skeleton of W . Suppose v 2 e.n � 2/`

for some ` 2 E.n � 2/. Then v belongs to the intersection of two .n � 1/-cells
that can be determined by looking at the vertices in Lk .e.n � 2/`/. Without loss of
generality let v 2 e.n�1/1 \ e.n�1/2. Then for each t 2 Œ"; R�, we have defined in
the previous step the points W 0

1 .v; t/; W 0
2 .v; t/ 2 Nv.t/ along path emanating from

each top dimensional cell. Now we can join such points by a path W 1
`

.v; t/ lying in
Nv.t/ as it is acyclic.

Once we construct W 1
`

.v; t/, we claim that it can be locally modified for all
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points in a neighborhood of .v; t/ in W.n�2/ � Œ"; R�. Indeed, for each v 2 W.n�2/

and t 2 Œ"; R�, the path W 1
`

.v; t/ is compact and hence we may find a neighborhood
U.v; t/ � M of W 1

`
.v; t/ such that the (local) gradient flow of the height function

fv W M ! Rn given by fv.x/ D hf .x/; vi can be used to continuously define
W 1

`
.v; t/ for nearby t . Also, the fact that f is a local diffeomorphism continuously

defines W 1
`

.v; t/ for all nearby v in W.n�2/.
The process above provides a cover fU.v; t/g of W.n�2/ � Œ"; R�. By compactness,

we may find a finite subcover which induces a cover of W . Indeed, in step 0 each
top dimensional cell is pushed diffeomorphically along the global transversal �v . We
can now iterate finitely many barycentric subdivisions of W so its mesh is smaller
than the minimum diameter of the subcover above restricted to W . Next, we repeat
all the constructions up to this point using the new triangulation. Observer that this
guarantees that each cell e.n � 2/` is contained in a member of the finite subcover.

Now let us consider a partition of Œ"; R� induced by this subcover, that is, we have
" D t0 < t1 < � � � < tN D R for some N 2 N. From the choice of subdivision we
can continuously modify W 1

`
.v; t/ for t 2 .ti ; tiC1/ and v 2 e.n�2/` by the argument

above. The key problem is that for the endpoint we may possibly have two chains
defined, each coming from the adjacent intervals. However, the fact that each leaf
of Nv is acyclic yields a similar construction as the transverse modification method
(see [2]) to ensure that whenever ambiguity occurs, the choice will be homologous
relative to t .

The details are as follows. For each i D i; : : : ; N � 1, let the two choices for
a bounding chain W 1

`
.v; ti / be W 1

`
.v; ti /

� and W 1
`

.v; ti /
C, where W 1

`
.v; ti /

� is
the chain defined continuously from W 1

`
.v; t/, t 2 .ti�1; ti / and the second one,

W 1
`

.v; ti /
C, is the chain defined continuously from W 1

`
.v; t/, t 2 .ti ; tiC1/. By

default, we agree to always choose W 1
`

.v; ti /
C. This will not be ambiguous because

we can choose either chain complex. Indeed, W 1
`

.v; ti /
� � W 1

`
.v; ti /

C since from
construction they have the same boundary and, by acyclicity of Nv.ti /, there is a
bounding chain contained in Nv.ti /. Finally, we must consider a new neighborhood
zU.v; ti / of such bounding chain where the restriction of f is a diffeomorphism. Doing
so for every v 2 W.n�2/ and i D 1; : : : ; N we obtain a new cover of W by adding
the collection of sets zU.v; ti / to the finite subcover considered up to this point. This
is done to ensure that the process will always yield chains homologous relative to
t . Then iterate finitely many barycentric subdivisions of W to obtain a triangulation
with mesh sufficiently small to define chains W 1

`
.v; t/ continuously for all points

v 2 e.n � 2/` for each ` and by construction these chains are homologous relative to
t with continuously varying bounding chains.

This adaptation of the transverse modification argument produces for each t 2
Œ"; R� and ` 2 E.n � 2/, a .n � 1/-chain complex denoted by W 1

`
.t/ � e.n � 2/`

which is topologically equivalent to W 1
`

.v; t/ � e.n � 2/`, v 2 e.n � 2/`, and is
homologous relative to t . This concludes step 1.
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Now we give the general procedure for 1 < k � n � 1.

Step k: Consider points in the .n�1�k/-skeleton of W . Suppose v 2 e.n�1�k/`

for some ` 2 E.n � 1 � k/. We are interested in identifying all the .n � k/-cells that
contain e.n � 1 � k/` in its boundary, i.e., that contain v. This can be accomplished
by looking at the vertices of Lk.e.n � 1 � k/`/. for simplicity, suppose that those are
e.n � k/1; e.n � k/2; : : : ; e.n � k/m for some m 2 N. For each t 2 Œ"; R�, consider
the .k � 1/-chain

W k�1
1 .v; t/ C � � � C W k�1

m .v; t/; (4.6)

where the chains W k�1
j .v; t/ were constructed in step k � 1. We claim that the

.k � 1/-chain in (4.6) is a cycle. Indeed,

@
� mX

j D1

W k�1
j .v; t/

�
D

mX
j D1

@W k�1
j .v; t/ D

mX
j D1

� X
`0

W k�2
`0 .v; t/

�
; (4.7)

where `0 corresponds to the index of all .n�kC1/-cells in W that contain e.n�1�k/`.
Now the argument is completely analogous to the one given in the injectivity case,
i.e, it follows from the observation that an edge contains exactly two vertices. Since
Nv.t/ is acyclic, there exists a k-chain W k

`
.v; t/ that bounds

Pm
j D1 W k�1

j .v; t/.

We now argue that the chain W k
`

.v; t/ may be continuously modified with respect
to v and within the same homology class relative to t . This is similar to the construction
as in step 1, except that we repeat it for each interval of the partition obtained in step
k � 1, so we omit the details. Finally, for each t 2 Œ"; R� and ` 2 E.n � 1 � k/, we
obtain a .n�1/-chain denoted by W k

`
.t/�e.n�1�k/` which for v 2 e.n�1�k/`,

is topologically equivalent to W k
`

.v; t/ � e.n � 1 � k/`, and is homologous relative
to the parameter t .

Remark 4.1. In the last step n�1, we consider the 0-skeleton of W which is discrete,
hence no further subdivisions are necessary.

Once all n steps are completed, for each t 2 Œ"; R�, we put together all the
constructed chain complexes via the obvious attaching maps based on the intersection
of the cells in W as indicated by their construction in each step. This defines W n�1.t/

as follows:

W n�1.t/ D
n�1X
kD0

X
`2E.n�1�k/

W k
` .t/ � e.n � 1 � k/`:

We observe that W n�1.t/ � W n�1.s/ in Mn fog for t; s 2 Œ"; R�. Indeed, by
construction if t; s 2 .ti�1; ti / for i D 1; : : : ; N , we can use the local gradient flow
of the corresponding height functions to continuously modify the chain W n�1.t/ to
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W n�1.s/, each chain W n�1�k
`

.t/�e.k/` at a time. Otherwise, the only problem is at
the end points ti , where again by construction, the chains of W n�1.ti / are homologous
in N.ti / D ˚

p 2 M jp 2 Nv.ti / for some v 2 Sn�1
�
, thus ensuring that W n�1.t/

are homologous in Mn fog.
It now remains to show that W n�1.t/ is a cycle in M . The computation be-

low is quite similar to the one done in Section 3. For simplicity, let Sk.t/ DP
`2E.n�1�k/ W k

`
.t/ � e.n � 1 � k/`, so that @W n�1.t/ D Pn�1

kD0 @Sk.t/.
Considering each term separately, we have for k D 0,

@S0.t/ D @
� X

`2E.n�1/

W 0
` .t/ � e.n � 1/`

�

D
X

`2E.n�1/

@W 0
` .t/ � e.n � 1/` C

X
`2E.n�1/

W 0
` .t/ � @e.n � 1/`

D 0 C
X

`2E.n�1/

X
jn�2

W 0
` � e.n � 2/jn�2

;

where jn�2 denotes the index of all .n � 2/-cells that belong to the boundary of
e.n � 1/`. In general, for 1 < k < n � 1,

@Sk.t/ D @
� X

`2E.n�1�k/

W k
` .t/ � e.n � 1 � k/`

�

D
X

`2E.n�1�k/

@W k
` .t/ � e.n � 1 � k/`

C
X

`2E.n�1�k/

W k
` .t/ � @e.n � 1 � k/`

D
X

`2E.n�1�k/

X
jn�k

W k�1
jn�k

.t/ � e.n � 1 � k/`

C
X

`2E.n�1�k/

X
jn�2�k

W k
` .t/ � e.n � 2 � k/jn�2�k

;

where jn�k denotes the index of all .n � k/-cells that contain e.n � 1 � k/` and
jn�2�k denotes the index of all .n � 2 � k/-cells that belong to the boundary of
e.n � 1 � k/`. Finally, for k D n � 1,

@Sn�1.t/ D @
� X

`2E.0/

W n�1
` .t/ � e.0/`

�

D
X

`2E.0/

@W n�1
` .t/ � e.0/` C

X
`2E.0/

W n�1
` .t/ � @e.0/`

D
X

`2E.0/

X
j1

W n�2
j1

.t/ � e.0/` C 0;
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where j1 denotes the index of all 1-cells that contain e.0/` in its boundary.
As we sum the terms in W n�1.t/, we see that the second summation term appear-

ing in @Sk.t/ coincided with the first summation in @SkC1.t/. Indeed, these terms
count the same objects twice, and hence we obtain zero (recall that we are working
with Z2 coefficients). Therefore W n�1.t/ is a cycle and this finishes the proof of
Lemma 4.4. �

5. Final remarks

Having obtained independent results on injectivity and surjectivity, we note that our
main result follows from Theorem 3.3 and Theorem 4.1. Recall

Theorem 1.1. A local diffeomorphism f W Rn ! Rn is bijective if and only if the
pre-image of every affine hyperplane is non-empty and acyclic.

We also have the following analytic condition that establishes whether a local
diffeomorphism is bijective. Given a complete Riemannian metric g on Rn and a
smooth function h W Rn ! R, the gradient of h relative to g, denoted by rgh, satisfies
gx.rgh; w/ D dhx.w/ for all w 2 Rn. Our analytic result is the following.

Corollary 5.1. A local diffeomorphism f W Rn ! Rn is bijective if for each v 2
Sn�1, there exists a complete metric gv on Rn such that

inf
x2Rn

jrgv fv.x/jgv
> 0: (5.0)

It is easy to see that such condition implies that the pre-images of hyperplanes are
acyclic, hence the result follows. We compare this result with the work in [7] where
we can now choose the metric to suit the unit vector. Finally, We can also state an
analytical result implying only injectivity.

Corollary 5.2. A local diffeomorphism f W Rn ! Rn is injective provided there
exists w 2 Sn�1 with the property that for each unit vector v perpendicular to w,
there exists a complete Riemannian metric gv on Rn such that

inf
x2Rn

kDf .x/�vkgv
> 0: (5.0)

Observe that in our injectivity results we did not need topological hypotheses on
the pre-image of every hyperplanes, hence the result holds.
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