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Stable classical groups and strongly torsion generated groups
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Abstract. Strongly torsion generated groups are those with a single normal generator, of arbitrary
finite order. They are useful for realizing sequences of abelian groups as homology groups.
Known examples include stable alternating groups and stable groups generated by elementary
matrices. Here the class of such groups is extended, by consideration of other stable classical
groups, including orthogonal and symplectic groups. Discussion of other “classical” groups
includes a similar result for the stable special automorphism group of a free group. Failure of
such a result for mapping class and braid groups is analyzed. It is also shown that the product
of finitely many strongly torsion generated groups is strongly torsion generated.
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1. Introduction

For n � 2, a group G is strongly n-torsion generated if there is an element gn 2 G
of order n such that the conjugates of gn generate G; that is, the normal closure
of gn is all of G. A group G is strongly torsion generated if it is strongly n-torsion
generated for every n � 2 [2], [7]. Surprisingly, such groups are sufficiently common
to generate all possible sequences of homology groups of perfect groups [7]. The
constructions of [7] are in the realm of combinatorial group theory; this poses the
question of finding “natural” examples of strongly torsion generated groups, which
we address here.

For example, since any finite simple group G is strongly p-torsion generated for
every primep dividing the order ofG, the stable alternating groupA1 of even finitary
permutations of a countable set is strongly torsion generated [2]; for,A1 is the direct
limit of the alternating groups Ak .
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Other historically important examples of strongly torsion generated groups in-
clude the subgroupE.R/ of the stable general linear group GL.R/ D dirlim GLk.R/
generated by all elementary matrices and the Steinberg groups St.R/, where R is an
associative ring with 1. These examples featured in the homology andK-theory real-
ization results of [2], [5], [6]. The historic examples typically arise from a sequence
of like groups Gk endowed with natural homomorphisms Gk ! GkC1 permitting
stabilization (that often respects the formation of homology groups, among other
properties) and the construction of the stable group lim�!Gk .

Now, stable alternating and general linear groups form part of a web of stable
“classical” linear and geometric groups that also involves braid and mapping class
groups, automorphism groups of free groups, and orthogonal and symplectic groups
(related as in the diagrams of [4], §1). They have topological features in common
too (see Remark 2.5 below). This all suggests that study of these other objects might
yield further examples. We explore each of these classes below – indeed, because of
recent work on torsion in these much-studied groups, new examples do result.

For automorphism groups of free groups and linear groups, the arguments pro-
ceed smoothly. There are well-known stabilizations (see Sections 2 and 3 for the
definitions), about which we obtain the following results.

Theorem 2.4. The special stable automorphism group SAut.F1/ of the countably
infinite free group, and the special stable outer automorphism group SOut.F1/, are
strongly torsion generated.

Theorem 3.2. For every form ring .R;ƒ/, every perfect central extension of the
perfect commutator subgroup EU.R;ƒ/ of U.R;ƒ/ is strongly torsion generated.

On the other hand, our analysis reveals a breakdown of the usual analogy between
automorphism groups of free groups and mapping class groups. Whereas the former
stabilize to yield a strongly torsion generated group, in the case of mapping class
groups we observe two contrasting phenomena. Certain mapping class groups �g;1
are well-known to stabilize with respect to increasing genus g (and, as with the classes
above, the stability is respected by the passage to homology groups); however, such
mapping class groups are torsion-free and therefore are not amenable to strong torsion
generation. For the mapping class groups �g that do contain torsion, we note some
unstable instances of strong p-torsion generators. By combining these with known
results on the existence of prime torsion in relation to genus, we deduce rigidity results
that forbid stabilization. These take the following form.

Corollary 4.6. Let m � 1, and let p be the largest prime factor of g.g�1/.2gC1/.
If

p � p
2g > 2mC 2

(and m � 2 if pjg), then the only homomorphism �g ! �gCm is the trivial homo-
morphism.
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Similar considerations apply to braid groups. In the cases of torsion, namely
the braid groups of the sphere and projective plane, there are vestigial, unstable,
results pertaining to strongly n-torsion generated groups. Because n depends on the
number of strands, these results on strong torsion generators lead to rigidity results
that preclude the possibility of stabilization. Hence, as with mapping class groups,
strongly torsion generated groups cannot arise, because where stable groups exist,
they must be torsion-free.

A final section shows that the product of (a finite number of) strongly torsion
generated groups is also strongly torsion generated, a fact applied in [6].
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stimulating conversations there. He would also like to thank Miguel Xicotencatl
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theorists Heng-Huat Chan, Andrew Granville and Greg Martin for remarks in relation
to Question 4.7 below. Refereeing comments have also contributed positively to the
exposition.

2. Automorphism groups of free groups

For n D 1; 2; : : : , write Fn for the free group of rank n, with automorphism group
abbreviated to Aut.Fn/. The action of Aut.Fn/ on the abelianization of Fn may be
regarded as a homomorphism from Aut.Fn/ to GLn.Z/ that factors through the outer
automorphism group Out.Fn/. The inverse images of the special linear group SLn.Z/
under these maps are normal subgroups denoted here by the special automorphism
group SAut.Fn/ and SOut.Fn/ respectively. (Other notations for SAut.Fn/ in the
literature include AutC.Fn/, although that notation invites confusion when the plus-
construction is applied to classifying spaces; and SAn, although here we work with
An too.) We thus have the following diagram of pullbacks and vertical inclusions.

SAut.Fn/ ��

��

SOut.Fn/ ��

��

SLn.Z/

��
Aut.Fn/ �� Out.Fn/ �� GLn.Z/.

�y �y

Because inner automorphisms of Fn are special, the canonical inclusion Aut.Fn/ ,!
Aut.FnC1/, given by trivial action on the final generator of FnC1, induces inclusions
SAut.Fn/ ,! SAut.FnC1/ and SOut.Fn/ ,! SOut.FnC1/. The colimits of these
sequences of inclusions are called Aut.F1/, SAut.F1/ and SOut.F1/, the stable
(or finitary, or finite type) automorphism groups of the free group on a countably
infinite set of generators.
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Lemma 2.1. For n � 3, SAut.Fn/ is the commutator subgroup of Aut.Fn/, and
SOut.Fn/ is the commutator subgroup of Out.Fn/.

Proof. By construction, SAut.Fn/ is normal in Aut.Fn/, and

Aut.Fn/=SAut.Fn/ Š Out.Fn/=SOut.Fn/ Š GLn.Z/=SLn.Z/ Š C2 .

Therefore Aut.Fn/ab and Out.Fn/ab contain at least two elements.
In the other direction, recall that the symmetric group †n embeds in Aut.Fn/ by

permuting the generators of the free group. From [8], Corollary 1, Aut.Fn/ is the
normal closure of †n, whence .†n/ab Š C2 maps onto Aut.Fn/ab.

We conclude that the abelianization of Aut.Fn/ has order 2, making SAut.Fn/
the commutator subgroup of Aut.Fn/. The epimorphism from Aut.Fn/ to Out.Fn/
induces an epimorphism of their abelianizations. Thus also Out.Fn/ab Š C2, and
SOut.Fn/ is the commutator subgroup of Out.Fn/. In effect, this is the same phe-
nomenon as An and SLn.Z/ (n � 3) being the commutator subgroups of †n and
GLn.Z/. �

It follows from the lemma above that SAut.F1/ is the commutator subgroup of
Aut.F1/, which is labelled E1 in [35].

Under the embedding of†n in Aut.Fn/, the sign of the permutation corresponds
to the determinant of the image of the automorphism in GLn.Z/. Therefore the
alternating group An is correspondingly embedded in SAut.Fn/.

Lemma 2.2. For n � 3, An normally generates SAut.Fn/.

Proof. We use the fact (e.g. [10]) that SAut.Fn/ is normally generated by the left
Nielsen automorphisms �ij , where �ij sends the i th generator ai of Fn to aiaj while
fixing all other generators. Let N denote the normal closure of An in SAut.Fn/.
Arguing as in the proof of [8], Proposition 1, we note that the 3-cycle .i j k/

conjugates �ij to �jk . Thus, in SAut.Fn/=N both �ij and �jk have the same image.
Consequently, the image of

�ik D Œ�ij ; �jk�

is trivial. Hence N D SAut.Fn/. �

Lemma 2.3. If a group G is the normal closure of a strongly m-torsion generated
subgroupH , then G is also strongly m-torsion generated.

Proof. Evidently, if H is normally generated by an element xm of order m, then so
is G. �

Since, from its simplicity for n � 5, An is strongly
Q
mi -torsion generated

whenever
P
mi � n and gcd.mi / D 1, it follows from the lemmas above that

SAut.Fn/ is too. This gives the first of the following conclusions.
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Theorem 2.4. The groups SAut.F1/ and SOut.F1/ are strongly torsion generated.

Proof. As noted in [7], any nontrivial quotient of a strongly torsion generated group
must again be strongly torsion generated, when the kernel is torsion-free. Hence
SOut.F1/, as the quotient of SAut.F1/ by the free group F1, is also strongly
torsion generated. �

Remark 2.5. It is a curious fact that the groupG D SAut.F1/ shares withG D A1
and G D E.R/ the striking property that not only is it strongly torsion generated,
but the plus-construction applied to its classifying space, BGC, is an infinite loop
space [28].

3. Classical linear groups

The case of the perfect commutator subgroup E.R/ of GL.R/ for an associative
ring R with unit was discussed in [2]. More generally, so as to embrace symplectic,
unitary and orthogonal groups, one can consider a ring .R;ƒ/with form parameterƒ
(as, for example, in [21]). Then the natural candidate for a strongly torsion generated
group in this context is the perfect commutator subgroup EU.R;ƒ/ ofU.R;ƒ/ [21],
(5.4.6).

One way to approach this is by means of generators and relations for EU2n.R;ƒ/
[21], (5.3B), in the spirit of [33]. The alternative treatment given here is perhaps more
illuminating.

Our aim is to apply the following, slight strengthening of a lemma of [7], as
observed in [5].

Lemma 3.1. Let H be a simple group that, for each n � 2, has a superperfect
subgroupLn possessing an element of order n. Suppose thatG is a group containing
H in such a way that the normal closure of H in G is G itself. Then every perfect
central extension of G is strongly torsion generated.

To this end we consider, as usual,H as the infinite alternating groupA1, withAn
hyperbolically embedded, viaEn.R/, in EU2n.R;ƒ/. (This is well-known not to be
the most efficient embedding, but suffices here.) Evidently, the off-diagonal entries
of permutation matrices lie in no proper ideal of R. Therefore, for no proper ideal
.a; �/ of .R;ƒ/ does the normal closure N of H in G D EU.R;ƒ/ lie in U.a; �/.
Accordingly, the Bass Sandwich Theorem for this situation [21], (5.4.10), dictates
that N has level .R;ƒ/, in other words that

EU.R;ƒ/ � N � U.R;ƒ/.
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Of course, becauseN lies in EU.R;ƒ/, we conclude thatN D EU.R;ƒ/, and have
the following result.

Theorem 3.2. For every form ring .R;ƒ/, every perfect central extension of the
perfect commutator subgroup EU.R;ƒ/ of U.R;ƒ/ is strongly torsion generated.

�

Thus in particular, the two extreme central extensions, EU.R;ƒ/ itself and its
universal central extension, the Steinberg group StU.R;ƒ/, are strongly torsion gen-
erated. In the case R D Z, the integral symplectic group Sp.Z/ and the commutator
subgroup O 0.Z/ (of index 4) of the integral orthogonal group O.Z/ are strongly
torsion generated.

4. Mapping class groups

Write S sg;r for (a copy of) an oriented smooth surface of genus g with s marked points
(often referred to as “punctures”) and r boundary components. Thus the boundary
@S sg;r of S sg;r consists of the disjoint union of r circles, where r � 0. The (pure)
mapping class group�sg;r is the discrete group of components of the topological group
DiffC.S sg;r/ of orientation-preserving diffeomorphisms of S sg;r that fix the marked
points and the boundary pointwise. Conventionally, the suffices r and s are often
omitted when zero.

For r � 1, there are some standard operations that enable one to vary the suffices.
For example, to pass from g to g C 1, glue a two-holed torus S01;2 to S sg;r , yield-
ing S sgC1;r . Extending diffeomorphisms by the identity produces a homomorphism
 W �sg;r ! �sgC1;r . In this way, we are able to obtain the stable mapping class group
lim
g!1�

s
g;r , so long as r � 1 [22]. The restriction r � 1 here is important for two

reasons, as follows.
First, as is well known, each group�sg;r is torsion-free when r � 1. It follows that

the stable group is also torsion-free, and hence cannot be a candidate for a strongly
torsion generated group.

Second, when r D 0 the group �sg;0 does indeed contain torsion. For example,
it is known that every finite group embeds in some �g D �0g;0 [20]. However, the
stabilization process described above requires r > 0. This prompts the question of
rigidity (considered for Aut.Fm/ ! Aut.Fn/ (m > n) in [8], and for �g ! �h
(g > h) in [25]): whether for suitable g; h there can exist a nontrivial map from �g
to �h. Of course, with stabilization in mind, the interesting cases have g < h. To
examine this issue, we begin by reworking a result of Glover and Mislin [12]. (Our
statement is easily seen to be equivalent to that of Harvey [24].) In this section, we
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find it convenient to use the notation, for an integer k,

"k D
´
1; k even,

0; k odd.

Lemma 4.1. �h contains an element of prime order 2a C 1 if and only if for some
k � 1

ka � h � k

�
aC 1

2

�
C "k .

Proof. First, recall that the only odd prime torsion in �1 D SL2.Z/ Š C4 �C2
C6

is 3-torsion, so that we may safely assume that h � 2. Then, [12], (3.3), asserts that
�h contains an element of prime order 2a C 1 if and only if for some u � 0 and
v 2 f�2; 0; 1; 2; 3; : : :g

h D u.2aC 1/C va.

We write this last expression as ka C u where k D 2u C v. When k is even, this
corresponds to all pairs .u; k � 2u/ with u D 0; : : : ; k

2
C 1; while for k odd we have

all pairs .u; k � 2u/ with u D 0; : : : ; k�1
2

. The result follows. �

It follows immediately from this result that there is a bound on the prime orders of
torsion elements, and hence that no �g can be strongly torsion generated. However,
partial strong torsion generation results are usually possible. Throughout, we draw
upon the observation that if an element x normally generates a group G, then its
image '.x/ must normally generate any homomorphic image '.G/ of G. For the
case of genus 2, we shall employ the following lemma (doubtless well-known).

Lemma 4.2. For n � 1, the principal congruence subgroup

KerŒGLn.Z/ �� GLn.Fp/�

contains no torsion coprime to p.

Proof. In D Ak D .In Cp�M/k , with � the maximal p-exponent of A� In, yields
that

kM D �p�
kX
iD2

�
k

i

�
p�.i�2/M i ,

which contradicts the choice of � when p − k. �

Theorem 4.3. (a) If both g � 3 and d divides g or g � 1 or 4g C 2, then �g is
strongly d -torsion generated.
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(b) Conversely, if �g is strongly d -torsion generated, then both g � 3 and d �
4g C 2, and the prime divisors p of d satisfy

�2"k
k

� p � 2g

k
� 1

for some integer k.

Proof. We first exclude the cases of low genus. �0 is trivial. For the cases g D 1; 2,
we recall that the greatest order of any torsion element of �g is precisely 4g C 2.
However, �1 Š SL2.Z/ Š C4 �C2

C6 has abelianization cyclic of order 12, so that
it cannot be normally generated by an element of smaller order.

The case of �2 is more subtle, and indeed is the subject of [29], where Mumford
shows that .�2/ab is cyclic of order 10 (whence d D 10 is the only possibility), and
that �2 is normally generated by a single, torsion-free element. [25] identifies an
element of order 10 in �2 that maps to the fourth power of Mumford’s generator of
.�2/ab, and therefore normally generates an index 2 subgroup of �2.

To contradict the supposition that �2 is normally generated by an element " of
order 10, we consider the canonical epimorphisms

�2
��� Sp4.Z/

��� Sp4.F2/,

and note that each of these groups must be normally generated by the image of ".
Now Sp4.F2/ Š S6, and by consideration of cycle lengths one sees that S6 contains
no element of order 10. Therefore the image of " has order 2 or 5. Now order 5 is
not possible, since any element of that order in S6 must be an even permutation, with
normal closure A6. Thus, ��."/ is an involution. Hence, in Sp4.Z/ �."/ has square
lying in Ker� . Because the kernel of � is the Torelli group, which is known to be
torsion-free, �."2/ is an element of order 5 in the congruence subgroup Ker� . Such
a possibility is denied by the lemma above.

When g � 3, the first assertion is a restatement of Theorems 4, 11 of [25] in
our language. (Note that the case d D 2 follows from Theorem 11 rather than from
Theorem 4.)

The converse claim uses our low-genus discussion. The condition d � 4g C 2

is due to [23], while the inequalities for prime divisors follow from Lemma 4.1
above. �

Since for g � 3 this result affords distinct prime orders of elements that normally
generate�g , and whose images therefore generate .�g/ab, an elementary consequence
is the famous result of [31] that �g is a perfect group. However, that result is already
used in the reasoning of [25] cited in our argument above. The first cases left open by
the theorem above are whether �3 is strongly 6-torsion generated, and (for d prime)
whether �5 is strongly 3-torsion generated.
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Theorem 4.4. Consider the set of homomorphisms �g ! �gCm where g 2 N,
m 2 Z.

(a) [25] If m < 0, then there is only the trivial homomorphism.

(b) If m D 0 or g � 2, then there are nontrivial homomorphisms.

(c) Suppose that g � 3; m � 1. Then the only homomorphism �g ! �gCm is the
trivial homomorphism, provided that at least one of the following holds.

(i) g � 1 D pu with prime p > 2.mC uC 2/;

(ii) g D pv with prime p > 2.mC v C 1/, and m � 2;

(iii) 2g C 1 D pw with prime p > mC w C 1.

Proof. (a) is the rigidity result of Harvey and Korkmaz [25], Theorem 7. For (b),
when m D 0 the identity homomorphism is always available, while both �1 and �2
have quotients of order 2. Since for all h � 1, �h contains an involution, there are
always nontrivial homomorphisms �g ! �h when the domain is �1 or �2.

To obtain (c), we apply Theorem 4.3 above. Here is the argument in case (i) (with
(ii) and (iii) similar). By (4.3) (a), �g is strongly p-torsion generated. It therefore
suffices to use (4.3) (b) to show that �gCm contains no element of order p. This
means contradicting the possibility that for some integer k we have

�2"k
k

� p � 2.g Cm/

k
� 1.

On multiplying by k, substituting g � 1 D pu, and adding 2 throughout, we can
rewrite this as

2 � 2"k � .k � 2u/p � 2m � k C 2.

The left-hand inequality gives k � 2u C 1. In conjunction with the right-hand
inequality, this yields that

p � 1 � .k � 2u/.p � 1/ D .k � 2u/p � k C 2u � 2mC 2C 2u,

in defiance of our further hypothesis. �

Evidently, for a given positivem, the theorem shows that there are infinitely many
values of g forcing triviality of �g ! �gCm. This prompts the following conjecture.

Conjecture 4.5. Given a positive integerm, then for all sufficiently large g the only
homomorphism �g ! �gCm is the trivial homomorphism.

From the previous theorem, we may deduce a number-theoretic condition that is
sufficient for affirmation.
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Corollary 4.6. Letm � 1, and let p be the largest prime factor of g.g�1/.2gC1/.
If

p � p
2g > 2mC 2

(and m � 2 if pjg), then the only homomorphism �g ! �gCm is the trivial homo-
morphism.

Proof. Again we give details only for the case where g � 1 D pu, the other two
possibilities being similar. From the inequality above,

.p � .2mC 2//2 > .
p
2g/2 D 2puC 2 ;

so that

.p � .2mC 2C u//2 > 2C 2u.2mC 2/C u2

> .uC 2/2 ,

which implies that p > 2.m C u C 2/ and thus we are in case (i) of the previous
theorem. �

We therefore turn the following question over to the number-theorists...

Question 4.7. Let A.n/ denote the largest prime factor of n.n� 1/.2nC 1/, and let
B.n/DA.n/�p

2n. Given k > 0, what is the density of the set fn 2 N jB.n/ < kg?

In view of the preceding corollary, were this set finite, it would imply Conjec-
ture 4.5. However, the following argument shows that such is not the case.

Proposition 4.8. For any k 2 R, the set fn 2 N j B.n/ < kg is infinite.

Proof. For r � 0, define �
ur
vr

�
D

�
5 4

6 5

�r �
1

1

�
:

Since
�
5 4
6 5

�
commutes with

�
0 2
3 0

�
, we have

�
ur 2vr
vr 3ur

�
D

�
5 4

6 5

�r �
1 2

1 3

�
2 SL2.Z/.

(In fact, .2vr ; ur/ is the 2r th convergent in the continued fraction representation forp
6.) ThenA.v2r / is the largest prime factor of v2r .vr�1/.vrC1/3u2r and so bounded

above by vr C 1. This leaves

B.v2r / � 1 � vr.
p
2 � 1/ ! �1 as r ! 1: �
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This assertion also follows from [1]. Moreover, the conjecture (1.4) of [27]
indicates that the likely answer to Question 4.7 is .1 � log2/3 D 0:0288928 : : : .

The contrast with the situation for mapping class groups of surfaces with boundary
is stark, as follows.

Lemma 4.9. For g � 2 and r D 1, the homomorphism  W �g;r ! �gC1;r has
�gC1;r as the normal closure of the image of  .

Proof. The result follows readily from the presentation of �g;r found in [36], Theo-
rem 10. Specifically, all generators there are mapped under  to their namesakes in
�gC1;r , whose presentation contains the further generators eg ; agC1. They commute
with all other generators except for the braid relations

agegag D egageg ; agC1egagC1 D egagC1eg :

The former shows that eg lies in the normal closure of ag and so of Im , while the
latter in turn forces agC1 also to lie in the normal closure. �

Note that we have deliberately phrased the assertion of the lemma above so as to
provoke the question as to whether it is also valid when r > 1.

These results enable us to show that the obvious candidate for stabilization also
fails for the subgroupKg of�g;1 comprising the kernel of the capping homomorphism
�g;1 ! �g .

Lemma 4.10. Given a map of group extensions

N �� ��

��

G

��

�� �� Q

��
N1 �� �� G1 �� �� Q1;

if the image of G in G1 normally generates G1, then the image ofQ inQ1 normally
generatesQ1. The converse holds provided also that the image ofN inN1 normally
generates N1. �

Now, suppose that  W �g;1 ! �gC1;1 were to restrict to a homomorphism  j
from Kg to KgC1. Consequently,  would induce a homomorphism

N W �g Š �g;1=Kg �! �gC1
making commutative the diagram

Kg �� ��

 j
��

�g;1 �� ��

 

��

�g

N 
��

KgC1 �� �� �gC1;1 �� �� �gC1.



920 A. J. Berrick and M. Matthey CMH

Now suppose that g � 2. Then, by the last lemma, the image of  cannot lie in
KgC1. Thus, N is nontrivial. However, under the further assumption that 2g C 1 is
a prime at least 7, this is contradicted by the theorem above. We conclude that there
are infinitely many values of g for which a restriction j W Kg ! KgC1 fails to exist.

5. Braid groups

The braid groups of interest here are of course those that contain some torsion, namely,
after [34], those of the 2-sphere and the real projective plane. Presentations of these
groups are displayed in [30].

Sphere. The n-braid group Bn.S2/ D �n0;0 is a quotient of the classical Artin braid
group, of braids on the disc. It is well-known to be torsion-generated, and in fact
generated by just two torsion elements [14], namely ˛0, ˛1 as defined in Murasugi’s
theorem ((b) below). (Here, the cycle type of a braid refers to that of its corresponding
induced permutation of its nodes, and �i is the usual generator passing the i th strand
over the .i C 1/ st.)

Theorem 5.1. (a) [9]Bn.S2/ has the presentation with generators �i .1 � i � n�1/
and relations

�i�j D �j�i ; 1 < i C 1 < j < n;

�i�iC1�i D �iC1�i�iC1; 1 � i � n � 2;
�1 : : : �n�2�2n�1�n�2 : : : �1 D 1:

(b) [30] For n � 3, each torsion element of Bn.S2/ is conjugate to a power of
one of the following:

� ˛0 D �1 : : : �n�1 of order 2n, with cycle type .n/;

� ˛1 D �1 : : : �n�2�2n�1 of order 2.n � 1/, with cycle type .n � 1; 1/;
� ˛2 D �1 : : : �n�3�2n�2 of order 2.n � 2/, with cycle type .n � 2; 1; 1/.

A simple, no doubt known, consequence is the following, reminiscent of Theo-
rem 4.4 above.

Corollary 5.2. Let n � 4.

(a)Adjoininga free stranddoes not induceahomomorphismBn.S2/ ! BnC1.S2/.
(b) Doubling a strand does not induce a homomorphism Bn.S

2/ ! BnC1.S2/.
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Proof. (a) By the above result, if such a homomorphism existed, then it would send
˛2 to an element of finite order having cycle type .n � 2; 1; 1; 1/. However, by the
theorem again (or (4.8) in [11]), any element with such a cycle type must have infinite
order.

(b) Similarly, there is some conjugate of ˛2, necessarily of the same cycle type
.n � 2; 1; 1/, such that the doubled strand is one of the two that is stable under the
associated permutation. In that case, we again have the contradiction that its image
has finite order dividing 2.n�2/, but is of cycle type .n�2; 1; 1; 1/ and so of infinite
order in BnC1.S2/. (For a fuller discussion of the interaction between doubling,
deleting and permutations, see [3].) �

Thus, as with mapping class groups, the motto is that torsion prohibits stabi-
lization. On the other hand, at the non-stable level we can salvage the following
information. For this result and its corollary, we use the obvious fact that in Bn.S2/

�n�1 D ˛�1
0 ˛1

and, from the defining relator �1 : : : �n�2�2n�1�n�2 : : : �1 ,

˛0 D ��1
1 : : : ��1

n�1 .

A quick induction then shows that, for all i with 2 � i � n � 1,

�i�1 D ˛�1
0 �i˛0 . (*)

Proposition 5.3. The normal closure of ˛1 in Bn.S2/ has index gcd.n; 2/. In par-
ticular, for n odd, Bn.S2/ is strongly 2.n � 1/-torsion generated.

Proof. Write N�i to indicate the image of �i in the quotient of Bn.S2/ by the normal
closure of˛1. From the relations above, every N�i D ˛�1

0 . On the one hand, this makes
the quotient group cyclic (generated by ˛0), and thus a quotient of .Bn.S2//ab Š
C2.n�1/ (the isomorphism being evident from the defining relations for Bn.S2/).

On the other, the defining expression for ˛0 reduces to ˛0 D ˛
�.n�1/
0 . The result

follows. �

This leads to another counterpart of the rigidity result Theorem 4.4. Note that the
permutation associated to any n-braid gives rise to the nontrivial homomorphism, for
any r ,

Bn.S
2/ �� †n �� C2

Š��! Z.BnCr.S2// ,�! BnCr.S2/ .

In certain circumstances, this is the unique nontrivial homomorphism from Bn.S
2/

to BnCr.S2/. Here is an example.
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Corollary 5.4. Let k; r be integers with k; kCr � 1, and suppose that k is coprime to
each of r�1, r and rC1 (see Remark below). Then the image of any homomorphism
BkC1.S2/ ! BkCrC1.S2/ lies in Z.BkCrC1.S2// Š C2.

Remark. To have k coprime to r and r ˙ 1, a necessary condition is that k �
˙1 .mod 6/; while a sufficient condition is that also r � ˙2 or ˙3 .mod k/.

Proof. Since the only torsion in Bm.S2/ divides 2m, 2.m� 1/ or 2.m� 2/ [11], the
order of the image N̨1 of ˛1 is at most 2. That forces N̨1 to lie in Z.BkCrC1.S2// (the
unique subgroup of order 2 [11]). Since ˛0 D ˛1�k , we obtain by induction from
equation (*) that, for all i with 2 � i � k, N�i D N�k . Again, the fact that the image is
thereby cyclic makes it a quotient of C2k . The defining expression for ˛1 now yields
that N̨1 D N�kC1

1 , so that N�2.kC1/
1 D 1. Combining these two facts gives N�21 D 1; and

hence the image of BkC1.S2/ is of order at most 2. �

Projective plane. As one might expect, despite similarities with the spherical case,
now there is a complication according to parity. We thus find it convenient to write
n0 for the greatest odd integer not exceeding n. Here is a compilation of the facts that
we use.

Theorem 5.5. Let n � 2.

(a) [30] Bn.P 2/ has the presentation with generators �i ; 	i .1 � i � n� 1/ and
	n, and relations

�i�j D �j�i ; 1 < i C 1 < j < n;

�i�iC1�i D �iC1�i�iC1; 1 � i � n � 2;
�i	j D 	j�i ; 1 < i C 1 < j � n or 1 � j < i < n;

	i D �i	iC1�i ; 1 � i � n � 1;
	�1
iC1	�1

i 	iC1	i D �2i ; 1 � i � n � 1;
�1 : : : �n�2�2n�1�n�2 : : : �1 D 	21:

(b) (i) [30], [13] The element

˛n D
´
�1 : : : �n�1; n odd,

�1 : : : �n�1�1; n even

has order 2n0.
(ii) [13] The centre Z.Bn.P

2// is generated by the unique element .˛n/n
0

of
Bn.P

2/ of order 2.
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(iii) [13] A natural number k is the order of an element of Bn.P 2/ if and only if
kj4n or kj4.n � 1/.

(c) [18] The commutator subgroup of Bn.P 2/ is the normal closure in Bn.P 2/ of
˛n, and Bn.P 2/ab Š C2 � C2.

Although we do not claim that Bn.P 2/ is strongly k-torsion generated for any
value of k, nevertheless the above information suffices to establish the following
rigidity result, comparable to (5.4) above.

Proposition 5.6. For n � 3, the only nontrivial homomorphism from Bn.P
2/ to

Bm.P
2/ is

Bn.P
2/ �� †n �� C2

Š��! Z.Bm.P
2// ,�! Bm.P

2/ ,

provided gcd.n0; m/ D gcd.n0; m � 1/ D 1.

Proof. The numerical conditions guarantee that, from (b) in the previous result, ˛n
must have image of order at most 2, and so be central in Bm.P 2/. We now use the
relations of (a) above. Because the images of �1 and˛n commute, while �1 commutes
with all �i with i ¤ 2, it follows that the images of �1 and �2 commute. The braid
relation between �1 and �2 then forces that N�1 D N�2 (again using the overline to
denote images), and thereby

N�1 D � � � D N�n�1.

Now N	n commutes with N�1 (since n � 3), and therefore with each N�i , and so with
N�n�1 N	n N�n�1 D N	n�1. Hence,

N�2n�1 D Œ N	�1
n ; N	�1

n�1� D 1.

Therefore, N̨n D 1. So, from (c) above, the image of the homomorphism must be a
nontrivial quotient of C2 � C2. However, since Bm.P 2/ contains a unique element
of order 2, the displayed homomorphism is the only possibility. �

Observe that the proposition above fails for n D 2, since the numerical conditions
allow the identity map on B2.P 2/.

The same argument as in the proof above may be applied to any finite 2-group
quotient of Bn.P 2/ (n � 3).

Corollary 5.7. For n � 3, the only nontrivial finite 2-group quotients of Bn.P 2/ are
C2 and C2 � C2.
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Proof. First, observe that if the quotient fails to be abelian, and so a quotient of
Bn.P

2/ab Š C2 �C2, then the image N̨n of ˛n has order 2. Therefore, N̨n D . N̨n/n0

,
which is the image of the unique element of Bn.P 2/ of order 2, and so central in the
quotient. However, as in the proof above, this leads to a contradiction. �

In contrast, note that B2.P 2/ is the generalized quaternion group of order 16
[34], p. 87, and so also stands in contrast to the next two consequences. The results
above compare interestingly with recent investigations of Goncalves and Guaschi
concerning quaternion subgroups of braid groups [16], [17].

Corollary 5.8. For n � 3, the only nontrivial nilpotent quotients of Bn.P 2/ are C2
and C2 � C2.

Proof. Since Bn.P 2/ is finitely generated with finite abelianization, any nilpotent
quotient must be finite [32], p. 127. Since Bn.P 2/ab Š C2 � C2, such a finite
quotient can only be a 2-group, whence the previous corollary applies. �

In particular, there is no nilpotent quotient of class 2; so, the following is imme-
diate.

Corollary 5.9. For n � 3, the lower central series of Bn.P 2/ terminates at the
commutator subgroup 
2.Bn.P 2//. �

By means of routine computations along the lines of the proof of Theorem 1.4 of
[15], one can strengthen this result, for n � 5, as follows.

Proposition 5.10. For n � 5, the derived series of Bn.P 2/ terminates at the com-
mutator subgroup .Bn.P 2//0. �

The same result was proved for the braid groups of the disc in [19] and of the
sphere in [15].

6. Products of strongly torsion generated groups

In this section we further enlarge the class of known strongly torsion generated groups
by establishing that a finite product of strongly torsion generated groups is strongly
torsion generated. We also highlight the problems with attempts to extend to infinite
products.

We begin with a more general result.



Vol. 84 (2009) Stable classical and stg groups 925

Proposition 6.1. Let I be a finite, nonempty indexing set and let n � 2 be an integer.
Suppose given for each i 2 I an integermi � 2 which is prime to n, and a groupGi
which is strongly mi -torsion generated and strongly n-torsion generated. Then the
cartesian product group

Q
i2I Gi is strongly n-torsion generated.

Proof. For each i , letgi ; hi 2 Gi be normal generators of ordern andmi respectively,
and consider the element g WD .gi /i2I of the product groupG WD Q

i2I Gi . Clearly,
g is of order n and we intend to show that it is a normal generator of G. For the sake
of readability, we consider eachGi as a subgroup ofG, in the obvious way. Now, we
fix i 2 I and we claim that

hhg ii 	 f xn j x 2 Gig :
Fix an element x 2 Gi . Since gi is a normal generator of Gi , there exist elements
y1; : : : ; ys 2 Gi (for some s � 1) such that

x D y1giy
�1
1 : : : ysgiy

�1
s

in Gi , hence in G. It follows that the element

y1gy
�1
1 : : : ysgy

�1
s

of G has x as i th component, and gsj as j th component for every j 2 I distinct
from i . As a consequence, using that gnj D e for each j , we get

hhg ii 3 .y1gy�1
1 : : : ysgy

�1
s /n D xn ;

as claimed. We keep i 2 I fixed. From this claim, we get that hni 2 hhg ii. Since
n is prime to mi , it follows from Bézout’s Theorem that hh hni iiGi

D hh hi iiGi
, and

therefore,
hhg ii 	 hh hni iiG D hh hni iiGi

D hh hi iiGi
D Gi :

Since this holds for every i 2 I , and I is finite, we infer that hhg ii D G, completing
the proof. �

The next corollary is an immediate consequence of the proposition.

Corollary 6.2. A finite cartesian product of strongly torsion generated groups is
strongly torsion generated. �

The above result is applied in [6].

Remark 6.3. If fGigi2I is an infinite collection of groups, then, their restricted
product G WD Q0

i2I Gi is the subgroup of the cartesian product
Q
i2I Gi consisting
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of the elements with finite support, i.e. those elements .gi /i2I with gi D e for almost
all i 2 I . Note that G is the filtered colimit of the finite products

Q
i2J Gi , with J

running over the finite subsets of I . Now, suppose that eachGi is nontrivial. Plainly,
any finite subset F of G is contained in some finite subproduct H WD Q

i2J Gi
of G, i.e. with J 
 I finite; as a consequence, the normal closure hhF iiG is also
contained in H . In particular, G is not finitely normally generated. This shows that
an infinite restricted product of strongly torsion generated groups is never strongly
torsion generated. Combined with Corollary 6.2, this implies that strongly torsion
generated groups are not closed under filtered colimits.

Example 6.4. We finally discuss the (unrestricted) cartesian product of strongly
torsion generated groups, in particular the key example of

Q
i2N A1. (As revealed

in previous sections of this note, one reason for the importance of A1 as a strongly
torsion generated group is that it normally generates a number of other classical
groups, and so, by Lemma 2.3, makes them also strongly torsion generated.)

We show that
Q
i2N A1 fails to be strongly 2-torsion generated (the argument

clearly generalizes). To see this, recall the well-known fact that the involutions in
A1 are precisely the conjugates in A1 of products of disjoint transpositions, each
of which is conjugate in A1 to some

ak D .1 2/.3 4/ : : : .4k � 3 4k � 2/.4k � 1 4k/ 2 A4k 
 A1 .

Moreover, no two distinct ak are conjugate; in fact, amk is the product ofm conjugates
of ak , and cannot be expressed as the product of fewer than m conjugates of ak .

Now consider an arbitrary involution g D .gi /i 2 Q
i2N A1 , where we may

assume that each gi is conjugate to aki
for some sequence k1; k2; : : : It follows that

the element aiki
is the product of at least i conjugates of gi ; so the length of the

product increases unboundedly as i increases. Hence, .aiki
/i cannot be expressed as

a product of a finite number of conjugates of g, and so lies outside the normal closure
of g.
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