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1. Introduction

Little is known about the finiteness properties of SLn.ZŒt �/ for arbitrary n.
In 1959 Nagao proved that if k is a field then SL2.kŒt �/ is a free product with amal-

gamation [Na]. It follows from his description that SL2.ZŒt �/ and its abelianization
are not finitely generated.

In 1977 Suslin proved that when n � 3; SLn.ZŒt �/ is finitely generated by ele-
mentary matrices [Su]. It follows that H1.SLn.ZŒt �/; Z/ is trivial when n � 3.

More recent, Krstić and McCool proved in [Kr-Mc] that SL3.ZŒt �/ is not finitely
presented.

In this paper we provide a generalization of the results of Nagao and Krstić–
McCool mentioned above for the groups SLn.ZŒt �/.

Theorem 1. If n � 2, then SLn.ZŒt �/ is not of type FPn�1.

Recall that a group � is of type FPm if there exists a projective resolution of Z as
the trivial Z� module

Pm ! Pm�1 ! � � � ! P1 ! P0 ! Z ! 0

where each Pi is a finitely generated, projective Z� module.
In particular, Theorem 1 implies that there is no K.SLn.ZŒt �/; 1/ with finite .n�1/-

skeleton, where K.G; 1/ is the Eilenberg–Mac Lane space for G.

�Supported in part by an N.S.F. Grant DMS-0604885.
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1.1. Outline of the paper. The general outline of this paper is modelled on the
proofs in [Bu-Wo1] and [Bu-Wo2], though some important modifications have to be
made to carry out the proof in this setting.

As in [Bu-Wo1] and [Bu-Wo2], our approach is to apply Brown’s filtration cri-
terion [Br1]. Here we will examine the action of SLn.ZŒt �/ on the locally infinite
Euclidean building for SLn.Q..t�1///. In Section 2 we will show that the infinite
groups that arise as cell stabilizers for this action are of type FPm for all m, which is
a technical condition that is needed for our application of Brown’s criterion.

In Section 3 we will demonstrate the existence of a family of diagonal matrices that
will imply the existence of a “nice” isometrically embedded codimension 1 Euclidean
space in the building for SLn.Q..t�1///. In [Bu-Wo1] analogous families of diagonal
matrices were constructed using some standard results from the theory of algebraic
groups over locally compact fields. Because Q..t�1// is not locally compact, our
treatment in Section 3 is quite a bit more hands on.

Section 4 contains the main body of our proof. We use translates of portions of
the codimension 1 Euclidean subspace found in Section 3 to construct spheres in the
Euclidean building for SLn.Q..t�1/// (also of codimension 1). These spheres will
lie “near” an orbit of SLn.ZŒt �/, but will be nonzero in the homology of cells “not as
near” the same SLn.ZŒt �/ orbit. Theorem 1 will then follow from Brown’s criterion.

1.2. Background material. Our proof relies heavily on the geometry of the Eu-
clidean and spherical buildings for SLn.Q..t�1///. A good source of information
for the former topic is Chapter 6 of [Br2]. For the latter, we recommend Chapter 5
of [Ti].

2. Stabilizers

Lemma 2. If X is the Euclidean building for SLn.Q..t�1///, then the SLn.ZŒt �/

stabilizers of cells in X are FPm for all m.

Proof. Let x0 2 X be the vertex stabilized by SLn.QŒŒt�1��/. We denote a diagonal
matrix in GLn.Q..t�1/// with entries s1; s2; : : : ; sn 2 Q..t�1//� by D.s1; s2; : : : ; sn/,
and we let S � X be the sector based at x0 and containing vertices of the form
D.tm1 ; tm2 ; : : : ; tmn/x0 where each mi 2 Z and m1 � m2 � � � � � mn.

The sector S is a fundamental domain for the action of SLn.QŒt �/ on X (see
[So]). In particular, for any vertex z 2 X , there is some h0

z 2 SLn.QŒt �/ and some
integers m1 � m2 � � � � � mn with z D h0

zDz.tm1 ; tm2 ; : : : ; tmn/x0. We let
hz D h0

zDz.tm1 ; tm2 ; : : : ; tmn/:

For any N 2 N, let WN be the .N C 1/-dimensional vector space

WN D f p.t/ 2 CŒt � j deg
�
p.t/

� � N g



Vol. 85 (2010) SLn.ZŒt �/ is not FPn�1 153

which is endowed with the obvious Q�structure. If N1; : : : ; Nn2 in N are arbitrary
then let

GfN1;:::;N
n2 g D ˚

x 2 Qn2

iD1 WNi
j det.x/ D 1

�

where det.x/ is a polynomial in the coordinates of x: To be more precise this is
obtained from the usual determinant function when one considers the usual n � n

matrix presentation of x; and calculates the determinant in Matn.CŒt �/:

For our choice of vertex z 2 X above, the stabilizer of z in SLn.Q..t�1///

equals hzSLn.QŒŒt�1��/h�1
z :And with our fixed choice of hz , there clearly exist some

N z
i 2 N such that the stabilizer of the vertex z in SLn.QŒt �/ is GfN z

1
;:::;N z

n2
g.Q/.

Furthermore, conditions on N z
i force a group structure on Gz D GfN z

1
;:::;N z

n2
g: There-

fore, the stabilizer of z in SLn.QŒt �/ is the Q�points of the affine Q-group Gz , and
the stabilizer of z in SLn.ZŒt �/ is Gz.Z/.

The action of SLn.QŒt �/ on X is type preserving, so if � � S is a simplex with
vertices z1; z2; : : : ; zm, then the stabilizer of � in SLn.ZŒt �/ is simply

�
Gz1

\ � � � \ Gzm

�
.Z/:

That is, the stabilizer of � in SLn.ZŒt �/ is an arithmetic group, and Borel–Serre proved
that any such group is FPm for all m [Bo-Se]. �

3. Polynomial points of tori

This section is devoted exclusively to a proof of the following

Proposition 3. There is a group A � SLn.ZŒt �/ such that the following holds:

(i) A Š Zn�1.

(ii) There is some g 2 SLn.Q..t�1/// such that gAg�1 is a group of diagonal
matrices.

(iii) No nontrivial element of A fixes a point in the Euclidean building for
SLn.Q..t�1///.

The proof of this proposition is modelled on a classical approach to finding diag-
onalizable subgroups of SLn.Z/. The proof will take a few steps.

3.1. A polynomial over ZŒt� with roots in Q..t�1//. Let fp1; p2; p3; : : : g D
f2; 3; 5; : : : g be the sequence of prime numbers. Let q1 D 1. For 2 � i � n, let
qi D pi�1 C 1.
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Let f .x/ 2 ZŒt �Œx� be the polynomial given by

f .x/ D
h nY

iD1

.x C qi t /
i

� 1:

It will be clear by the conclusion of our proof that f .x/ is irreducible over Q.t/, but
we will not need to use this directly.

Lemma 4. There is some ˛ 2 Q..t�1// such that f .˛/ D 0.

Proof. We want to show that there are ci 2 Q such that if ˛ D P1
iD0 ci t

1�in then
f .˛/ D 0.

To begin let c0 D �1. We will define the remaining ci recursively. Define ci;k

by ˛ C qkt D P1
iD0 ci;kt1�in. Thus, ci;k D ci when i � 1, each c0;k is contained

in Q, and c0;1 D 0.
That ˛ is a root of f is equivalent to

1 D
nY

kD1

.˛ C qkt / D
nY

kD1

� 1X
iD0

ci;kt1�in
�

D
1X

iD0

� X
Pn

kD1 ikDi

� nY
kD1

cik ;k

��
tn.1�i/:

Our task is to find cm’s so that the above is satisfied.
Note that for the above equation to hold we must have

0 � tn D
X

Pn
kD1 ikD0

� nY
kD1

cik ;k

�
tn.1�0/:

That is,

0 D
nY

kD1

c0;k

which is an equation we know is satisfied because c0;1 D 0. Now assume that we
have determined c0; c1; : : : ; cm�1 2 Q. We will find cm 2 Q.

Notice that the first coefficient in our Laurent series expansion above which in-
volves cm is the coefficient for the t�nm term. This follows from the fact that each
ik is nonnegative.

Since X
Pn

kD1 ikDm

� nY
kD1

cik ;k

�

is the coefficient of the t�nm term in the expansion of 1, we have

0 D
X

Pn
kD1 ikDm

� nY
kD1

cik ;k

�
:
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The above equation is linear over Q in the single variable cm and the coefficient
of cm is nonzero. Indeed,

Pn
kD1 ik D m, each ik � 0, and c0; : : : ; cm�1 2 Q are

assumed to be known quantities. Thus, cm 2 Q. �

3.2. Matrices representing ring multiplication. By Lemma 4 we have that the
field Q.t/.˛/ � Q..t�1// is an extension of Q.t/ of degree d where d � n. It
follows that ZŒt �Œ˛� is a free ZŒt �-module of rank d with basis f1; ˛; ˛2; : : : ; ˛d�1g.

For any y 2 ZŒt �Œ˛�, the action of y on Q.t/.˛/ by multiplication is a linear
transformation that stabilizes ZŒt �Œ˛�. Thus, we have a representation of ZŒt �Œ˛� into
the ring of d � d matrices with entries in ZŒt �. We embed the ring of d � d matrices
with entries in ZŒt � into the upper left corner of the ring of n�n matrices with entries
in ZŒt �.

By Lemma 4
nY

iD1

.˛ C qi t / D 1

so each of the following matrices are invertible:

˛ C q1t; ˛ C q2t; : : : ; ˛ C qnt:

(We will be blurring the distinction between the elements of ZŒt �Œ˛� and the matrices
that represent them.)

For 1 � i � n � 1, we let ai D ˛ C qiC1t . Since ai is invertible, it is an element
of GLn.ZŒt �/, and hence has determinant ˙1. By replacing each ai with its square,
we may assume that ai 2 SLn.ZŒt �/ for all i . We let A D ha1; : : : an�1i so that A is
clearly abelian as it is a representation of multiplication in an integral domain. This
group A will satisfy Proposition 3.

3.3. A is free abelian on the ai . To prove part (i) of Proposition 3 we have to show
that if there are mi 2 Z with

n�1Y
iD1

a
mi

i D 1

then each mi D 0. But the first nonzero term in the Laurent series expansion for ˛ is
�t , which implies that the first nonzero term in the Laurent series expansion for each
ai is �t C qiC1t D pi t . Hence, the first nonzero term of

n�1Y
iD1

a
mi

i D 1

is
n�1Y
iD1

.pi t /
mi D t0:
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Thus
n�1Y
iD1

p
mi

i D 1

and it follows by the uniqueness of prime factorization that mi D 0 for all i as desired.
Thus, part (i) of Proposition 3 is proved.

3.4. A is diagonalizable. Recall that ˛ is a d �d matrix with entries in ZŒt � where d

is the degree of the minimal polynomial of ˛ over Q.t/. Let that minimal polynomial
be q.x/. Because the characteristic of Q.t/ equals 0, q.x/ has distinct roots in
Q.t/.˛/.

Let Q.x/ be the characteristic polynomial of the matrix ˛. The polynomial Q

also has degree d and leading coefficient ˙1 with Q.˛/ D 0. Therefore, q D ˙Q.
Hence, Q has distinct roots in Q.t/.˛/ which implies that ˛ is diagonalizable over
Q.t/.˛/ � Q..t�1//. That is to say that there is some g 2 SLn.Q..t�1/// such that
g˛g�1 is diagonal.

Because every element of ZŒt �Œ˛� is a linear combination of powers of ˛, we have
that g.ZŒt �Œ˛�/g�1 is a set of diagonal matrices. In particular, we have proved part
(ii) of Proposition 3.

3.5. A has trivial stabilizers. To prove part (iii) of Proposition 3 we begin with the
following

Lemma 5. If � � SLn.QŒt �/ is bounded under the valuation for Q..t�1//, then the
eigenvalues for any � 2 � lie in SQ.

Proof. We let X be the Euclidean building for SLn.Q..t�1///. By the Bruhat–Tits
fixed point theorem, �z D z for some z 2 X .

Let x0 2 X be the vertex stabilized by SLn.QŒŒt�1��/. We denote a diagonal ma-
trix in GLn.Q..t�1/// with entries s1; s2; : : : ; sn 2 Q..t�1//� by D.s1; s2; : : : ; sn/,
and we let S � X be the sector based at x0 and containing vertices of the form
D.tm1 ; tm2 ; : : : ; tmn/x0 where each mi 2 Z and m1 � m2 � � � � � mn.

The sector S is a fundamental domain for the action of SLn.QŒt �/ on X [So]
which implies that there is some h 2 SLn.QŒt �/ with hz 2 S.

Clearly we have .h�h�1/hz D hz, and since eigenvalues of h�h�1 are the same
as those for � , we may assume that � fixes a vertex z 2 S.

Fix m1; : : : ; mn 2 Z, m1 � � � � � mn � 0, such that z D D.tm1 ; : : : ; tmn/x0.
Without loss of generality, there is a partition of n – say fk1; : : : ; k`g – such that

fm1; : : : ; mng D fq1; : : : ; q1; q2; : : : ; q2; : : : ; q`; : : : q`g
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where each qi occurs exactly ki times and

q1 > q2 > � � � > q`:

We have that D.tm1 ; : : : ; tmn/�1�D.tm1 ; : : : ; tmn/x0 D x0. That gives us,
D.tm1 ; : : : ; tmn/�1�D.tm1 ; : : : ; tmn/ � SLn.QŒŒt�1��/. Furthermore, a trivial cal-
culation of resulting valuation restrictions for the entries of

D.tm1 ; : : : ; tmn/SLn.QŒŒt�1��/D.tm1 ; : : : ; tmn/�1

shows that � is contained in a subgroup of SLn.Q..t�1/// that is isomorphic to

Ỳ
iD1

SLki
.Q/ Ë U

where U � SLn.Q..t�1/// is a group of upper-triangular unipotent matrices.
The lemma is proved. �

Our proof of Proposition 3 will conclude by proving

Lemma 6. No nontrivial element of A fixes a point in the Euclidean building for
SLn.Q..t�1///.

Proof. Suppose a 2 A fixes a point in the building. We will show that a D 1. Let
F.x/ 2 ZŒt �Œx� be the characteristic polynomial for a 2 SLn.ZŒt �/. Then

F.x/ D ˙
nY

iD1

.x � ˇi /

where each ˇi 2 Q..t�1// is an eigenvalue of a. By the previous lemma, each
ˇi 2 SQ. Hence, each ˇi 2 Q D SQ \ Q..t�1//. It follows that F.x/ 2 ZŒx� so that
each ˇi is an algebraic integer contained in Q. We conclude that each ˇi is contained
in Z.

Recall, that a has determinant 1, and that the determinant of a can be expressed
as

Qn
iD1 ˇi . Hence, each ˇi is a unit in Z, so each eigenvalue ˇi D ˙1. It follows –

by the diagonalizability of a – that a is a finite order element of A Š Zn�1. That is,
a D 1. �

We have completed our proof of Proposition 3.
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4. Body of the proof

Let P � SLn.Q..t�1/// be the subgroup where each of the first n � 1 entries
along the bottom row equal 0. Let Ru.P / � P be the subgroup of elements that
contain a .n � 1/ � .n � 1/ copy of the identity matrix in the upper left corner. Thus
Ru.P / Š Q..t�1//n�1 with the operation of vector addition.

Let L � P be the copy of SLn�1.Q..t�1/// in the upper left corner of
SLn.Q..t�1///. We apply Proposition 3 to L (notice that the n in the proposition is
now an n � 1) to derive a subgroup A � L that is isomorphic to Zn�2. By the same
proposition, there is a matrix g 2 L such that gAg�1 is diagonal.

Let b 2 SLn.Q..t�1/// be the diagonal matrix given in the notation from the
proofs of Lemmas 2 and 5 as D.t; t; : : : ; t; t�.n�1//. Note that b 2 P commutes
with L, and therefore, with A. Thus the Zariski closure of the group generated by
b and A determines an apartment in X , namely g�1A where A is the apartment
corresponding to the diagonal subgroup of SLn.Q..t�1///.

4.1. Actions on g�1A. If x� 2 g�1A, then it follows from Proposition 3 that the
convex hull of the orbit of x� under A is an .n � 2/-dimensional affine space that we
will name Vx�

. Furthermore, the orbit Ax� forms a lattice in the space Vx�
.

We let g�1A.1/ be the visual boundary of g�1A in the Tits boundary of X .
Recall that the Tits boundary of X is isomorphic to the spherical building for
SLn.Q..t�1///. The definition of visual boundary used above is the standard defini-
tion from CAT.0/ geometry.

The visual boundary of Vx�
is clearly an equatorial sphere in g�1A.1/. Precisely,

we let P � be the transpose of P . Then P and P � are opposite vertices in g�1A.1/.
It follows that there is a unique sphere in g�1A.1/ that is realized by all points
equidistant to P and P �. We call this sphere SP;P � .

Lemma 7. The visual boundary of Vx�
equals SP;P � .

Proof. Since g 2 P \P �, it suffices to prove that gVx�
is the sphere in the boundary

of A that is determined by the vertices P and P �.
Note that gVx�

is a finite Hausdorff distance from any orbit of a point in A

under the action of the diagonal subgroup of L. The result follows by observing
that the inverse transpose map on SLn.Q..t�1/// stabilizes diagonal matrices while
interchanging P and P �. �

We let R1; R2; : : : ; Rn�1 be the standard root subgroups of Ru.P /. Recall that
associated to each Ri there is a closed geodesic hemisphere Hi � A.1/ such that
any nontrivial element of Ri fixes Hi pointwise and translates any point in the open
hemisphere A.1/�Hi outside of A.1/. Note that @Hi is a codimension 1 geodesic
sphere in A.1/.
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We let M � g�1A.1/ be the union of chambers in g�1A.1/ that contain the
vertex P . There is also an equivalent geometric description of M :

Lemma 8. The union of chambers M � g�1A.1/ can be realized as an .n � 2/-
simplex. Furthermore,

M D
n�1\
iD1

g�1Hi

and, when M is realized as a single simplex, each of the n�1 faces of M is contained
in a unique equatorial sphere g�1@Hi D @g�1Hi .

Proof. Let M 0 � A.1/ be the union of chambers in A.1/ containing the vertex
P . Since M D g�1M 0, it suffices to prove that M 0 is an .n � 2/-simplex with
M 0 D Tn�1

iD1 Hi and with each face of M 0 contained in a unique @Hi .
For any nonempty, proper subset I � f1; 2; : : : ; ng, we let VI be the jI j-dimen-

sional vector subspace of Q..t�1//n spanned by the coordinates given by I , and we
let PI be the stabilizer of VI in SLn.Q..t�1///. For example, P D Pf1;2;:::;n�1g.

Recall that the vertices of A.1/ are given by the parabolic groups PI , that edges
connect PI and PI 0 exactly when I � I 0 or I 0 � I , and that the remaining simplicial
description of A.1/ is given by the condition that A.1/ is a flag complex.

We let V be the set of vertices in A.1/ of the form PJ where ; ¤ J �
f1; 2; : : : ; n � 1g. Note that M 0 is exactly the set of vertices V together with the
simplices described by the incidence relations inherited from A.1/. Thus, M 0 is
easily seen to be isomorphic to a barycentric subdivision of an abstract .n�2/-simplex.
Indeed, if SM 0 is the abstract simplex on vertices Pf1g; Pf2g; : : : ; Pfn�1g, then a sim-
plex of dimension k in SM 0 corresponds to a unique PJ 2 V with jJ j D k C 1. So
we have that M 0 can be topologically realized as an .n � 2/-simplex.

Let Fi be a face of the simplex SM 0. Then there is some 1 � i � n � 1 such that
the set of vertices of Fi is exactly fPf1g; Pf2g; : : : ; Pfn�1gg � Pfig.

Note that RiVI D VI exactly when n 2 I implies i 2 I . It follows that Ri fixes
M 0 pointwise, and thus M 0 � Hi for all 1 � i � n � 1. Furthermore, if PI 2 Hi

for all 1 � i � n � 1, then RiPI D PI for all i so that n 2 I implies i 2 I for all
1 � i � n � 1. As I must be a proper subset of f1; 2; : : : ; ng, we have PI 2 V , so
that M 0 D Tn�1

iD1 Hi .
All that remains to be verified for this lemma is that Fi � @Hi . For this fact,

recall that Fi is comprised of .n � 3/-simplices in A.1/ whose vertices are given
by PJ where J � f1; 2; : : : ; n � 1g � fig. Hence, if � � A.1/ is an .n � 3/

simplex of A.1/ with � � Fi , then � is a face of exactly 2 chambers in A.1/: CP

and CPJ 0
where CP contains P and thus CP � M 0, and CPJ 0

contains PJ 0 where
J 0 D f1; 2; : : : ; ng � fig and thus CPJ 0

ª M 0. Furthermore, � D CP \ CPJ 0
.

Since RiVJ 0 ¤ VJ 0 , it follows that CPJ 0
is not fixed by Ri . Since CPJ

is fixed
by Ri we have that � D CP \ CPJ 0

� @Hi . Therefore, Fi � @Hi . �
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For any vertex y 2 X , we let Cy � X be the union of sectors based at y and
limiting to a chamber in M . Thus, Cy is a cone. Note also that because any chamber
in g�1A.1/ has diameter less than �=2, it follows that M \SP;P � D ;. Therefore,
if we choose x�; y 2 g�1A such that x� is closer to P than y, then Cy � g�1A and
Vx�

\ Cy is a simplex of dimension n � 2.
We will set on a fixed choice of y before x�, and we will choose y to satisfy the

below

Lemma 9. There is some y 2 g�1A such that the QŒŒt�1��-points of Ru.P / fix Cy

pointwise.

Proof. Let x0 be the point in X stabilized by SLn.QŒŒt�1��/. Recall that Ru.P /M D
M so that the QŒŒt�1��-points of Ru.P / fix Cx0

pointwise.
Because M � g�1A.1/, there is a y 2 Cx0

\ g�1A. Any such y satisfies the
lemma. �

Choose e such that with x� D e as above and with y as in Lemma 9, there exists a
fundamental domain De for the action of A on Ve that is contained in Cy . The choice
of e can be made by travelling arbitrarily far from y along a geodesic ray in g�1A

that limits to P .
By the choice of De we have that

ADe D Ve

and that the Q.ŒŒt�1��/-points of Ru.P / fix De .

4.2. The filtration. We let

X0 D SLn.ZŒt �/De

and for any i 2 N we choose an SLn.ZŒt �/-invariant and cocompact space Xi � X

somewhat arbitrarily to satisfy the inclusions

X0 � X1 � X2 � � � � �
1[

iD1

Xi D X:

In our present context, Brown’s criterion takes on the following form [Br1].

Brown’s Filtration Criterion. By Lemma 2, the group SLn.ZŒt �/ is not of type
FPn�1 if for any i 2 N, there exists some class in the homology group zHn�2.X0; Z/

which is nonzero in zHn�2.Xi ; Z/.
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4.3. Translation toP moves away fromfiltration sets. The following is essentially
Mahler’s compactness criterion.

Lemma 10. Given any i 2 N, there is some k 2 N such that bke … Xi .

Proof. The lemma follows from showing that the sequence

fSLn.ZŒt �/bkegk � SLn.ZŒt �/nX

is unbounded.
Since stabilizers of points in X are bounded subgroups of SLn.Q..t�1///, the

claim above follows from showing that the sequence

fSLn.ZŒt �/bkgk � SLn.ZŒt �/nSLn.Q..t�1///

is unbounded.
But bounded sets in SLn.ZŒt �/nSLn.Q..t�1/// do not contain sequences of el-

ements fSLn.ZŒt �/g`g` such that 1 2 g�1
`

.SLn.ZŒt �/ � f1g/g`. And clearly bk’s
contract some root groups to 1. Thus none of the sequences above is bounded. �

4.4. Applying Brown’s criterion. As is described by Brown’s criterion, we will
prove Theorem 1 by fixing Xi and finding an .n � 2/-cycle in X0 that is nontrivial in
the homology of Xi .

Recall that we denote the standard root subgroups of Ru.P / by R1; : : : ; Rn�1.
Each group g�1Rj g determines a family of parallel walls in g�1A. By Lemma 8,
each face of the cone Cy is contained in a wall of one of these families.

Choose rj 2 g�1Rj g for all j such that bke is contained in the wall determined
by rj where k is determined by i as in Lemma 10. In particular, rj bke D bke.

The intersection of the fixed point sets in g�1A of the elements r1; : : : ; rn�1

determine a cone that we name Z. Note that Z is contained in – and is a finite
Hausdorff distance from – the cone Cy .

Let Z� � g�1A be the closure of the set of points in g�1A that are fixed by
none of the rj . The set Z� is a cone based at bke, containing y, and asymptotically
containing the vertex P �.

As the walls of Z� are parallel to those of Z – and hence of Cy , we have that
Z� \ Ve is an .n � 2/-dimensional simplex. We will name this simplex � .

The component of Z� � Ve that contains bke is an .n � 1/-simplex that has � as
a face. Call this .n � 1/ simplex Y .

For any ` 2 N, there are exactly 2n�1 possible subsets of the set fr`
1 ; : : : ; r`

n�1g.
For each such subset S`, we let

YS`
D

� Y
g2S`

g
�
Y
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and
�S`

D
� Y

g2S`

g
�
�:

Notice that the product of group elements in the equations above are well-defined
regardless of the order of the multiplication since Ru.P / is abelian. In the degenerate
cases,

Q
g2; g D 1, so Y; D Y and �; D � .

For any ` 2 N, we let Y` D S
S`

YS`
. Because the wall in g�1A determined by

r`
j is the same as the wall determined by rj , the space Y` is a closed ball containing

bke whose boundary sphere is
S

S`
�S`

. Indeed the simplicial decomposition of Y`

described above is isomorphic to the simplicial decomposition of the unit ball in Rn�1

that is given by the n � 1 hyperplanes defined by setting a coordinate equal to 0.
Let !` D S

S`
�S`

. Thus !` D @Y`. Furthermore, the building X is .n � 1/-
dimensional and contractible, so any .n � 1/-chain with boundary equal to !` must
contain Y` and thus bke. That is for all ` 2 N

Œ!`� ¤ 0 2 zHn�2.X � bke; Z/

If we can show that !` � X0 for some choice of `, then we will have proved our
main theorem by application of Brown’s criterion since we would have

Œ!`� ¤ 0 2 zHn�2.Xi ; Z/

by Lemma 10.

Lemma 11. There exists some ` 2 N such that !` � X0.

Proof. For any u 2 Ru.P / there is a decomposition u D u0u00 where the entries of
u0 2 Ru.P / are contained in QŒt � and the entries of u00 2 Ru.P / are contained in
QŒŒt�1��.

For any a 2 A and u 2 Ru.P / there is a power `.a; u/ 2 N such that

.a�1u`.a;u/a/0 D ..a�1ua/0/`.a;u/ 2 SLn.ZŒt �/:

(For the above equality recall that A � L normalizes Ru.P / and the group operation
on Ru.P / is vector addition.)

There are only finitely many a 2 A such that aDe \ � ¤ ; (or equivalently, such
that aDe \ Z� ¤ ;). Call this finite set D � A.

At this point we fix

` D
Y

a2D

n�1Y
iD1

`.a; ri /:
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Thus, h
a�1

� Y
g2S`

g
�
a
i0 2 SLn.ZŒt �/

for any a 2 D and any S` � fr`
i gn�1

iD1 .
Because !` D S

S`
�S`

and �S`
D � Q

g2S`
g

�
� D � Q

g2S`
g

�
.ADe \Z�/, we

can finish our proof of this lemma by showing
� Y

g2S`

g
�
aDe � X0

for each a 2 D � A � SLn.ZŒt �/ and each S` � fr`
i gn�1

iD1 . For this, recall that the
QŒŒt�1��-points of Ru.P / fix De and thus

� Y
g2S`

g
�
aDe D aŒa�1

� Y
g2S`

g
�
a�De

D aŒa�1
� Y

g2S`

g
�
a�0Œa�1

� Y
g2S`

g
�
a�00De

D aŒa�1
� Y

g2S`

g
�
a�0De

� SLn.ZŒt �/De

D X0 �
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[Kr-Mc] S. Krstić and J. McCool, Presenting GLn.khT i/. J. Pure Appl. Algebra 141 (1999),
175–183. Zbl 0930.19001 MR 1706364

[Na] H. Nagao, On GL.2; KŒX�/. J. Inst. Polytech. Osaka City Univ. Ser. A 10 (1959),
117–121. Zbl 0092.02504 MR 0114866

http://www.emis.de/MATH-item?0274.22011
http://www.ams.org/mathscinet-getitem?mr=0387495
http://www.emis.de/MATH-item?0613.20033
http://www.ams.org/mathscinet-getitem?mr=0885095
http://www.emis.de/MATH-item?0922.20034
http://www.ams.org/mathscinet-getitem?mr=1644630
http://www.emis.de/MATH-item?1126.20030
http://www.ams.org/mathscinet-getitem?mr=2270455
http://www.emis.de/MATH-item?1128.20037
http://www.ams.org/mathscinet-getitem?mr=R2240917
http://www.emis.de/MATH-item?0930.19001
http://www.ams.org/mathscinet-getitem?mr=1706364
http://www.emis.de/MATH-item?0092.02504
http://www.ams.org/mathscinet-getitem?mr=0114866


164 K.-U. Bux, A. Mohammadi and K. Wortman CMH

[Su] A. A. Suslin, The structure of the special linear group over rings of polynomials. Izv.
Akad. Nauk SSSR Ser. Mat. 41 (2) (1977), 235–252 (in Russian). Zbl 0354.13009
MR 0472792

[So] C. Soulé, Chevalley groups over polynomial rings. In Homological group theory,
London Math. Soc. Lecture Note Ser. 36, Cambridge University Press, Cambridge
1979, 359–367. Zbl 0437.20036 MR 0564437

[Ti] J. Tits, Buildings of spherical type and finite BN-pairs. Lecture Notes in Math. 386.
Springer-Verlag, Berlin 1974. Zbl 0295.20047 MR 0470099

Received February 2, 2008

Kai-Uwe Bux, Fakultät für Mathematik, Universität Bielefeld, Postfach 100131,
33501 Bielefeld, Germany
E-mail: bux_2009@kubux.net

Amir Mohammadi, Department of Mathematics, University of Chicago, Chicago, IL 60637,
U.S.A.
E-mail: amirmo@math.uchicago.edu

Kevin Wortman, Department of Mathematics, University of Utah, 155 South 1400 East, Salt
Lake City, UT 84112-0090, U.S.A.
E-mail: wortman@math.utah.edu

http://www.emis.de/MATH-item?0354.13009
http://www.ams.org/mathscinet-getitem?mr=0472792
http://www.emis.de/MATH-item?0437.20036
http://www.ams.org/mathscinet-getitem?mr=0564437
http://www.emis.de/MATH-item?0295.20047
http://www.ams.org/mathscinet-getitem?mr=0470099

	Introduction
	Outline of the paper
	Background material

	Stabilizers
	Polynomial points of tori
	A polynomial over  with roots in 
	Matrices representing ring multiplication
	A is free abelian on the a_i
	A is diagonalizable
	A has trivial stabilizers

	Body of the proof
	Actions on g^-1 mathcal(A)
	The filtration
	Translation to P moves away from filtration sets
	Applying Brown's criterion

	References

