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Topological rigidity and Gromov simplicial volume

Pierre Derbez

Abstract. A natural problem in the theory of 3-manifolds is the question of whether two
3-manifolds are homeomorphic or not. The aim of this paper is to study this problem for the
class of closed Haken manifolds using degree one maps.

To this purpose we introduce an invariant �.N / D .Vol.N /; kN k/, where kN k denotes
the Gromov simplicial volume of N and Vol.N / is a 2-dimensional simplicial volume which
measures the volume of the base 2-orbifolds of the Seifert pieces of N .

After studying the behavior of �.N / under the action of non-zero degree maps, we prove that
if M and N are closed Haken manifolds such that kMk D jdeg.f /jkN k and Vol.M/ D Vol.N /

then any non-zero degree map f W M ! N is homotopic to a covering map. As a corollary we
prove that if M and N are closed Haken manifolds such that �.N / is sufficiently close to �.M/

then any degree one map f W M ! N is homotopic to a homeomorphism.
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1. Introduction

1.1. Simplicial volume of a manifold. Let N n be an n-dimensional manifold. The
simplicial volume of N is a homotopy invariant of N defined by M. Gromov in
[G] using the l1-pseudo norm on singular homology as follows: for an element
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h 2 H�.N; @N I R/, the Gromov norm is given by

khk D inf
˚ PiDr

iD1jai j; when
PiDr

iD1 ai�i represents h
�
:

The Gromov simplicial volume of N , denoted by kN k, is the Gromov norm of
the image of a generator of Hn.N; @N I Z/ under the canonical homomorphism
Hn.N; @N I Z/ ! Hn.N; @N I R/ ' Hn.N; @N I Z/ ˝ R.

1.2. Simplicial volume of a Haken manifold. Let N be a closed Haken manifold.
Given a submanifold K of N we denote by W.K/ a regular neighborhood of K in
N . Denote by TN the JSJ-family of N , by S.N /, resp. H .N /, the Seifert, resp.
hyperbolic, components of N � D N n W .TN / and by †.N / D .†.N /; ;/ the
characteristic Seifert pair of N (see [JS] and [J]). The Cutting-off Theorem of Gromov
([G]) combined with the fact that manifolds admitting a fixed point free S1-action
have zero Gromov simplicial volume (by the Mapping Theorem of Gromov) implies
that

kN k D
X

H2H.N /

kHk:

In particular this means that the Gromov simplicial volume of a Haken manifold
only depends on its hyperbolic pieces. In the following it will be convenient to
decompose S.N / into two parts depending on the geometry of the components of
S.N /. We denote by Sh.N /, resp. by Se.N /, the components of S.N / admitting a
Seifert fibration with hyperbolic, resp. Euclidean, base 2-orbifold.

1.3. Extending the simplicial volume. To get a rigidity theorem for Haken mani-
folds we need to add another invariant of N which does not vanish on S.N / when
S.N / is “non-trivial” (i.e. when Sh.N / 6D ;). To this purpose we define a kind of
2-dimensional simplicial volume for N . More precisely, let S be a component of
S.N /. Fix a Seifert fibration for S and denote by OS the base 2-orbifold of S with
respect to the fixed Seifert fibration. Then we set Vol.S/ D j�.OS /j, where �.OS /

denotes the (rational) Euler characteristic of OS . We then define the 2-dimensional
volume of N by setting

Vol.N / D
X

S2S.N /

Vol.S/:

Lemma 1.1. If N is a closed Haken manifold, the 2-dimensional volume Vol.N /,
and thus the pair �.N / D .Vol.N /; kN k/, is an invariant of N . Moreover �.N / D 0

iff N is a virtual torus bundle.

It will be convenient to use the following convention: we say that .a; b/ � .c; d/

if and only if a � c and b � d , where .a; b/ and .c; d/ are in R2.
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1.4. Nonzero degree maps decrease the volume. It follows from the definition of
the Gromov simplicial volume that non-zero degree maps “decrease the simplicial
volume” in the following sense. Let f W M ! N be a proper non-zero degree map
between orientable n-dimensional manifolds. Then kMk � jdeg.f /jkN k. This in-
equality does not hold for �.N /. In particular the relationVol.M/ � jdeg.f /jVol.N /

is not true. However we have the following comparison result.

Theorem 1.2. Let f W M ! N be a non-zero degree map between closed Haken
manifolds. If kMk D jdeg.f /jkN k then Vol.M/ � Vol.N /. Moreover, if there
exists a canonical torus T of M such that f jT W T ! N is not �1-injective, then
Vol.M/ > Vol.N /.

Note that the condition on the Gromov simplicial volume is necessary in Theo-
rem 1.2. Indeed by a construction of [BW] using null-homotopic hyperbolic knots,
we know that for any aspherical Seifert fibered space † there always exist a hyper-
bolic 3-manifold M and a degree one map f W M ! †. In this case Vol.M/ D 0

and † can be chosen so that Vol.†/ > 0.
In view ofTheorem 1.2 the following question is natural: If kMk D jdeg.f /jkN k,

what happens when Vol.M/ D Vol.N /? The answer is given in the following section.

1.5. Volume and topological rigidity. The purpose of this paper is to characterize
those degree one (resp. non-zero degree) maps between closed Haken manifolds
which are homotopic to a homeomorphism (resp. covering). Then our main result
can be stated as follows.

Theorem 1.3. Let f W M ! N be a non-zero degree map between closed Haken
manifolds such that kMk D jdeg.f /jkN k. If Vol.M/ D Vol.N / then f is homo-
topic to a deg.f /-fold covering.

Remark 1.4. In Theorem 1.3 we can obviously decompose f into two covering
maps which preserve the JSJ-decomposition. This means that after a homotopy, f

induces two covering maps f jH .M/ W H .M/ ! H .N / and f jS.M/ W S.M/ !
S.N /. Since a Seifert fibered space can be seen as a generalized S1-bundle over a
2-dimensional orbifold, it could be convenient to make precise the behavior of the
covering map f jS.M/ with respect to this anisotropic structure. Actually, when the
fibration of a Seifert manifold S is unique (up to isotopy), the action of f jS can
be unambiguously decomposed into two transversal actions: a vertical action (i.e.
an action along the S1-fibers of S ) and a horizontal action (i.e. an action along the
2-orbifold of S ). Then in the proof of Theorem 1.3 we will see that the hypothesis
Vol.M/ D Vol.N / implies that f jSh.M/ acts only vertically and that the horizontal
action is trivial.
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Remark 1.5. Note that in [W1], S. Wang proved that a proper map of non-zero
degree f W M ! M from a Haken manifold M to itself necessarily induces an
injective homomorphism at the fundamental group level. Then Theorem 1.3 gives
an extension of this result since when M D N the conditions on the volume are
satisfied.

If we consider only degree one maps then one can relax the hypothesis concerning
the volumes. More precisely, combining Theorem 1.3 and Theorem 1.2 in [D] we
get the following result.

Theorem 1.6. For any closed Haken manifold M there exists a constant �M 2 .0; 1/

depending only on M such that any degree one map f W M ! N onto a closed
Haken manifold is homotopic to a homeomorphism iff �.N / � �.M/.1 � �M /.

1.6. Some known results on topological rigidity

1.6.1. Rigidity of surface bundles. The above problem has been studied by S. Wang
and M. Boileau in [W] and [BW] for non-zero degree maps, when the domain M is
a surface bundle over the circle and when the target N is irreducible. In particular,
Wang proved in [W] that if M is a virtual torus bundle over the circle then f is
homotopic to a covering map. When M is a bundle over S1 with a fiber of negative
Euler characteristic, denote by ˛ the cohomology class corresponding to the fibration
of M . Then in [BW], Boileau and Wang proved that if there is a rational cohomology
class ˇ in N with f �.ˇ/ D ˛ and such that k˛kTh D jdeg.f /jkˇkTh then f is
homotopic to a covering map. Here k � kTh denotes the Thurston norm.

Remark 1.7. Notice that the constant Vol.M/ in Theorem 1.3 can be seen as the
analogous of the Thurston norm of ˛ in the result of Boileau and Wang in [BW,
Theorem 2.1].

1.6.2. Rigidity of hyperbolic manifolds. The rigidity problem is completely solved
for hyperbolic manifolds by a result of Gromov and Thurston which reads as follows.

Theorem 1.8 (M. Gromov, W. Thurston). Let M and N be two complete finite
volume hyperbolic 3-manifolds. Then a proper non-zero degree map f W M ! N is
homotopic to a deg.f /-fold covering iff kMk D jdeg.f /jkN k.

Recall that T. Soma gave a generalization (see [S2]) of this result for degree one
maps by proving the following result.

Theorem 1.9 (T. Soma). For any " > 0 there is a constant �" > 0 which depends
only on " such that any degree one map f W M ! N between closed hyperbolic
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3-manifolds satisfying kMk � " and kN k � kMk.1 � �"/ is homotopic to an
isometry.

Notice that lim"!C1 �" D 0 (see also [S2]). Note also that this kind of result
cannot be extended to Haken manifolds even if the target is a closed hyperbolic
manifold. This results from the Thurston hyperbolic surgery theorem.

Indeed, let Y be a complete finite volume orientable hyperbolic 3-manifold with
@Y ' S1 � S1 and let X denote an orientable graph manifold with @X ' S1 � S1

in such a way that there exists a simple closed curve l in @X such that the pair .X; l/

is pinchable. This means that there exists a proper degree one map � W .X; @X/ !
.V; @V /, where V is a solid torus D2�S1 such that � W @X ! @V is a homeomorphism
which sends l to the meridian m D @D2 � f�g in @V . To perform this operation
it is sufficient to choose X so that l is nul-homologous in H1.X I Z/ (for instance
X D F �S1, where F is an orientable surface with connected boundary and l D @F ).

Let fln; n 2 Ng be a sequence of simple closed curves in @Y such that flenght.ln/;

n 2 Ng defines a strictly increasing sequence with limn!1 lenght.ln/ D C1, where
lenght denotes the length for the Euclidean metric on @Y induced by the hyperbolic
metric of int.Y /. Denote by Mn the closed Haken manifold obtained by gluing X and
Y along @X and @Y in such a way that l is identified with ln and denote by Nn the 3-
manifold obtained from Y after performing a Dehn filling along the curve ln. Thus the
map � can be extended by the identity to construct a degree one map fn W Mn ! Nn.
Then kMnk D kY k > 0. By the Thurston hyperbolic surgery theorem, one sees that
the Nn’s are closed hyperbolic manifolds for n sufficiently large and fkNnk; n 2 Ng
is a strictly increasing sequence such that limn!1 kNnk D kY k. Moreover the maps
fn are neither homotopic to a homeomorphism.

1.7. Organization of the paper. This paper is organized as follows.
In Section 2 we recall some terminology and we state some technical results

concerning the following points: finite coverings of Haken manifolds, standard form
of non-zero degree maps, and a thick–thin decomposition of M with respect to a
non-degenerate, non-zero degree map f W M ! N .

Sections 3 and 4 are devoted to the study of non-degenerate proper maps f W M !
N of non-zero degree from a Haken graph manifold with toral boundary to a circle
bundle N . The aim of these sections is to give a construction allowing us to compare
the volume of the thick part of M with Vol.N / using efficient surfaces and minimal
connection graphs (see Propositions 3.1 and 4.1). These sections are essential for the
proof of Theorem 1.2.

Section 5 is devoted to the proof of Theorems 1.2, 1.3 and 1.6. Note that in this
paper all the 3-manifolds are orientable.

Acknowledgement. The author would like to thank the referee for many useful
comments and suggestions.
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2. Preliminaries

Let † be an orientable Seifert fibered space. Then † is an S1-bundle over its base
2-orbifold O† and the S1-action is globally well defined since † is orientable. Recall
that if xO† denotes the underlying space of O† and if c1; : : : ; cr denote the exceptional
points of O† with index �1; : : : ; �r respectively then

� .O†/ D �. xO†/ �
iDrX
iD1

�
1 � 1

�i

�
:

The geometry of O† is hyperbolic, Euclidean or spherical when � .O†/ is < 0,
D 0 or > 0, respectively. Hence the geometry of † depends of the geometry of
O† combined with the rational Euler number e.†/ of the fibration. More precisely,
when e.†/ D 0 then we get respectively an H2 � R, Euclidean, S2 � R-structure
and when e.†/ 6D 0 we get respectively a �SL2.R/, Nil, spherical structure. Note
that if N is a Sol-manifold then we consider it as a Haken manifold with non-empty
JSJ-decomposition so that the Seifert pieces of N are Euclidean manifolds.

2.1. Two-dimensional simplicial volume. In this paragraph we prove Lemma 1.1.
Since the JSJ-decomposition of closed Haken manifolds is unique up to isotopy, we
only have to check that the volume Vol.N / does not depend on the chosen Seifert
fibration on the components of S.N /. Let † be a Seifert piece of N . Since N is a
closed Haken manifold, † admits one of the following geometries: H2 �R, �SL2.R/,
Nil or Euclidean geometry. The only aspherical Seifert fibered spaces which admit
more than one non-isotopic Seifert fibration are Euclidean manifolds. But in this case
the Euler characteristic of the base orbifold of † is always zero. Hence the invariance
is immediate.

It remains to check the second assertion of the lemma. Assume that N admits
a finite covering � W zN ! N which is a torus bundle over the circle. Then zN is
a geometric manifold and the structure depends on the monodromy of the bundle.
Then N admits a Euclidean, a Nil, or a Sol geometry. In the case of Euclidean or
Nil geometry N is a Seifert fibered space and the base 2-orbifold ON is Euclidean
and thus �.N / D 0. If N is a Sol-manifold then each component of N n TN is a
Euclidean manifold and hence �.N / D 0. Assume that �.N / D 0. If TN D ; then
N has Euclidean or Nil-geometry. In any case N is a virtual torus bundle. If TN 6D ;
then H .N / D ; and each Seifert piece of N is a Euclidean manifold with non-empty
boundary. Then by minimality of the JSJ-decomposition either

(i) N is made of two twisted I -bundles over the Klein bottle glued along their
boundary, or

(ii) N is S1 �S1 �I=h'i, where ' W S1 �S1 �f0g ! S1 �S1 �f1g is an Anosov
diffeomorphism.
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In case (ii) N is a torus bundle over the circle (actually a Sol-manifold) and in case
(i) N admits a 2-fold covering that is a torus bundle over the circle. This completes
the proof of Lemma 1.1.

2.2. Dehn fillings. We define Seifert Dehn fillings. Suppose † is an orientable
Seifert fibered space with @† 6D ; and let T be a component of @†. Since † is
orientable, T ' S1 � S1. Let ˛ be a simple closed curve in T . Performing a Dehn
filling on T along ˛ means that we glue a solid torus V D D2 � S1 identifying
@D2 � S1 with T so that ˛ is glued with the meridian @D2 � f�g of V . Denote by
y† D †.˛/ the resulting manifold. When ˛ is not isotopic to a generic fiber of † then
the fixed Seifert fibration of † extends to a Seifert fibration of y† and we say that we
have performed a Seifert Dehn filling.

2.3. Morphisms. Let f W † ! †0 be a map between orientable Seifert fibered
spaces. We say that f is a bundle homomorphism is there exists a Seifert fibration of
† and †0 so that f is a homomorphism for the S1-bundle structures on † and †0.
According to [Ro], for bundle homomorphisms we define the following degrees:

The fiber degree of f is the integer jnj given by f�.h/ D tn, where h, resp. t ,
denotes the generic fiber of †, resp. of †0, and we denote it by Gh.f /.

The orbifold degree Gob.f / is the minimum number of regular fibers in g�1.t/,
where g runs over all bundle homomorphisms properly homotopic to f and transverse
to t .

For a bundle homomorphism f W † ! †0 we have

jdeg.f /j � Gh.f /Gob.f /:

We say that a bundle homomorphism is allowable if jdeg.f /j D Gh.f /Gob.f /. In
particular, a bundle homomorphism f W .†; @†/ ! .†0; @†0/ between orientable
Seifert fibered spaces with non-empty boundary which is proper (i.e. f �1.@†0/ D
@†) is allowable.

2.4. Non-degenerate maps. Let f W S ! N be a map from a Seifert manifold to
a Haken manifold. We say that f is non-degenerate if f�.�1S/ is not cyclic and if
f�.Œ�	/ 6D f1g for any fiber of any Seifert fibration on S . A map f W M ! N from a
Haken manifold with toral boundary M is non-degenerate if f jS is non-degenerate
for any Seifert piece of M . A non-degenerate map f W M ! N is T -injective if for
any component T of TM [ @M the map f jT W T ! N is �1-injective.

2.5. Finite coverings of a map. Let f W X ! Y be a continuous map between
topological spaces. Let p W zY ! Y be a covering map and denote by q W zX ! X the
covering of X corresponding to the subgroup f �1� .p�.�1

zY //. A finite covering of f
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associated to p W zY ! Y is a lifting Qf W zX ! zY of f B q. In particular, if p is a finite
covering then 1 � deg.q/ � deg.p/ and if f is �1-surjective then deg.p/ D deg.q/.

2.6. Finite coverings of Seifert and Haken manifolds

Lemma 2.1 ([JS, Lemma II.6.1]). Let † be a Seifert fibered space. Then any finite
covering � W z† ! † admits a Seifert fibration so that � is an allowable bundle
homomorphism. Moreover the Euler characteristic of the base orbifolds satisfy

�.Oz†/ D Gob.f /�.O†/:

Proof. The proof can be found in [JS]. �

Let T be a union of tori and let m be a positive integer. Call a covering p W zT ! T

m-characteristic if for each component T of T and for each component zT of zT over
T , the restriction pj W zT ! T is the covering map associated to the characteristic
subgroup of index m � m in �1T . Call a covering zN ! N of a Haken manifold N

m-characteristic if its restriction to T zN ! TN is m-characteristic.

Lemma 2.2. (i) Any orientable Seifert manifold endowed with hyperbolic base 2-
orbifold admits a fiber degree one finite covering which is homeomorphic to an ori-
entable S1-bundle over an orientable hyperbolic surface.

(ii) Any closed Haken manifold admits a 1-characteristic 2-fold covering space
which contains no embedded Klein bottle.

Proof. Point (i) follows from Selberg’s lemma ([Al]) and point (ii) is immediate using
orientation coverings. �

Lemma 2.3. Let f W M ! N be a non-degenerate map from an orientable asphe-
rical Seifert manifold to an orientable circle bundle over an orientable hyperbolic
surface F . Then each Seifert fibration of M has an orientable base 2-orbifold (in
particular M is not homeomorphic to the twisted I -bundle over the Klein bottle).

Proof. Assume first that f�.�1M/ is abelian. If M admits a fibration over a non-
orientable 2-orbifold, then there exists g 2 �1M such that ghg�1 D h�1, where h

denotes the homotopy class of the generic fiber of the fixed Seifert fibration on M .
Since �1N is torsion free this implies that f�.h/ D 1. This is a contradiction since
f is a non-degenerate map.

Suppose that f�.�1M/ is non-abelian. If M admits a fibration over a non-
orientable 2-orbifold OM then consider the double covering p W zM ! M corre-
sponding to the orientation covering of OM .

If f�.�1
zM/ is abelian then f�.�1M/ contains an index 2 free abelian group H .

Now Rank.H/ � 2 since N is a circle bundle over an orientable hyperbolic surface,
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and since f is non-degenerate, Rank.H/ � 2. This implies that f�.�1M/ is the
fundamental group of a Klein bottle. This is impossible since N is an orientable
circle bundle over an orientable hyperbolic surface.

If f�.�1
zM / is non-abelian then f�. Qh/ has a non-abelian centralizer, where Qh

denotes the homotopy class of the generic fiber of zM . Then, since N contains no
embedded Klein bottle, we know by [JS] that f�. Qh/ 2 hti and thus f�.h/ 2 hti,
where t denotes the homotopy class of the fiber of N . Denote by a the non-zero
integer such that f�.h/ D ta. Since OM is non-orientable, there exists g 2 �1M

such that ghg�1 D h�1. Since t is central in �1N , this gives a contradiction. This
completes the proof of the lemma. �

Lemma 2.4. Let N be a Haken manifold and let p W zN ! N be a finite covering
of N . Then Vol.N / � Vol. zN / � jdeg.p/jVol.N /. Moreover, if p has fiber degree
one over each component of S.N / then Vol. zN / D jdeg.p/jVol.N /.

Proof. Let S be a component of S.N /. Choose a component zS of p�1.S/ in zN and
choose a Seifert fibration on zS so that pj zS is a bundle homomorphism. Denote by
OS and by O zS the base 2-orbifold of S and zS . Denote by n the integer such that
p�. Qh/ D hn, where h and Qh are the homotopy classes of the generic fiber of S and
zS , respectively. Then by Lemma 2.1 we know that

jdeg.pj zS/j D jnj:Gob.pj zS/ and Vol. zS/ D Gob.pj zS/Vol.S/ � Vol.S/:

On the other hand, notice that

jdeg.p/j D
X

zS2p�1.S/

jdeg.pj zS/j:

Hence jdeg.p/jVol.N / � Vol. zN / � Vol.N /. It remains to prove the second part of
the lemma. Let † be a component of S.N / and denote by †1; : : : ; †k the components
of z† D p�1.†/.

Denote by h; h1; : : : ; hk the homotopy class of the generic fiber of †; †1; : : : ; †k .
Since by hypothesis p�.hi / D h˙1 for i D 1; : : : ; k, each covering pi D pj†i

satisfies jdeg.pi /j D Gob.pi / and thus Vol.†i / D jdeg.pi /jVol.†/ for any i D
1; : : : ; k. Finally, since jdeg.p/j D jdeg.pj z†/j D jdeg.pj†1/j C � � � C jdeg.pj†k/j,
we have Vol.z†/ D Vol.†1/C� � �CVol.†k/ D jdeg.p/jVol.†/. This ends the proof
of the lemma. �

Lemma2.5. Letf W M ! N be a�1-surjective non-zero degreemapbetweenHaken
manifolds and assume that there exists a finite covering Qf W zM ! zN of f W M ! N

such that Vol. zM/ > Vol. zN /. If the covering zN ! N has fiber degree one over the
Seifert pieces of N then Vol.M/ > Vol.N /.
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Proof. We keep the same notations as above. Assume that Vol. zN / < Vol. zM/. Since
q W zN ! N induces the trivial covering over the fibers, it follows from Lemma 2.4
that Vol. zN / D deg.q/Vol.N /. On the other hand, Vol. zM/ � deg.p/Vol.M/. Since
f W M ! N is �1-surjective, deg.p/ D deg.q/ and thus Vol.M/ > Vol.N /. This
completes the proof of the lemma. �

Lemma 2.6. Let N denote an orientable S1-bundle over an orientable hyperbolic
surface F with bundle projection 
 W N ! F , and let U D fu1; : : : ; uqg denote a
family of homotopically non-trivial simple closed curves in F . Then there exists a
fiber degree one finite covering p W . zN ; zF ; Q
/ ! .N; F; 
/ such that each component
of zU D .pj zF /�1.U/ is of infinite order in H1. zF I Z/.

Proof. If ui is not of infinite order in H1.F I Z/, since the group H1.F I Z/ is torsion
free, then ui is a separating curve in F . Denote by A and B the components of F nui .

Case 1: Assume first that both H1.A; ui I Z/ and H1.B; ui I Z/ are non-zero. Then
one can construct epimorphisms �A W H1.AI Z/ ! Z=2Z and �B W H1.BI Z/ !
Z=2Z such that ker �A � hŒui 	i and ker �B � hŒui 	i. Using the exact sequence

H1.Œui 	I Z/ ! H1.AI Z/ ˚ H1.BI Z/ ! H1.F I Z/ ! f0g
we get an epimorphism � W H1.F I Z/ ! Z=2Z, well defined by the formula �.x/ D
�A.a/ C �B.b/, where .a; b/ represents x in H1.AI Z/ ˚ H1.BI Z/. Then denote
by pi W .Ni ; Fi ; 
i / ! .N; F; 
/ the 2-fold covering corresponding to the homomor-
phism

�1N
����! �1F ! H1.F I Z/

��! Z=2Z:

Then .pi jFi /
�1.ui / consists of two simple closed curves of infinite order in H1.Fi I Z/

and hti < .pi /�.�1Ni /, where t denotes the homotopy class of the fiber of N .
Case 2: Assume that H1.A; ui I Z/ D f0g, say. This means that H1.ui I Z/ !

H1.AI Z/ is an epimorphism and thus H1.AI Z/ is f0g or Z. In the first case A is
a disk which is impossible since ui is homotopically non-trivial and in the second
case A is an annulus. This means that ui is @-parallel in F . Moreover, since ui is
nul-homologous, Œui 	 D Œ@F 	 and in particular F has connected boundary. Since F

is hyperbolic, H1.F I Z/ 6D f0g. Then there exists a non-trivial finite abelian group L

and an epimorphism � W H1.F I Z/ ! L. We denote by pi W .Ni ; Fi ; 
i / ! .N; F; 
/

a finite abelian covering corresponding to the homomorphism

�1N
����! �1F ! H1.F I Z/

��! L:

Then .pi jFi /
�1.ui / consists of Card.L/ simple closed curves of infinite order in

H1.Fi I Z/ and hti < .pi /�.�1Ni /.
Hence the covering of N corresponding to the subgroup .p1/�.�1N1/ \ � � � \

.pq/�.�1Nq/ of �1N satisfies the conclusion of the lemma. �
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2.7. Separability of fundamental groups. The following result is a direct conse-
quence of a separability result of Allman and Hamilton combined with the residual
q-nilpotence of free groups, for any prime q, proved by Gruenberg.

Lemma 2.7 ([AH], [Gr]). Let F be an orientable hyperbolic surface and let u 2 �1F

be a non-trivial element. Then for any prime q there exists a finite group Hq and an
epimorphism � W �1F ! Hq such that �.u/ 6D 1 and q divides the order of �.u/.

Proof. Consider �1F as a discrete subgroup of PSL2.R/.
Assume first that u is a hyperbolic isometry (i.e. u has exactly two fixed points

both in @1H2;C). Then the proof of the lemma follows directly from Proposition 1
of [AH] in this case. Indeed the eigenvalues of the matrix representing u in SL2.C/

are not roots of unity.
Assume now that u is a parabolic isometry (i.e. u has exactly one fixed point and

it lies in @1H2;C). In this case, necessarily @F 6D ; and thus �1F is a free group.
Then it follows from [Gr] that �1F is residually q-nilpotent for any prime q. This
means that there exists a finite q-group Hq and an epimorphism � W �1F ! Hq such
that �.u/ 6D 1. This completes the proof of the lemma. �

We end this section with the following result which follows from the residual
finiteness of surface groups.

Lemma 2.8. Let f W S ! † be a T -injective map from an orientable aspherical
Seifert fibered space to an orientable S1-bundle over an orientable hyperbolic surface
F such that f�.�1S/ is non-abelian. Then for any n 2 N there exists a finite covering
Qfn W zSn ! z†n satisfying the following properties:

(i) the covering z†n ! † has fiber degree one,

(ii) each component of zSn has a base 2-orbifold of genus at least n.

Proof. By Lemma 2.3, S is based on an orientable orbifold. Let T1; : : : ; Tp be the
components of @S . Denote by t the homotopy class of the fiber of † and by 
 W † ! F

the bundle projection. Denote by d1; : : : ; dp the chosen sections of @S with respect
to the fixed Seifert fibration of S and let c1; : : : ; cr denote the homotopy classes of
the exceptional fibers of S with index �1; : : : ; �r respectively.

Since f�.�1S/ is non-abelian, it follows from [JS] that f�.v/ 2 hti for any fiber
v of S . Denote by OS the base 2-orbifold of S and by xOS the underlying space and
set gS D genus. xOS /.

Let q W z† ! † be a finite regular covering. Consider the corresponding epi-
morphism ' W �1† ! K, where K is a finite group, and denote by p W zS ! S the
finite covering corresponding to the homomorphism ' B f�. This covering induces a
branched covering of degree � between the underlying spaces of the base 2-orbifolds
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O zS of zS and OS of S . Let ǰ denote the order of 'f�.cj / and for each i D 1; : : : ; p

denote by ri the number of components of @ zS over Ti and set ni D �=ri . Then the
Riemann–Hurwitz formula allows us to compute the genus of O zS using the data of
OS and those of p W zS ! S :

2g zS D 2 C �

�
p C 2gS C r � 2 �

iDpX
iD1

1

ni

�
iDrX
iD1

1

.�i ; ˇi /

�
:

Case 1: Assume gS � 2. First note that since f�.�1S/ is non-cyclic there exists
an element a 2 �1S such that 
� B f�.a/ 6D 1 in �1F . Since surface groups are
residually finite, there exists a finite group K and an epimorphism " W �1F ! K such
that ".
� B f�.a// 6D 1. Consider the homomorphism ' D " B 
�. Note that since the
regular fiber h of S is sent via f to the fiber of †, we necessarily have � � 2. Then
the Riemann–Hurwitz formula gives

2g zS � 2 C � .2gS � 2/ :

Thus, since gS � 2 and � � 2, we get 2 C � .2gS � 2/ > 2gS . This proves that
g zS > gS and completes the proof of the lemma in this case.

Case 2: Assume gS D 1. Then we claim that p � 1. Suppose the contrary. Let
a and b be the standard generators of �1

xOS and denote by q1; : : : ; qr the sections
corresponding to the exceptional fibers c1; : : : ; cr . Since f�.h/ 2 hti and since �1F

is torsion free, it follows that f�.qi / 2 hti for i D 1; : : : ; r . Hence f�.Œa; b	/ 2 hti
because Œa; b	q1 : : : qr D hb and thus Œ
�f�.a/; 
�f�.b/	 D 1 in �1F . Since F is a
hyperbolic surface, there exists u 2 �1F such that hui D h
�f�.a/; 
�f�.b/i. Let
g 2 �1† such that 
�.g/ D u. Then f�.�1S/ 	 hg; ti ' Z � Z. A contradiction.
Now 
�f�.di / 6D 1 in �1F because f j@S W @S ! † is �1-injective. Thus there
exists an epimorphism " W �1F ! K into a finite group K such that "
�f�.di / 6D 1

for i D 1; : : : ; p. Consider the homomorphisms ' D "
� and ' B f� and the
associated coverings z† and zS . Then it follows from our construction that ni � 2 for
i D 1; : : : ; p and � � 2. Then the Riemann–Hurwitz formula gives

2g zS � 2 C �
p

2
> 2:

Thus g zS � 2 and we have a reduction to the first case.
Case 3: Assume gS D 0. In this case the fundamental group of S admits a

presentation˝
d1; : : : ; dp; q1; : : : ; qr ; h W Œh; di 	 D Œh; qj 	 D 1; q

�i

i D h�i ; d1 : : : dpq1 : : : qr D hb
˛
:

Note that when p > 0, i.e., when @S 6D ;, then one can choose b D 0. Since
f�.h/ 2 hti and since �1F is torsion free, it holds that f�.qi / is in hti for i D 1; : : : ; r .
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Then we first check (using the presentation above and the fact that f�.�1S/ is non-
abelian) that p � 3. If p � 1 then we get f�.�1S/ 	 hti. A contradiction. Assume
that p D 2. Using the presentation of �1S we get f�.�1S/ 	 hf�.d1/; ti ' Z � Z,
a contradiction again. From now on may we assume that p � 3.

Note that since f j@S W @S ! † is �1-injective, it follows that 
�f�.di / 6D 1 in
�1F . Thus there exists an epimorphism " W �1F ! K into a finite group K such that
"
�f�.di / 6D 1 for i D 1; : : : ; p. Consider the homomorphisms ' D "
� and 'f�
and the associated coverings z† and zS . Then it follows from our construction that
ni � 2 for i D 1; : : : ; p and � � 2. Then the Riemann–Hurwitz formula gives

2g zS � 2 C �
�p

2
� 2

�
:

Subcase 1: Assume gS D 0 and p � 4. This implies that g zS � 1 and we have a
reduction to the second case.

Subcase 2: Assume gS D 0 and p D 3. If the number of connected components
zp of zS is � 4 then we have a reduction to the subcase 1. Hence assume that zp D 3.
The Riemann–Hurwitz formula gives

2g zS D 2 � zp C �

�
p C r � 2 �

iDrX
iD1

1

.�i ; ˇi /

�
� � � 1 � 1:

Then we get g zS � 1. This completes the proof of the lemma. �

2.8. Characteristic maps between Haken manifolds. First recall that a codimen-
sion 0 submanifold L of a closed Haken manifold M is termed a characteristic
submanifold if L is a component of M n T , where T is a subfamily of TM .

Next we define characteristic maps. Let f W M ! N be a map between closed
Haken manifolds. We say that f is standard if f .H .M// 	 intH .N / and
f .S.M// 	 int†.N /, where †.N / denotes the characteristic pair defined in Para-
graph 1.2. We say that a standard map f is characteristic if for any component
T 2 TN the space f �1.T / is the disjoint union of components of TM .

Lemma 2.9. Let f W M ! N be a map between closed Haken manifolds and assume
that N is not a virtual torus bundle. If f is standard then it is homotopic to a
characteristic map.

Proof. The proof follows from cut and paste arguments of [Wa]. �

Lemma 2.10. Let f W M ! N be a non-degenerate, non-zero degree map between
closed Haken manifolds. Then if kMk D jdeg.f /jkN k then f is homotopic to a
standard map.
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Proof. This follows from the Mapping Theorem of [JS] and from the Rigidity The-
orem of [S1]. �

More generally we have

Lemma 2.11. Let f W M ! N be a non-zero degree map between closed Haken
manifolds with kMk D deg.f /kN k. Then there exists a connected characteristic
submanifold M1 	 M which contains H .M/ in its interior (in particular if @Q \
@M1 6D ; for Q 2 M � then Q is Seifert), a closed Haken manifold yM1 obtained from
M1 after Seifert Dehn fillings along @M1 and a T -injective non-zero degree extension
Of1 W yM1 ! N of f1 D f jM1 W M1 ! N such that k yM1k D jdeg. Of1/jkN k.

Proof. The proof of Lemma 2.11 follows from the arguments used in [Ro1] without
any essential change. �

2.9. A thick–thin decomposition of Haken manifolds with respect to standard
maps. Let M and N be two Haken manifolds with toral boundary (if non-empty)
and let f W M ! N be a standard map. For each Seifert piece S of M denote by
†S the component of †.N / such that f .S/ 	 int.†S /. Denote by MC the disjoint
union of the Seifert pieces S of M � such that there exists a Seifert fibration on S

with fiber h and a Seifert fibration on †S with fiber t such that f�.Œh	/ 2 hŒt 	i (at the
�1-level) and set M� D M n .MC [ H .M//.

Lemma 2.12. Let f W M ! N be a non-degenerate standard map between Haken
manifolds and let S be a Seifert piece of M . If †S is an S1-bundle over an orientable
hyperbolic surface then we have f�.�1S/ ' Z � Z for S 2 M�.

Proof. Let S be a Seifert piece of M�. By Lemma 2.3 each Seifert fibration on
S has an orientable basis. Due to the fact that †S contains no Klein bottles, it
follows from [JS,Addendum toTheoremVI.I.6] that f�.�1S/ is abelian. Furthermore
f�.�1S/ ' Zr as �1N is torsion free. Since f jS is a non-degenerate map, we
have r � 2, and since N is a three-dimensional manifold, we have r � 3 because
the subgroup f�.�1S/ must have cohomological dimension at most 3. Finally, the
fundamental group of N cannot contain a group isomorphic to Z�Z�Z since †S is an
S1-bundle over an orientable hyperbolic surface. Then necessarily f�.�1S/ ' Z�Z.

�

Lemma 2.13. Let f W .M; @M/ ! .N; @N / be a non-degenerate, proper non-zero
degree map from a Haken graph manifold with toral boundary to an orientable circle
bundle over an orientable hyperbolic surface.

Let Qf W zM ! zN be a finite covering of f and let p W zM ! M denote the
corresponding finite covering of M . Then p�1.M�/ D zM� and zMC D p�1.MC/.
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Proof. If M is a Seifert manifold, then M D MC since f is a non-zero degree map
and thus zMC D zM and the result is obvious.

Assume that M is not a Seifert manifold and let S be a Seifert piece of M . Since
N is an orientable circle bundle over an orientable hyperbolic surface, by Lemma 2.3
S admits an H2 � R structure. In particular S admits a unique Seifert fibration. The
proof of the lemma follows. �

Proposition 2.14. Let f W G ! † be a T -injective proper non-zero degree map
from a Haken graph manifold with toral boundary to an orientable S1-bundle over
an orientable hyperbolic surface F . Let L be a characteristic submanifold of G

such that each Seifert piece S of L satisfies f�.�1S/ ' Z � Z. There exists a finite
covering Qf W zG ! z† of f and a finite family of vertical tori TL in z† satisfying the
following properties:

(i) z† ! † has fiber degree one.

(ii) After a homotopy, for each component zL of p�1.L/, Qf .zL/ is contained in a
component of TL, where p W zG ! G denotes the finite covering correspond-
ing to Qf .

To prove this result, we first need some preliminary lemmas.

Lemma 2.15. Let F denote an orientable hyperbolic surface and let f W S1 ! F be
a geodesic loop and assume that hŒf 	i is a maximal abelian subgroup of �1F . Then
there exists a finite regular covering q W yF ! F such that any lifting Of W S1 ! yF of
f Bp is an embedding, where p W S1 ! S1 denotes the finite covering corresponding
to the subgroup f �1� .q�.�1

yF //.

Proof. Denote by p W H2 ! F the universal covering of F and denote by � the
isometry of H2 corresponding to Œf 	. Note that if � is a parabolic isometry then
the lemma is obvious. Thus let us assume that � is a hyperbolic isometry. Let l be
the unique � -invariant geodesic line in H2. Denote by D a (compact) fundamental
domain in l for the action of � . Denote by fg1; : : : ; gng the finite subset of �1F

defined by fg 2 �1F nh�i j g.D/\D 6D ;g. Moreover, there exists a finite group K

and an epimorphism ' W �1F ! K such that '.gi / 62 '.h�i/, for i D 1; : : : ; n. Then
the finite regular covering H2= ker.'/ ! F satisfies the conclusion of the lemma.

�

Lemma 2.16. Let † denote an orientable circle bundle over an orientable hyperbolic
surface F and let f W S1 � S1 ! † be a �1-injective map. Then there exists
a finite, fiber degree one, regular covering q W y† ! † such that for each lifting
Of W S1 �S1 ! y† of f Bp there is a vertical torus yT in y† such that Of .S1 �S1/ 	 yT ,

where p W S1 � S1 ! S1 � S1 denotes the finite covering corresponding to the
subgroup f �1� .q�.�1

y†//.
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Proof. Denote by G a maximal abelian subgroup of �1† of rank 2 containing
f�.�1.S1 � S1//. Then G can be written as ht; bi, where b generates a maximal
abelian subgroup of �1F and t denotes the homotopy class of the fiber of †. It is
well known that b is freely homotopic to an element of �1F which can be represented
by a closed geodesic loop g W S1 ! F . Then changing f by a homotopy, we may
assume that b D Œg	. Denote by q W yF ! F the finite regular covering of F satisfy-
ing the conclusion of Lemma 2.15 with the map g. Then the finite, fiber degree one,
regular covering q W y† ! † obtained as a pullback of q via the bundle projection

 W † ! F satisfies the conclusion of the lemma. �

In the sequel we will need the following definition: let T denote a vertical torus in a
Seifert manifold † endowed with a base point x. We say that T is a maximal vertical
torus if there are no rank 2 free abelian subgroups of �1.†; x/ strictly containing
�1.T; x/.

Lemma 2.17. Let f W .V; @0V / ! .†; T / be a T -injective map from a connected
Haken graph manifold V with toral boundary to an orientable S1-bundle † over
an orientable hyperbolic surface F with bundle projection 
 W † ! F . Assume
that @0V is a non-empty subset of @V , T is a maximal vertical torus in † and that
f�.�1S/ ' Z � Z for each Seifert piece S of V . Then f is homotopic, rel. @0V , to
a map g such that g.V / 	 T .

Note that �1T can be presented as ht , bi, where 
.b/ is represented by an em-
bedded geodesic curve which generates a maximal cyclic subgroup of �1F and t is
the fiber of †. We first check the following

Claim 2.18. For each Seifert piece S of V , the map f jS is homotopic, rel. to f j@0V ,
to a map g such that g.S/ 	 T .

Proof of Claim. Let S be a Seifert piece such that @S \ @0V 6D ;. Let T0 be a
component of @S \ @0V . Let x 2 T0 be a base point and let y D f .x/ 2 T .
Let H be a free abelian subgroup of �1.†; y/ such that K0 D H \ �1.T ; y/ is
a free abelian group of rank 2. Thus K0 is a finite index subgroup of H . Hence,
since K0 	 �1.T ; y/ for any g 2 H , there exists an integer ng 2 Z such that
gng 2 �1.T ; y/ D ht; bi. On the other hand, there exists an integer ˇ 6D 0 and an
element ˛ 2 �1† such that 
�.˛/ 2 �1F n f1g and such that H D htˇ ; ˛i. Then,
in particular, there exist two non-zero integers n; m 2 Z such that 
�.˛/n D 
�.b/m.
It is easy to check that h
�.˛/; 
�.b/i is an infinite cyclic subgroup of �1F , using
the classification of isometries of H2;C. Therefore, since T is a maximal torus,

�.˛/ 2 h
�.b/i, and thus H 	 �1T .

Using the above construction with H D f�.�1S/ which contains H \�1.T ; y/ �
K0 D f�.�1.T0; x// we deduce that f�.�1S/ 	 �1T . Hence one can change f jS
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by a homotopy, rel. to f j@0V , such that f .S/ 	 T . Since V is connected, this
completes the proof of the claim by repeating the argument for each Seifert piece
of V . �

Proof of Lemma 2.17. We argue by induction on the complexity of the dual graph
�V of V . Fix a Seifert piece S0 such that @S0 \ @0V 6D ;. By the claim above we
may assume that f .S0/ 	 T .

Case 1: Assume that �V is a tree. Let S be a Seifert piece of V adjacent to S0.
Note that @S0 \ @S is a connected canonical torus T since �V is a tree. Fix a base
point x 2 T and y D f .x/ 2 T . It follows from the claim above that f�.�1.S; x// is
a subgroup of �1.T ; y/. Since S0 \ S is connected, it follows from the van Kampen
Theorem that f�.�1.S [T S0// is a subgroup of �1.T ; y/. Hence, after a homotopy
rel. to @0V , we may assume that f .S [T S0/ 	 T . This completes the proof of the
lemma when �V is a tree by repeating this process.

Case 2: If �V is not a tree then Rank.H1.�V I R// � 1. Choose a characteristic
non-separating torus T in V . By Claim 2.18, one can change f by a homotopy
rel. to @0V such that f .T / 	 T . Next, consider the space yV obtained by cutting
V along T . Then Rank.H1.� yV I R// < Rank.H1.�V I R//. Denote by U1, U2 the

components of @ yV over T and write @0
yV D @0V [ U1 [ U2. Consider the map

f1 D f j yV W . yV ; @0
yV / ! .†; T /. We know from the induction hypothesis that there

exists a map g1 homotopic to f1 rel. to @0
yV such that g1. yV / 	 T . Thus it follows

from our construction that g1 factors through V . This completes the proof of the
lemma. �

Proof of Proposition 2.14. Let S be a Seifert piece of L. Then, by Lemma 2.16 there
exists a fiber degree one finite covering z†S ! † satisfying the following property.
Consider the covering QfS W zGS ! z†S of f corresponding to z†S ! †. Then for
each component zS over S in zGS there exists a maximal vertical torus in z†S containing
QfS . zS/. Consider the covering z† of † corresponding to the finite index subgroup\

S2L�

�1
z†S

of �1†. Denote by Qf W zG ! z† the covering of f corresponding to z† ! † and
by p W zG ! G the corresponding covering of G. Hence for each Seifert piece zS of
p�1.L/, there exists a maximal vertical torus T zS in z† containing Qf . zS/. It remains to
prove that the same property remains true by replacing zS by the connected component
zL of p�1.L/ which contains zS . This last point follow directly from Lemma 2.17.
This completes the proof of the proposition. �

We end this section with the following result.
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Lemma 2.19. Let f W .M; @M/ ! .N; @N / be a T -injective, proper, non-zero degree
map from a Haken graph manifold with toral boundary to an orientable circle bundle
over an orientable hyperbolic surface. Then

(i) there exists at least one Seifert piece S of M such that f�.�1S/ is non-abelian,

(ii) if f�.�1S/ is non-abelian then S is a component of GC, and

(iii) if there exists a component T of TM shared by two Seifert pieces S1 and S2 of
M then S1 or S2 is in G�.

Proof. If f�.�1S/ is abelian for any Seifert piece S of M then by Proposition 2.14,
there exists a finite covering Qf W zM ! zN such that Qf�.�1

zM/ ' Z � Z. Since
deg.f / 6D 0 also deg. Qf / 6D 0. This implies that �1

zN contains a finite index abelian
subgroup. This is impossible since N is a circle bundle over a hyperbolic surface.

Assume that f�.�1S/ is non-abelian. By Lemma 2.3 we know that S admits a
Seifert fibration over an orientable basis. Moreover, the map f jS is homotopic to a
fiber preserving map since N contains no embedded Klein bottle.

Let T be a component of TM shared by two Seifert pieces S1 and S2 of M such
that the maps f jSi are homotopic to fiber preserving maps. Fix a base point x in T

and denote by hi , i D 1; 2, the homotopy class of the regular fiber in Si represented
in T . Since the f jSi are fiber preserving, the map f jT cannot be �1-injective by
the minimality of the JSJ decomposition. This is a contradiction and completes the
proof of the lemma. �

3. Comparing the volume of the base 2-orbifolds

Let f W .G; @G/ ! .†; @†/ be a T -injective, proper, non-zero degree map from a
Haken graph manifold G with toral boundary to an orientable S1-bundle .†; 
; F /

over an orientable hyperbolic surface F with bundle projection 
 W † ! F . Then
one can associate to f a thick–thin decomposition of G into GC [G�. In this section
we give a general formula which allows us to compare Vol.GC/ and Vol.†/. To this
purpose we need to have a relation as precise as possible between Rank.H1. xOCI Z//

and Rank.H1.F I Z//, where xOC denotes the disjoint union of the base surfaces of
the Seifert pieces of GC (see Proposition 3.1).

3.1. Efficient surfaces. Let F be a connected, embedded, orientable surface in G.
We say that F is an efficient surface if it satisfies the following properties:

(1) F is transversal to TG in the sense that @F \TG D ; and that each component
of F \ TG is an essential simple closed curve in TG .

(2) The torus-decomposition of G gives a “circle” decomposition of F into F � D
F n .TG \ F /.
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(3) The thick–thin decomposition of G induces a thick–thin decomposition of F

such that F� D F \ G� is incompressible and well-embedded in G� and the thick
part FC D F \ GC of F is horizontal (this means that each component F of FC is
transversal to the fibers of the Seifert piece of GC containing F ).

We denote by Go the characteristic submanifold of G which consists of the Seifert
pieces of G which meet F . Denote by GoC and Go� the thick–thin decomposition of
Go and by xOoC the disjoint union of the base surfaces of the Seifert pieces of GoC.

We associate to an efficient surface F a graph � in the following way. First
consider the dual graph �0 with respect to the circle decomposition of F and denote
by V0, resp. E0, the vertex space, resp. the edge space of �0. For each edge e 2 E0,
e \ TG then consists of a single point ve.T /, where T denotes the component of TG

such that e \T 6D ;. The set fve.T /; e 2 E0; T 2 TGg D �0 \TG will be termed the
middle space of �0 and we denote it by M0. Then consider the graph � D �0 \ G�
with vertex space V D .V0 \G�/[M0. Moreover, we always assume the following
middle condition (which can always be performed) for the vertex space:

Let x and y be two vertices of � . Assume that x and y are in M0 and correspond to
the same canonical torus T of G. Since two Seifert pieces of GC cannot be adjacent,
by Lemma 2.19 there exists at most one Seifert piece S of GC such that T 	 @S .
Then in this case x and y are in the same fiber of S .

We consider the following equivalence relation on � . Let x and y be two vertices
of � . Then x 
 y iff either x and y are in M0 and live the same canonical torus of
G or x and y are in V0 \ G� and live in the same Seifert piece of G.

Denote by y� the quotient space �= 
 and by q W � ! y� the projection. Note that
the vertex space V.y�/ of y� is equal to q.V /.

We define a “quotient space” of � [ FC in the following way. Denote by
… W GC ! xOC the Seifert projection. First note that, since …jGoC is compatible
with 
 by the middle condition, ….� \ FC/ gives a subset of V.y�/. Then define

the space xOoC [ y� as the attachment of y� to xOoC along ….� \ FC/ D y� \ xOoC.
Hence we get a map … [ q W FC [ � ! xOoC [ y� . Next, for each component O of
xOoC we pick a base point xO and we connect each point of V.y�/ \ @O to xO by an

embedded arc and we denote by �F the graph obtained from the union of y� with

these embedded arcs whose vertex space V.�F / is V.y�/ [ � S
O2 xOo

C
fxOg	. Now

y� [ xOoC D �F [ xOoC but the second presentation is easier for some computations
because �F is connected.

A subset �1 of �F will be termed a pseudo subgraph if �1 is a graph whose vertex
space V.�1/ is a subset of V.�F /. We say that a connected pseudo subgraph �1 of
�F is a minimal connection pseudo subgraph of �F if

(i) �1 [ xOoC is connected,

(ii) for each component O of xOoC, the set �1 \ O is simply connected,
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(iii) the edge and the vertex space of �1 satisfy

Card.V .�1// D Card.�0..Go/�//;

Card.E.�1// �
X

S2.Go
�/�

Card.�0.@S//;

where .Go/�, resp. .Go�/�, denotes the disjoint union of the Seifert pieces of Go,
resp. Go�. Then the main result of this section is

Proposition 3.1. Let f W .G; @G/ ! .†; @†/ be a T -injective, proper, non-zero
degree map from a Haken graph manifold G with toral boundary to an orientable
S1-bundle .†; 
; F / over an orientable hyperbolic surface F with bundle projection

 W † ! F . Assume moreover that for each component L of G� there exists a
maximal vertical torus TL in † such that f .L/ 	 TL. Then there exists an efficient
surface F in G and a minimal connection pseudo subgraph �1 of �F such that
ˇ1.�1 [ xOoC/ � ˇ1.F /.

In the following we will denote by T� the union of vertical tori TL, where L

runs over the components of G�, and by c� the union of the corresponding curves
cL D 
.TL/ in F .

Remark 3.2. Let yL denote a characteristic submanifold of G such that f�.�1S/ '
Z � Z for each Seifert piece S of yL and which is maximal with respect to the natural
inclusion. This means that yL contains a component L of G� but yL can be larger than
L. However, by Lemma 2.17 we may assume, after a homotopy, that f .yL/ 	 TL.

3.2. Domination of the target via essential surfaces. In this section we prove the
following result.

Lemma 3.3. There exists an efficient surface F in G such that ˇ1.�F [ xOoC/ �
ˇ1.F /.

First we construct an efficient surface in G by pull back. Since f jGC W GC ! †

is a bundle homomorphism one can choose a fiber t in †nW.T�/ such that f �1.t/ is
a finite union of regular fibers h1; : : : ; hl in int.GC/. In the following we set †0 D †

when the Euler number e.†/ D 0 and †0 D † n W.t/ when e.†/ 6D 0. Next, denote
by G0 the space f �1.†0/ D G n S

1�i�l W.hi / D G0 and by f 0 W G0 ! †0 the
induced proper non-zero degree map. In any case, †0 is a circle bundle over a surface
F 0 with zero Euler number. Fix a section of the bundle 
 0 W †0 ! F 0 so that F 0 can
be seen as an incompressible well-embedded surface in †0. After changing f 0 by a
homotopy so that each component of f 0�1.F 0/ is an incompressible, well-embedded
surface in G0, fix a component F of f 0�1.F 0/ such that deg.f 0jF W F ! F 0/ 6D 0.
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Denote b y �G , resp. �†, the natural quotient map �G W G0 ! G, resp. �† W †0 ! †,
and denote still by F the surface �G.F /. It is immediate from the construction that
F is an efficient surface of G. In the following we denote by I the map 
 B f .

Lemma 3.4. The efficient surface F satisfies the following properties:

(i) I�.�1.F // is a finite index subgroup of �1F , I�.H1.F I Q// D H1.F I Q/ and
FC is not empty.

(ii) The map I jFC W FC ! F factors through xOoC in such a way that there exists a
continuous map J W xOoC ! F such that I jFC D J B ….

(iii) Let d be a simple closed curve in @GC n @G which is not homotopic to a fiber
of GC. Then I�.H1.d I Q// D H1.cLI Q/, where L denotes the component of
G� which contains d .

Proof. First observe that it is a direct consequence of our construction that the map

 B �† B i 0 W F 0 ,! †0 ! † ! F is �1-surjective and that f 0jF W F ! F 0 is a
proper non-zero degree map. Thus .f 0/�.�1.F // is a finite index subgroup of �1F 0
and .f 0/�.H1.F I Q// D H1.F 0I Q/. Hence I�.�1.F // is a finite index subgroup
of �1F and I�.H1.F I Q// D H1.F I Q/.

If FC D ; then by connexity F D F� and there exists a component L of G�
containing F . Hence I�.�1F / < hŒcL	i which implies that �1F contains a finite
index cyclic subgroup. This is a contradiction since F is a hyperbolic surface. Hence
point (i) follows.

Next we check point (ii). Since f jGC is a bundle homomorphism there exists a
continuous map J W xOC ! F such that I jGC D J B …. This proves point (ii).

It remains to check point (iii). Denote by T the component of TG which contains
d and by S the Seifert piece of GC containing T in its boundary. Since T is in
@GC n @G, there exists a component L of G� adjacent to S along T . Since f jS is
fiber preserving and since f jT is �1-injective it follows that the map I jd W d ! cL

has non-zero degree. This shows (iii). �

Lemma 3.5. The map I jFC [ � W FC [ � ! F factors through xOoC [ �F in such
a way that there exists a continuous map J W xOoC [ �F ! F such that I jFC [ � D
J B .… [ q/.

Proof. Deform slightly f so that for any vertices x and y of � living in the same
Seifert piece of G� we have I.x/ D I.y/. Then the lemma follows directly from
Lemma 3.4. �

Now the proof of Lemma 3.3 follows from Lemma 3.5 combined with the fol-
lowing assertion.
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Claim 3.6. The induced homomorphism

I� W H1 .� [ FCI Q/ ! H1.F I Q/

is surjective.

Proof. Recall that I� W H1 .F I Q/ ! H1.F I Q/ is an epimorphism by Lemma 3.4.
Using the Mayer–Vietoris exact sequence one sees that H1 .F I Q/ is generated by
H1 .� [ FCI Q/ and H1 .F�I Q/. Furthermore, for each component V of F� there
exists a component L of G� containing V and a component d of @V adjacent to
a component of FC in GC. Hence it follows from Lemma 3.4 that hI�.Œd 	/i D
I�.H1.V I Q//. This completes the proof of the claim. �

3.3. Connection by a minimal graph. In this section we prove Proposition 3.1. To
this purpose we need to check the following Elimination Lemma.

Lemma 3.7. There exists a connected pseudo subgraph � 0 of �F satisfying the
following conditions:

(i) V.� 0/ D V.�F /,

(ii) for each component O of xOoC, the set � 0 \ O is simply connected,

(iii) the valence v.x/ of x is 2 in � 0 for any x 2 q.M0/,

(iv) the space � 0 [ xOoC is still connected and the map J j� 0 [ xOoC W � 0 [ xOoC ! F

induces an epimorphism at the H1-level (with coefficient Q).

Proof. First notice that �F satisfies points (i), (ii) by construction and (iv) by
Lemma 3.5 and Claim 3.6. Moreover, it follows from our construction that for
any x 2 q.M0/ we have v.x/ � 2.

Now assume that there exists a point x 2 q.M0/ such that v.x/ � 3. Then there
exists at least three edges e1, e2 and e3 of �F such that x is an end of ei for i D 1; 2; 3.
For each i denote by yi the end of ei such that @ei D fx; yig. Note that each yi is a
point of q.V0 \ G�/

S
O2 xOo

C
fxOg and thus each yi corresponds to a unique Seifert

piece of Go. Denote by Si , i D 1; 2; 3, the Seifert piece of Go corresponding to
yi and by T the canonical torus corresponding to x. Since T is shared by S1, S2

and S3, there exists i; j 2 f1; 2; 3g such that Si D Sj . For simplicity assume that
S2 D S3. Thus necessarily y2 D y3. Since �F \ O is simply connected for each
component O of OoC, obviously S2 D S3 is a Seifert piece of Go�. Denote by L the
component of G� containing S2 D S3 and denote by d the curve defined by e2 [ e3.
Then J�.Œd 	/ 2 H1.cLI Q/, where cL is the simple closed curve in F corresponding
to the torus TL of T� such that f .L/ 	 TL. Let U be a component of TG which is
shared by L and a component S of GoC, and let c be a component of F \ U . Then
by Lemma 3.4, I�.hŒc	i/ D H1.ŒcL	I Q/. Then there exists an integer a such that
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I�.Œc	a/ D J�.Œd 	/. Denote by sU a cross section of U with respect to the Seifert
fibration of S induced on U . Then there exists .p; q/ 2 Z�Z such that Œc	a D s

p
U h

q
S

with p 6D 0 and where hS denotes the generic fiber of S .
Denote still by sU the component of @ xOoC corresponding to U . Then J�.ŒsU 	p/ D

J�.Œd 	// at the H1-level with coefficient Q.
Consider the graph � 0 obtained from �F after removing int.e2/. Then � 0 satisfies

points (i), (ii) and (iv) and the valence of x in � 0 is strictly less than the valence of x

in �F . The proof of the lemma follows by repeating this operation finitely many of
times. �

Proof of Proposition 3.1. Let x be an element of q.M0/ \ V.� 0/. We know by
Lemma 3.7 that v.x/ D 2. Then there exist exactly two edges e1, e2 whose x is an
end point. Hence one can replace the edges e1; e2 by a single edge e1 [x e2. By
performing this operation for all points of q.M0/ we get a new graph �1 satisfying
the conclusion of Proposition 3.1. �

4. The volume decreases under non-zero degree maps

The main purpose of this section is to prove the following result.

Proposition 4.1. Let f W .G; @G/ ! .†; @†/ be a T -injective, �1-surjective, proper,
non-zero degree map from a Haken graph manifold G with toral boundary to an
orientable S1-bundle .†; 
; F / over an orientable hyperbolic surface F with bundle
projection 
 W † ! F . Assume moreover that for each component L of G�, there
exists a vertical torus TL in † such that f .L/ 	 TL. Then Vol.G/ � Vol.†/ and if
G� 6D ; then Vol.G/ > Vol.†/.

Remark 4.2. Roughly speaking, in the proof of Proposition 4.1 we establish the
following inequality: Vol.†/ � Vol.GC/ C ", where " � Vol.G�/ when G� 6D ;.
This inequality is sufficient for our purpose. However the following question is
natural: Is it true that Vol.†/ � Vol.GC/?

Throughout this section, we keep the same notations as in Section 3.1.

4.1. Domination of the target by the thick part of the domain

Lemma 4.3. Let f W .G; @G/ ! .†; @†/ be a map satisfying the same hypotheses
as in Proposition 4.1. Assume moreover that either

(i) T� D ; (which is equivalent to the condition G� D ;), or

(ii) T� 6D ; and the homomorphism H1.c�I Q/ ! H1.F I Q/ induced by the
natural inclusion is surjective.
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Then
Vol.GC/ � Vol.†/:

Proof. Assume first that condition (i) is satisfied. If T� D ; then necessarily G� D ;
and so G D GC is a Seifert fibered space by Lemma 2.19. Hence in this case
f jG W G ! † is a bundle homomorphism of non-zero degree and the inequality
follows.

Assume now that condition (ii) is satisfied. Let yL denote a connected characteristic
submanifold of G such that f�.�1S/ ' Z � Z for each Seifert piece S of yL and
choose yL so that it is maximal with respect to the natural inclusion. Denote by
L1; : : : ; Ln the set of all such maximal characteristic submanifolds of G. It follows
from Remark 3.2 that the submanifolds Li satisfy the following properties:

(a)
S

1�i�n Li � G�.
(b) There exists a component Ti of T� such that f .Li / 	 Ti and fT1; : : : ; Tng D

T�.
(c) There exists a canonical torus Di of G shared by Li and a Seifert piece Si of

GC such that f�.�1Si / is non-abelian.
On the other hand, it follows from the T -injectivity that f jDi W Di ! Ti is a non-

zero degree map. For each i , denote by di the simple closed curve obtained from Di

after killing the primitive curve of Di corresponding to the generic fiber of the Seifert
piece Si adjacent to Di . In this way, di can be seen as a boundary component of the
base surface of Si denoted by xOSi

. Then f jDi W Di ! Ti descends to a non-zero
degree map Qf W di ! ci , where ci D 
.Ti / is a component of c�. Since f jSi is a fiber
preserving map, it follows that f j S

i Si descends to the map J W S
i

xOSi
! F . The

natural inclusion c� D S
L cL ,! F induces an epimorphism at the H.�; Q/-level

which implies that J W S
i @ xOSi

! F induces an epimorphism at the H.�; Q/-level
by properties (a) and (b).

For convenience we index the components Si by S1; : : : ; Sq in such a way that
Si 6D Sj when i 6D j . Denote by gi the genus of the base surface of Si and by pi

the number of components of @Si . Then

Vol.GC/ �
qX

iD1

.2gi C pi � 2/ :

Since J W S
i @ xOSi

! F induces an epimorphism at the H.�; Q/-level, it follows
that

qX
iD1

pi � ˇ1F:

On the other hand, we know that Vol.†/ D ˇ1.F /�", with " D 2 or 1 depending
on whether † is closed or not, and by Lemmas 2.5 and 2.8, we may assume that
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gi � 2 when i D 1; : : : ; q. Thus we get

Vol.GC/ � ˇ1.F†/ C 2

qX
iD1

.gi � 1/ > Vol.†/:

This proves the lemma. �

4.2. Increasing the genus of the base 2-orbifolds of the efficient thin part. In
order to prove Proposition 4.1, we first state a technical lemma which allows us to
construct suitable coverings which increase the genus of the base of the thin part of G.

Lemma 4.4. Let f W G ! † be a map satisfying the hypotheses of Proposition 4.1.
Assume moreover that T� 6D ; and that

.C1/ H1.c�I Q/ ! H1.F I Q/ is not surjective:

For any n 2 N� there exists a finite regular covering fn W Gn ! †n of f W G ! †

satisfying the following properties:

(i) Any Seifert piece of Gn over a Seifert piece of G� admits a fibration over a
2-orbifold of genus at least n.

(ii) The covering †n ! † has fiber degree � the fiber degree of Sn ! S for any
Seifert piece S of G and for any Seifert piece Sn of Gn over S .

In order to prove this result it will be convenient to define a set of invariants which
parametrize the map f W G ! † satisfying the same hypotheses as in Proposition 4.1.
Recall that we know, from Lemma 2.3, that each Seifert piece of G admits always a
fibration over an orientable 2-orbifold. Given a Seifert piece S of G, we denote by
hS its generic fiber, by c1; : : : ; crS

its exceptional fibers and by T1.S/; : : : ; TpS
.S/

its boundary components, and for each i D 1; : : : ; pS denote by di .S/ a section of
Ti .S/ so that d1.S/ C � � � C dpS

.S/ C q1 C � � � C qrS
D 0 in H1.S I Z/, where each

qi is a chosen section corresponding to the exceptional fiber ci .
Recall that for each component S of G� there exists a component TS of T�

such that f .S/ 	 TS . Denote by NuS a simple closed curve in TS such that �1TS D
hŒ NuS 	; ti. After a homotopy on f jS we may assume that each component of
.f jS/�1. NuS / is a well-embedded incompressible surface in S .

In the following it will be convenient to decompose G� into the union G�;h[G�;v,
where G�;h, resp. G�;v, consists of the Seifert pieces S of G� such that .f jS/�1. NuS /

is made of horizontal, resp. vertical surfaces.
If S denotes a Seifert piece of GC, let qS be the non-zero integer satisfying

f�.hS / D tqS .
Suppose that S denotes a Seifert piece of G�;h. Let .ˇS ; ˛S / be the integers such

that f�.hS / D NuˇS

S t˛S , where t denotes the fiber of †. Note that by definition of
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G�;h for each i D 1; : : : ; pS there exists � i
S 6D 0 and coprime integers .ai

S ; ni
S / with

ai
S 6D 0 such that f�.d

ai
S

i .S/h
�ni

S

S / D Nu� i
S

S .
Note that ˇS 6D 0 since f jS is not fiber preserving. On the other hand, ai

S 6D 0

implies that Rank.hd ai
S

i .S/h
�ni

S

S ; hS i/ D 2 and since f is non-degenerate we have
˛S 6D 0.

Suppose that S is a Seifert piece of G�;v. We denote by 
S the non-zero integer

such that f�.hS / D Nu�S

S and by .�i
S ; �i

S / the integers such that f�.di .S// D Nu�i
S

S t�i
S ,

with �i
S 6D 0.

Then we define the parameters space of the maps f by setting

M.f / WD
8<
:

qS when S 2 GC;

.˛S ; ˇS /; � i
S ; ai

S i D 1; : : : ; pS when S 2 G�;h;


S ; .�i
S ; �i

S / when S 2 G�;v

9=
; :

To prove Lemma 4.4 we first check that we have the following reduction. The
hypotheses are the same as in Lemma 4.4. More precisely:

Claim 4.5. We may assume that the map f W G ! † satisfies the following condition.

There exists a prime number q such that e.†/ 2 qZ and

.C2/

q > l:c:m

8<
:

qS ; S 2 GC;

� i
S ; ˛S ; S 2 G�;h; i D 1; : : : ; pS ;


S ; �i
S S 2 G�;v

9=
; :

Proof. First note that if e.†/ D 0 then the claim is obvious. Hence, let us assume
that e.†/ 6D 0 which implies in particular that † is closed. By Lemma 2.6, passing
to a finite covering with fiber degree one of the target we may assume that for each
component c of c�,

.�/ Im .H1 .cI Z/ ! H1 .F I Z// 6D f0g:
On the other hand, recall that the group �1† has a presentation

.Pe/ ht; a1; b1; : : : ; ag ; bg W a�1
i tai D t; b�1

j tbj D t; Œa1; b1	 : : : Œag ; bg 	 D tni;
where n D e.†/. The integer n also has the following interpretation: the group �1†

is obtained as a central extension of hti D Z by �1F using the exact sequence of the
fibration

f1g ! hti ' Z
i���! �1†

����! �1F ! f1g:
Recall that central extensions of Z by �1F correspond to elements of H 2.�1F; Z/

and the integer n is the element of Z ' H 2.�1F; Z/ corresponding to �1†.
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Let q be a prime number. By condition .C1/, there exists an epimorphism
" W H1.F I Z/ ! Zq such that ker " � H1.c�I Z/. Consider the finite cover-
ing � W z† ! † corresponding to 
�1� .ker.N"//, where N" denotes the composition
�1F ! H1.F I Z/ ! Zq . It follows from the construction that � is trivial over
T�. On the other hand, z† is an S1-bundle over a surface zF that is the covering of F

corresponding to N". Note that the inclusion �1
zF ! �1F gives a map

H 2.�1F; Z/ ' Z 3 1 7! q � 1 2 Z ' H 2.�1
zF ; Z/

and thus the integer Qn corresponding to the fibration of z† satisfies the equation Qn D qn.
Note that since the covering is trivial over T�, it follows that the covering zG ! G

corresponding to f �1� .
�1� .ker.N"/// is trivial over G� and over hS , where hS denotes
the generic fiber of S where S runs over the components of GC. In particular for any
Seifert piece S in G�;h, resp. GC, resp. G�;v and any component zS over S in zG�
we have ˛ zS D ˛S , ˇ zS D ˇS , � i

zS D � i
S , ai

zS D ai
S , resp. q zS D qS , resp. 
 zS D 
S ,

�i
zS D �i

S and �i
zS D �i

S . In other words, this covering does not affect the parameter
space. This completes the proof of the claim. �

Lemma 4.6. Let f W G ! † be a map satisfying the hypotheses of Proposition 4.1
and conditions .C1/; .C2/ and .�/. Let S be a geometric piece of G�. Let g be an
element of �1S which denotes either the homotopy class of an exceptional fiber or
the homotopy class of a section of a boundary component of S . Then there exists a
finite group H and an epimorphism ' W �1† ! H such that the following holds:

(i) Separation: 'f�.g/ 62 h'f�.hS /i.
(ii) Action on the fibers: Let p W z† ! † denote the covering of † corresponding to

' and for any Seifert piece S of G denote by �S W zS ! S the finite covering of
S corresponding to ker.' B .f jS/�/. Then Gh.�S / � Gh.p/.

Proof. Let S be a geometric piece of G� and let g be an element of �1S satisfying
the hypothesis of the lemma.

First assume that g is the homotopy class of an exceptional fiber c of S and
denote by � > 1 the index of this fiber. Let .ˇ; ˛/ 2 Z2 such that f�.g/ D Nuˇ

S t˛ . In
particular we have ˇ� D xS 6D 0, where xS D ˇS if S is a Seifert piece of G�;h or
xS D 
S if S is in G�;v.

Let p be a prime number such that pj�. According to Lemma 2.7 there exists
a finite group Hp and an epimorphism � W �1F ! Hp such that �.u

ˇ
S / 6D 1 and

p divides the order of �.u
ˇ
S /, where uS D 
. NuS /. Consider the homomorphism '

given by

�1†
����! �1F

��! Hp:
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This completes the proof when g D c. Indeed suppose that there exists n 2 Z

such that 'f�.g/ D 'f�.hn
S /. Then �.u

ˇ
S / D �.u

nˇ�
S /. Then p divides 1 � n�. A

contradiction since pj�. Moreover, the second point of the lemma is satisfied since
the covering on the target corresponding to ' has fiber degree one.

Assume now that g denotes the homotopy class of a section d of a component
of @S .

Case 1: Assume that S is a Seifert piece of G�;h. According to the notation of
Paragraph 4.2 we know that there exists i 2 f1; : : : ; pSg such that d D di .S/. In

particular we have f�.d ai
S / D Nu� i

S
Cni

S
ˇS

S tni
S

˛S where ai
S 6D 0.

From the presentation .Pe/ of �1† and by condition .C2/ one sees that
H1.†I Z/ ' Zn ˚ H1.F I Z/ where n 2 qZ. Since n 2 qZ there exists an epi-
morphism �q W Zn ! Zq . On the other hand, it follows from condition .�/ that the

. NuS /’s are non-trivial elements of H1.F I Q/ (when S runs over the Seifert pieces of
G�). Then there exists a q-group .Fq; C/ and an epimorphism �q W H1.F I Z/ ! Fq

such that �q.uS / 6D 0 for any S in G�. Consider now the homomorphism ' defined
by

�1† ! H1.†I Z/ ' Zn ˚ H1.F I Z/
�q��q����! Zq � Fq:

Using condition .C2/ we claim that ' satisfies the conclusion of the lemma. First
we check point (i). To see this it is sufficient to check that 'f�.d ai

S / 62 h'f�.hS /i.
Assume that there exists m 2 Z such that 'f�.d ai

S / D 'f�.hm
S /. Then using our

notations this means that

.� i
S C ni

SˇS /�q .uS / D mˇS�q.uS / and ni
S˛S�q .t/ D m˛S�q .t/ :

Then q divides � i
S C ˇS .ni

S � m/ and .ni
S � m/˛S . Since .˛S ; q/ D 1, q divides

ni
S � m and thus q divides � i

S . A contradiction. It remains to check the second point
of the lemma. First it follows from the construction of ' that Gh.p/ D q, where p is
the finite covering corresponding to '. On the other hand, for any Seifert piece S of
G it follows from our construction and from condition .C2/ that 'f�.hS / has order
qrS with rS � 1, since f�.hS / D tqS and .q; qS / D 1 or f�.hS / D NuˇS

S t˛S and
.˛S ; q/ D 1 or 
�f�.hS / D 
�. Nu�S

S / with .
S ; q/ D 1 depending on whether S is a
Seifert piece of GC, G�;h or G�;v.

Case 2: Assume that S is a Seifert piece of G�;v. We use the same arguments as
in the first case. Let q be a prime number satisfying condition .C2/. Then consider
the epimorphism

H1.†I Z/ ' Zn ˚ H1.F I Z/
�q��q����! Zq � Fq

constructed in the first case and denote by ' the composition �1† ! H1.†I Z/ !
Zq � Fq . Then

'.f�.hS // D .0; 
S�q.Œ
. NuS /	//
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and

'.f�.d// D .�i
S�q.t/; �i

S�q.Œ
. NuS /	//:

Since qjn and since .q; �i
S / D 1, it follows that '.f�.d// 62 h'.f�.hS //i. On the

other hand, it follows from our construction and from condition .C2/ that Gh.p/ D q

and that for any Seifert piece S of G then 'f�.hS / has order qrS with rS � 1. This
completes the proof of the lemma. �

Proof of Lemma 4.4. Let S be a Seifert piece of G� and assume that the genus gS

of the base 2-orbifold OS of S satisfies gS � 1. Denote by d1; : : : ; dpS
the chosen

section of @S (with respect to the fixed Seifert fibration of S ) and let c1; : : : ; crS

denote the homotopy class of the exceptional fibers of S with index �1; : : : ; �rS
.

Using Lemma 4.6 and Claim 4.5 we may assume that there exists a homomorphism
' W �1† ! K onto a finite group such that

(i) 'f�.di / 62 h'f�.hS /i, for i D 1; : : : ; pS and 'f�.cj / 62 h'f�.hS /i for j D
1; : : : ; rS .

Denote by p W zS ! S the covering corresponding to ' B .f jS/�. This covering
induces a branched covering, whose degree is denoted by � , between the underlying
space of the base 2-orbifolds of S and zS . Let ǰ be the order of 'f�.cj / in K and
for each i D 1; : : : ; pS denote by ri the number of component of @ zS over Ti and set
ni D �=ri . Then the Riemann–Hurwitz formula allows us the compute the genus of
the base 2-orbifold of zS in the following way:

2g zS D 2 C �

�
pS C 2gS C rS � 2 �

iDpSX
iD1

1

ni

�
iDrSX
iD1

1

.�i ; ˇi /

�
:

By condition (i) one can check that � � 2, ni � 2 for i D 1; : : : ; pS and .�i ; ˇi / � 2

for i D 1; : : : ; rS . Then, since moreover pS � 1 (because GC and G� are non-
empty), it is easy to check that g zS > gS when gS � 1. Note that condition (ii) of
Lemma 4.4 is guaranteed by condition (ii) of Lemma 4.6.

Assume now that gS D 0. We follow here the same construction as in the case of
gS � 1 using Lemma 4.6. The Riemann–Hurwitz formula gives

2g zS � 2 C �

�
pS

2
� 2

�
:

Hence if pS � 4 then g zS � 1 and we have a reduction to the first case. Assume that
pS � 3 and perform the same construction as above. Denote by p zS the number of
boundary components of zS . Then the Riemann–Hurwitz formula gives

2g zS D 2 � p zS C �

�
pS C rS � 2 �

iDrSX
iD1

1

.�i ; ˇi /

�
:
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Assume pS D 3. If p zS � 4 then we have a reduction to the case above. If p zS D 3

the Riemann–Hurwitz formula gives, since � � 2, that 2g zS � �1 C � � 1 and thus
g zS � 1.

Assume pS D 2. Applying the same argument (since gS D 0 and pS D 2 imply
rS � 1) we get a reduction to the case pS D 3 or g zS � 1.

Note that the case pS D 1 is impossible. Indeed it follows from the construction of
G� that f�.�1S/ ' Z�Z and from the non-degeneration condition that f�.�1T / '
Z�Z for any component T of @S . Thus we get the following commutative diagram:

�1T ��

��

�1S ��

��

Z � Z 	 �1†

H1.T I Z/ �� H1.S I Z/.

�������������

This implies that Rank.H1.T I Z/ ! H1.S I Z// D 2. If @S is connected then it fol-
lows from the exact sequence corresponding to the pair .S; @S/ that Rk.H1.@S I Z/ !
H1.S I Z// D 1. Hence @S cannot be connected. Next we perform this construction
for each Seifert piece of G�.

To complete the proof of the lemma it remains to check that one can find a regular
covering. More precisely assume that there exists a finite covering fn W Gn ! †n

satisfying the conclusion of the lemma. Denote by �n W †n ! † the associated
covering of †, by Hn the finite index subgroup of �1† corresponding to this covering
and denote by pn W Gn ! G the finite covering corresponding to f �1� .Hn/. Denote
by "n W y†n ! †n the finite covering so that �n B "n is the regular covering of †

corresponding to the normal subgroup

Kn D
\

g2	1†

gHng�1 C �1†:

Then consider the corresponding regular covering of f W G ! † denoted by
Ofn W yGn ! y†n. Since Gn satisfies point (i) of Lemma 4.4 and since yGn is a fi-

nite covering of Gn, point (i) also holds for yGn. On the other hand, since the fiber
of † is central in �1†, it follows from the construction the fiber degree of �n B "n is
equal to the fiber degree of �n. This completes the proof of the lemma. �

4.3. Proof of Proposition 4.1. By Lemma 4.3, we may assume that G� 6D ; and
that the inclusion c� ,! F induces a non-surjective homomorphism H1.c�I Q/ !
H1.F I Q/.

Case 1: First suppose that genus.OS / � 1 for any Seifert piece S of G�, where OS

denotes the base 2-orbifold of S . Denote by �1 the minimal connection graph given
by Proposition 3.1. Consider the Mayer–Vietoris exact sequence corresponding to
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the decomposition of �1 [ xOoC given by
�
�1; xOoC; �1 \ xOoC

	
. Denote by O1; : : : ; Ok

the components of xOoC and by †1; : : : ; †l the Seifert pieces of Go�. Then we get

f0g ! H1

� xOoC
	 ˚ H1 .�1/ ! H1

�
�1 [ xOoC

	 ! H0

�
�1 \ xOoC

	 ! � � �

� � � ! H0

� xOoC
	 ˚ H0 .�1/ ! H0

�
�1 [ xOoC

	 ! f0g:
Thus, since �1 is connected and since xOoC and xOoC \ �1 have the same number of
components we get the following relation:

ˇ1

� xOoC
	 D ˇ1

�
�1 [ xOoC

	 � ˇ1 .�1/ :

We know that
Vol .Go/ � ˇ1

� xOoC
	 C ˇ1

� xOo�
	 � k � l;

where xOo� denotes the union of the base surfaces of the Seifert pieces of Go�. Thus
we get

Vol .Go/ � ˇ1

�
�1 [ xOoC

	 � ˇ1.�1/ C ˇ1

� xOo�
	 � k � l

By Proposition 3.1, we know that ˇ1

�
�1 [ xOoC

	 � ˇ1.F / and we know that Vol.†/ D
ˇ1.F / � ", where " D 2 or 1 depending on whether F is closed or not.

Moreover we know that ˇ1 .�1/ D Card .E .�1// � Card .V .�1// C 1. This
implies that

Vol .Go/ � Vol.†/ C " � 1 C Card .V .�1// � k � l C ˇ1

� xOo�
	 � Card .E .�1// :

Again by Proposition 3.1, we have Card .V .�1// D k C l . Note also that
ˇ1

� xOo�
	 D Pl

iD1 .2gi C ri � 1/, where gi , resp. ri , denotes the genus, resp. the
number boundary components, of †i , i D 1; : : : ; l . Then

Vol .Go/ � Vol.†/ C 2

lX
iD1

gi � l C
lX

iD1

ri � Card .E.�1// :

Finally, by Proposition 3.1, we know that
Pl

iD1 ri � Card .E.�1// � 0 and since
gi � 1 for i D 1; : : : ; l we then get

Vol .Go/ � Vol.†/ C 2

lX
iD1

gi � l > Vol.†/:

This proves that Vol.Go/ > Vol.†/ since l � 1 by hypothesis. Hence this completes
the proof in this case.

Case 2: If the condition on the genus of the base surfaces of the Seifert pieces in
G� is not satisfied then, since condition .C1/ is satisfied, we know from Lemma 4.4
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that there exists a finite regular covering f1 W G1 ! †1 of f W G ! † satisfying
the following properties. Let � W †1 ! † and p W G1 ! G denote the finite regular
coverings corresponding to f1. Then

(i) any Seifert piece of p�1.G�/ admits a Seifert fibration over a 2-orbifold of
genus � 1,

(ii) for any Seifert piece S of G and for any component S1 of p�1.S/ it holds
that Gh.pjS1/ � Gh.�/.

Since .G1/� D p�1.G�/ by Lemma 2.13, one can apply the above arguments to
the map f1 W G1 ! †1. It follows from the paragraph above that we have Vol.G1/ >

Vol.†1/. Thus we get

Vol .†1/ D Vol .†/
deg.�/

Gh.�/
< Vol .G1/ D Vol

�
p�1 .G/

	
:

Denote by Q1; : : : ; Ql the geometric components of G and by pi the induced covering
pjp�1.Qi / W p�1.Qi / ! Qi . Then since p is a regular covering we have

Vol .G/ D 1

deg.p/

iDlX
iD1

Vol
�
p�1 .Qi /

	
Gh.pi /:

Since f W G ! † is �1-surjective we have deg.�/ D deg.p/ and by (ii) we get

Vol .G/ � Gh.�/

deg.�/
Vol

�
p�1 .G/

	
:

By combining this latter inequality with the first one we get Vol.†/ < Vol.G/. This
ends the proof of Proposition 4.1.

5. Proof of the theorems

5.1. Nonzero degree maps decreases the volume. In this section we prove Theo-
rem 1.2.

Case 1: Assume that �.N / D 0. If �.M/ D 0 then M is a virtual torus bundle
and then f is homotopic to a finite covering by [W], in particular f� W �1M ! �1N

is injective. In the other cases �.M/ 6D 0 and thus Vol.M/ > 0.
Case 2: Assume now that �.N / 6D 0. Suppose that f jTM W TM ! N is �1-

injective. By Lemmas 2.9 and 2.10, G† D f �1.†/ is a characteristic graph sub-
manifold of M for any Seifert piece † of N . Choose a component G of f �1.†/

so that f jG W G ! † has non-zero degree. Let †1 denote the finite covering of †

such that f jG has a �1-surjective lift f1 W G ! †1. By Lemmas 2.2, 2.14 and 2.5,
we may assume that f1 satisfies the hypothesis of Proposition 4.1. This proves that
Vol.G†/ � Vol.G/ � Vol.†1/ � Vol.†/. Hence Vol.M/ � Vol.N /.
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Suppose that f jTM W TM ! N is not �1-injective. Then using Lemma 2.11 we
know that there exists a connected characteristic submanifold M1 	 M which con-
tains H .M/ in its interior, a closed Haken manifold yM1 obtained from M1 after Seifert
Dehn fillings along @M1 and a T -injective non-zero degree extension Of1 W yM1 ! N

of f1 D f jM1 W M1 ! N such that k yM1k D jdeg. Of1/jkN k.
Since f jTM W TM ! N is degenerate, there exists at least one Seifert piece yS in

yM1 obtained from S after non-trivial (i.e. with slope 6D 1) Seifert Dehn fillings. The
base 2-orbifold O yS of yS is obtained from the base 2-orbifold OS of S after gluing
some cone points along some components of @OS . Note that S necessarily supports
an H2 � R-geometry.

Indeed, if not then S is the twisted I -bundle over the Klein bottle and thus yM1 D yS
is a closed Seifert fibered space whose base is a 2-sphere with cone points .2; 2; n/.
Then yM1 is a Seifert fibered space whose base 2-orbifold admits a spherical geometry.
This contradicts the fact that yM1 is a Haken manifold.

Then we get �.OS / < �.O yS / � 0. This proves that Vol. yM1/ < Vol.M/.

On the other hand, since Of1 W yM1 ! N has non-zero degree and since k yM1k D
jdeg. Of1/jkN k, it follows that Vol. yM1/ � Vol.N / by the first case. This completes
the proof of Theorem 1.2.

5.2. Proof of the rigidity theorem. In this paragraph we prove Theorem 1.3. Let
f W M ! N be a non-zero degree map between closed Haken manifolds satisfying
theVolume Condition kMk D jdeg.f /jkN k and Vol.M/ D Vol.N /. Then it follows
from Theorem 1.2 that f jTM is �1-injective.

Case 1: Assume that N admits a geometry E3, Nil or Sol. This means that
�.M / D �.N / D 0. Then M is a virtual torus bundle (in particular M is geometric)
and since N is irreducible, the map f is homotopic to a deg.f /-fold covering by a
result of [W].

Case 2: Assume that N admits a geometry H2 � R or �SL.2; R/. Then we check
the following

Lemma 5.1. Let f W .M; @M/ ! .N; @N / be a proper non-zero degree map from
a Haken graph manifold M with toral boundary to an orientable Seifert manifold
with geometry H2 � R or �SL.2; R/. If Vol.M/ D Vol.N / then f is homotopic to a
covering map with Gob.f / D 1 and Gh.f / D jdeg.f /j.

Proof. Denote by f1 W M ! N1 the �1-surjective lift of f into the finite covering
N1 of N corresponding to f�.�1M/.

We first check that M is a Seifert manifold. If not then we claim that Vol.M/ >

Vol.N /. Indeed, to see this, first note that by Lemmas 2.2, 2.14 and 2.5 we may
assume that f1 satisfies the hypothesis of Proposition 4.1. Hence, if M is not Seifert
then MC 6D ; and M� 6D ; by Lemma 2.19. This implies that Vol.M/ > Vol.N1/ �
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Vol.N /, by Proposition 4.1. A contradiction. Thus M D MC which implies that M

is Seifert and that f and f1 are homotopic to fiber preserving maps.
Since f1 is fiber preserving, by Lemma 2.2 there exists a finite covering Qf1 W zM !

zN of f1 such that zM ! M and zN ! N1 have fiber degree ˙1 and such that zN is
an S1-bundle over an orientable hyperbolic surface zF . Note that it follows from our
construction that Vol. zM/ D Vol. zN /. Then the map Qf1 descends to a non-zero degree
map � W xO zM ! zF , where xO zM denotes the base surface of zM . Note that ��.O zM / �
��. xO zM / � deg.�/.��. zF // > 0 (where O zM denotes the base 2-orbifold of zM )
and from Vol. zM/ D Vol. zN / we conclude that �.O zM / D �. xO zM / D �. zF / < 0.
Thus zM is an S1-bundle over an orientable hyperbolic surface zK D xO zM D O zM
and deg.�/ D 1 which implies that � W zK ! zF is homotopic to a homeomorphism.
Denote by h (resp. t ) the homotopy class of the fiber in zM (in zN resp.) and let n

denote the non-zero integer such that . Qf1/�.h/ D tn. Using the exact sequences

f1g ��

��

Z ��

�n

��

�1. zM/ ��

Qf�

��

�1. zK/ ��

	�

��

f1g

��
f1g �� Z �� �1. zN / �� �1. zF / �� f1g,

we check that . Qf1/� is an isomorphism. Thus so is .f1/� and finally, by [Wa],
f is a covering map. Moreover we claim that Gh.f / D deg.f / and Gob.f / D 1.
Indeed, by Lemma 2.1 we have j�.OM /j D Gob.f /j�.ON /j > 0 and from Vol.M/ D
j�.OM /j D Vol.N / D j�.ON /j 6D 0 we get Gob.f / D 1. Since jdeg.f /j D
Gh.f / � Gob.f / our lemma is shown. �

Case 3: Assume that N is hyperbolic. In this case the condition on the volume
implies that M is still a hyperbolic manifold and f is homotopic to a covering map
by a rigidity result of Soma ([S1, Theorem 1]).

Case 4: Assume that N is a non-geometric Haken manifold. This means in
particular that �.N / 6D 0. Let q W yN ! N be the finite covering of N corresponding
to f�.�1M / and let Of W M ! yN denote the lifting of f . By Theorem 1.2 we know
that Vol.M/ D Vol. yN / and kMk D jdeg. Of /jk yN k.

By Lemmas 2.5 and 2.2, we may assume that yN contains no embedded Klein
bottle.

After adjusting Of W M ! yN by a homotopy, we may assume, using Lemmas 2.9
and 2.10 that Of is characteristic and M is necessarily a non-geometric Haken mani-
fold.

Assume that S. yN / 6D ;. Fix a Seifert piece † in yN . Then necessarily † admits

a H2 � R-geometry. Consider a component G of Of �1.†/ so that deg. Of jG W G !
†/ 6D 0. Applying, Lemmas 2.2, 2.14, 2.5 and Proposition 4.1 to Of jG we see that
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Vol.G/ � Vol.†/. This implies, since Vol.M/ D Vol. yN /, that Vol.G/ D Vol.†/

and that any component Gi of Of �1.†/ n G is a twisted I -bundle over the Klein
bottle. Then using Lemma 5.1 we know that Of jG is a covering map such that

Gh. Of jG/ D deg. Of jG/ and Gob. Of jG/ D 1.
On the other hand, since Of is characteristic, it follows from the construction that

Of jGi W Gi ! † is a proper map. Denote by T the component of @† such that
Of .@Gi / 	 T . Since Of is T -injective, there then exists a non-zero integer n such

that Of�.Œ@Gi 	/ D nŒT 	 at the H2. � I Z/-level. Since Gi has connected boundary,
Œ@Gi 	 D 0 in H2.Gi I Z/ and thus, since H2.†I Z/ is torsion free, ŒT 	 D 0 in
H2.†I Z/. This proves that @† is connected. Hence deg. Of jGi / 6D 0 which is
impossible since † admits a H2 � R-geometry. Thus Of �1.†/ D G. This proves
that Of jS.M/ W S.M/ ! S. yN / is a covering map.

Assume that S. yN / D ;. In this case Vol. yN / D 0 and thus Vol.M/ D 0. This
means that if S.M/ 6D ; then each Seifert piece of M is homeomorphic to a twisted
I -bundle over the Klein bottle and that for each component K of S.M/ there exists a
canonical torus T of yN such that Of .K/ 	 W.T /. Hence Of jK is non-degenerate and
Of�.�1K/ is abelian. We get a contradiction since K admits a Seifert fibration over a

non-orientable surface (see the proof of Lemma 2.3). This shows that S.M/ D ;.
On the other hand Of jH .M/ W H .M/ ! H . yN / is a covering map by a result

of Soma in [S1]. But since Of is �1-surjective, Of actually is a homeomorphism,
using [Wa], and hence f is a covering map. Note that the induced proper map
f jS.M/ W S.M/ ! S.N / is a covering map such that Gh.f jSh.M// D deg.f /

and Gob.f jSh.M// D 1. This completes the proof of Theorem 1.3.

5.3. Proof of Theorem 1.6. We consider here degree one maps between closed
Haken manifolds. In view of Theorem 1.3, to prove Theorem 1.6 we have to check
the following

Claim 5.2. For any closed Haken manifold M there exists a constant �M 2 .0; 1/,
which depends only on M , such that for any degree onemap f W M ! N into a closed
Haken manifold N satisfying �.N / � �.M/.1 � �M / it holds that �.M/ D �.N /.

Proof. Suppose the contrary. Then there is a closed Haken manifold M0 and a se-
quence of closed Haken manifolds Nn such that there are degree one maps fn W M0 !
Nn satisfying �.Nn/ � �.M0/.1 � 1=n/ and �.Nn/ 6D �.M0/ for any n 2 N. This
implies in particular that kM0k � kNnk � kM0k.1 � 1=n/. Then limn!1 kNnk D
kM0k. Hence by [D] this implies that the sequence fNngn2N is finite up to homeo-
morphism. This contradicts the inequalities

kM0k
�

1 � 1

n

�
� � .Nn/ < � .M0/ :
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This completes the proof of the claim. �

Thus one can apply Theorem 1.3 with the hypothesis deg.f / D 1. This completes
the proof of the theorem.
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