Comment. Math. Helv. 85 (2010), 165-202 Commentarii Mathematici Helvetici
DOI 10.4171/CMH/192 © Swiss Mathematical Society

Reconstructing p-divisible groups from their truncations
of small level

Adrian Vasiu
Dedicated to the memory of Angela Vasiu
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We show that we have np < 1 if and only if £p < 1; this recovers the classification of minimal
p-divisible groups obtained by Oort. If D is quasi-special, we prove the Traverso truncation
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1. Introduction

Let p € N be a prime. Let k be an algebraically closed field of characteristic p. Let
c¢,d € NU{0} besuch that r := ¢ +d > 0. Let D be a p-divisible group over k
of codimension ¢ and dimension d. The height of D is r. Let np € N U {0} be the
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smallest number for which the following statement holds: if C is a p-divisible group
of codimension ¢ and dimension d over k such that C[p"?] is isomorphic to D[p"?],
then C is isomorphic to D. We have np = O if and only if cd = 0. For the existence
of np we refer to [Ma, Chapter III, Section 3], [Tr1, Theorem 3], [Tr2, Theorem 1],
[Val, Corollary 1.3], or [O02, Corollary 1.7]. For instance, one has the following
gross estimate np < cd + 1 (cf. [Tr1, Theorem 3]). The classical Dieudonné theory
says that the category of p-divisible groups over k is antiequivalent to the category of
Dieudonné modules over k. Thus the existence of np gets translated into a suitable
problem pertaining to Dieudonné modules and thus to a particular type of latticed
F-isocrystals over k (see Section 1.1 below for precise definitions).

Traverso’s truncation conjecture predicts that np < min{c, d}, cf. [Tr3, Sec-
tion 40, Conjecture 4]. This surprising and old conjecture is known to hold only in
few cases (like for supersingular p-divisible groups over k; see [NV, Theorem 1.2]).
To prove different refinements of this conjecture, one needs to have easy ways to
compute and estimate np. Each estimate of np represents progress towards the clas-
sification of p-divisible groups over k; implicitly, it represents progress towards the
understanding of the ultimate stratifications defined in [Val, Section 5.3] and (thus
also) of the special fibres of all integral canonical models of Shimura varieties of
Hodge type. The goal of the paper is to put forward basic principles that compute
either np or some very sharp upper bounds of np.

For the sake of generality, a great part of this paper will be worked out in the
context of latticed F-isocrystals with a (certain) group over k.

1.1. Latticed F -isocrystals. Let W (k) be the ring of Witt vectors with coefficients in
k. Let B(k) be the field of fractions of W (k). Let o be the Frobenius automorphism
of W(k) and B(k) induced from k.

By a latticed F-isocrystal over k we mean a pair (M, ¢), where M is a free
W (k)-module of finite rank and ¢ : M [%] =M [%] is a o-linear automorphism. We
recall that if (M) € M, then the pair (M, ¢) is called an F-crystal over k. We also
recall that if pM C ¢(M) C M, then the pair (M, ¢) is called a Dieudonné module
over k and ¥ := p¢p~': M — M is called the Verschiebung map of (M, ¢).

The composite of W (k)-linear maps endows End(M ) with a natural structure of a
W (k)-algebra (and thus also of a Lie algebra over W(k)). We denote also by ¢ the o-
linear automorphism of End (M [%]) that takes e € End(M [%]) tog(e) := gpoeogp™!.
Let G (k) be a connected subgroup of GL, 1 such that its Lie algebra Lie(Gp(x)) is
leftinvariant by ¢ i.e., we have ¢ (Lie(Gp))) = Lie(Gp)). Let G be the schematic
closure of Gp) in GLys. The triple (M, ¢, G) is called a latticed F-isocrystal with
a group over k, cf. [Val, Definition 1.1 (a)]. Let g := Lie(Gp(k)) N End(M);itis a
Lie subalgebra of End(M ) which as a W (k)-submodule is a direct summand. If G is
smooth over Spec(W(k)), then g = Lie(G). Let ng € N U {0} be the i -number of
(M, ¢, G) introduced in [Val, Definition 3.1.4]. Thus n¢ is the smallest non-negative
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integer for which the following statement holds:

e Ifg € G(W(k)) is congruent to 1pf modulo p"G, then there exists h € G(W(k))
which is an isomorphism between (M, g¢, G) and (M, ¢, G) (equivalently, be-
tween (M, g¢) and (M, ¢)). In other words, we have hgph™' = ¢ (equiva-
lently, hgp(h)™! = 1pp).

In [Val] we developed methods that provide good upper bounds of n¢g (see [Val,
Section 3.1.3 and Example 3.1.5]). The methods used exponential maps and applied
to all possible types of affine, integral group schemes G over Spec(W(k)). But when
the type of G is simple (like when G is GLjy), then one can obtain significantly better
bounds. This idea was exploited to some extent in [Val, Section 3.3] and it is brought
to full fruition in this paper. Accordingly, in the whole paper we will work under the
following assumption:

1.1.1. Assumption. We have M # 0, the W (k)-submodule g of End(M ) is a W(k)-
subalgebra of End(M ) (and not only a Lie subalgebra of End(M)), and (thus) G is
the group scheme over Spec(W (k)) of invertible elements of g.

Typical cases we have in mind: (i) G is either GLjys or a parabolic subgroup
scheme of GL,y; (ii) G is the centralizer in GLjs of a semisimple W (k)-subalgebra
of End(M); and (iii) g is W (k)13 @ u, with nt a nilpotent subalgebra (without unit)
of End(M).

1.1.2. Newton polygon slopes. Dieudonné’s classification of F-isocrystals over k
(see [Di, Theorems 1 and 2], [Ma, Chapter 2, Section 4], [De], etc.) implies that we
have a direct sum decomposition M [%] = Pycq W(a) that is left invariant by ¢ and
that has the property that all Newton polygon slopes of (W (), ¢) are . We recall
thatif m € N is the smallest number such that ma € Z, then there exists a B(k)-basis
for W(«) which is formed by elements fixed by p~™"%¢™. One says that (M, ¢) is
isoclinic if there exists a rational number ¢« such that we have M [%] = W(x). We
consider the direct sum decomposition into B(k)-vector spaces

End(M[%]) =Ly ®Lo® L-

that is left invariant by ¢ and such that all Newton polygon slopes of (L4, ¢)
are positive, all Newton polygon slopes of (L_,¢) are negative, and finally all
Newton polygon slopes of (Lg,¢) are 0. We have direct sum decompositions
Ly = @a,ﬁerKﬁ Hom(W(a), W(B)), L- = @a,ﬂe(@a<ﬁ Hom(W(B), W(a)),
and Lo = Pyeq End(W(a)). Thus both L and L_ are nilpotent subalgebras
(without unit) of End(M).

We have Lo = End(M [%]) if and only if (M, ¢) is isoclinic.
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1.2. Level modules and torsions. We define
Oy ={xe€EndM)N L4 | ¢?(x) € End(M) N L forall g € N}
= () ¢ “(End(M)NLy).

qgeNU{0}

Let Ag := {e € End(M) | ¢(e) = e} be the Z,-algebra of endomorphisms of
(M, ¢). Let Og be the W (k)-span of Ayg; it is a W(k)-subalgebra of End(M) N Ly.
We have identities

0o = Ao ®z, W(k) =[] ¢7(End(M)NLo)= (1) ¢ 7(End(M)NLo).
geNU{0} geNU{0}

We also define
O_ ={xe€End(M)NL_|¢ 9x) € End(M)N L_forall g € N}
= () ¢EndM)NL-).

qgeNU{0}

As all Newton polygon slopes of (L4, ¢) are positive, for each x € Ly the
sequence (¢7(x))gen of elements of L1 converges to 0 in the p-adic topology. This
implies that there exists s € N such that px € O,. Thus we have O4[1] = L.
As Oy is a W(k)-submodule of the finitely generated W(k)-module End(M), we
conclude that O is a lattice of L. A similar argument shows that Oy and O_ are
lattices of Lo and L_ (respectively). We have the following relations: ¢(O4) C O,
$(00) = 09 = $~(00), $7'(0-) € O—, Ly Lo+ LoL+ S Ly, LoLo S Lo,
and LoL_ 4+ LoL_ € L_. These relations imply the following:

(i) Both O+ and O-_ are left and right Op-modules.

(ii) The direct sum O4 @ Oy (resp. Op & O-) is a W(k)-subalgebra of End(M )
that has O (resp. O-) as a nilpotent, two-sided ideal.

Let O := O4+ & Oy & O_; it is alattice of End(M )[%] contained in End(M). In
general, O is not a W(k)-subalgebra of End(M) (see Example 2.2). Thus we call O
the level module of (M, ¢).

Let Og := (gNO4)®(gN Op) & (gN O-); itis alattice of g[%] contained in g.
We refer to Og as the level module of (M, ¢, G). We note down that O = Ogy,, .

By the level torsion of (M, ¢, G) we mean the unique number £ € N U {0} for
which the following inclusions hold

p'ég < 0g Cg (1)

and which obeys the following two disjoint rules:
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(a) if ¢ = Og and if the two-sided ideal of the W(k)-algebra g generated by
(g N 04) @ (g N O-) is not topologically nilpotent, then £ := 1;

(b) in all other cases, £¢ is the smallest non-negative integer for which (1) holds.

1.2.1. A connection to [Val]. Let mg := T (g, ¢) be the Fontaine—Dieudonné
torsion of (g, ¢) introduced in [Val, Definitions 2.2.2 (a) and (b)]. We recall that
mg is the smallest non-negative integer with the property that there exists a W(k)-
submodule m of g which contains p™¢& g and for which the pair (m, ¢) is a Fontaine—
Dieudonné p-divisible object over k in the sense of loc. cit. One has a direct sum
decomposition (m, ¢) = P es (W, @) such that each pair (m;, ¢) is an elementary
Fontaine-Dieudonné p-divisible object over k. The pair (m;, ¢) is a special type of
isoclinic latticed F-isocrystals over k that are definable over [F; let ; € Q be the
Newton polygon slope of (m;, ¢). One basic property of (1, ¢) is the following:
ifo; > 0 (resp. o; = 0 or ; < 0), then we have ¢ (m;) C m; (resp. ¢(m;) = m;
or  '(m;) € m;). Thusif &, > 0 (resp. ¢; = 0 or @; < 0), then we have
m; € gN Oy (resp.m; € gN Oporm; CgN O_). This implies that m C Og.
Therefore we have £ < mg except in the case when g = Og = m and g = 1.
This implies that £ < max{l,mg}. In general, {; can be smaller than mg (see
Example 2.2).

1.2.2. Example. We assume that all Newton polygon slopes of (g, ¢) are 0. Then
we have Og = g N Op and {¢ is the smallest non-negative integer such that we
have inclusions p‘égq € Og C g. As the W(k)-module g is a direct summand of
End(M), we have Og = g N Oy = g[%] N Og. This implies that ¢(Og) = Og
and therefore Og has a W(k)-basis formed by elements of g N Ag. Thus (Og, ¢) is
a Fontaine—Dieudonné p-divisible object over k; therefore £ = mg.

Our first main goal is to prove (see Section 3) the following theorem.

1.3. Main Theorem A. We recall that (M, ¢, G) is a latticed F-isocrystal with a
group over k and that we work under Assumption 1.1.1.

(a) We have the inequality ng < {g.

(b) Assume that (M, @) is a direct sum of isoclinic latticed F-isocrystals over k.
Then we have ngr,, = gL,

We neither know nor expect examples with ngr,, < {gr,,. Our second main
goal is to apply Main Theorem A to study p-divisible groups over k.

1.4. First applications to p-divisible groups. Let D and np be as in the beginning
paragraph of the paper. We say that D is isoclinic if its (contravariant) Dieudonné
module is isoclinic. If (M, ¢) is the Dieudonné module of D, then let

E]_) = KGLM e NU {0}
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We call £p the level torsion of D. The following elementary lemma is our starting
point for calculating and estimating np.

1.4.1. Lemma. We assume that (M, ¢) is the Dieudonné module of D. Then we have
np = NGLy,-

See [Val, Lemma 3.2.2 and Corollary 3.2.3] and [NV, Theorem 2.2 (a)] for two
proofs of Lemma 1.4.1 (the second proof is not stated in the language of latticed
F-isocrystals with a group). Accordingly, we call np the i -number (i.e., the isomor-

phism number) of D. Based on Lemma 1.4.1, we have the following corollary of
Main Theorem A.

1.4.2. Basic Corollary. For each non-trivial p-divisible group D over k we have
np < {p. If D is a direct sum of isoclinic p-divisible groups over k, then we have
np = 4{p.

The inequality np < £p was first checked for the isoclinic case in [Val, Exam-
ple 3.3.5].

1.4.3. Proposition. We assume that D = [[,c; D; is a direct sum of at least two
isoclinic p-divisible groups over k. Then we have the following basic estimate:

np <max{l,np;,np, +np, —=11i,j€l,j#i}.

Proposition 1.4.3 is proved in Section 4.5. Example 4.6.2 shows that in general,
Proposition 1.4.3 is optimal. The next proposition (proved in Section 4.7) describes
the possible range of variation of np and £p under isogenies.

1.4.4. Proposition. Let D — D be an isogeny between non-trivial p-divisible
groups over k. Let k € N U {0} be the smallest number such that p* annihilates the
kernel of this isogeny. Then we have np < {p < {p + 2k. Thus, if D is a direct
sum of isoclinic p-divisible groups, then we have np < {p < np + 2.

In general, the constant 2k of Proposition 1.4.4 is optimal (see Example 4.7.1).

1.5. Minimal and quasi-special types. Let B = {e1,...,e,} be a W(k)-basis
for M. Let & be an arbitrary permutation of the set J, := {1,...,r}. Let (M, ¢;) be
the Dieudonné module over k with the property that for each s € {1,...,d} we have
¢r(es) = peq(s) and foreachs € {d + 1,...,d + c} we have ¢ (e5) = ex(s). Let
C, be a p-divisible group over kK whose Dieudonné module is (M, ¢ ). For a cycle
= (€5, -, esri) of , let ¢; and d; = r; — ¢; be the number of elements of the
sets {s1,...,8, 3 N{d +1,....,d +c}yand {s1,...,s,,} N{l,...,d} (respectively),
and let o; 1= ‘rl—lf' e QnJo,1j.

1.5.1. Definitions. We recall that ¢ and d are non-negative integers such that r :=

¢ +d > 0, that D is a p-divisible group over k of codimension ¢ and dimension d,
and that J, = {1,...,r}.
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(a) We say that D is F-cyclic (resp. F-circular), if there exists a permutation
(resp. an r-cycle permutation ) of J, such that D is isomorphic to Cy,.

(b) We say that & is a minimal permutation, if the following condition holds:

(%) for each cycle ; = (es,,.... €5, ) of w and forallg € N andu € {1,...,1:},
we have ¢ (es,) = placilteq (S“)e,,q(su) for some number &4 (sy) € {0, 1}.

(c) We say that D is minimal, if there exists a minimal permutation 7 of J, such
that D is isomorphic to Cy,.

(d) Anon-trivial truncated Barsotti-Tate group B of level I over k is called minimal,
if there exists a p-divisible group D over k such that D[ p] is isomorphic to B
andng < 1.

(e) Let m := g.c.d{c,d} € N and let (dy,ry) := (%, ). We say that D is
isoclinic quasi-special (resp. isoclinic special), if we have ¢" (M) = p?M
(resp. we have ¢"1 (M) = p“'M). We say that D is quasi-special (resp.
special), if it is a direct sum of isoclinic quasi-special (resp. isoclinic special)
p-divisible groups over k.

The terminology F-cyclic and F'-circular is suggested by Definition 1.2.4 (c) in
[Va2]. The terminology minimal p-divisible groups and minimal truncated Barsotti—
Tate groups of level 1 is the one used in [O03] and [Oo4]. It is easy to check that
the above definitions of minimal p-divisible groups over k and of minimal truncated
Barsotti—Tate groups of level 1 over k are equivalent to the ones used in [003, Sec-
tion 1.1] (this also follows from Main Theorem B below). Moreover D is minimal
if and only if D[p] is minimal, cf. Main Theorem B below. The terminology special
(see (e)) is as in [Ma, Chapter III, Section 2]. If D is F-cyclic, then it is also quasi-
special but it is not necessarily special (see Lemma 4.2.4 (a) and Example 4.7.1). The
class of isomorphism classes of quasi-special p-divisible groups of codimension ¢
and dimension d over k, is a finite set (see Lemma 4.2.4 (b)); this result recovers and
refines slightly [Ma, Chapter III, Section 3, Theorem 3.4].

A systematic approach to C;’s was started in [Va2] and [Va3] using the language
of Weyl groups (the role of a permutation 7 of J; is that one of a representative of
the Weyl group of GLjs with respect to its maximal torus that normalizes W (k)e;
for all s € J,); for instance, we proved that for two permutations 7, 7, of J;, the
p-divisible groups Cy, and Cy, are isomorphic if and only if Cyr, [p] and Cr,[p]
are isomorphic (cf. [Va3, Theorem 1.3 (a) and Fact 4.3.1]). The p-divisible groups
Cy are also studied in [Oo4] using the language of cyclic words in the variables ¢
and ¥. We note down that in the condition (), it suffices to consider natural numbers
g which are at most equal to the order of m;. Thus we view (b) and (d) as a more
practical form of [Oo4, Section 4].

In Section 4.6 we prove the following theorem.
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1.5.2. Theorem. We assume that the non-trivial p-divisible group D is quasi-special
(for instance, D is F-cyclic or special). Then D is a direct sum of isoclinic p-divi-
sible groups over k and thus we have np = £p. Moreover, we have an inequality
np < min{c, d} ie., the Traverso truncation conjecture holds for D.

The proof of the inequality part of Theorem 1.5.2 relies on Proposition 1.4.3
and on an explicit formula for np (see property 4.6 (ii); if D is F-cyclic, see also
Scholium 4.6.1).

The importance of minimal p-divisible groups stems from the following theorem
to be proved in Section 5.1.

1.6. Main Theorem B. Let D be a non-trivial p-divisible group over k. Then the
following three statements are equivalent:

(a) we have Lp < 1;
(b) we have np < 1 (equivalently, D[p] is minimal);
(¢c) the p-divisible group D over k is minimal.

The implication (c¢) = (b) was first checked for the isoclinic case in [Val, Exam-
ple 3.3.6] and for the general case in [O03, Theorem 1.2]. A great part of [O04] is
devoted to the proof of the equivalence between (b) and (c), cf. [Oo4, Theorem B].

2. Preliminaries

Let (M, ¢) be a latticed F-isocrystal over k. In this section we include simple
properties that pertain to (M, ¢). Let M* := Hom(M, W(k)).

The notations p, k, ¢, d,r = ¢ +d, D,np, W(k), B(k), (M, ¢,G), g, M[;] =
Doco W(@), L+, Lo, L—, Oy, Ao, Op, O, Og, LG, Lp, Jr ={1,....1}, (M, ¢z),
and C; introduced in Section 1 will be used throughout the paper. Let D' be the p-
divisible group over k which is the Cartier dual of D. For m € N, let W, (k) :=
W(k)/p™W(k).

All finitely generated W (k)-modules and all finite dimensional B(k)-vector spaces
are endowed with the p-adic topology. As in Section 1.2, in the whole paper we keep
the following order: first 4+, next 0, and last —.

2.1. Duals and homs. Let ¢p: M* [%] = M* [%] be the o-linear automorphism that
takes f € M*[%] tooofop~! € M*[%]. The latticed F-isocrystal (M ™*, ¢) is called
the dual of (M, ¢), cf. [Val, Section 2.1]. The canonical identification End(M) =
M ®w ) M ™ defines an identification (End(M), ¢) = (M, ¢) ® (M *, ¢) of latticed
F-isocrystals over k. If (M, ¢) is the Dieudonné module of D, then (M *, p¢) is the
Dieudonné module of D'. Let (M1, ¢1) and (M, ¢2) be two latticed F-isocrystals
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over k. Let ¢12: Hom(M,, Mz)[%] =>Hom(M,, Mz)[%] be the o-linear automor-
phism that takes f € Hom(Ml[%], Mz[%]) togao fogyl e Hom(Ml[%], Mz[%]).
The latticed F-isocrystal (Hom(M7, M>), ¢12) over k is called the hom of (M1, ¢1)
and (M3, ¢,). Thus (M*,¢) is the hom of (M, ¢) and (W(k),o). The dual of
(Hom (M7, M>), ¢12) is (Hom(M»,, M), ¢21) (here ¢, is defined similarly to ¢;5).
Thus the dual of (End(M), ¢) is (End(M), ¢) itself.

If B is a W(k)-basis for M, let B* := {x* | x € B} be the dual W(k)-basis
for M*. Thus for x,y € B, we have x*(y) = 8x,. Forg € Z and x,y € B,
let ag(x,y) € B(k) be such that we have ¢7(x) = }_ .5 aq(x,y)y. We have
$1(x*) = ¥yep 0%(a—g(y.x))y* and hence g~ (x*) = 3, 09 (g (3. ) ™.
This implies:

(x) If s € Z, then we have p*¢?(M) € M (ie., p’ay(x,y) € W(k) for all
x,y € B) if and only if we have p*¢p=7(M™*) € M* (i.e., pa,(y,x) € W(k)
for all x, y € B).

The set {x ® y* | x,y € B} is a W(k)-basis for End(M) = M Qwu) M*.

2.2. Example. We assume that we have a direct sum decomposition M = W(k)® N
such that ¢ acts on W(k) as o does, we have ¢(N) € N, and (N, ¢) is isoclinic of
Newton polygon slope y € (Q N (0,00)) \ Z. We have a direct sum decomposition
of latticed F-isocrystals over k

(End(M), ¢) = (End(N), ) & (N.¢) ® (N*.¢) & (W(k),0).

The W(k)-span of the product N *N (taken inside End(M)) is End(N). As ¢ (N) C
N and N* € ¢ (N*), wehave N € O, and N* € O_. As y ¢ Z, we have
O NEnd(N) & End(N). Thus O4 O— £ O. Therefore O is not a W(k)-subalgebra
of End(M).

We take G such that g is the W(k)-subalgebra N @& W(k)1ly of End(M). As
N C Oyand 1y € Op,wehave g = Og = (gN O04+) @ (g N Op) and (g N O) is
a nilpotent, two-sided ideal of the W (k)-algebra g. Thus £{g = 0, cf. the rule 1.2 (a).
If the pair (N, ¢) is not a Dieudonné—Fontaine p-divisible object over k, then the
Dieudonné-Fontaine torsion mg of (g, ¢) is positive (and in fact it can be any natural
number).

2.3. Lemma. We assume that ngr,,, = 0. Then there exists an integer s such that we
have ¢(M) = p*M. Thus ¢(End(M)) = End(¢p(M)) = End(M) and therefore
we have Oy = End(M) and {g;,,, = 0.

Proof. Let g € N. By induction on ¢ we show that the Lemma holds if the rank r
of M is at most ¢g. If ¢ = 1 and r = 1, then the Lemma is obvious. The passage
from g to ¢ + 1 goes as follows. We can assume that r = g + 1. By multiplying
¢ with p~s for some s € Z, we can assume that ¢ (M) is a W(k)-submodule of
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M that contains a direct summand of M of rank at least 1. Let X € M \ pM be
such that ¢(X) € M \ pM. Let gz € GLjs(W(k)) be such that gz¢(x) = X. As
ngr,, =0, (M, ¢) is isomorphic to (M, gz¢). Thus there exists x € M \ pM such
that ¢(x) = x. Let My be the W(k)-submodule of M generated by elements fixed
by ¢; it is a direct summand of M which contains x.

If My = M, then we are done as ¢ (M) = M. Thus to end the proof it suffices to
show that the assumption that My # M leads to a contradiction. Let M; := M/ M,
and let ¢y: M; — M; be the o-linear endomorphism induced by ¢. For each
element g; € GLys, (W(k)) there exists an element g € GLjs(W(k)) that fixes My
and that maps naturally to g1. As (M, g¢) and (M, ¢) are isomorphic and due to
the definition of My, we easily get that (M1, ¢1) and (M1, g1¢1) are isomorphic.
Thus the i-number of (M, ¢1,GLyy, ) is 0. As the rank of M, is less than g + 1,
by induction we get that there exists a natural number s; such that (M) = p*' M,
(we have 57 # 0, due to the definition of My). Let z; € M; \ pM; be such
that ¢1(z1) = pSizy. Let Z € M be such that it maps naturally to z;. We have
¢(Z) — p*1Z € My. Let § € My be such that ¢(¥) — pS1y = —¢p(2) + pS1Z. If
z := Z + y, then we have ¢(z) = p®lz. As z maps naturally to z; € M \ pM;, the
W(k)-module My @& W(k)z is a direct summand of M. Let g, € GLp (W(k)) be
such that it permutes x and z, it normalizes Mo & W(k)z, and it acts identically on
Mo W(k)z)/(W(k)x & W(k)z) and on M /(Mo & W(k)z). The Newton polygon
slopes of (M, gx-¢) are 0, -, and s1. As the Newton polygon slopes of (M, ¢) are
0 and s; and as s; € N, we get that (M, ¢) and (M, gx,¢) are not isomorphic. This
contradicts the equality ngr,, = 0. O

2.4. Lemma. Let x € End(M) be such that for all ¢ € N (resp. for all ¢ € —N) we
have ¢?(x) € End(M). Then we have x € O4 @ Oy (resp. we have x € Oy @ O-).

Proof. We will prove only the non-negative part of the Lemma as the non-positive
part of it is proved in the same way. Thus we assume that we have ¢4 (x) € End(M)
for all ¢ € N. We write x = x4 + xo + x—, where x4 € L4, xo € Ly, and
x_ € L_. There exists a number s € N such that px; € O4 and p’x¢ € Oy.
Thus ¢?(p°x4+) € O4 € End(M) and ¢9(p°xp) € Op € End(M). We easily
get that we have p*¢p?(x_) € End(M) for all ¢ € N. This implies that x_ = 0
(as all Newton polygon slopes of (L_, ¢) are negative). Thus x = x4 + x¢. The
sequence (¢7(x4))gen converges to 0 (as all Newton polygon slopes of (L4, ¢) are
positive). Thus there exists § € N such that y4 := ¢9(xy) € Oy. Let y := ¢7(x)
and yo := y — y4 = ¢9(xo) € End(M) N Ly. As for each ¢ € N we have
#?(y+) € O+ € End(M) and ¢7(y) € End(M), we also have ¢?(yo) € End(M).
Thus yo € Op. Therefore xo = ¢~ (yg) € ¢~9(0p) = Oy. This implies that for all
g € N U {0} we have ¢?(x¢) € Op € End(M). Thus for all ¢ € N U {0} we have
¢?(x4+) = ¢p2(x) — p%(x9) € End(M) i.e., x4+ € O4. Therefore x = x4 + x¢ €
O+ @ Oy. O
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2.5. Invertible elements. In this section we recall basic properties of invertible
elements of W(k)-subalgebras of End(M). Let § be a W(k)-subalgebra of End(M ).

() If x € b has an inverse x~! in End(M) (i.e., if x € § N GLy(W(k))), then
the determinant of x is an invertible element of W (k) and therefore from the
Cayley—Hamilton theorem we get that x ! is a polynomial in x with coefficients
in W(k); thus x~! € § (i.e., x is an invertible element of b).

(i) Each invertible element of §j is also an invertible element of any other W (k)-
subalgebra of End(M) that contains }.

(iii) If we have a direct sum decomposition ) = 1 @ b such that by is a W(k)-
subalgebra of §) and n is a nilpotent, two-sided ideal of the W (k)-algebra b,
then we have a short exact sequence 1 — 1py + 1 — h N GLy (W(k)) —
bHo NGL s (W (k)) — 1 which splits and which is defined by the following rule:
if x e nand y € h are such that x + y € §h N GLys (W(k)), then the image of
x + yin ho N GLpy (W(k)) is y.

(iv) We recall that a two-sided ideal i of the W (k)-algebra } is called topologically
nilpotent if for all m € N there exists m € N such that we have an inclusion
in c p™b (this implies that (), i” = 0). If x € i, then the element
1 + Z;’,f:l(—x)m € 1p + 1 is well defined and is the inverse of 13 + x.
This implies that an element of [ is invertible if and only if its image in /i is

an invertible element of §/i.

3. The proof of Main Theorem A

In this section we prove Main Theorem A (see Sections 3.4 and 3.5). We begin
by introducing certain W (k)-algebras and group schemes over Spec(W(k)) and by
presenting basic properties of them (see Sections 3.1 and 3.2). In Section 3.3 we list
simple properties of isomorphism classes of certain latticed F -isocrystals over k. All
these properties play a key role in Section 3.4. In Sections 3.6 and 3.7 we include
two remarks as well as a more general variant of Theorem 1.3 (b).

3.1. Group schemes of invertible elements. Let . := gN O4 and by := g N Oy.
Let h := (54 @ ho) + p'Sg. As O and Oy @ O are W(k)-algebras and as
ptG q is a two-sided ideal of the W(k)-algebra g, it is easy to see that § is a W(k)-
subalgebraof g. Let h— :=h N O_. As peG g € Og (see (1)), we have a direct sum
decomposition

b= (b+ @ Bho) + p“q=h+ B ho ®h_. (2)
Let T4 : § — b be the projection on b along ho & b_.
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Let H, Hg, and Hy be the affine group scheme over Spec(W(k)) of invertible
elements of b, h+ & b, and §o (respectively). Due to Section 2.5 (ii), we have a
sequence

Ho(W(k)) < Hyo(W(k)) s HW(k)) < G(W(k)) (3a)

of subgroups. As b4 and §)_ are nilpotent subalgebras (without unit) of f), we have
Iy + 54 < Hyo(W(k)) and 1p + h— < H(W(k)). (3b)

From Section 2.5 (iii) we get that we have a natural split short exact sequence

1 - 1y +by - Hyo(W(k)) > Ho(W(k)) — 1. (3¢)
Based on (2), for each element 4 € H(W(k)) we can write uniquely

h =1y +a(h)+ b(h) + c(h),

where a(h) € 4, b(h) € by, and c(h) € h—_. We have a(h) = 14 (h).
3.1.1. Theideali. If £ = 0, let i be the two-sided ideal of the W (k)-algebra ) = g
generated by b4 and h_. If £g > 1, leti := ho + h_ + p’Gg. We check that i
is a topologically nilpotent, two-sided ideal of §). If £ = 0, this is so by the very
definitions (see rules 1.2 (a) and (b)). We assume that { > 1. This implies that peG q
is a topologically nilpotent, two-sided ideal of ). As §4 is a nilpotent, two-sided ideal
of by @ b, itsimage in §/ p*G g = 4 ® ho/[(H4 @ ho) N p*S g is a nilpotent, two-
sidedideal. Thus p*G g+ isatopologically nilpotent, two-sided ideal of . Ash_ is
anilpotent, two-sided ideal of ho@®h_ and as ho D h_ surjectsonto h/(p*Gg+hy) =
Ho/[Ho N (p*G g + h)], the image of h_ in h/(p*S g + H ) is a nilpotent, two-sided

ideal. From the last two sentences, we getthati = p%G g+ +b_ is a topologically
nilpotent, two-sided ideal of §.

3.1.2. Fact. For each element h = 131 + a(h) + b(h) + c(h) € H(W(k)), we have
Lpr + b(h) € Ho(W(k)). Therefore also 1y + a(h) + b(h) € Ho+ (W (k)).

Proof. As 1ps + b(h) and h are congruent modulo 1, the first part of the fact follows
from Section 2.5 (iv). The last part of the fact follows from (3c). O

3.1.3. On Hy. As hy = g N Op, we have ¢(hy) = bho (see Example 1.2.2). Let
hoz, be the Zy-subalgebra of by formed by elements fixed by ¢. Let Hoz, be
the affine group scheme over Spec(Z,) of invertible elements of boz,. The group
scheme Hygz,, is a Zp-structure of Hy and thus the Frobenius automorphism o acts
naturally on Ho(W(k)) = Hoz,(W(k)): for x € Ho(W(k)) we have o (%) = ¢ (*).
The scheme Hyz, is an open subscheme of the vector group scheme over Spec(Z,)
defined by hoz, (viewed only as a Z ,-module). Thus the affine, smooth group scheme
Hoz, has connected fibres.

3.1.4. Lemma. Let {4 be a W(k)-submodule of h+. Let j := T4+ @ ho ® h—. We
consider the following three conditions:



Vol. 85 (2010)  Reconstructing p-divisible groups from their truncations of small level 177

(i) we have TT1(f+h— + b-f4) < T4,
(ii) the W(k)-module {4 is a left and right Yo-module;
(iii) we have ’fi C T+ (ie., T+ is an algebra).
Then the following three properties hold:
(a) Conditions (i) and (ii) hold if and only if i is a left and right §o @ H—-module.
(b) Conditions (ii) and (iii) hold if and only if T+ ® Yo is a W(k)-subalgebra of
b4 @ bo.
(¢) The three conditions (i) to (iii) hold if and only if j is a W (k)-subalgebra of b.

Proof. As ho @ b_ is a W(k)-subalgebra of b, j is a left and right §¢ @ h—-module if
and only if we have f ho +bof+ +F+b-+bH_F+ € j. Wehavef h_+bH_f4 Cjif
and only if (i) holds. As b is a left and right ho-module, we have 1 Ho + hof+ C j
if and only if 4+ bHo + hof4+ < T+ and thus if and only if (ii) holds. Part (a) follows
from the last three sentences. As [ is an algebra and a left and right §o-module,
we have (f4 @ bo)*> € f+ @ bo if and only if f3 + f1Ho + hof+ € f4 and thus
if and only if conditions (ii) and (iii) hold. Thus (b) holds. Part (c) follows from (a)
and (b). O

3.2. Subalgebras. In this section we list several subalgebras of §.

3.2.1. Frobenius filtration of . Fori € N U {0} let

bii:=byNe'(q) =hyNe'(gNLy).

Wehave by o = b+,0(bh+,i) S h+.i+1 € b+ i, andeach by ; isa W(k)-module and
a nilpotent algebra. As ¢’ (fo) = ho (see Section 3.1.3) and as § is a left and right
ho-module, fy ; is also a left and right hp-module. As all Newton polygon slopes of
(b4, @) are positive, we have ﬂioio by, = 0. Thus (b4 ,;)ienufoy is a decreasing,
separated, and exhaustive filtration of b to be called the Frobenius filtration.

3.2.2. The Theta operations. We assume that ) # 0. Let M(h4) be the set of
W(k)-submodules of ) endowed with the pre-order relation defined by inclusions.
We consider the increasing operators ®, ®,, Og: M(h1) — M(h4+) that take T4 €
M(H4) to

OF 1) := 3 + My (F+b- + b-f4) + ¢(F4+) € M(b4),

Ou(f4) := 3 + T4 (F4h- +b-F4), and O5(f+) := T4 (F+H- + h-_F+). We have
identities O(f4+) = O,(f4+) + ¢(f+) and O,(f+) = fi + O4(f+). The lower right
indices a and s stand for algebraic and slope module (respectively), as suggested by

Lemma 3.1.4 (a) and (c). Fori € N U {0} let

fi := 0" ().
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As O is increasing and as ®(h4) € by, wehave ;41 = O(f;) Cf; C b4

3.2.3. Lemma. We assume that ) # 0. Leti € N U{0}. Thene; :=1; ®ho ® h—
is a W(k)-subalgebra of }.

Proof. We use induction on i. Fori = 0 we have eg = §) and thus the Lemma holds.
The passage from i to i + 1 goes as follows. We check that the three conditions (i)
to (iii) of Lemma 3.1.4 hold for {4 := f;+1. As fi+1 € f;, we have O(fi+1) C
Os(fi) € O(f;) = fi+1. Thus condition 3.1.4 (i) holds. To check that condition
3.1.4 (ii) holds, it suffices to show that each one of the following four elements fl.z,
M4 (fih-), I (H_T1;), and ¢ (f;) of M(by) are left and right ho-modules; we will
only check that they are left fjp-modules as the arguments for checking that they are
right ho-modules are entirely the same. As f; is a left ho-module, fl.z is also a left
ho-module. We have hoIl14+(f;5—) = I+ (Hofih-) = 14 (f;H-) (thelast equality as
{; is aleft ho-module). We have ho T+ (H—F;) = [T+ (Hoh-T;) = 14+ (H-T;) (the last
equality as §_ is a left ho-module). We have bogh(f;) = ¢(50)¢(F:) = p(bofi) =

¢(fi). Thus condition 3.1.4 (ii) holds. As fl.2+1 - flz C fi+1, condition 3.1.4 (iii)
also holds. Thus e; 41 is a W(k)-subalgebra of Iy, cf. Lemma 3.1.4 (c). This ends the

induction. O

3.2.4. Lemma. We assume that h # 0. Leti € N U {0}. Then Os(h+ ;) C b ;.
Thus h+,; @ ho @ h— is a W(k)-subalgebra of .

Proof. Letx € hy,andy € h_. Asz := —xy + II1(xy) € ho ® h_, we have
Z:=¢7(z) egN(0p®O0-). Asx € by, and y € h— € g N O_, we have
Fi=¢'(x) egNLiandj :=¢ () egNL_. Thus T4 (xy) =z +xy =
¢'(Z+X7) € p'(g)ie., My (xy) € h+ N¢'(g) = b, A similar argument shows
that IT4(yx) € b4+ ;. Thus Og(h+,;) S h4;. As h4; is an algebra and a left and
right ho-module (see Section 3.2.1), from Lemma 3.1.4 (c) we getthath 4 ; B ho D h—
is a W(k)-subalgebra of §. O

3.2.5. Lemma. We assume that h1 # 0. Then fa 00 := (oo ©L(H+) is 0.

Proof. Let i be as in Section 3.1.1. Let 1y be the topologically nilpotent, two-sided
ideal of the W (k)-algebra by such that we have i = hy H np H h—. We will check
by induction on ¢ € N that f, oo €17 + 19 + h—. As fa00 € h4 C i, the basis of
the induction holds. The passage from g to g + 1 goes as follows. Leti € N be such
that © (h4+) €17 + np + h— C i. We have

O (h4) = (OL(54))* +O4(OL(h1)) S (17 +19+5H-)>+O,(h4+NET +19+5_))

C it 4 g + o + O4(h+ N (A7 + 19 + h)).

Letx e hrN(i9+no+h-) Ciandy € h— Ci. Wehave [14(xy)—xy € ng® h_
andxy € 197 +(no+H_)h_ C 19 4o+ h_. Thus 4 (xy) = [[T4(xy)—xy]+



Vol. 85 (2010) Reconstructing p-divisible groups from their truncations of small level 179

xy € 197! 4+ ng + h_. A similar argument shows that TT (yx) € i97! + 1o + h_.
From the last two sentences we get that ©¢(H+ N(i7+1o+hH_)) €19 +ng+h_. We
conclude that ®+1(f ) € 197! 41+ h_. Thisimplies that f, oo € 197 +19+5_.
This ends the induction.

Asiistopologically nilpotent, we have () e (17 +10+5H-) € (,en (P?h+10+
h_) = ng+bh_. Thisimplies that f,,00 € 1o+bh—. Thus f4.00 € h+-N(1eg+H-) =0
ie., faco = 0. O

3.2.6. Lemma. We assume that b # 0. Then foo := (7o, Ti is 0.

Proof. We show that the assumption that f, 7 0 leads to a contradiction. As we have
inclusions 0 € foo € fi € h4 = by o and as ()7, b+, = O, there exists a greatest
number iy € N U {0} for which there exists i € N such that we have inclusions
foo S 1i € bqig-

As O5(h+,ig+1) S b ig+1 (cf. Lemma 3.2.4) and as b7 ; 1 + ¢(h4ig+1) S
bi,ip+1 (cf. Section 3.2.1), we have © (b4 ;j,+1) S b+,iy+1. Based on this and the
inclusion ¢(H+ ;) < b+ iy+1,an easy induction on j € N shows that the images of
fit; = ©/(f;) and ©/ (f;) in b4 ;,/H+.iy+1 coincide. Let jo € N be such that we
have ®/°(h4) C b4 ig+1,cf.Lemma3.2.5. Thus theimage of f;  j, in b4 ;o /b+.ip+1
is 0. Therefore foo < fitj, S b+,io+1 and this contradicts the choice of ip. Thus
foo = 0. |

3.3. Isomorphism properties. In this section we list properties of the isomorphism
classes of those latticed F-isocrystals with a group over k which are of the form
(M, g¢p, G) with g € G(W(k)). We recall that o acts on Ho(W(k)) as ¢ does, cf.
Section 3.1.3.

3.3.1. Lemma. (a) We have Hy(W(k)) = {1 (x) | x € Ho(W(k))}.
() Ifm € N, then

Ker(Ho(W(k)) — Ho(Wn(k)))
= {x 1o (*) | ¥ € Ker(Ho(W(k)) — Ho(Wm(k)))}.

(c) For each x € Hio(W(k)), we have ¢(x) € Hio(W(k)).

(d) Let T4+ and T— be two left and right Ho-modules contained in H4 and H—
(respectively). Let g € H(W(k)) be such that a(g) € T+ and c(g) € T—. Then there
exists an element hg € Ho(W(k)) such that for go := hogp(ho)~! € H(W(k)) we
have a(go) € f+, b(go) = 0, and c(go) € f-.

Proof. As Hygz,, is an affine, smooth group scheme over Spec(Z,) whose special fibre
is connected (see Section 3.1.3), (a) and (b) are only the Witt vectors version of Lang
theorem for affine, connected, smooth groups over [F,,; see [NV, Proposition 2.1] and
its proof for details. As ¢(H1) € by and ¢ (Ho(W(k))) = Ho(W(k)), from (3c) we
get that for each x € Ho(W(k)) we have ¢ (x) € Hio(W(k)). Thus (c) holds.
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We prove (d). We have lp + b(g) € Ho(W(k)), cf. Fact 3.1.2. Let hy €
Ho(W(k)) be such that 1pr + b(g) = hy'¢(ho), cf. (a). We have

g0 = hoa(g)¢(ho) ™" + holla + b()]$(ho) ™" + hoc(g)¢(ho) ™"
= 1y + hoa(g)$(ho) ™" + hoc(g)d (ho)~".

As f4 and f_ are left and right ho-modules, we have hoa(g)¢(ho)~' € fi and

hoc(g)p(ho)™" € f-. Therefore a(go) = hoa(g)p(ho)™" € f1 and c(go) =
hoc(g)¢(ho)™! € f_. Thus (d) holds. |

3.3.2. Lemma. Let g = 1y + c(g) € 1y + h—. Then there exists an element
h € GW(K)) N (Iy + b-[3]) such that we have hg¢(h)™" = 1y

Proof. Fori € NU{O}letg; := ¢ (g) = Iy +¢ 7 (c(g)). As¢p™(0O_) C O_, we
have ¢~ (h_) S gNO_ C gN f)_[%] and thus ¢~/ (¢(g)) is a nilpotent element of g.
This implies that g; = 1ps + ¢~ (c(g)) is an invertible element of g i.e., we have
gi € G(W(k)). We have g = g¢. Fori € N we have ¢(g;) = g;—1. As all Newton
polygon slopes of (L_, ¢) are negative, the sequence (¢ (c(g)))ien of elements of

g N O_ converges to 0. This implies that the element s := lim; 00 gigi—1-.-81 €
G (W (k)) is well defined. We compute that

hgp(h)~' = Jim gigi-i .. g189(g) . p(gim) (g !
= lim gi... 208" - g
1—>00

is equal to lim; o0 g; = lps. O

3.4. Proof of 1.3 (a). We prove Theorem 1.3 (a). Let & € G(W(k)) be congruent to
13 modulo pG. As g — 1y € p6g C b, wehave g € h). As § € GLys (W(k)), we
have g € H(W (k)) (cf. Section 2.5 (i)). Thus to prove Theorem 1.3 (a), it suffices to
prove the following stronger statement:

(x) for each element g in H(W(k)) there exists an element hg in G(W(k)) such
that hgegp(he)™ ' = 1y.

We will first prove the following lemma.

3.4.1. Lemma. Let g € H(W(k)). Then there exists an element hy € Hio(W(k))
such that g4 = hygp(hy)™' € H(W(k)) has the property that a(g+) = 0.

Proof. We can assume that h # 0. Fori € N U {0}, lete; = {; @ §o & h_ be the
W (k)-subalgebra of §) constructed in Lemma 3.2.3. By inductionon i € N U {0} we
show that there exists h; € Hyo(W(k)) such that g; := h;gp(h;)~' € H(W(k))
has the property that a(g;) € e;. Taking hg = 1), we have gg = g € h = eg. Thus
the basis of the induction holds. The passage from i to i 4+ 1 goes as follows.
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We will take 4; 41 to be a product of the form h; +h; oh;. Let §; € N U {0} be
the greatest number such that we have b(g;) € p% . Let hio € Ker(Ho(W(k)) —
Ho(Ws, (k))) be such that ; o(1p + b(gi)¢(hio)~' = 1y, cf. Lemma 3.3.1 (b).
The element g;411,0 = h,-,og,-qﬁ(hi,o)_l € H(W(k)) has the properties that
a(gi+1,0) € fi and b(gi41,0) = O, cf. proof of Lemma 3.3.1(d) applied with
(f+.7-) = (fi.b-). Let hit := 1y —a(gi+1,0) € lm + b+ < Hyo(W(k)).
We compute that

Git1=hit1gd(hiz1) ™" = hithiogid(hio) " ¢(hi+) ™" = hitgiv1,00his) "

= [Ip — a(gi+1,0][1m + a(git+1,0) + c(gi+1,0][1m — d(a(gi+1,0)] "
= [Ip —a(gi+1,00* —a(gi+1,00¢(gi+1,0) + c(gi+1,0)][lm — d(a(gi+1,0)] "

As a(git1,0) € i, the three elements —a(g;11,0)*, 4 (—a(gi+1,0)¢(gi+1,0)), and
#(a(gi+1,0) belong to O(f;) = fi+1. As I (—a(gi+1,0¢c(gi+1,0) € fi+1, we
get that —a(gi+1,0)c(gi+1,0) € €i+1.- As e;j41 is a W(k)-algebra, we conclude that
both 1y — ¢(a(gi+1,0)) and [1pr —a(gi+1,0)][1m + a(gi+1,0) + c(gi+1,0)] belong
to ¢;4+1. From Section 2.5 (i) we get that [137 — ¢ (a(gi+1,0))]”" € ei+1. Thus we
have g;+1 € e;+1. This ends the induction.

Due to Lemma 3.2.6, the sequences (a(g;))ieNugo} and (a(gi+1,0))ieNufo} of el-
ements of ) converge to 0. Wehave b(gi+1) = [l —a(gi+1,0)[1m +a(gi+1,0)+
c(gi+1.0][1ar =P (a(gi+1,0)]™" =1y —a(gi+1) —c(gi+1) € ho. From the last two
sentences we easily get that the sequence (b(g;+1))ieNugoy of elements of by con-
verges to 0. Thus the sequence (§;);enugo; of non-negative integers converges to oo.
This implies that the sequence (/;,0);eNugoy of elements of Ho(W(k)) converges to
Iapr. Ashi 4 = 1y +a(giv1,0), the sequence (h; +)ieNufo} converges to 1. Thus
the sequence (h;,+h;i 0)ienu{oy of elements of H (W (k)) converges also to 1p7. As
hit1 = hi 1h;oh;, we get that the sequence (h;);eNnugoy of elements of Ho(W(k))
converges to an element i, € Hyo(W(k)). We have g+ = hyg¢(hy)™! =
lim; - 00 hig¢(hi)_l = limj500 g € ﬂzoio e = ﬂ?io fi ® ho ® h—. Thus
g+ € ho @ h_, cf. Lemma 3.2.6. Therefore a(g+) = 0. |
3.4.2. End of the proof of 1.3(a). Let g € H(W(k)). Let hy € Hyo(W(k))
and g+ € H(W(k)) be as in Lemma 3.4.1. Let hy € Ho(W(k)) be such that
for go = hog+¢(ho)™' € H(W(k)) we have a(gy) = b(go) = 0, cf. Lemma
3.3.1(d) applied with (f4,f-) = (0,h-). Let h— € G(W(k)) be such that we
have go = hZ'¢(h_), cf. Lemma 3.3.2. Due to (3a), the element /1, := h_hoh be-
longs to G(W (k). We have g g (he) ' = h_hoh.s g ()~ ¢ (ho) " p(h-) ™" =
h_hog+p(ho) 'p(h-)"! = h_gop(h_)"' = 1p. Thus the statement 3.4 (x)
holds. This ends the proof of Theorem 1.3 (a). O

3.4.3. Remarks. (a) The proof of Theorem 1.3 (a) can be also worked out using
ptGq + ho + b_ instead of h = p‘Gg + by + by.
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(b) If g € Hyo(W(k)), then hgy = hohy € Hyo(W(k)). Thus we have
an identity Hyo(W(k)) = {x1¢(x) | * € Hyo(W(k))} (to be compared with
Lemma 3.3.1 (a)).

3.5. Proof of 1.3 (b). We prove Theorem 1.3 (b). We consider a direct sum decom-
position

M= M (4a)

iel

with the property that for all elements i of the finite set / we have ¢ (M; [%]) = M; [%]
and (M;, ¢) is isoclinic. For instance, we can take / to be the set of Newton polygon
slopes of (M, ¢) and then as each M; we can take M N W(i) (see Section 1.1.2 for
W(a) with @ € Q). Foreachi € I, let o; € Q be the unique Newton polygon
slope of (M;, ¢). In Section 3.5.1 we do not assume that the association i — «; is
one-to-one.

3.5.1. Scholium. One computes £gp,, as follows. Fori € I, let B; be a W(k)-basis
for M;. Let B := J,;¢; Bi; itis a W(k)-basis for M. Let B* := {x* | x € B} be
the W (k)-basis for M * which is the dual of B (see Section 2.1).

Due to (4a), we have direct sum decompositions

End(M)NLy = @ Hom(M;, M),
i.jel
Dti<0tj

End(M) N Lo = & End(M;),
iel
and
EndM)NL_ = @ Hom(M;, M;).
i.jel

le'<Olj

Thus End(M) = (End(M)N L)@ (End(M)N Lo) ® (End(M)N L_) and therefore

End(M)/0 = [(End(M) N L+)/0+] @ [(End(M) N Lo)/Oo]

@ [(End(M) N L_)/O_]. (4b)

Fori,j € I,x € B;,and y € B;, we define a number {(x, y) € N U {0} via the
following two rules:

o if; > o, let £(x,y) € N U {0} be the smallest number such that we have
PN Gd(x ® y*) € Hom(M;, M;) forall ¢ € N;

o if; < o, let £(x,y) € N U {0} be the smallest number such that we have
pt&NG=4(x ® y*) € Hom(M;, M;) forall g € N.
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Let £, £o, {— € N U {0} be the smallest numbers such that p*+ annihilates
(End(M) N Ly)/O0y4, p‘ annihilates (End(M) N L)/ Op, and p‘— annihilates
(End(M)NL_)/O_. As

Oy= () ¢ “EndM)NLy)= () End(@~(M)NLy),
qeNU{0} qeNU{0}

£ is the smallest non-negative integer with the property that we have p*+ (End(M)N
Ly) C ¢ 9(M)NL, forallg € N (i.e., wehave p*+¢4(End(M)NL,) C End(M)
forallg e N). As{x ® y* | x € B;,y € Bj,i,j € I.o; > «a;} is a W(k)-basis
for End(M) N L4, we get that £ is the smallest non-negative integer such that we
have pt+¢?(x ® y*) € Hom(M;, M;) forallg € N, alli, j € I witho; > o, and
all x € B; and y € B;. Therefore

{4 :=max{l(x,y) | x € B,y € Bj,i.j € [,a; > a}. (5a)
Similar arguments show that
Lo = max{l(x,y) | x,y € B;,i € I} (5b)
and that
{_:=max{l(x,y) | x € B;,y € B;,i,j el o <a;}. (5¢)

From (4b) and the very definitions of £, £y, and £_ we get that max{{,{o,{_} €
N U {0} is the smallest number such that p™*t+-£o-£=} anpihilates End(M)/O.
Next we define a number e ,, € {0, 1} via the following rules. If O = End(M),

let egL,, = {ar,, (cf. rules 1.2(a) and (b)); we have £, = {o = {_ = 0 and
thus {gr,, = max{egr,,.l+.lo.{—}. If O # End(M), let eg1,, := 0; we have
loL,, = max{{y,Lo,L_} (cf. rule 1.2(b)). From the last two sentences and the

formulas (5a), (5b), and (5c) we get that, regardless of what O is, we have
Lo, = max{egr,,,{+, Lo, {—} = max{egr,,.L(x,y) | x,y € B}. (6a)

The latticed F-isocrystals (Hom(M;, M;),¢) and (Hom(M;, M;),¢) are dual to
each other (cf. Section 2.1) and the dual of the W (k)-basis {x ® y*|x € B;,y € B;}
of Hom(M;, M;) is the W(k)-basis {y ® x* | x € B;,y € B;} of Hom(M,;, M;).
Based on this, from the property 2.1 (x) we get that for all i, j € [ we have an
equality

max{{(x,y) | x € B;,y € B;} = max{{(y.x) | x € B;,y € B }. (6b)

3.5.2. Reduction steps and notations. Let £ := {g;,,. Based on Theorem 1.3 (a),
we have ng,, < {. Thus to prove that ngr,, = £, it suffices to show that ngr,,, >
{—1.If ngr,, =0, then £ = 0 (see Lemma 2.3) and therefore ngr,, > ¢ — 1. Thus
to prove that ngr,, = £, it suffices to show that for { > 2 we have ngr,, > £ —1. To
check this we can assume that the map / — Q that takes/ € I to o; € Q is injective
(i.e., for each element [ € I we have M; = M N W(a;)).
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Let g be the smallest positive integer for which the following two properties hold:

(i) there exists a W(k)-basis B = U;<;B; for M which is contained in U;cy M;
and for which there exist elements i, j € I, x € B; C M;,andy € B; C M,
such that (cf. (6a) and (6b)) we have £(x,y) = £ and o; < o;;

(i) we have ey 1= p*@®Mpd(x ® y*) = p'ep?(x ® y*) € Hom(M,;, M;) \
pHom(M;, M;).

The existence of g follows from (6a), (6b), and the very definition of the numbers
£(x, y).

For z € M, let a; 4 be the unique integer such that we have ¢7(z) € p%-9M \
p%-atIM . We can choose the W(k)-basis B = U;c;B; such that we have a di-
rect sum decomposition M = @, W(k)p~?=1¢9(z) i.e., we have ¢ 9(M) =
D, Wk)p~@az. Let

aig :=min{a; 4 |z € B;} and bj, :=max{a,y |z € B;}.

Therefore a; 4 is the greatest integer such that we have ¢¢(M;) C p“-e M; and b; 4 is
the smallest integer such that we have p?.a M i € ¢9(M;). The smallest number s €
NU{0} with the property that p*¢?(Hom(M;, M;)) = p* Hom(¢4(M;), p4(M,))is
contained in Hom(M;, M;), equals max{0,b; ; —a; 4}; as eg x,, € Hom(M;, M;) \
pHom(M;, M;), we have s > £(x,y) = £ > 2. Ass < max{{4,{o} < {, we
conclude that2 < £ = s = b; , —a, 4. Itis easy to see that we have max{{, {o} >
ayq —dx,g > £(x,y), cf. property (ii) for the second inequality. From the last two
sentences we get that ay 4 = a;4 and ay 4 = b; 4. Thus we have £ = {(x,y) =
Ayg—axg =bjg—aiq. Asl =ay,,—axq >0, wehave x # y.

3.5.3. Theset A. Let A :={w € M; \ pM; | aw,y = axq}; it is the set of those
elements w € M; for which p~%x-2$4(w) is a direct summand of M. Obviously the
set A is stable under multiplication by invertible elements of W (k). For w € A let

gw = ly + p" 'w® y* € End(M);

it is the endomorphism of M that fixes each element z € B \ {y} and that takes y
toy + p*~lw. As £ > 2, we have g, € GLy(W(k)). As each g, is congruent
to 137 modulo pﬁ_l, to prove that ngr,, > £ — 1 it suffices to show that there
exists an element w € A such that the latticed F-isocrystals (M, g, ¢) and (M, ¢)
are not isomorphic. We show that the assumption that this is not true leads to a
contradiction. This assumption implies that for each element w € A there exists an
element /1, € GLps (W (k)) which is an isomorphism between (M, g,,¢) and (M, ¢).
Thus we have hy, gyphy! = ¢ i.e., we have

hywgw = ¢ (hw). (7a)
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We write hy, = lp + Uy, where uy, € End(M). Substituting the expressions of /i,
and g, in (7a), we come across the following identity

-1 -1

(W ® y*) =y + p 7w+ up (W] ® y* = $(uw)
(7b)

(here uy, (w ® y*) is the product inside End(M ) of u,, and w ® y*). In other words,

if vy 1= W + Uy (w) then the pair (1y,, vy ) is a solution of the following equation

Uy +p @y +p

U+plVey* =) (7¢)
in variables U and V' that can take values in End(M )[%] and M (respectively).

3.5.4. Fact. There exists an isomorphism between (M, gy ¢) and (M, ¢) defined by
an element hy, of GLp (W(k)) which has the following two properties:

(1) it acts identically on each My with | € I \ {i, j} and leaves invariant M;;

(ii) if i # j, then it acts identically on M;, leaves invariant M; & M;, and acts
identically on (M; + M;)/M,.

Proof. We will prove this only in the case when i # j (as the case i = j is even
simpler). We know that g,, acts identically on each M; with [ € I \ {j} and on
(M; & M;)/M;. This implies that each M; with [ € I \ {j} is the maximal direct
summand of M such that all Newton polygon slopes of (M;, g,,¢) are equal to oy
and that M; @ M; is the maximal direct summand of M such that all Newton polygon
slopes of (M; ® M;, gy ¢) are equal to either o; or ;. From this and the fact that
hy € GLys (W(k)) is an isomorphism between (M, g, ¢) and (M, ¢), we get that /1y,
leaves invariant each M; with/ € I \ {j} as well as M; @ M;. Even more, from the
second sentence of this proof we get that /,, restricted to each M; with [ € I \ {j}
is an automorphism /4y, of (M;, ¢) and moreover A, induces an automorphism of
((M; & M;)/M;, ¢) and thus an automorphism /,, of (M}, ¢).

Let how = [l;es hiw € [[;e; GLum, (W(k)) < GLa (W (k)); it is an automor-
phism of (M, ¢). The element hy = hgwhw € GLa(W(k)) has all the desired
properties. O

_ Toreach the desired contradiction we can assume that we have hy = h w» Where
hy is as in Fact 3.5.4. We first consider the case when i # ;.

3.5.5. The case i # j. We assume thati # j (i.e., o < ;). Ashy = };w, we have
uy € Hom(M;, M;). From this and the relation i # j we get that u,, (w) = 0. As
a; < a;, all Newton polygon slopes of (Hom(M;, M;), ¢) are positive. Therefore
for each V in M; the sequence (¢ (p*~'V ® Y*))m=o0 converges to 0 and thus
all the solutions of the equation (7c) in Hom(M;, Mi)[%] X M; are of the form

(=™ (p“~'V ® y*), V). From this and the relation u,, (w) = 0 we get the
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following identity

up == ¢" (P w @y (7d)

m=0
We have the following two properties of the terms of the sum (7d).

(i) All the terms of the sum of (7d) belong to %Hom(M i, M;) (this is so as w
and y belong to a W(k)-basis for M formed by elements of U;c; M; and therefore
the element £(w, y) can be defined as in Section 3.5.1 and it is equal to £(x, y) = £).
Moreover, all but a finite number of these terms belong to Hom(M;, M;).

(ii) The term ¢4 (p*~ w ® y*) of the sum of (7d) belongs to % Hom(M;, M;) \
Hom(M;, M;) (cf. property 3.5.2 (ii) and the fact that a,, 4 = ax 4).

Let y be an invertible element of W (k). Lety € k\ {0} be its reduction modulo p.
Based on properties (i) and (ii), the condition that the element u,,, obtained as in
(7d) belongs to Hom(M;, M;) is expressed by y being a solution of a system of
polynomial equations in one variable which have coefficients in k and which contain
at least one polynomial of degree at least p?. Therefore there exist such elements
y with the property that we have u,,, € %Hom(Mj, M;) \ Hom(M;, M;). Thus
for such an element y we have yw € A and hyy, = 1y + uyyw ¢ GLy (W(k)).
Contradiction.

3.5.6. Extra reduction steps. To reach the desired contradiction we can assume
thati = j (ie., &; = o), cf. Section 3.5.5. As hyy = hy andi = j, toreach a
contradiction we can assume based on Fact 3.5.4 (i) that M; = M (i.e.,that I = {i}).
Thus (M, ¢) is isoclinic and we have O = Og = A¢ ®z, W(k), cf. Section 1.2.

3.5.7. Lemma. We recall that vy, = w + Uy (w). Then we have vy, € A.

Proof. Due to the definition of ¢, we have ¢*(gy) € GLy (W(k)) for all s €
{l,...,q — 1} but ¢p9(gyw) ¢ GLp(W(k)). From this and the equation (7a) we get
that ¢*(hy) € GLpy (W(k)) for all s € {1,...,q} but ¢4 (hy) ¢ GLpy (W(k)).
Thus we have ¢*(uy,) € End(M) forall s € {1,...,q} but $¢7 1 (uy,) ¢ End(M).
Due to this and the identity (7b) we get that ¢?(p*~ v, ® y*) ¢ End(M). If
d1(pt vy, ® y*) ¢ %End(M) or if v, € pM, then we have £y, > £ + 1 and
this contradicts (6a). Thus we have ¢?(p*~'v, ® y*) € % End(M) \ End(M) and
vy € M\ pM . Therefore ¢?(ptv, ®y*) € End(M)\ p End(M)andv,, € M\ pM.
But we also have ¢?(p‘x ® y*) € End(M) \ pEnd(M), cf. property 3.5.2 (ii).
From the last two sentences and the very definitions of a4 and ay 4, we get that
Ay,,,q = dx,q. From this and the relation v,, € M \ pM we conclude that v,, € A. O

3.5.8. Lemma. Let (u,v) € End(M) x M be a solution of the equation (7c).
(a) Then we have {u, p*~'v ® y*} C End(M) N %O.
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(b) Let vy € pM. Then there exists a solution (u + uy, v + vy) of the equation (7¢)
withu, € O.

Proof. We have pp‘~'v ® y* € p*End(M) C O. It is easy to see that for each
element W € O, the equation * + W = ¢ (*) in * has a solution in ¢ (0) = O = Oy
and thus also in End(M). Letii € O be such that we have i + pp*~ v ® y* = ¢ (ii).
Thus pu — i = ¢(pu — i) belongs to AO[%] NEnd(M) = Ap € O. Therefore we
have u € End(M) N %0. Thus (a) holds. Part (b) follows from the fact that there
exists u; € O such that u; + pv, ® y* = ¢p(uy). |

3.5.9. Morphisms between k-schemes. Let M be the affine space (scheme) over k
defined naturally by the k-vector space M/pM . Let ¢, : M — M be the morphism
of k-schemes that takes * € M(k) = M/pM to the element of M (k) which is the
reduction modulo p of p~4x-4¢?(x) € M, where x € M is an arbitrary lift of 7.

The set Im(A — M/pM) is the set of k-valued points of the open, non-empty
subscheme 8 := (pq_l (M\ {0}) of M. For each solution (u, v) € End(M) x M of the
equation (7c), a similar argument to the proof of Lemma 3.5.8 shows that v modulo
p determines ¥ modulo Ay up to a finite number of possibilities. From this and the
identity w = vy, —uy,, we get that the association that takes (w, 1y, ) modulo p to vy,
modulo p has finite fibres. This association can be viewed as the one defined naturally
(at the level of k-valued points) by a morphism of k-schemes whose codomain is 8
and whose domain has the same dimension r as 8. By reasons of dimensions, we get
the following:

(1) There exists an open, non-empty subscheme V of § which has the property
that each k-valued point v of V is of the form v, modulo p for some elements
w € A and u,, € End(M) such that (w, vy) := (W, w 4 Uy (w)) is a solution of the
equation (7c).

Let O = %0/0 and let E be the image of End(M) N %O in 0. Both O and
E are k-vector spaces. Let O and & be the affine spaces (schemes) over k defined
naturally by the k-vector spaces O and E (respectively). Let ¢: O — O be the
morphism which takes a k-valued point of O defined by some element o € %0 to

the k-valued point of O defined by the element ¢(0) — 0 € %0 (we think of ¢ as

a finite, surjective endomorphism of G;z). LetF := EN¢ 1 (E). Thus Fis a
closed subscheme of O equipped with a morphism m,: F — & induced from ¢ (we
think of m; as a homomorphism between closed subgroup schemes of ng). Based
on Lemma 3.5.8 (a) we can speak about the natural images u,, and vy, of u,, and
p vy, ® y* (respectively) in O and thus about k-valued points (denoted in the same
way) Uy € F(k) and vy, € E(k) with the property that 711 maps iy, t0 Uy, y.

We have a natural morphism of k-schemes m,: V — &€ which at the level of
k-valued points maps a k-valued point of V represented by an element v € A to the

k-valued point of € defined by the image of p* " 'v®y* € p*~1 End(M) C %0 in0.
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From the property (i) and the previous paragraph we get that the natural morphism
1 VXeF—=>V

associated to the fibre product of n1, and m 3, is surjective. As the morphism ¢: O —
O has finite fibres and it is of finite type, the finite type morphism ¢ is quasi-finite and
therefore it is generically finite. From this, the property (i), and Lemma 3.5.8 (b) we
get the following:

(ii) There exists an element v € A that defines naturally a k-valued point of V
and there exists a finite subset I' of k such that for each algebraically closed field k,
that contains k and for every invertible element y of W (k1) whose reduction modulo
p does not belong to T, the following equation in U,

U+plyv®y* = (¢ ®ax,)(U), (7e)

obtained from (7c) by replacing (V, ¢) with (yv, ¢ ® ok, ), possesses a solution in
End(M ®w) W(k1)). Here oy, is the Frobenius automorphism of the ring W (k1)
of Witt vectors with coefficients in k.

3.5.10. Good choice of y. We will take k; to be an algebraic closure of k((X)),
where X is an independent variable. We identify W (k)[[X]] with a W (k)-subalgebra
of W (k1) that contains the invertible element X = (X, 0,...) of W(k1). We will take
y := X, where 7 is an invertible element of W (k). We have oy, (X) = X 7. For this
choice of y, the equation (7¢) has (up to addition of elements in the free Z,-module
%Ao of rank r2) a unique solution

uex ==y X7 " (p o @ yY) (7f)

m=0

in 50 ®way W(ki). In fact we have urx € - End(M) @ww) WK)[X]]. As
tv € A, from the property 3.5.2 (i) we get that the term X2 ¢?(p*~'tv ® y*) of
(7f) does not belong to End(M) ®wk) W(k1). The last two sentences imply that
the intersection (u;x + %Ao) N [End(M) @wk) W(k1)] is empty and therefore we
reached the desired contradiction.

3.5.11. End of the proof. The contradiction we reached implies that ngr,, > £ — 1.
Thus ngr,, = € = {g1,,. This ends the proof of Theorem 1.3 (b) and therefore also
of Main Theorem A. |

3.6. Remarks. Suppose (M, ¢) is a direct sum of isoclinic latticed F-isocrystals
over k.

(a) We have a direct sum decomposition g = (g N L4+) b (g N Lo) D (g N L)
of W(k)-modules. Thus Og = g N O and therefore g/Og < End(M)/O. From
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this inclusion we easily get the following monotony properties: we have {g < {gr,,
and therefore (cf. Main Theorem A) we also have ng < ngr,, .

(b) We assume that (M, ¢) is the Dieudonné module of D; thus {gr,, = {p.
We will use the notations of Section 3.5. We also assume that there exist elements
x,y € B such that £(x,y) > 2 and we have x € B; and y € B; with o; < ;.
Let g € GLps(W(k)) be the element that fixes each z € B \ {y} and that takes y
toy + pe(x =1y Let D ¢ be a p-divisible group over k whose Dieudonné module
is isomorphic to (M, g¢). Then D, [pt©)=1] is isomorphic to D[pt™¥)~1] and
D, has the same Newton polygon as D (as «; # «;). If by chance we also have an
identity £p = £(x, y), then Section 3.5 can be easily adapted to give us that, up to
areplacement of x € B; by a multiple of it with an invertible element of W(k), we
can assume that D, is not isomorphic to D.

3.7. Variant of 1.3(b). Let (M, ¢, G) be a latticed F-isocrystal with a group over
k such that Assumption 1.1.1 holds. We assume that the following two conditions
hold:

(i) wehaveng > 1 andadirect sum decompositiong = (gNL)B(gNLe)D(gN
L)(org=(gNLy)B[gN(Lo® L-)]org=[gN(L+ & Lo)]D(gNL-))
of W(k)-modules;

(ii) for all ¢ € N, there exists a W(k)-basis B for M and a sequence of inte-
gers (az,4)zen such that certain subsets of {x ® y* | x,y € B} are W(k)-
bases for all direct summands of g listed in (i) and moreover we have M =

Dcp Wk) p™@=4¢4(2).

Then the proof of Theorem 1.3 (b) (see Section 3.5) can be entirely adapted to give
us that ng = £g. We only add here two things. First, if by chance in Section 3.5.2
we have £(x,y) = {gr,, with x € B; and y € B; such that «; > o;, then
one needs to use ¢~ 7 (instead of ¢?) with ¢ € N in order to reach the desired
contradiction. Second, if we have g = (g N L4+) ®[g N (Lo & L-)] (resp. g =
[a N (L+ & Lo)] @ (g N L_)), then one needs to use Lemma 2.4 in order to be able
totreat g N (Lo @ L-) (resp. g N (L+ @ Lo)) in the same manner as g N L_ (resp.
asg M Ly).

4. Direct applications to p-divisible groups

In this section we prove the results stated in Sections 1.4.2 to 1.4.4 (see Sections 4.5
to 4.7). In Sections 4.1 to 4.4 we introduce basis invariants of p-divisible groups
over k and we present basic properties of them that are needed in Sections 4.5 to 4.7.
Until the end we will assume that (M, ¢) is the Dieudonné module of D.
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4.1. Definitions. (a) Let ¢ € N. Let ap(q) € N U {0} be the greatest number
such that we have ¢4(M) C p*P@M. Let Bp(gq) € N U {0} be the smallest
number such that we have pfP @M C ¢4(M). Let $p(q) := Bp(q) — ap(q); as
pPP@D M C p?(M) C p*P @D M, we have 8p(g) € N U {0}.

(b) We assume that D is isoclinic. Let m := g.c.d.{c,d}. Let (c1,dy,r1) :=
G %, +). Letup := sup{0, Bp(rin) —din | n € N}. Letiip := sup{0,din —
ap(rin) | n € N} Let vp := sup{0,Bp(rn) —dn | n € N}. Let vp =
sup{0,dn —ap(rn) | n € N}. Proposition 4.3 (c) and (b) below will imply that up,
g, Vp,and Up are non-negative integers and therefore that in their definition we can

replace sup by max.

(c) Let (M1, ¢1) and (M>, ¢») be the Dieudonné modules of two isoclinic p-
divisible groups D; and D, (respectively) over k. Let a; and «, be the unique
Newton polygon slopes of D and D, (respectively). Let {p, p, € N U {0} be the
smallest number that has the following property:

(i) ifo; < ap,thenforallg € N the W(k)-module ¢q(peDl~D2 Hom(M;, M5)) =
peDl P2 Hom(¢p?(M1), ¢9(M>)) is included in Hom (M, M>);

(ii) ifaq > ap, thenforallg € N the W(k)-module ¢p ¢ (peD1 D2 Hom(M1, M»)) =
peDl D2 Hom(¢p~9(M1), p~4(M>)) is included in Hom (M, M>).

(d) Let ep := &q1,,» Where the number egr,, € {0, 1} is as in Scholium 3.5.1.

4.1.1. Remark. If cd = 0, then Og = End(M) and therefore {p = ep = 0.
If c,d > 1 and D is ordinary (i.e., isomorphic to (Q,/Z,)¢ & ([Lpoo)d), then
O = End(M) and the two-sided ideal of the W (k)-algebra End(M) generated by
Ot & O_is End(M); thus £p = ep = 1. If ¢,d > 1 and D is not isomorphic
to (Qp/Z,)° ® (pp)?, then End(M) # O and therefore £p > 0 and ep = 0;
moreover £p € N is the smallest number such that we have p*2 End(M) € O (cf.
rule 1.2 (b)).

4.2. Simple properties. In this section we list few simple properties of the invariants
we have introduced so far.

4.2.1. Fact. We have np = npr and {p = Lp:.

Proof. We show that np < np:. Let C be a p-divisible group of codimension ¢ and
dimension d over k. If C[p"p!] is isomorphic to D[p"p'], then taking Cartier duals
we get that C'[p" '] is isomorphic to D'[p"p'] and thus that C' is isomorphic to D".
Taking Cartier duals, we get that C is isomorphic to D. This implies thatnp < np:.
As D is the Cartier dual of D!, we also have np: < np. Thus np = np.

As (M*, pg) is the Dieudonné module of D', under the natural identification
End(M*) = End(M), the level module of (M™*, p¢) gets identified with O. Thus
we have £p = {p. O
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4.2.2. Fact. The following three properties hold:

(a) for all ¢ € N, we have inclusions
M C p—ﬂD(q)¢q (M) C p—SD(q)M (8a)
which are optimal in the sense that we also have

Mg p—ﬁD(tI)-i-ld)q(M) and p_ﬂD(q)¢4(M) ¢ p—5D(q)+1M; (8b)

(b) forall g € N, we have ap:(q) = q — Bp(q) and Bp:(q) = q —ap(q);

(¢) if D isisoclinic, then we have up = Uip:, Up = Up:, Vp = Vp1, and Vp = Vpu.

Proof. Part (a) follows from the very Definition 4.1 (a). As pPP@M C ¢?(M) C
paD((I)M’ we have p—aD(q)M* C p?(M*) C p—ﬂp(q)M* ie., pq—aD(q)M* -
(pp)I(M*) C pI=Bp@pr*. As (M*, p¢) is the Dieudonné module of D' and
due to (8a) and (8b), we get that (b) holds. We prove (c). Due to (b) we have an
equality Bp (rin) —din = rin — api(rin) —din = cin — api(rin). This implies
that up = @i pt. By replacing D with D', we get that up. = 7ip. Similar arguments
show that vp = vpt and vp = vp:. Thus (c) holds. O

4.2.3. Lemma. We assume that D is isoclinic. Let o := % € Q N[0, 1] be its unique
Newton polygon slope. Then the following two properties hold:

(a) we have ap(q) < qa < Bp(q);
(b) ifap(q) = qa (or if Bp(q) = qa), then we have ap(q) = Bp(q) = qa.

Proof. As g, := p~*P@ @7 is a 04-linear endomorphism of M, the Newton polygon
slopes of ¢, are on one hand non-negative and on the other hand are all equal to
qgo —ap(q). Thus ap(q) < qgua. If g« = ap(q), then all the Newton polygon
slopes of ¢, : M — M are O and therefore we have ¢, (M) = M. This implies that
Bp(q) = ap(q) = qo. The part involving Bp(g) is proved in the same way but
working with pfp@¢—4, O

4.2.4. Lemma. (a) If D is either F-cyclic or special, then D is also quasi-special.

(b) The class Q. 4 of isomorphism classes of quasi-special p-divisible groups of
codimension ¢ and dimension d over k, is a finite set.

Proof. Each isoclinic special p-divisible group over k is isoclinic quasi-special. Each
F-cyclic p-divisible group over k is a direct sum of F-circular p-divisible groups
over k. Based on the last two sentences, it suffices to prove (a) in the case when D
is F-circular. Let & be an r-cycle of J, such that D is isomorphic to C;. We have
(M) = p? M and therefore Cy, is isoclinic quasi-special of Newton polygon slope
%. Thus (a) holds.
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To prove (b) it suffices to show that for all pairs (¢, d) € (NU{0})? withc+d > 0,
the class J. 4 of isomorphism classes of isoclinic quasi-special p-divisible groups of
codimension ¢ and dimension d over k, is a finite set. We assume that D is isoclinic
quasi-special. Then we have ¢" (M) = p? M. Therefore ¢, := p~4¢": M — M
is a 0" -linear automorphism of M. Let My ,.) := {x € M | ¢,(x) = x}. We
have My ) ®w,-) W(k) = M. Moreover ¢ (Mw,)) S Mw,.). Therefore
the Dieudonné module (M, ¢) is definable over the finite field IF,-. Thus every
isoclinic quasi-special p-divisible group of codimension ¢ and dimension d over k
has a Dieudonné module over & which (i) is isomorphic to (M, g¢) for a suitable
element g € GLjs (W (k)), and (ii) it is definable over Fr.

Let M = F! @ F° be a direct decomposition such that F!/pF1 is the kernel of
¢ modulo p. We have (;S(%F1 + F% = M. Thus the cocharacter i : G,, — GLy

that fixes F° and that acts on F! via the inverse of the identity character of G, is a
Hodge cocharacter of (M, ¢, GLyy) in the sense of [Val, Section 2.2.1 (d)]. Thus the
triple (M, ¢, GLjyy) is a latticed F-isocrystal with a group over k for which the W -
condition of loc. cit. holds. From the Atlas Principle applied to (M, ¢, GL)s) and to
an emphasized family of tensors indexed by the empty set (see [Val, Theorem 5.2.3]),
we get that the set of isomorphism classes of Dieudonné modules over & which are
of the form (M, g¢) with g € GLys (W(k)) and which are definable over the finite
field IF,- is finite. From this and the classical Dieudonné theory, we get that the class
Je,q 1s a finite set. O

4.3. Proposition. We assume that D is isoclinic. Then the following six properties
hold:

(a) we have {p = max{Sp(q) | ¢ € N};

(b) fa:= %, then we have limg_ o0 ﬂD(‘I)

(c) if My (resp. 1\20) is the W(k)—submodule of M generated by elements fixed by
Or, = P~ " (resp. by ¢ := p~2P"), then up (resp. vp) is finite and it is
the smallest non-negative integer such that p*P (resp. p¥P) annihilates M/ M
(resp. M/ Moy);

() if My (resp. My) is the smallest W (k)-submodule of M [+ 1] which is generated
by elements fixed by ¢, (resp. by ¢, ) and which contains M theniip (resp. Up)
is finite and it is the smallest non-negative integer such that p”D (resp. p”D )
annihilates My/ M (resp. My/M);

(e) we have up = up (resp. vp = Up);
) we haveup < €p.

Proof. We prove (a). The W(k)-span of endomorphisms of (M, ¢) is O = Oy.
The number £p is the smallest number such that p*2 End(M) € O C End(M),
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cf. Example 1.2.2. As O = () enugop 7 (End(M)) = () enugo; End(¢9 (M) =
(Ngenuioy End( p PP @pa (M), £p is the smallest (non-negative) integer such that
we have p*? End(M) C End(p~#r@¢4(M)) for all ¢ € N. Thus from (8a) and
(8b) we get that £p is the smallest integer which is greater than or equal to 6p (g) for
all g € N. From this (a) follows.

We prove (b). From (a) we get that $p(q) = Bp(q) — ap(q) < £p. Thus
O‘TD <a<bo < “TD + %’ cf. Lemma 4.2.3 (a). From these inequalities we get that
(b) holds.

We will prove (c¢) only for M| as the case of My is argued in the same manner. We
have Mo = (\,enugoy @7, (M). As @] (M) = p~ngrin(M), from (8a) and (8b)
we get that pfo(im—dinpr @y, (M) and pPorim—din=1 1 ¢ ¢y, (M). Thus the
smallest non-negative number s such that we have p*M C ¢ (M) foralln € N is
sup{0, Bp(rin) — din | n € N} and therefore it is up. Thus (c) holds.

We will prove (d) only for M; as the case of M; is argued in the same manner.
The W (k)-submodule M| of M* is the largest W (k)-submodule of M * generated by
elements fixed by p~41¢"1. As (M*, p¢) is the Dieudonné module of D', the ana-
logue of p~@1¢"1 for D' is the ¢! -linear automorphism p~¢1 (pg)"t = p~41¢" of
M* [%] Thus from (c) applied to D', we get that u p« is the smallest non-negative inte-
ger with the property that p*Pt annihilates M * /M. Astip = up: (see Fact4.2.2 (c))
and as the W(k)-modules M /M and M* /M are isomorphic, we get that it p is the
smallest non-negative integer such that p*2 annihilates M, /M. Thus (d) holds.

We will prove (e) for up and tip as the case of vp and vp is argued in the same
manner. As p“2 M, € M and as p*P M, is W(k)-generated by elements fixed by
©r,, we have pﬁD M € My. Thus p’zD annihilates M /Mg and therefore ip > up,
cf. (c). A similar argument shows that M1 € p P My and that tip < up. Thus
up = up i.e., (e) holds.

We prove (f). Each endomorphism of (M, ¢) maps My to My. Thus O = Oy C
End(Mj). But due to (c), the smallest number s € N U {0} such that p* End(M) C
End(My) is up. As p*? End(M) € O C End(M,), we get that up < £p. Thus (f)
holds. O

4.3.1. Remark. We have My € Mo € M and M C M, C M,. Thus vp = dp <
up = up. The W(k)-submodule My (resp. MO) of M is the largest one with the
property that (Mo, ¢) (resp. (Mg, ¢)) is the Dieudonné module of an isoclinic special
(resp. isoclinic quasi-special) p-divisible group over k. Thus we call up = tip (resp.
vp = Up)the Manin height (resp. the Manin quasi-height) of D, cf. [Ma, Chapter 111,
Section 2]. Similarly, the W(k)-submodule M, (resp. M;) of M [%] is the smallest

one with the properties that it contains M and that (M, ¢) (resp. (M 1,¢)) is the
Dieudonné module of an isoclinic special (resp. isoclinic quasi-special) p-divisible
group over k.
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4.4. Proposition. We assume that D = [],c; D is a product of at least two non-
trivial isoclinic p-divisible groups over k. Then the following three properties hold:

(a) foralli,j € I withi # |, wehaveﬁDi’Dj zﬁpj,pl.;
(b) we have {p, = {p,; p, and lp = max{eD,EDi,ED[,D_/ |iel, jel\{i}}

(¢) ifi,j € I withi # j and if the Newton polygon slope «; of D; is less
than or equal to the Newton polygon slope aj of Dj, then we have {p; p, =
max{0, Bp;(q) —ap;(q) | ¢ € N}.

Proof. Let M = @;c; M; be the direct sum decomposition such that (M;, ¢) is
the Dieudonné module of D;. Let B; be a W(k)-basis for M;. Let B := U;c1B;.
For x,y € B, let £(x,y) € N U {0} be defined as in Scholium 3.5.1. We have
{p; p; = max{€(y,x) | x € B;,y € B;}, cf. the very definitions. Thus (a) is a
particular case of Formula (6b). As D; is isoclinic, we have ep, = 0. Thus (b) is a
particular case of Formulas (6a), (5a), (5b), and (5c). We prove (c). Due to (8a), for
all ¢ € N we have

Hom(¢? (M), *(M;)) S Hom(pP?: @ M;, p*» @ ;)
— potDj (q)—ﬂD,- (@) Hom(M,- , M])

From this and making use of (8a) and (8b) we get that there exist a direct summand of
Hom(¢4(M;), $4(M;)) which s a direct summand of p*?/ @=bp; D gom(M;, M;)
as well. Thus the smallest number s € N U {0} with the property that for all
g € N the W(k)-module p°¢?(Hom(M;, M;)) is included in Hom(M;, M;), is
max{0, Bp,;(¢)—ap;(q) | ¢ € N}. From this and the rule (i) of the Definition 4.1 (c),
we get that (c) holds. O

4.4.1. Example. We assume that D isisoclinicand thatd < r < 2d. Thusa := % €

Qn [%, 1). For ¢ € N we have Bpi(q) —ap(q) = g —2ap(q), cf. Fact 4.2.2 (b).
From this and Proposition 4.4 (c) we get that £ p« p = max{0,q —2ap(q) | ¢ € N}.
Asep = 0, from Proposition 4.4 (a) and (b) we getthat{ pg pt = max{{p.{p:, {p: p}.
As lp = €p: = max{ép(q) | ¢ € N} (cf. Fact 4.2.1 and Proposition 4.3 (a)), we
conclude that

{pept = max{dp(q).q —2ap(q) | ¢ € N}.

4.5. Proof of 1.4.3. We assume that D = [[,c; D; is a product of at least two
non-trivial isoclinic p-divisible groups over k. Let M = @B, ; M; be the direct sum
decomposition defined by the product decomposition D = [[,; Di. Asnp = {p
and as fori € I wehavenp, = {p, (cf. Corollary 1.4.2), based on Proposition 4.4 a)
and (b), to prove Proposition 1.4.3 it suffices to show that for all i, j € I withi # j
we have

ZDi,Dj < maX{O,ED,. + EDJ- —13}. 9)
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As p, p;, = {p, p; (see Proposition 4.4 (a)), to check the inequality (9) we can
assume thato; < ;. Wehave ap, (¢) < qo; < qa; < Bp,(q),cf. Lemma4.2.3 (a).
Thus ap;(q) < Bp,(q). Based on Proposition 4.4 (c), to prove the inequality (9) it
suffices to show thatforallg € N we have fp; (¢)—ap, (¢) < max{0,{p, +{p,—1}.
We have ép, (¢) + dp;(q) < €p; + £p;, cf. Proposition 4.3 (a). From this and the

inequality ap, (¢) < Bp; (q) we get:

Bp;(q) —ap,;(q) = dp,(q) + ap,;(q) + ép,(q) — Bp,; (9)

(10)
<tp; +tp; +ap;(q) = Pp,(q) < tp; + Lp;.

If we have an equality Bp,(q) —ap;(q) = {p; + {p;, then Bp,(q) = ap,(q) =
qa; = qa; and therefore also Bp,(q) = qa; and ap,(q) = qo; = qo; (cf.
Lemma 4.2.3 (b)). Thus the assumption that 8p, (¢) — ap, (q) = €p, + £p, implies
that Bp,(¢) —ap,(g) = 0 =L€p, + {p; < max{0,{p, + {p, — 1}. From this and
(10) we get that the inequality Bp;(q) — ap;(¢) < max{0,{p, + £p; — 1} always
holds; therefore the inequality (9) holds. This ends the proof of Proposition 1.4.3.]

4.6. Proof of 1.5.2. Let D = [[,.; D; be a product decomposition into isoclinic
quasi-special p-divisible groups over k. Fori € I, let ¢; and d; be the codimension
and the dimension (respectively) of D;, and let o; := ‘ri—l’ Let M = D, c; M; be
the direct sum decomposition such that (M;, ¢) is the Dieudonné module of D;. As
each D; is isoclinic, we have np, = {p, and np = {p (cf. Corollary 1.4.2). For
i € I we have ¢"i(M;) = p% M;, cf. Definition 1.5.1 (e). Let m; € N be the

greatest divisor of g.c.d.{c;, d;} such that for (c;2, d;2, 7i2) := (% d—i,, 2L} we have

m; Y ml m)
$"i2(M;) = p%2M;. This identity implies that
(i)wehave ap, (ri2) = Bp, (ri2) = di> andforallg € N wehaveap, (q+71;2) =
ap,(q) + di> and Bp, (g + ri2) = Pp,; (q) + di>.

From (i) we get that for all ¢ € N we have p, (¢ + ri2) = ép,(¢). From this
and Proposition 4.3 (a) applied to D;, we get that

(i) np, = £p; = max{dp,(q) | ¢ € N} = max{dp,(q) | ¢ € {1,....ri2}}.

As the function Bp, (x) defined for * € N is increasing, for all g € {1,... 7,2}
we have dp;(q) < Bp,(q) < Bp,(ri2) = di>. From this and (ii) we get that
np; = {p, < d;>. Itis easy to see that the p-divisible group D; is isoclinic quasi-
special and that the analogue of the triple (r;2, d;j2, ¢j2) for it is (ri2, ci2, d;j2). Thus
we have npt < ¢i2. Asnp, = np: (see Fact 4.2.1), we have np, < ¢;3. Thus

np; = {p, <min{c;>,d;j>} < min{c;, d;}. (11a)

This proves Theorem 1.5.2 if D = D; i.e.,if I = {i}.
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We assume that 7 has at least two elements. From Proposition 1.4.3 we get that
np ={p <max{l,np, +np, | i € I,j € I \{i}}. From this and (11a) we get
that

np < max{l,min{c;» + ¢j2,di» +d;2} |i,j € 1.i # j}. (11b)

Ascip+cjr <canddj;+d;j> < d,wehavemin{c;» +c¢j2.di»+d;>} < min{c,d}.
Fromthis and (11b) we getthatnp = £p < max{l, min{c,d}}. Butifmin{c,d} =0
(i.e.,if cd = 0),then np = £p = 0. Thus, regardless of what the product cd is, we
have np = £p < min{c, d}. This ends the proof of Theorem 1.5.2. O

4.6.1. Scholium. Let 7 be a permutation of J, = {1,...,r}. Let o be the order of
7. We assume that (D, ¢) is (Cy, ¢ ); thus D is F-cyclic and therefore (cf. Lemma
4.2.4 (a)) quasi-special. We will translate the property 4.6 (ii) and Proposition 4.4 (a)
and (b) in terms only of the permutation w. Let 7 = [[,c; m; be the product
decomposition of the permutation 7 into cycles. As in Section 1.5, we write 7; =
(esys---s esrl_) for some number r; € N (which can be 1). Let M; be the W (k)-span
of {es,,....es, }. Wehave pM; C ¢ (M;) S M;, cf. the definition of ¢. Thus we
have a direct sum decomposition (M, ¢ ) = @, c; (M, ¢~) of Dieudonné modules.
Let D = [[;<; Di be the product decomposition that corresponds to the direct sum
decomposition (M, ¢) = P, <;(M;, ¢5). Each p-divisible group D; is F-circular
and quasi-special. Letc¢;,d; =r; —¢j,0; = ‘:—i" € N U {0} be as in Section 1.5.
Due to the property 4.6 (i), the difference ép,(q) = Bp,;(q) — ap,(q) depends
only on ¢ modulo 0. Fors € J, and g € {1,...,0}, let ng(s) € N U {0} be such
that we have ¢ (es) = pT? (s)e,,q(s). Thus n4(s) is the number of elements of the

sequence ey, (ey), ..., 97! (e;) that belong to the set {e1, ..., eq}. We have
ap,;(q) = min{ng(s;) | j € {1,...,7i}} (12a)
and
Bp, (q) = max{ng(s;) | j €{l,....ri}}. (12b)

The W(k)-basis B = {ey,...,e,} for M is a disjoint union of W (k)-basis for M;’s.
We consider the standard W (k)-basis {e; ® e} | 5.t € J,} for End(M) defined by
B. We have ¢f(e; ® ef) = pTla®@=1aWe 4 & e;q(t). If no(s) > no(t) (resp.
No(8) = no(t) or no(s) < no(t)), then es @ e belongs to L4 (resp.to Lo or L_) and
therefore the number £(ey, e;) defined in Scholium 3.5.1 is max{0, ny () — n4(s) |
g €{1,...,0}} (resp. is max{0, ny(s) — ng(t)|q € {1....,0}}). From Formula (6a)
we get that

Lc, = max{ec,,l(es,e:) | s,t € J,}. (12¢)

4.6.2. Example. We assume that c = d = 8; thus r = 16. Let 71 = w7,
where 11 = (9 10 5 11 12 6 7 8) and np, = (1 2 13 3 4 14 15 16) are



Vol. 85 (2010)  Reconstructing p-divisible groups from their truncations of small level 197

8-cycles. We have o = 8. Let D = C, = D & D, be the product decom-
position corresponding to the cycle decomposition 7 = mj7,. All Newton poly-
gon slopes of D and D, are % and it is easy to see that D is isomorphic to D;.
We have (6p,(1),...,6p,(8)) = (1,2,2,2,2,2,1,0); thus np, = 2 (cf. prop-
erty 4.6 (ii)). From Fact 4.2.1 we get that np, = 2. We have (91(9),...,1s(9)) =
0,0,1,1,1,2,3,4) and (n1(1),...,n8(1)) = (1,2,2,3,4,4,4,4). Therefore
719 — n1(1),...,n8(9) — ng(1)) = (-1,-2,-1,-2,-3,-2,—1,0) and thus
L(eg,e1) = £(e1,e9) = 3. This implies that np = £p > 3. From Proposition 1.4.3
we getthatnp < 3. Thusnp,¢p, =np =3 =np, +np, — 1.

Plenty of similar examples can be constructed in which the identity np,¢p, =
np, + np, — 1 holds and Dy and D, are isoclinic of equal height and different
dimension.

4.7. Proof of 1.4.4. The Dieudonné module of D is (M, ¢), where M is a W(k)-
submodule of M which contains p“M. Let 0 = 5+ ® 50 @® O_ be the level
module of (M ,¢). If D and D are ordinary, then Proposition 1.4.4 is trivial. Thus
to prove Proposition 1.4.4, we can assume that D and D are not ordinary; thus from
Remark 4.1.1 we get that £p (resp. £ ) is the smallest natural number such that we
have p‘2 End(M) C O (resp. we have p‘b End(ﬂ) C 0). As pM C McM,
we have

p**End(M) C p*End(M) € End(M). (13)

For ¢ € N we have ¢‘1(p"5+) C p*Op CEnd(M) N L. As p"5+ C End(M)
(cf. (13)), we get that p* O+ C O4+. A similar argument shows that p* Oo € Op and

p¥O_ C O_. Thus p*O C O. From this, the inclusion p‘5 End(M) C O, and
(13) we get that

p*T5 End(M) C p*+t5 End(M) C p*O € O C End(M).

Thus {p < 2k + {j. Based on this inequality, Proposition 1.4.4 follows from
Corollary 1.4.2. This ends the proof of Proposition 1.4.4. O

4.7.1. Example. We assume that c = d. We have r = 2d. Let 7 := (12...r);
its cyclic decomposition is 7 = m; (with i as an index). As ¢ (M) = p2(M), the
F-circular p-divisible group Cj is supersingular. If d > 2, then ¢>(M) # pM
and therefore C, is not special. As ¢7‘f (e1) = pPeg4q and ¢7‘f (eq+1) = e1, we
have ap(d) = 0 and Sp(d) = d. This implies 6p(d) = d and therefore from
Proposition 4.3 (a) we get that nc, = £c, > d. Asnc, < d (cf. Theorem 1.5.2),
we have nc, = d. See [NV, Example 3.3] for a simpler proof that nc, = d (in
loc. cit. C;, is denoted as Cy). Let E be a supersingular p-divisible group over k of
height 2. From [NV, Remark 2.6 and Example 3.3] we get that the smallest number
k € N U {0} such that we have an isogeny C, —» E? is k := f%] It is well

known that E¢ is uniquely determined up to isomorphism by E¢[p] (for instance,
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see [NV, Scholium 2.3] or see Formula (12c) applied to the minimal permutation
1d+1)...(dr)of Jp). Thusnga = 1. If d is odd, then k = d21 and therefore
nc, = d = nga + 2«. This implies that in general, Proposition 1.4.4 is optimal.

4.7.2. Example. We assume thatr > 0andthat D isisoclinic. Let M and Mo beasin
Proposition 4.3 (c). Let Dy and Do be the p-divisible groups over k whose Dieudonné
modules are isomorphic to (Mo, ¢) and (Mo, ¢) (respectively), cf. Remark 4.3.1. To
the inclusions My € M and MO M correspondlsogemes D — Dgpand D — D()
whose kernels are annihilated by p¥? = p*P and p’? = pPP (respectively), cf.
Proposition 4.3 (¢c). Let jp := np, and ]TD =g From Propositions 1.4.4 and
4.3 (f) we get that

up <np = {p <min{jp +2up, jp + 2vp}. (14a)

If (c1,dy, r1) is as in Definition 4.1 (b), then jp < min{cy, dy} (cf. (11a)). From this
and (14a) we get
up <np <2up + min{cy, d; }. (14b)

5. On Main Theorem B

In Section 5.1 we prove Main Theorem B. Sections 5.2 and 5.3 present two ap-
plications of Main Theorem B. For instance, Theorem 5.3 presents applications to
extensions between two minimal p-divisible groups over k. We recall that (M, ¢) is
the Dieudonné module of D.

5.1. The proof of Main Theorem B. If np < 1, then D[p] is minimal (cf. Definition
1.5.1(d)). If D[p] is minimal, then there exists a p-divisible group D over k such
thatnz < 1 and D[p]is isomorphic to D[p]; the codimension and the dimension of
D are ¢ and d (respectively) and thus from the very definition of n 5 we get that D
is isomorphic to D and therefore that we have n p =np =< 1. Thus wehavenp <1
if and only if D[p] is minimal. As np < £p (see Corollary 1.4.2), 1.6 (a) implies
1.6 (b). Thus to end the proof of Main Theorem B, it suffices to show that 1.6 (b)
implies 1.6 (c) and that 1.6 (c) implies 1.6 (a).

5.1.1. On 1.6(b) = 1.6(c). Let ¢1,0;: M/pM — M/pM be the reductions
modulo p of ¢, : M — M. In [Kr] (see also [Ool, Section (2.3) and Lemma (2.4)]
and [Mo, Section 2.1]) it is shown that there exists a k-basis {b1,...,b,} for M/ pM
and a permutation 7 of J, = {1, ..., r} such that the following two properties hold:

(i) ifs € {l,...,d}, then ¢1(bs) = 0 and ¥ (br(5)) = bs, and
(i) if s € {d +1,...,r}, then ¢1(bs) = by(s) and U1 (br(s)) = 0.
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Let ¥, 1= pp;': M — M; ifs € {1,...,d}, then Or(en()) = e5, and if
s €{d +1,...,r}, then ¥5(ey(s)) = pes. Properties (i) and (ii) imply that the
k-linear map M/pM — M/pM that takes b to e; modulo p, is an isomorphism
between (M/pM, ¢1,91) and the reduction modulo p of (M, ¢, V). This means
that D[p] is isomorphic to C[p], cf. the classical Dieudonné theory. Asnp < 1, we
get that D is isomorphic to Cy,.

We check that 7 is a minimal permutation in the sense of Definition 1.5.1 (b).

Let # = [],¢; 7 be the product decomposition of 7 into cycles. We write 7; =
(esys---s esri), wherer; € N. Letc;,d; = ri —c¢j,anda; = ‘:—lf be as in Section 1.5.
Let M; = ;;1 Wi(k)es,. Let D = [];c; D; be the product decomposition
defined by the direct sum decomposition (M, ¢r) = @P;c;(M;, ¢r). Each D; is an
F-circular p-divisible group over k and therefore isoclinic. From Proposition 4.4 (b)
we get that np, < np < 1. Butnp, = {p, = max{dp,(q) | ¢ € N}, cf.
Corollary 1.4.2 and Proposition 4.3 (a). From the last two sentences we get that for
all ¢ € N we have 6p, (¢) € {0, 1}. Thus either ap,(q) = Bp,;(g) orap,(g) +1 =
Bp;(q). If ap,(q) = PBp,;(q), then from Lemma 4.2.3 (a) we get that ap,(q) =
Bp,;(q) = qa;. Ifap,(q)+1 = Bp,(q), then from Lemma 4.2.3 (a) we get that either
(ap; (9). Bp; (@) = ([geil. [qei] + 1) or (ap; (9). Bp; (9)) = (qei — 1.q;). But
the second possibility is excluded by Lemma 4.2.3 (b). We conclude that in all cases
we have ap, (9). Bp; (4) € {lqe]. [geq] + 1}. Therefore pl®il+1 0, < ¢4 (M;) €
pla%lM;. Thus for each u € {1,...,r;}, we have ¢f (e5,) = pla®ilteatse o )
for some number ¢, (sy,) € {0, 1}. As this property holds for all pairs (¢,7) € N x I,
7 is a minimal permutation. As D is isomorphic to C, we get that D is minimal.
Thus 1.6 (b) implies 1.6 (c).
5.1.2. On 1.6 (c) = 1.6 (a). To prove that 1.6(c) implies 1.6 (a), we can assume
that 7 is a minimal permutation of J,, that D = Cy, and that ¢ = ¢p,. Let w =
[lie; wi- M = B,y Mi, and D = [],; D; be the decompositions obtained as in
Section 5.1.1. Fori € I, let 7; = (es,,...,esri), ¢i,di =ri —c;,and o; = % be
as in Section 1.5. As the permutation 7 is minimal, for all u € {1, ..., r;} we have
¢ (ey,) = pla®iltealsde g ) for some number g, (sy) € {0, 1}. This implies that
peeITIM; C 93 (M;)  pl*IM;. Thus

ap; (), Bp; (9) € tlqail. [qai] + 1}. (15)

From (15) and the fact that 6p, (q) > 0, we get that §p,(¢) € {0,1}. From this
and Proposition 4.3 (a), we get that np, = {p, < 1. If D = D; (i.e.,if I = {i}),
then {p < 1 and thus 1.6(a) holds. If I has at least two elements, then from
Proposition 1.4.3 we get that £{p = np < 1. Thus regardless of what I is, we have
{p < 1. This ends the argument that the implication 1.6 (¢) = 1.6 (a) holds. This
ends the proof of Main Theorem B. O

5.2. Corollary. We assume that {p < 2. Thennp = £p.
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Proof. If np < 1, then D is minimal (cf. Main Theorem B) and therefore F-cyclic;
thus np = £p (cf. Theorem 1.5.2). Asnp < €p < 2, we have np = {p even if
np = 2. O

The next theorem generalizes and refines [Val, Proposition 4.5.1].

5.3. Theorem. We assume that we have a short exact sequence 0 — Dy — D —
D, — 0 of p-divisible groups over k, with D1 and D, as minimal p-divisible groups.

(a) Then we havenp < {€p < 3.

(b) We assume thatd = ¢ > 3 and that D1 and D5 are isoclinic of Newton polygon
slopes % and % (respectively). Thennp = €p < 2.

Proof. Let 0 — Dy — D — D, — 0 be the pull forward of our initial short exact
sequence via the multiplication by p isogeny D1 — D1. The kernel of the resulting
isogeny D —» D is annihilated by p. The p-divisible group D1, := D; @ D is
minimal. As D[p] is isomorphic to Di,[p], from the equivalence between 1.6 (b)
and (c) we get that D is isomorphic to Dz and that ng < 1. As DisF -cyclic and
thus a direct sum of isoclinic p-divisible groups, we have np < {p <n 5pt2=<3
(cf. Proposition 1.4.4). Thus (a) holds.

We prove (b). We know that there exists an isogeny D1, — D whose kernel K is
annihilated by p. We will choose such an isogeny of the smallest degree possible. It
is well known that up to isomorphisms, there exists a unique p-divisible group over k
of height d and Newton polygon slope 7, where * € {1,d — 1} (see [De, Chapter IV,
Section 8]). Thus if K has a proper subgroup scheme K; (resp. K») whose image
in Dy (resp. in Dy) is trivial, then D, := Di,/K; (resp. D}, := Di2/K>3) is
isomorphic to D, and thus we would get an isogeny D> = D}, —» D of smaller
degree. This implies that the projections of K on D; and D, are monomorphisms.
Thus the codimension and the dimension of K are both at most 1. Based on the last
two sentences, as d > 3 we easily get that K is either trivial or isomorphic to o,.
If K is trivial, then D is minimal and therefore we have np < 1 (in fact we have
np = 1). Thus to prove (b), we can assume that K is isomorphic to e,,. We reached
the case when we have isogenies

D12 —> Dlz/ap =D —» Dlz/((xp Xk Otp) = Dl/ocp Xk Dz/ap.

At the level of Dieudonné modules, this means the following things. Let Nj, :=
@fil W(k)es be a free W(k)-module of rank r = 2d. Let ¢: Nio — Njpo be
the o-linear endomorphism such that it takes (eq,...,eq) and (eg41,...,€24) tO
(pez,es,....eq,e1) and (peg4a, ..., Peaa,eq+1) (respectively). We can assume
that (N2, ¢) is the Dieudonné module of D /e, xx Dy/ap (cf. the mentioned
uniqueness property). As D — Dy /(ap Xg 0tp) = D1/otp Xi D2 /ety is anisogeny
of kernel &, and as K maps monomorphically to both D and D, there exists an
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invertible element y € W(k) such that we can identify M with N1, + W(k)( %el +
%edﬂ). Moreover, if M, := Nip + W(k)%el + W(k)%edﬂ, then (M3, @) is
the Dieudonné module of Dq,.

We check that £p < 2. We have

p?End(M) € pHom(Mi2, N12)+W(k)[(pye1+ peq+1)®ei] € End(M). (16)

The latticed F-isocrystal (Hom(M;;, N13), ¢) is isomorphic to End(Mi,, ¢) and
moreover we have {p,, < 1. From this and the fact that Hom(M2., Ni2) € End(M),
we get that O contains p Hom(M1,, N13). It is easy to see that for all ¢ € N we
have ¢9((pyer + peas1) ® ¢f) € End(M); like $((pyer + pearr) ® €}) =
(po(y)e2+ peat2)®es, 9> ((pyes+ pear1) ®ef) = (po*(y)es+ p*eqy3) Qe;,
etc. Thus (pye; + pegy1) ® ef € O @ Oy, cf. Lemma 2.4. Based on (16) we
conclude that p? End(M) € O. Thus {p < 2. From Corollary 5.2 we get that
np = £p < 2. Thus (b) holds. O
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