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Contact homology of Hamiltonian mapping tori
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Abstract. In the general geometric setup for symplectic field theory the contact manifolds can
be replaced by mapping toriM� of symplectic manifolds .M;!/ with symplectomorphisms �.
While the cylindrical contact homology ofM� is given by the Floer homologies of powers of �,
the other algebraic invariants of symplectic field theory for M� provide natural generalizations
of symplectic Floer homology. For symplectically aspherical M and Hamiltonian � we study
the moduli spaces of rational curves and prove a transversality result, which does not need the
polyfold theory by Hofer, Wysocki and Zehnder. We use our result to compute the full contact
homology of M� Š S1 �M .
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1. Introduction and main results

1.1. Symplectic field theory in the Floer case. This paper is concerned with sym-
plectic field theory in the Floer case. Symplectic field theory (SFT) is a very large
project designed to describe in a unified way the theory of holomorphic curves in
symplectic and contact topology. To be more precise, it approaches Gromov–Witten
theory in the spirit of a topological quantum field theory by counting holomorphic
curves in cylinders over contact manifolds and symplectic cobordisms between them.
It was initiated by Eliashberg, Givental and Hofer in their paper [EGH] and since then
has found many striking applications in symplectic geometry and beyond. While most
of the current applications lie in finding invariants for contact manifolds, there exists
a generalized geometric setup for symplectic field theory, which contains contact
manifolds as special case.

Following [BEHWZ] and [CM2] a Hamiltonian structure on a closed .2m � 1/-
dimensional manifold V is a closed two-form ! on V which is maximally nonde-
generate in the sense that ker ! D fv 2 T V W !.v; �/ D 0g is a one-dimensional
distribution. Note that here we (and [CM2]) differ slightly from [EKP]. The Hamil-
tonian structure is required to be stable in the sense that there exists a one-form � on
V such that ker ! � ker d� and �.v/ ¤ 0 for all v 2 ker !� f0g. Any stable Hamil-
tonian structure .!; �/ defines a symplectic hyperplane distribution .� D ker �; !�/,
where!� is the restriction of!, and a vector fieldR on V by requiringR 2 ker ! and
�.R/ D 1 which is called the Reeb vector field of the stable Hamiltonian structure.

Examples for closed manifolds V with a stable Hamiltonian structure .!; �/ are
contact manifolds, circle bundles and mapping tori ([BEHWZ], [CM2]). For this note
that when � is a contact form on V , then it is easy to check that .! WD d�; �/ is a
stable Hamiltonian structure and the symplectic hyperplane distribution agrees with
the contact structure. For the other two cases, let .M;!/ be a symplectic manifold.
Then any principal circle bundle S1 ! V ! M and any symplectic mapping torus
M ! V ! S1, i.e., V D M� D R � M=f.t; p/ � .t C 1; �.p//g for � 2
Symp.M;!/ carries also a stable Hamiltonian structure. For the circle bundle the
Hamiltonian structure is given by the pullback ��! under the bundle projection and
the one-form � is given by any S1-connection form. On the other hand, the stable
Hamiltonian structure on the mapping torusV D M� is given by lifting the symplectic
form to ! 2 �2.M�/ via the natural flat connection T V D TS1 ˚ TM and setting
� D dt for the natural S1-coordinate t on M� . While in the mapping torus case �
is always integrable, in the circle bundle case the hyperplane distribution � may be
integrable or non-integrable, even contact.

Symplectic field theory assigns algebraic invariants to closed manifolds V with a
stable Hamiltonian structure. The invariants are defined by counting J -holomorphic
curves in R � V with finite energy, where the underlying closed Riemann surfaces
are explicitly allowed to have punctures, i.e., single points are removed. The almost
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complex structure J on the cylindrical manifold R�V is required to be cylindrical in
the sense that it is R-independent, links the two natural vector fields on R�V , namely
the Reeb vector fieldR and the R-direction @s , by J@s D R, and turns the symplectic
hyperplane distribution on V into a complex subbundle of T V , � D T V \ JT V .
It follows that a cylindrical almost complex structure J on R � V is determined by
its restriction J� to � � T V , which is required to be !�-compatible in the sense that
!�.�; J� �/ defines a metric on �. Note that in [CM2] such almost complex structures
J are called compatible with the stable Hamiltonian structure and that the set of these
almost complex structures is non-empty and contractible.

While the punctured curves in symplectic field theory may have arbitrary genus
and arbitrary numbers of positive and negative punctures, it is shown in [EGH] that
there exist algebraic invariants counting only special types of curves: While in ra-
tional symplectic field theory one counts punctured curves with genus zero, contact
homology is defined by further restricting to punctured spheres with only one positive
puncture. Further restricting to spheres with both just one negative and one positive
puncture, i.e., cylinders, the resulting algebraic invariant is called cylindrical contact
homology. Note however that contact homology and cylindrical contact homology
are not always defined. In order to prove the well-definedness of (cylindrical) con-
tact homology it however suffices to show that there are no punctured holomorphic
curves where all punctures are negative (or all punctures are positive). While the
existence of holomorphic curves without positive punctures can be excluded for all
contact manifolds using the maximum principle, which shows that contact homology
is well-defined for all contact manifolds, it can be seen from homological reasons
that for mapping toriM� there cannot exist holomorphic curves in R �M� carrying
just one type of punctures, which shows that in this case both contact homology and
cylindrical contact homology are defined.

Symplectic field theory hence provides a wealth of invariants. However, almost
all computations performed so far only use the simplest one, cylindrical contact
homology: While cylindrical contact homology is computed e.g. for subcritical
Stein-fillable contact manifolds ([Y1]), Brieskorn varieties ([K]) and toroidal three-
manifolds ([BC]), computations of the higher invariants are performed so far only
for overtwisted contact manifolds in [Y2] and sketched in [EGH] for prequantization
spaces and in [CL] for unit cotangent bundle of tori.

1.2. Main theorem and outline of the proof. While it can be seen that the cylin-
drical contact homology for mapping tori M� agrees with the Floer homology of
the powers of �, i.e., the subcomplex for the period T 2 N agrees with the Floer
homology of �T , the other algebraic invariants of symplectic field theory, in partic-
ular, the full contact homology, provide natural generalizations of symplectic Floer
homology. While Floer homology for Hamiltonian symplectomorphisms over a suit-
able coefficient ring is known to be isomorphic to the tensor product of the singular
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homology with rational coefficients of the underlying symplectic manifold with the
graded group algebra QŒH2.M/� generated by H2.M/,

QŒH2.M/� D ˚P
q.A/eA W A 2 H2.M/; q.A/ 2 Q

�
; deg eA D hc1.TM/;Ai;

the case of arbitrary symplectomorphisms is much more complicated, see [CC] and
the references therein. So we restrict our attention to the Hamiltonian case, where the
symplectomorphism � is Hamiltonian, i.e., the time-one map of the symplectic flow
of a HamiltonianH W S1�M ! R. In this case the Hamiltonian flow�H provides us
with a natural diffeomorphismM� Š S1 �M , so that we can replaceM� by S1 �M
equipped with the pullback stable Hamiltonian structure .!H ; �H / on S1 �M given
by!H D !CdH^dt ,�H D dt with symplectic bundle �H D TM and Reeb vector
fieldRH D @t CXH

t , whereXH
t is the symplectic gradient ofHt D H.t; �/. In [EKP]

this is also called the Floer case. Furthermore .R � M� ; J / can be identified with
.R �S1 �M;JH / equipped with the pullback cylindrical almost complex structure,
which is nonstandard in the sense that the splitting T .R � S1 �M/ D R2 ˚ TM is
not JH -complex. Let HC�.M� ; J / denote the contact homology of the symplectic
mapping torus M� with chosen cylindrical almost complex structure J on R �M� .

Main Theorem 1. Let .M;!/ be a closed symplectic manifold, which is symplecti-
cally aspherical, hŒ!�; �2.M/i D 0, and let � W M ! M be a Hamiltonian symplec-
tomorphism. Then we have

HC�.M� ; J / Š S
�M

N

H��2.M;Q/
�

˝ QŒH2.M/�;

where S is the graded symmetric algebra functor.

For the proof we observe that the cylindrical almost complex structure JH on
R � S1 � M is specified by the choice of an S1-family of almost complex struc-
tures Jt on M and an S1-dependent Hamiltonian H W S1 � M ! R. In order to
get an S1-symmetry on moduli spaces of curves with three or more punctures, we
restrict ourselves to almost complex structures Jt and Hamiltonians Ht , which are
independent of t 2 S1, so that only holomorphic cylinders need to be counted for the
differential in contact homology.

We achieve transversality for all moduli spaces by considering domain-dependent
Hamiltonian perturbations. This means that, for defining the Cauchy–Riemann op-
erator for curves, we allow the Hamiltonian to depend explicitly on points on the
punctured sphere underlying the curve whenever the punctured sphere is stable, i.e.,
there are no nontrivial automorphisms, where we follow the ideas in [CM1]. Note
however that in contrast to the Gromov–Witten case we now have to make coherent
choices for the different moduli spaces simultaneously, i.e., the different Hamiltonian
perturbations must be compatible with gluing of curves in symplectic field theory. For
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the cylindrical moduli spaces the Hamiltonian perturbation is domain-independent,
and it is known from Floer theory that in general we must allowH to depend explicitly
on t 2 S1 to achieve nondegeneracy of the periodic orbits and transversality for the
moduli spaces of Floer trajectories. However, the gluing compatibility requires that
also the Hamiltonian perturbation for the cylindrical moduli spaces is independent
of t 2 S1. We solve this problem by considering Hamiltonians H , which are so
small in the C 2-norm that all orbits are critical points ofH and all cylinders between
these orbits correspond to gradient flow lines between the underlying critical points.
Note however that we cannot achieve this with a single Hamiltonian function, but
have to rescale the function depending on the period T 2 N, which in turn implies
that we have to compute the contact homology using an infinite sequence of different
Hamiltonian functions.

Observe that the closed orbits of the Reeb vector fieldRH on S1 �M have integer
periods, where the set of closed orbits of period T 2 N is naturally identified with the
T -periodic orbits of XH on M . It follows that the chain complex .A; @/ for contact
homology naturally splits, A D L

T 2N AT , where AT is generated by all monomials
q.x1;T1/ : : : q.xn;Tn/, with Ti -periodic orbits .xi ; Ti / and T1 C � � � CTn D T , and it is
easily seen from homological reasons that this splitting is respected by the differential
@. Furthermore, given two different Hamiltonian functionsH1;H2 W S1�M ! R the
corresponding chain mapˆ W .A1; @1/ ! .A2; @2/, defined as in [EGH] by counting
holomorphic curves in R �S1 �M equipped with a non-cylindrical almost complex
structure J zH , which itself can be defined using a homotopy zH W R � S1 �M ! R
from H1 to H2, also respects the splittings A1 D L

T 2N AT
1 , A2 D L

T 2N AT
2 .

Let TN 2 N be a sequence of (maximal) periods with TN � TN C1 and
limN !1 TN D 1 and letHN W S1 �M ! R, N 2 N be a sequence of Hamiltoni-
ans with corresponding chain complexes .AN ; @N /, N 2 N. Assume that for every
N 2 N we have defined a chain map ˆN W .AN ; @N / ! .AN C1; @N C1/ using a
homotopy zHN W R � S1 �M ! R interpolating betweenHN andHN C1, which by
the above arguments restricts to a map from AT

N to AT
N C1 for every T 2 N. Defining

HC�TN� .S1 �M;JHN / D H�.A�TN

N ; @N / D
M

T �TN

H�.AT
N ; @N /

we obtain a directed system .CN ; ˆN;M / with CN D HC
�TN� .S1 �M;JHN / and

ˆN;M D ˆN BˆN C1 B : : : BˆM�1 BˆM for N � M . Setting TN D 2N we prove
the main result by showing that for every S1-independent HamiltonianH W M ! R,
which is sufficiently small in the C 2-norm and Morse, there is an isomorphism

lim
N !1HC�2N

� .S1 �M;JH=2N

/ Š S
�M

N

H��2.M;Q/
�

˝ QŒH2.M/�:

This paper is organized as follows.
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While we prove in 2.1 all the fundamental results about pseudoholomorphic curves
in Hamiltonian mapping tori, Section 2.2 is devoted to explaining the central ideas
of the proof the main theorem, namely how we get an S1-symmetry on all moduli
spaces of domain-stable curves, but still have nondegeneracy for the closed orbits
and transversality for all moduli spaces. We collect all the important results about the
moduli spaces in Theorem 2.6. After recalling the definition of the Deligne–Mumford
space of stable punctured spheres in 3.1, we define the underlying domain-dependent
Hamiltonian perturbations in 3.2 and prove in 3.3 that the construction is compatible
with the SFT compactness theorem. After describing in detail the necessary Banach
manifold setup for our Fredholm problems in 4.1, we prove in 4.2 the fundamental
transversality result for the Cauchy–Riemann operator. Since all our results only
hold up to a maximal period for the asymptotic orbits, i.e., we have to rescale our
Hamiltonian perturbation during the computation of contact homology in Section 6,
we generalize all our previous results to homotopies of Hamiltonian perturbations
in 5.1 and 5.2. After describing the chain complex underlying contact homology in
6.1, we prove the main theorem using our previous results about moduli spaces of
holomorphic curves in R � S1 �M .

Acknowledgements. This research was supported by the German Research Foun-
dation (DFG). The author thanks U. Frauenfelder, M. Hutchings and K. Mohnke for
useful conversations and their interest in his work. Special thanks finally go to my
advisor Kai Cieliebak and to Dietmar Salamon, who gave me the chance to stay at
ETH Zurich for the winter term 2006/07, for their support. Finally thanks go to the
referee for his valuable comments.

2. Moduli spaces

2.1. Holomorphic curves in R � S 1 � M . Let .M;!/ be a closed symplectic
manifold and let � be a symplectomorphism on it. As already explained in the
introduction, the corresponding mapping torusM� D R�M=f.t; p/ � .tC1; �.p//g
carries a natural stable Hamiltonian structure .!; �/ given by lifting the symplectic
form ! to a two-form onM� via the flat connection TM� D TS1 ˚TM and setting
� D dt . It follows that the corresponding symplectic vector bundle � D ker � is given
by TM and the Reeb vector field R agrees with the S1-direction @t on M� . In this
paper we restrict ourselves to the case where hŒ!�; �2.M/i D 0 and � is Hamiltonian,
i.e., the time-one map of the flow of a Hamiltonian H W S1 �M ! R. In this case
observe that the Hamiltonian flow �H provides us with the natural diffeomorphism

ˆ W S1 �M Š�! M� ; .t; p/ 7! .t; �H .t; p//;

so that we can replaceM� by S1 �M equipped with the pullback stable Hamiltonian
structure.
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Proposition 2.1. The pullback stable Hamiltonian structure .!H ; �H / on S1 �M
is given by

!H D ! C dH ^ dt; �H D dt

with symplectic bundle �H and Reeb vector field RH given by

�H D TM; RH D @t CXH
t ;

where XH
t is the symplectic gradient ofHt D H.t; �/.

Proof. Using

dˆ D .1; XH
t ˝ dt C d�H

t / W TS1 ˚ TM ! TS1 ˚ TM

we compute for v1 D .v11; v12/; v2 D .v21; v22/ 2 TS1 ˚ TM ,

!H .v1; v2/ D !.dˆ.v1/; dˆ.v2//

D !..XH
t ˝ dt/.v11/C d�H

t .v12/; .X
H
t ˝ dt/.v21/C d�H

t .v22//

D !.XH
t ; X

H
t /dt.v11/dt.v21/C !.d�H

t .v12/; d�
H
t .v22//

C !.XH
t ; d�

H
t .v22//dt.v11/C !.d�H

t .v12/; X
H
t /dt.v21/

D !.v12; v22/C !.d�H
t .v12/; X

H
t /dt.v21/

� !.d�H
t .v22/; X

H
t /dt.v11/

D !.v1; v2/C .dH ^ dt/.v1; v2/

and �H D � B dˆ D dt . On the other hand, it directly follows that �H D TM ,
while RH D @t �XH

t spans the kernel of !H ,

!H .�; RH / D !.�; @t �XH
t /C dH � dt.@t CXH

t / � dH.@t CXH
t / � dt

D �!.�; XH
t /C dH D 0

with �H .RH / D dt.@t �XH
t / D 1. �

As in the introduction we consider an almost complex structureJ on the cylindrical
manifold R � S1 �M , which is required to be cylindrical in the sense that it is R-
independent, links the Reeb vector fieldRH and the R-direction @s , by J@s D RH D
@t CXH

t and turns the symplectic hyperplane distribution �H D TM into a complex
subbundle of T .S1 � M/. It follows that J on R � S1 � M is determined by its
restriction to �H D TM , which is required to be !�H -compatible, so that J is
determined by the S1-dependent HamiltonianHt and an S1-family of !-compatible
almost complex structures Jt on the symplectic manifold .M;!/.

Let us recall the definition of moduli spaces of holomorphic curves studied in
rational SFT in the general setup. Let .V; !; �/ be a closed manifold with stable
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Hamiltonian structure with symplectic hyperplane distribution � and Reeb vector
field R and let J be a compatible cylindrical almost complex structure on R � V .
Let PC; P� be two ordered sets of closed orbits � of the Reeb vector field R on V ,
i.e., � W R ! V , �.t C T / D �.t/, P� D R, where T > 0 denotes the period
of � . Then the (parametrized) moduli space M0.V IPC; P�; J / consists of tuples
.F; .z˙

k
//, where fz1̇ ; : : : ; z

˙
n˙

g are two disjoint ordered sets of points on CP 1, which

are called positive and negative punctures, respectively. The map F W PS ! R � V
starting from the punctured Riemann surface PS D CP 1 �f.z˙

k
/g is required to satisfy

the Cauchy–Riemann equation

N@JF D dF C J.F / � dF � i D 0

with the complex structure i on CP 1. Assuming we have chosen cylindrical coordi-
nates  ˙

k
W R˙ � S1 ! PS around each puncture z˙

k
in the sense that  ˙

k
.˙1; t / D

z˙
k

, the map F is additionally required to show for all k D 1; : : : ; n˙ the asymptotic
behaviour

lim
s!˙1.F B  ˙

k /.s; t C t0/ D .˙1; �˙
k .T

˙
k t //

with some t0 2 S1 and the orbits �˙
k

2 P˙, where T˙
k
> 0 denotes period of �˙

k
.

Observe that the group Aut.CP 1/ of Möbius transformations acts on elements in
M0.V IPC; P�; J / in an obvious way,

' � .F; .z˙
k // D .F B '�1; '.z˙

k //; ' 2 Aut.CP 1/;

and we obtain the moduli space M.V IPC; P�; J / studied in symplectic field theory
by dividing out this action.

It remains to identify the occuring objects in our special case. First, one immedi-
ately verifies that all closed orbits � of the vector field RH D @t � XH

t on S1 �M
are of the form

�.t/ D .t C t0; x.t//;

and therefore have natural numbers T 2 N, i.e., the winding number around the S1-
factor, as periods. Since we study closed Reeb orbits up to reparametrization, we can
set t0 D 0, so that � can be identified with x W R=TZ ! M , which is a T -periodic
orbit of the Hamiltonian vector field,

Px.t/ D XH
t .x.t//:

Hence we will in the following write � D .x; T /, where T 2 N is the period and x
is a T -periodic orbit of the Hamiltonian H . We denote the set of T -periodic orbits
of the Reeb vector field RH on S1 �M by P.H; T /.

For the moduli spaces of curves observe that in R � S1 � M we can naturally
write the holomorphic map F as a product,

F D .h; u/ W PS ! .R � S1/ �M:
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Proposition 2.2. F W PS ! R � S1 � M is J -holomorphic precisely when h D
.h1; h2/ W PS ! R � S1 is holomorphic and u W PS ! M satisfies the h-dependent
perturbed Cauchy–Riemann equation of Floer type,

N@J;H;hu D ƒ0;1.duCXH .h2; u/˝ dh2/

D duCXH .h2; u/˝ dh2 C J.h2; u/ � .duCXH .h2; u/˝ dh2/ � i:

Proof. Observing that J.t; p/ W T .R �S1/˚ TM ! T .R �S1/˚ TM is given by

J.t; p/ D
 

i 0

	.t; p/ Jt .p/

!

with 	.t; p/ D �XH
t .p/˝ ds C Jt .p/X

H
t .p/˝ dt we compute

.dh; du/C J.h; u/ � .dh; du/ � i D .dhC i � dh � i;
duC .J.h2; u/ � du �XH .h2; u/˝ dh1 C J.h2; u/X

H .h2; u/˝ dh2/ � i/
D .N@h; du �XH .h2; u/˝ dh1 � i C J.h2; u/ � .duCXH .h2; u/˝ dh2/ � i/:

Finally observe that dh1 � i D �dh2 if N@h D 0. �

Recalling that our orbit sets are given by P˙ D f.x1̇ ; T1̇ /; : : : ; .x
˙
n˙
; T˙

n˙
/g, we

use the rigidity of holomorphic maps to prove the following statement about the map
component h W PS ! R � S1. Let T˙ D T1̇ C � � � C T˙

n˙
denote the total period

above and below, respectively.

Lemma 2.3. The map h D .h1; h2/ exists if and only if TC D T � and is unique up
a shift .s0; t0/ 2 R � S1,

h.z/ D h0.z/C .s0; t0/

for some fixed map h0 D .h0
1; h

0
2/. In particular, every holomorphic cylinder has a

positive and a negative puncture, there are no holomorphic planes and all holomor-
phic spheres are constant.

Proof. The asymptotic behavior of the map F near the punctures implies that

h B  k.s; t C t0/
s!˙1�����! .˙1; Tkt /

with some t0 2 S1. Identifying R � S1 Š CP 1 � f0;1g, it follows that h extends
to a meromorphic function h on CP 1 with zC

1 ; : : : ; z
C
nC poles of order TC

1 ; : : : ; T
C
nC

and z�
1 ; : : : ; z

�
n� zeros of order T �

1 ; : : : ; T
�
n� . Since the zeroth Picard group of CP 1

is trivial, i.e., every divisor of degree zero is a principal divisor, we get that such
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meromorphic functions exist precisely when TC D T �. On the other hand it fol-
lows from Liouville’s theorem that they are uniquely determined up to a nonzero
multiplicative factor, i.e., h D a � h0 with a 2 C� Š R � S1 for some fixed
h0 W CP 1 ! CP 1. For every JH -holomorphic sphere .h; u/ observe that h is con-
stant, h D .s0; t0/, and therefore u is a Jt0-holomorphic sphere inM , which must be
constant by hŒ!�; �2.M/i D 0. �

Note that the lemma also holds when � is no longer Hamiltonian by defining
h D � B F using the holomorphic bundle projection � W R �M� ! R � S1.

It follows that we only have to study punctured JH -holomorphic curves
.h; u/ W PS ! R �S1 �M , PS D CP 1 � f.z˙

k
/g with two or more punctures, where it

remains to understand the map u. Note that by Proposition 2.2 the perturbed Cauchy–
Riemann equation for u depends on the S1-component h2 D h0

2 C t0 of the map h.
Starting with the case of two punctures, we make precise the well-known connec-
tion between symplectic Floer homology and symplectic field theory for Hamiltonian
mapping tori.

Proposition 2.4. The JH -holomorphic cylinders connecting theRH -orbits .xC; T /
and .x�; T / inR�S1�M correspond to theFloer connecting orbits inM between the
one-periodic orbits xC.T �/ and x�.T �/ of the HamiltonianHT .t; �/ D T �H.T t; �/
and the family JT .t; �/ D J.T t; �/ of !-compatible almost complex structures.

Proof. When n D 2, i.e., z D .z�; zC/, we find an automorphism ' 2 Aut.CP 1/

with '.z�/ D 0, '.zC/ D 1. Since in the moduli space two elements are considered
equal when they agree up to an automorphism of the domain, we can assume that
z D .0;1/. It follows from Lemma 2.3. that h W CP 1 �f0;1g Š R�S1 ! R�S1

is of the form
h.s; t/ D .T s C s0; T t C t0/

with T D TC C T �. We can assume that h is given by h.s; t/ D .T s; T t/ after
composing with the automorphism '.s; t/ D .s�s0=T; t�t0=T / of R�S1. Now the
claim follows from the fact that the Cauchy–Riemann equation for u W R �S1 ! M

reads as

N@J;Hu � @s D @suC J.T t; u/ � .@tuC T �XH .T t; u// D 0;

with T �XH D XT �H . �

2.2. How to achieve transversality with S 1-symmetry. For understanding the
curves with more than two punctures, observe that in these cases the underlying
punctured Riemann spheres PS are stable, so that every automorphism ' of PS pre-
serving the ordering of the punctures is the identity. While this implies that different
maps h D h0 C.s0; t0/ give different elements in the moduli space, the main problem
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is that the solutions for u moreover depend on the S1-component h2 D h0
2 C t0 of

the chosen map h, that is, the S1-parameter t0. Instead of studying how the solution
spaces for u vary with t0 2 S1, it is natural to restrict to special situations when the
solution spaces are t0-independent. Moreover, when this can be arranged in a way
that all asymptotic orbits are nondegenerate and we can achieve transversality for
the moduli spaces, we can use the resulting S1-symmetry on the moduli spaces to
show that they do not contribute to the algebraic invariants in rational symplectic field
theory. It is easily seen that the Cauchy–Riemann equation is independent of t0 2 S1

when both the family of almost complex structures J.t; �/ and the HamiltonianH.t; �/
are independent of t 2 S1. Hence for the following we will always assume that

J.t; �/ � J; H.t; �/ � H:

Nondegeneracy of the periodic orbits. It is well-known from symplectic Floer
homology that we can achieve that all one-periodic orbits .x; 1/ 2 P.S1 �M;H/ are
nondegenerate by choosingH to be a time-independent Morse functionH W M ! R
with a sufficiently small C 2-norm, so that, in particular, the only one-periodic orbits
of H are the critical points of H . While this sounds promising to solve the first of
our two problems, note that in contrast to symplectic Floer homology we do not only
study curves which are asymptotically cylindrical to one-periodic orbits .x; 1/ but
allow periodic orbits .x; T / of arbitrary period T 2 N. Now the problem is that the
T -periodic orbits of H are in natural correspondence with one-periodic orbits of the
Hamiltonian T �H , while T �H need no longer beC 2-small enough. In order to solve
this problem, we fix a maximal period T D 2N and replace the original Hamiltonian
H by H=2N , so that all orbits up to the maximal period 2N are nondegenerate, in
particular, critical points of H=2N , i.e., of H .

Transversality for the Cauchy–Riemann operator. So it remains the problem of
transversality. Although the definition of the algebraic invariants of symplectic field
theory suggests that all we have to do is counting true JH -holomorphic curves in
R�S1�M , it is implicit in the definition of all pseudoholomorphic curve theories that
before counting the geometric data has to be perturbed in such a way that the Cauchy–
Riemann operator becomes transversal to the zero section in a suitable Banach space
bundle over a suitable Banach manifold of maps. It is the main problem of symplectic
field theory, as well as Gromov–Witten theory and symplectic Floer homology for
general symplectic manifolds, that transversality for all moduli spaces cannot be
achieved even for generic choices for JH . In fact the problem already occurs for
the trivial curves, i.e., trivial examples of curves in symplectic field theory, see [F].
In order to solve these problems virtual moduli cycle techniques were invented, see
[LiuT], [LT], [FO]; furthermore they were the starting point for the polyfold project
by Hofer, Wysocki and Zehnder, see [H] and the references therein. In order to
solve the transversality problem in our S1-symmetric special case, we combine the
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approach in [CM1] for achieving transversality in Gromov–Witten theory with the
well-known connection between symplectic Floer homology and Morse homology
in [SZ] as follows.

Case of domain-stable curves (n � 3). It is well-known, see e.g. [Sch], that
transversality in Floer homology and Gromov–Witten theory can be achieved by
allowing the almost complex structure on the symplectic manifold .M;!/ to depend
on points on the punctured Riemann surface underlying the holomorphic curves, i.e.,
introducing domain-dependent almost complex structures. In this paper we fix the
S1-independent almost complex structure J and introduce domain-dependent Hamil-
tonian perturbations H , which however are still S1-independent, where we show in
Section 4 that the resulting class of domain-dependent cylindrical almost complex
structures JH on R � S1 �M is still large enough to achieve transversality for all
moduli spaces of curves with three or more punctures. Here we let H rather than J
depend on the underlying punctured spheres, so that we achieve transversality also
for the trivial curves, i.e., the branched covers of trivial cylinders. Note that in order
to make the latter transversal, it is clearly necessary to make the stable Hamilto-
nian structure on S1 � M domain-dependent. In order to make the choices for the
domain-dependent Hamiltonian perturbationsH compatible with gluing of curves in
symplectic field theory, the perturbations must vary smoothly with the position of the
punctures z D .z1̇ ; : : : ; z

˙
n˙
/,

H D Hz W .CP 1 � fz1̇ ; : : : ; z
˙
n˙g/ �M ! R:

In order to guarantee that finite energy solutions are still asymptotically cylindrical
over periodic orbits of the original domain-independent Hamiltonian H , we require
that Hz agrees with H over the cylindrical neighborhoods of the punctures. Fur-
thermore, in order to ensure that the automorphism group of CP 1 still acts on the
moduli space, they must satisfy H'.z/ D '�Hz D Hz B '�1. When the number of
punctures is greater or equal than three, i.e., the punctured Riemann sphere is stable,
it follows thatHz should depend only on the class Œz� 2 M0;n in the moduli space of
n-punctured Riemann spheres.

Outline of the construction of domain-dependent Hamiltonians. For the con-
struction of such domain-dependent structures we follow the ideas in [CM1], where
for precise definitions we refer to the upcoming section on domain-dependent Hamil-
tonian perturbations. For n 	 3 denote by M0;n the moduli space of stable genus
zero curves modelled over the n-labelled tree with one vertex, i.e., the moduli space
of Riemann spheres with n marked points. Taking the union of all moduli spaces of
stable nodal curves modelled over n-labelled trees, we obtain the Deligne–Mumford
space xM0;n D `

T MT which, equipped with the Gromov topology, provides the
compactification of the moduli space M0;n. It is a crucial observation that we have
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a canonical projection � W xM0;nC1 ! xM0;n by forgetting the .nC 1/st marked point
and stabilizing. Note that to any nodal curve z we can naturally associate a nodal Rie-
mann surface†z D `

˛2T S˛=fz˛ˇ � zˇ˛g with punctures .zk/, obtained by gluing
a collection of Riemann spheres S˛ Š CP 1 at the connecting nodes z˛ˇ 2 CP 1. It
then follows that the map � W xM0;nC1 ! xM0;n is holomorphic and the fibre ��1.Œz�/

is naturally biholomorphic to †z . We then choose for every n 	 3 smooth maps
H .n/ W xM0;nC1 ! C1.M/ and for Œz� 2 xM0;n then define Hz to be the restriction
ofH .n/ to the fibre ��1.Œz�/ Š †z . In particular, for z 2 M0;n � xM0;n we get from
†z Š CP 1 a map

Hz D H .n/j��1.Œz�/ W CP 1 ! C1.M/:

Assuming thatH .2/; : : : ;H .n�1/ are already chosen, the compatibility for the domain-
dependent Hamiltonians under gluing of the underlying Riemann surfaces is en-
sured by specifying H .n/ on the boundary @M0;nC1 D xM0;nC1 � M0;nC1 using
H .2/; : : : ;H .n�1/. For this observe that @M0;nC1 consists of the fibres ��1.Œz�/ Š
†z over Œz� 2 @M0;n D xM0;n � M0;n and of the punctures z1; : : : ; zn 2 CP 1 D †z

in the fibres over Œz� 2 M0;n. In order to see that we can indeed define H .n/ induc-
tively we crucially use that there are no holomorphic planes and spheres. Assuming
we have determined H .n/ for n 	 2, we organize all maps into a map

H W
a

n

M0;nC1 ! C1.M/:

Note that for n D 2 the space M0;nC1 just consists of a single point.

Case of cylinders (n D 2). For curves with two or less punctures, the compatibility
with the action of Aut.CP 1/ implies that Hz must be independent of points on the
domain, i.e., just a function on M . On the other hand it is known from symplectic
Floer homology that for fixed almost complex structure J it is important to let the
Hamiltonian explicitly be S1-dependent to have transversality for generic choices,
which seems to destroy our hopes for computing the symplectic field theory of R �
S1 � M with S1-independent H and J . To overcome this problem, we remind
ourselves that we already assumeH to be so small such that all one-period orbits are
nondegenerate, in particular, critical points ofH . Furthermore by Proposition 2.4 we
know that the JH -holomorphic cylinders naturally correspond to Floer connecting
orbits. The important observation is now to by choosingH with small C 2-norm, e.g.
by rescaling, we can achieve that all Floer trajectories u are indeed Morse trajectories,
i.e., gradient flow lines u.s; t/ � u.s/ of H between the critical points x� and xC
with respect to the metric!.�; J �/ onM . When the pair .H; !.�; J �// is Morse–Smale,
the linearization Fu of the gradient flow operator is surjective, and it is shown in [SZ]
that this indeed suffices to show that the linearization Du of the Cauchy–Riemann
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operator is surjective as well. More precisely, we use the following lemma, which is
proven in [SZ].

Lemma 2.5. Let .H; J / be a pair of a HamiltonianH and an almost complex struc-
ture J on a closed symplectic manifold with hŒ!�; �2.M/i D 0 so that .H; !.�; J �//
is Morse–Smale. Then the following holds:

� If 
 > 0 is sufficiently small, all finite energy solutions u W R � S1 ! M of
N@J;�Hu D @suC J.u/.@tuCX �H .u// D 0 are independent of t 2 S1.

� In this case, the linearizationD�
u of N@J;�H is onto at any solution u W R �S1 !

M .

Recall that we fixed a maximal period T D 2N and let P.H=2N ;� 2N / denote
the set of periodic orbits of the Reeb vector field RH=2N

for the Hamiltonian H=2N

with period less or equal than 2N . We collect our results about moduli spaces of
holomorphic curves in R � S1 �M in the following

Theorem 2.6. Let .M;!/ be a closed symplectic manifold which is symplecti-
cally aspherical, equipped with an !-compatible almost complex structure J and
H W M ! R so that Lemma 2.5 is satisfied with 
 D 1. Further assume that for any
ordered set of punctures z D .z1̇ ; : : : ; z

˙
n˙
/ containing three or more points we have

constructed a domain-dependentHamiltonian perturbationHz W .CP 1�fzg/�M !
R ofH with the properties outlined above. Then, depending on the number of punc-
tures n we have the following result about the moduli spaces of JH -holomorphic
curves in R � S1 �M :

� n D 0: All holomorphic spheres are constant.
� n D 1: Holomorphic planes do not exist.
� n D 2: For T � 2N the automorphism group Aut.CP 1/ acts on the para-

metrized moduli space M0.S1 �M; .xC; T /; .x�; T /; JH=2N
/ of holomorphic

cylinders with constant finite isotropy group Z=TZ and the quotient can be
naturally identified with the space of gradient flow lines of H with respect to
the metric !.�; J �/ onM between the critical points xC and x�.

� n 	 3: For PC; P� � P.H=2N ;� 2N / the action of Aut.CP 1/ on the
parametrized moduli space is free. There still remains a free S1-action on the
moduli space after dividing out the R-translation, where the quotient is given
by

f.u; z/ W u W CP 1 � fzg ! M W .
1/; .
2/g=Aut.CP 1/

with

.
1/: duCX
H=2N

z .z; u/˝ dh0
2 CJ.u/ � .duCX

H=2N

z .z; u/˝ dh0
2/ � i D 0;

.
2/: u B  ˙
k .s; t/

s!˙1�����! x˙
k :
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Proof. Observe that all statements rely on Proposition 2.2 and Lemma 2.3. For
n D 2 we additionally use Proposition 2.4 and Lemma 2.5 and remark that the
critical points and gradient flow lines of H=2N are naturally identified with those of
H . For the statement about the isotropy groups observe that for h.s; t/ D .T s; T t/

and u.s; t/ D u.s/ we have

.h; u/ D .h B '; u B '/ () '.s; t/ D
�
s; t C k

T

�
; k 2 Z=TZ:

For the case n 	 3 observe that the action of Aut.CP 1/ is already free on the
underlying set of punctures. �

3. Domain-dependent Hamiltonians

Based on the ideas in [CM1] for achieving transversality in Gromov–Witten theory,
we describe in this section a method to define domain-dependent Hamiltonian per-
turbations. In the following we drop the superscript for the punctures, z D .zk/,
since for the assignment of Hamiltonians we do not distinguish between positive and
negative punctures.

3.1. Deligne–Mumford space. We start with the following definition.

Definition 3.1. A n-labelled tree is a triple .T;E;ƒ/, where .T;E/ is a tree with
the set of vertices T and the edge relation E � T � T . The set ƒ D .ƒ˛/˛2T is a
partition of the index set I D f1; : : : ; ng D S

ƒ˛ . We write ˛Eˇ if .˛; ˇ/ 2 E.

A tree is called stable if for each ˛ 2 T we have n˛ D ]ƒ˛ C ]fˇ W ˛Eˇg 	 3.
For n 	 3 a n-labelled tree can be stabilized in a canonical way, see [CM1], [MDSa],
where one first deletes vertices ˛ with n˛ < 3 to obtain st.T / � T and then modifies
E;ƒ in the obvious way.

Definition 3.2. A nodal curve of genus zero modelled over T D .T;E;ƒ/ is a tuple
z D ..z˛ˇ /˛Eˇ ; .zk// of special points z˛ˇ ; zk 2 CP 1 such that for each ˛ 2 T the
special points in Z˛ D fz˛ˇ W ˛Eˇg [ fzk W k 2 ƒ˛g are pairwise distinct.

To any nodal curve z we can naturally associate a nodal Riemann surface †z D`
˛2T S˛=fz˛ˇ � zˇ˛g with punctures .zk/, obtained by gluing a collection of

Riemann spheres S˛ Š CP 1 at the points z˛ˇ 2 CP 1. A nodal curve z is called
stable if the underlying tree is stable, i.e., every sphere S˛ carries at least three special
points. Stabilization of trees immediately leads to a canonical stabilization z ! st.z/
of the corresponding nodal curve.
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Denote by zMT � .CP 1/E �.CP 1/n the space of all nodal curves (of genus zero)
modelled over the tree T D .T;E;ƒ/. An isomorphism between nodal curves z, z0
modelled over the same tree is a tuple � D .�˛/˛2T with �˛ 2 Aut.CP 1/ so that
�.z/ D z0, i.e., z0

˛ˇ
D �˛.z˛ˇ / and z0

k
D �˛.zk/ if k 2 ƒ˛ . Observe that � induces

a biholomorphism � W †z ! †z0 . Let GT denote the group of biholomorphisms.
For stable T the action of GT on zMT is free and the quotient MT D zMT =GT is a
(finite-dimensional) complex manifold.

Definition 3.3. For n 	 3 denote by M0;n the moduli space of stable genus zero
curves modelled over the n-labelled tree with one vertex, i.e, the moduli space of
Riemann spheres with n marked points. Taking the union of all moduli spaces of
stable nodal curves modelled over n-labelled trees, we obtain the Deligne–Mumford
space

xM0;n D
a
T

MT ;

which, equipped with the Gromov topology, provides the compactification of the
moduli space M0;n of punctured Riemann spheres.

By a result of Knudsen (see [CM1], Theorem 2.1) the Deligne–Mumford space
xM0;n carries the structure of a compact complex manifold of complex dimensionn�3.

For each stable n-labelled tree T the space MT � xM0;n is a complex submanifold,
where any MT ¤ M0;n is of complex codimension at least one in xM0;n.

It is a crucial observation that we have a canonical projection� W xM0;nC1 ! xM0;n

by forgetting the .nC 1/st marked point and stabilizing. The map � is holomorphic
and the fibre ��1.Œz�/ is naturally biholomorphic to †z . Moreover, for Œz� 2 xM0;n,
every component S˛ � †z is an embedded holomorphic sphere in xM0;nC1. Note
that M0;nC1 ¦ ��1.M0;n/ as ��1.Œz�/\ M0;nC1 D CP 1 � f.zk/g for Œz� 2 M0;n.

3.2. Definition of coherent Hamiltonian perturbations. With this we are now
ready to describe the algorithm how to find domain-dependent Hamiltonians Hz

on M .
For n D 2 letH .2/ W M ! R be the domain-independent Hamiltonian from The-

orem 2.6, i.e., such that with the fixed almost complex structure J onM Lemma 2.5
is satisfied with 
 D 1.

For n 	 3 we choose smooth maps H .n/ W xM0;nC1 ! C1.M/. For Œz� 2 xM0;n

we then define Hz to be the restriction of H .n/ to the fibre ��1.Œz�/ Š †z . In
particular, for z 2 M0;n � xM0;n we get from †z Š CP 1 a map

Hz D H .n/j��1.Œz�/ W CP 1 ! C1.M/;

where the biholomorphism †z Š CP 1 is fixed by requiring that .z1; z2; z3/ are
mapped to .0; 1;1/. Further let dz D inffd.zk; zl/ W 1 � k < l � ng denote



Vol. 85 (2010) Contact homology of Hamiltonian mapping tori 219

the minimal distance between two marked points with respect to the Fubini–Study
metric on CP 1, let Dz.z/ be the ball of radius dz=2 around z 2 CP 1 and set
Nz D Dz.z1/ [ � � � [ Dz.zn/. Then we choose H .n/ so that Hz agrees with H .2/

on Nz .
The gluing compatibility is ensured by specifying H .n/ on the boundary

@M0;nC1 D xM0;nC1 � M0;nC1, which consists of the fibres ��1.Œz�/ D †z over
Œz� 2 @M0;n D xM0;n � M0;n and the points z1; : : : ; zn 2 CP 1 D †z in the fibres
over Œz� 2 M0;n.

Note that we have already setHz.zk/ D H .2/. For Œz� 2 @M0;n D xM0;n � M0;n

we have Hz D H .n/j��1.Œz�/ W †z ! C1.M/ with †z D `
S˛= � and ]T 	 2.

As before let Z˛ D fz˛
1 ; : : : ; z

˛
n˛

g denote the set of special points on S˛ . Then we
want that

HzjS˛
D Hz˛

for z˛ D .z˛
k
/.

Since n˛ D ]Z˛ < n, this requirement implies that a choice for the map
H .n/ W xM0;nC1 ! C1.M/ also fixes the maps H .n0/ W xM0;n0C1 ! C1.M/ for
n0 < n.

If H .k/ W xM0;kC1 ! C1.M/, k D 2; : : : ; n � 1 are compatible in the above
sense we call them coherent. We show how to find H .n/ W xM0;nC1 ! C1.M/ so
that H .2/; : : : ;H .n/ are coherent.

Let Œz� 2 @M0;n with †z D `
S˛= �. Under the assumption that Hz˛ was

chosen to agree withH .2/ on the neighborhoodNz˛ of the special points it follows that
allHz˛ fit together to a smooth assignmentHz W †z ! C1.M/. Let T D .T;E;ƒ/

be the tree underlying z. Then it follows by the same arguments that the mapsH .n˛/

fit together to a smooth map HT W ��1. xMT / ! C1.M/. Now let 
 W T ! T 0 be a
surjective tree homomorphism with ]T 0 	 2. Then xMT � xMT 0 and it follows from
the compatibility ofH .2/; : : : ;H .n�1/ thatHT andHT 0

agree on ��1. xMT /. Hence
we get a unique assignment on @M0;nC1 D ��1.

`fMT W ]T 	 2g/.
After having specified the map H .n/ W xM0;nC1 ! C1.M/ on the boundary

@M0;nC1, we choose H .n/ in the interior M0;nC1 so that H .n/ is smooth (on the
compactification xM0;nC1) and H .n/ agrees with H .2/ on Nz � ��1.Œz�/ for all
Œz� 2 M0;n.

Assuming we have determined H .n/ for n 	 2, we organize all maps into a map

H W
a

n

M0;nC1 ! C1.M/:

Note that for n D 2 the space M0;nC1 just consists of a single point. A map
H as above, i.e., for which all restrictions H .n/ W M0;nC1 ! C1.M/, n 2 N are
coherent, is again called coherent.
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Together with the almost complex structure J recall that this defines a domain-
dependent cylindrical almost complex structure JH on R � S1 �M ,

JH W
a

n

M0;nC1 ! Jcyl.R � S1 �M/:

With this generalized notion of cylindrical almost complex structure we call, accord-
ing to Theorem 2.6, a mapF D .h; u/ W CP 1 �fzg ! R�S1 �M JH -holomorphic
when it satisfies the domain-dependent Cauchy–Riemann equation

N@J .h; u/ D d.h; u/C JH
z .z; h; u/ � d.h; u/ � i D 0;

which by Proposition 2.2 is equivalent to the set of equations N@h D 0 and

N@J;H .u/ D duCXH
z .z; u/˝ dh0

2 C J.u/ � .duCXH
z .z; u/˝ dh0

2/ � i D 0

with XH
z .z; �/ denoting the symplectic gradient of Hz.z; �/ W M ! R.

SinceHz.z; �/ agrees with the HamiltonianH .2/ W M ! R near the punctures, it
follows that any finite-energy solution of the modified perturbed Cauchy–Riemann
equation again converges to a periodic orbit of the Hamiltonian flow of H .2/ as
long as all possible asymptotic orbits are nondegenerate. Observe that it follows
from the definition of Hz that the group of Möbius transformations still acts on
the resulting moduli space of parametrized curves. We show in the section on
transversality that for any given almost complex structure J on M we can find
Hamiltonian perturbations H W `n M0;nC1 ! C1.M/, so that all moduli spaces

M0.S1 �M IPC; P�IJH=2N
/ are cut out transversally simultaneously for all max-

imal periods 2N , N 2 N.

3.3. Compatibility with SFT compactness. It remains to show that the notion
of coherent cylindrical almost complex structures JH is actually compatible with
Gromov convergence of JH -holomorphic curves in R � S1 �M .

Definition 3.4. A JH -holomorphic level ` map .h; u; z/ consists of the following
data:

� A nodal curve z D `
S˛= �2 xM0;n and a labeling � W T ! f1; : : : ; `g, called

levels, such that two components ˛; ˇ 2 T with ˛Eˇ have levels differing by
at most one.

� JH -holomorphic maps F˛ D .h˛; u˛/ W S˛ ! R � S1 � M (satisfying the
equation d.h˛; u˛/ C JH

z˛ .z; h˛; u˛/ � d.h˛; u˛/ � i D 0) with the following
behaviour at the nodes.
If �.˛/ D �.ˇ/ C 1 then z˛ˇ is a negative puncture for .h˛; u˛/ and zˇ˛ a
positive puncture for .hˇ ; uˇ / and they are asymptotically cylindrical over the
same periodic orbit; else, if �.˛/ D �.ˇ/, then .h˛; u˛/.z˛ˇ / D .hˇ ; uˇ /.zˇ˛/.
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With this we can give the definition of Gromov convergence of JH -holomor-
phic maps.

Definition 3.5. A sequence of stable JH -holomorphic maps .h� ; u� ; z�/ converges
to a level ` holomorphic map .h; u; z/ if for any ˛ 2 T (T is the tree underlying z)
there exists a sequence of Möbius transformations ��

˛ 2 Aut.CP 1/ such that:
� for .h; u/ D .h1; h2; u/ D .h1;˛; h2;˛; u˛/˛2T there exist sequences s�

i , i D
1; : : : ; ` with

h�
1 B ��

˛ C s�
�.˛/

�!1����! h1;˛; .h�
2; u

�/ B ��
˛

�!1����! .h2;˛; u˛/

for all ˛ 2 T in C1
loc .

PS/,
� for all k D 1; : : : ; n we have .��

˛/
�1.z�

k
/ ! zk if k 2 ƒ˛ (zk 2 S˛),

� and .��
˛/

�1 B ��
ˇ

! z˛ˇ for all ˛Eˇ.

Note that a level ` holomorphic map .h; u; z/ is called stable if for any l 2
f1; : : : ; `g there exists ˛ 2 T with �.˛/ D l and .h˛; u˛/ is not a trivial cylinder and,
furthermore, if .h˛; u˛/ is constant then the number of special points n˛ D ]Z˛ 	 3.
Although any holomorphic map .h� ; u� ; z�/ 2 M0.S1 � M IPC; P�IJH / with
n D ]PC C ]P� 	 3 is stable, the nodal curve z underlying the limit level `
holomorphic map .h; u; z/ need not be stable. However, we can use the absence of
holomorphic planes and (non-constant) holomorphic spheres in R�S1 �M to prove
the following lemma about the boundary of M.S1 �M IPC; P�IJH /=R.

Lemma 3.6. Assume that the sequence .h� ; u� ; z�/ 2 M.S1 � M IPC; P�IJH /

Gromov converges to the level ` holomorphic map .h; u; z/. For the number of special
points n˛ on the component S˛ � †z it holds that

� n˛ � n D ]PC C ]P� for any ˛ 2 T ,

� if n˛ D n for some ˛ 2 T then all other components are cylinders, i.e., carry
precisely two special points.

Proof. We prove this statement by iteratively letting circles on CP 1 collapse to obtain
the nodal surface †z .

For increasing the maximal number of special points on spherical components
on a nodal surface we must collapse a special circle with all special points on one
hemisphere. Even after collapsing further circles to nodes there always remains one
component with just one special point (a node). Since by hŒ!�; �2.M/i D 0 there
are no holomorphic planes and bubbles this cannot happen, which shows the first part
of the statement. For the second part observe that collapsing circles with more than
one special point on each hemisphere leads to two new spherical components which
carry strictly less special points than the original one. �
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Let n 	 3. For chosen H W `n M0;nC1 ! C1.M/ recall that for stable nodal
curves z we definedHz D H j��1.Œz�/ W †z ! C1.M/. For general nodal curves z
(with n 	 3) we can use the stabilization z ! st.z/ and the induced map st W †z !
†st.z/ to define

Hz.z/ WD Hst.z/.st.z//; z 2 †z

(compare [CM1], Section 4) with corresponding cylindrical almost complex structure
JH

z .z/ WD JH
st.z/

.st.z// 2 Jcyl.S
1 �M/.

Proposition 3.7. A JH -holomorphic level ` map .h; u; z/ is JH
z -holomorphic.

Proof. If z is stable this follows directly from the construction of JH as the restriction
of JH

z to a component S˛ � †z agrees with JH
z˛ when z˛ D .z˛

1 ; : : : ; z
˛
n˛
/ denotes

the ordered set of special points on S˛ . If z is not stable the proposition relies on the
following two observations.

Since there are no spherical components with just one special point all special
points on stable components of †z are preserved under stabilization, i.e., a node
connecting a stable component with an unstable one is not removed but becomes a
marked point on †st.z/.

On the other hand points on a cylindrical component (a tree of cylinders) are
mapped under stabilization to the node connecting it to a stable component (which then
is a marked point for the nodal surface†st.z/). Since JH

st.z/
near special points agrees

with complex structure JH .2/
chosen for cylinder we have JH

z .z/ D JH
st.z/

.st.z// D
JH .2/

for any z 2 †z lying on a cylindrical component. �

In order to show the gluing compatibility we prove the following proposition.

Proposition 3.8. Let .h� ; u� ; z�/ be a sequence ofJH
z� -holomorphicmaps converging

to the level ` map .h; u; z/. Then .h; u; z/ is JH
z -holomorphic.

Proof. Recall from the definition of Gromov convergence that for any ˛ 2 T (the
tree underlying z) there exists a sequence ��

˛ 2 Aut.CP 1/ and for any i 2 f1; : : : ; `g
sequences s�

i 2 R such that h�
1 B ��

˛ C s�
�.˛/

! h1;˛ and .h�
2; u

�/ B ��
˛ ! .h1;˛; u˛/.

Hence it remains to show that

JH
z� B ��

˛ ! JH
z

in C1.S˛;Jcyl.S
1 �M// as � ! 1 for all ˛ 2 T .

Since the projection from the compactified moduli space to the Deligne–Mumford
space xM0;n is smooth (see Theorem 5.6.6 in [MDSa]), it follows from .h� ; u� ; z�/ !
.h; u; z/ that z� D st.z�/ ! st.z/ in xM0;n.
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For ˛ 2 st.T / and z 2 S˛ we have st.z/ D z and it follows that

.z� ; ��
˛.z// ! .st.z/; z/ 2 xM0;nC1:

Since JH .n/ W xM0;nC1 ! Jcyl.S
1 �M/ is continuous, we have

JH
z� .�

�
˛.z// ! JH

st.z/.z/ D JH
z .z/

in Jcyl.S
1 �M/ for all z 2 S˛ . The uniform convergence in all derivatives follows

by the same argument using the smoothness of JH .n/
.

On the other hand, if ˛ … st.T / and z 2 S˛ , then st.z/ D zˇ˛ 2 st.z/ if ˛Eˇ. In
xM0;nC1 we have that

.z� ; ��
˛.z// ! .z; zˇ˛/

since .��
ˇ
/�1.��

˛.z// ! zˇ˛ 2 Sˇ and therefore

JH
z� .�

�
˛.z// ! JH

st.z/.st.z// D JH
z .z/ �

4. Transversality

We follow [BM] for the description of the analytic setup of the underlying Fredholm
problem. More precisely, we take from [BM] the definition of the Banach space
bundle over the Banach manifold of maps, which contains the Cauchy–Riemann
operator studied above as a smooth section.

4.1. Banach space bundle andCauchy–Riemannoperator. For a chosen coherent
Hamiltonian perturbationH W `n M0;nC1 ! C1.M/ and fixedN 2 N, we choose
ordered sets of periodic orbits

P˙ D f.x1̇ ; T1̇ /; : : : ; .x
˙
n˙ ; T

˙
n˙/g � P.H .2/=2N ;� 2N /;

where n D nC C n�. Instead of considering CP 1 Š S2 with its unique conformal
structure, we fix punctures z˙;0

1 ; : : : ; z
˙;0
n 2 S2 and let the complex structure on

PS D S2 � fz˙;0
1 ; : : : ; z

˙;0
n g vary. Following the constructions in [BM] we see that

the appropriate Banach manifold Bp;d .R � S1 � M I .x˙
k
; T˙

k
// for studying the

underlying Fredholm problem is given by the product

Bp;d .R � S1 �M; .x˙
k ; T

˙
k // D H

1;p;d
const . PS;C/ � Bp.M I .x˙

k // � M0;n

with d > 0 and p > 2, whose factors are defined as follows.
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The Banach manifold Bp.M I .x˙
k
// consists of maps u 2 H

1;p
loc .

PS;M/, which
converge to the critical points x˙

k
2 Crit.H .2// as z 2 PS approaches the puncture

z
˙;0
k

. More precisely, if we fix linear maps ‚˙
k

W R2m ! T
x˙

k

M , the curves satisfy

u B  ˙
k .s; t/ D exp

x˙
k

.‚˙
k � v˙

k .s; t//

for some v˙
k

2 H 1;p.R˙ � S1;R2m/, where exp denotes the exponential map for
the metric !.�; J �/ on M .

The space H 1;p;d
const . PS;C/ consists of maps h 2 H 1;p

loc .
PS;C/, for which there exist

.s
˙;k
0 ; t

˙;k
0 / 2 R2 Š C, such that for all k D 1; : : : ; n˙ the maps

R˙ � S1 ! R2; .s; t/ 7! ..h B  ˙
k /.s; t/ � .s˙;k

0 ; t
˙;k
0 // � e˙d �s

are in H 1;p.R˙ � S1;C/. In other words, H 1;p;d
const . PS;C/ consists of maps differing

asymptotically from a constant one by a function, which converges exponentially fast
to zero.

Finally M0;n denotes, as before, the moduli space of complex structures on the
punctured sphere PS , which clearly is naturally identified with its originally defined
version, the moduli space of Riemann spheres with n punctures.

Here we represent M0;n explicitly by finite-dimensional families of (almost) com-
plex structures on PS , so that Tj M0;n becomes a finite-dimensional subspace of

fy 2 End.T PS/ W yj C jy D 0g:
Note that in [BM] the authors work with Teichmüller spaces, since the corresponding
moduli spaces of complex structures, obtained by dividing out the mapping class
group, become orbifolds for non-zero genus.

Note that for the identification

Bp;d .R � S1 �M; .x˙
k ; T

˙
k // D H

1;p;d
const . PS;C/ � Bp.M I .x˙

k // � M0;n

we identify Nh 2 H 1;p;d
const . PS;C/ with the map h W PS ! R � S1 given by h D h0 C Nh,

where h0 denotes an arbitrary fixed holomorphic map h0 W PS ! R � S1 Š CP 1 �
f0;1g, so that z˙;0

k
is a pole/zero of order T˙

k
. Note that we do not use asymptotic

exponential weights (depending on d 2 RC) for the Banach manifold Bp.M I .x˙
k
//,

since we are dealing with nondegenerate asymptotics.
Let H 1;p.u�TM/ consist of sections � 2 H 1;p

loc .u
�TM/, such that

� B  ˙
k .s; t/ D .d exp

x˙
k

/.‚˙
k � v˙

k .s; t// �‚˙
k �

˙;0
k
.s; t/

with �˙;0
k

2 H 1;p.R˙ � S1;R2m/ for k D 1; : : : ; n. Note that here we take the
differential of exp

x˙
k

W T
x˙

k

M ! M at ‚˙
k

� v˙
k
.s; t/ 2 T

x˙
k

M , which maps the
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tangent space to M at x˙
k

to the tangent space to M at

exp
x˙

k

.‚˙
k � v˙

k .s; t// D u B  ˙
k .s; t/:

Then the tangent space to Bp;d .R � S1 �M I .x˙
k
; T˙

k
// at . Nh; u; j / is given by

T. Nh;u;j /B
p;d .R�S1 �M I .x˙

k ; T
˙
k // D H

1;p;d
const . PS;C/˚H 1;p.u�TM/˚Tj M0;n:

Consider the bundleƒ0;1
j̋;J u

�TM , whose sections are (0,1)-forms on PS with
values in the pullback bundle u�TM equipped with the complex structure J . The
space Lp.ƒ0;1

j̋;J u
�TM/ is defined similarly as H 1;p.u�TM/: it consists of

sections ˛ 2 Lp
loc, which asymptotically satisfy

. ˙
k /

�˛.s; t/ � @s D .d exp
x˙

k

/.‚˙
k � v˙

k .s; t// �‚˙
k ˛

˙;0
k
.s; t/

with ˛˙;0
k

2 Lp.R˙ � S1;R2m/.
Over Bp;d D Bp;d .R � S1 �M I .x˙

k
; T˙

k
// consider the Banach space bundle

Ep;d ! Bp;d with fibre

E
p;d
Nh;u;j

D Lp;d .ƒ0;1
j̋;i C/˚ Lp.ƒ0;1

j̋;J u
�TM/:

Assume that we have fixed a coherent Hamiltonian perturbationH W `M0;nC1 !
C1.M/. Our convention at the beginning of this section, i.e., fixing the punctures
on S2 but letting the almost complex structure j W T PS ! T PS vary, now leads to a
dependencyH.j; z/ D H .n/.j; z/ on the complex structure j on PS and points z 2 PS .
For the following exposition let us assumeN D 0 in order to keep the notation simple.

The Cauchy–Riemann operator

N@J H .h; u; j / D N@j;J H .h; u/ D d.h; u/C JH .j; z; h; u/ � d.h; u/ � j

is a smooth section in Ep;d ! Bp;d and naturally splits,

N@j;J H .h; u/ D .N@h; N@J;Hu/ 2 Lp;d .ƒ0;1
j̋;i C/˚ Lp.ƒ0;1

j̋;J u
�TM/:

Here N@ D N@j;i is the standard Cauchy–Riemann operator for maps h W . PS; j / !
R � S1 and N@J;H is the perturbed Cauchy–Riemann operator given by

N@J;H .u/ D duCXH .j; z; u/˝ dh0
2 C J.u/ � .duCXH .j; z; u/˝ dh0

2/ � j;
where again XH .j; z; �/ denotes the symplectic gradient of H.j; z; �/ W M ! R. It
follows that the linearization D Nh;u;j of N@J H at a solution . Nh; u; j / splits,

D Nh;u;j D D Nh;u ˚Dj ;
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with Dj W Tj M0;n ! E
p;d
Nh;u;j

and

D Nh;u D diag.N@;Du/ W H 1;p;d
const . PS;C/˚H 1;p.u�TM/

! Lp;d .ƒ0;1
j̋;i C/˚ Lp.ƒ0;1

j̋;J u
�TM/;

where

Du W H 1;p.u�TM/ ! Lp.ƒ0;1
j̋;J u

�TM/;

Du� D r� C J.u/ � r� � j C r�J.u/ � du � j
C r�X

H .j; z; u/˝ dh0
2 C r�rH.j; z; u/˝ dh0

1

is the linearization of the perturbed Cauchy–Riemann operator N@J;H .

4.2. Universal moduli space. Let H `
n.M IH .2/; : : : ;H .n�1// denote the Banach

manifold consisting of C `-maps H .n/ W M0;nC1 ! C `.M/, which extend as C `-
maps to xM0;nC1 as induced by H .k/, k D 2; : : : ; n � 1 and H .n/.j; �/ D H .2/ on a
neighborhood N0 � PS of the punctures.

Note that it is essential to work in the C `-category since the corresponding space
of C1-structures just inherits the structure of a Fréchet manifold and we later cannot
apply the Sard-Smale theorem.

The tangent space to H ` D H `
n.M IH .2/; : : : ;H .n�1// atH D H .n/ is given by

TH H `
n.M IH .2/; : : : ;H .n�1// D H `

n.M I 0; : : : ; 0/:
The universal Cauchy–Riemann operator N@J . Nh; u; j;H/ WD N@J H .h; u; j / extends

to a smooth section in the Banach space bundle OEp;d ! Bp;d � H ` with fibre

OEp;d
Nh;u;j;H

D E
p;d
Nh;u;j

D Lp;d .ƒ0;1
j̋;i C/˚ Lp.ƒ0;1

j̋;J u
�TM/:

LettingJH .2/
; : : : ; JH .n�1/

denote the domain-dependent cylindrical almost com-
plex structures on R � S1 �M induced by J and H .2/; : : : ;H .n�1/, we define the
universal moduli space M.S1 �M IPC; P�IJH .2/

; : : : ; JH .n�1/
/ as the zero set of

the universal Cauchy–Riemann operator,

M.S1 �M IPC; P�I .JH .k/

/n�1
kD2/

D f. Nh; u; j;H/ 2 Bp;d � H ` W N@J . Nh; u; j;H/ D 0g:

Theorem 4.1. For n 	 3 let H .2/; : : : ;H .n�1/ be fixed. Then for any chosen
.PC; P�/ with ]PC C ]P� D n, the universal moduli space

M.S1 �M IPC; P�I .JH .k/

/n�1
kD2/
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is transversally cut out by the universalCauchy–Riemannoperator N@J W Bp;d �H ` !
OEp;d for d > 0 sufficiently small. In particular, it carries the structure of a C1-
Banach manifold.

The proof relies on the following two lemmata.

Lemma 4.2. The operator N@ W H 1;p;d
const . PS;C/ ! Lp;d .ƒ0;1

j̋;i C/ is onto.

Proof. Fix a splitting

H
1;p;d
const . PS;C/ D H 1;p;d . PS;C/˚ 
n

where 
n � C1. PS;C/ is a 2n-dimensional space of functions storing the constant
shifts (see [BM]). Given a function 'd W PS ! R with .'d B  ˙

k
/.s; t/ D e˙d �s ,

multiplication with 'd defines isomorphisms

H 1;p;d . PS;C/ Š�! H 1;p. PS;C/;
Lp;d .T � PS ˝i;i C/

Š�! Lp.T � PS ˝i;i C/;

under which N@ corresponds to a perturbed Cauchy–Riemann operator

N@d D N@C Sd W H 1;p. PS;C/ ! Lp.T � PS ˝i;i C/:

With the asymptotic behaviour of 'd one computes

S
˙;k
d

.t/ D .Sd B  ˙
k /.˙1; t / D diag.�d;�d/

so that the Conley–Zehnder index for the corresponding paths ‰˙;k W R ! Sp.2m/
of symplectic matrices is �1 for d > 0 sufficiently small. Hence the index of
N@ W H 1;p;d

const . PS;C/ ! Lp;d .T � PS ˝i;i C/ is given by

ind N@ D dim 
n C ind N@d D 2nC ��nC 1 � .2 � n/� D 2;

where the sum in the big bracket is the usual index formula for Cauchy–Riemann
type operators. On the other hand, it follows from Liouville’s theorem that the kernel
of N@ consists of the constant functions on PS , so that dim coker N@ D 0. �

Lemma 4.3. For n 	 3 the linearizationDu;H of N@J .u;H/ D N@J;H .u/ is surjective

at any . Nh; u; j;H/ 2 M.S1 �M IPC; P�I .JH .k/
/n�1
kD2

/.

Proof. The operatorDu;H is the sum of the linearizationDu of the perturbed Cauchy–
Riemann operator N@J;H and the linearization of N@J in the H `-direction,

DH W TH H ` ! Lp.ƒ0;1
j̋;J u

�TM/;

DHG D XG.j; z; u/˝ dh0
2 C J.u/XG.j; z; u/˝ dh0

1:
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We show that Du;H is surjective using well-known arguments. Since Du is
Fredholm, the range of Du;H in Lp.ƒ0;1

j̋;J u
�TM/ is closed, and it suffices to

prove that the annihilator of the range of Du;H is trivial.
We identify the dual space of Lp.ƒ0;1

j̋;J u
�TM/ with Lq.ƒ0;1

j̋;J u
�TM/,

1=p C 1=q D 1 using the L2-inner product on sections in ƒ0;1
j̋;J u

�TM , which
is defined using the standard hyperbolic metric on . PS; j / and the metric !.�; J �/
on M .

Let � 2 OEq;d
Nh;u;j;H

D Lq;d .ƒ0;1
j̋;i C/˚ Lq.ƒ0;1

j̋;J u
�TM/ such that

hDu;H � .�; G/; �i D 0

for all � 2 H 1;p.u�TM/ and G 2 TH H `. Then surjectivity of Du;H is equivalent
to proving � � 0.

From hDu�; �i D 0 for all � 2 H 1;p.u�TM/, we get that � is a weak solution
of the perturbed Cauchy–Riemann equation D�

u� D 0, where D�
u is the adjoint of

Du. By elliptic regularity, it follows that � is smooth and hence a strong solution. By
unique continuation, which is an immediate consequence of the Carleman similarity
principle, it follows that � � 0 whenever � vanishes identically on an open subset
of PS .

On the other hand we have

0 D hDHG; �i D
Z

PS
hJ.u/XG.j; z; u/˝ dh0

1 CXG.j; z; u/˝ dh0
2; �.z/i dz

D
Z

PS
hrG.j; z; u/˝ dh0

1 � J.u/rG.j; z; u/˝ dh0
2; �.z/i dz

for all G 2 TH H `. When z 2 PS is not a branch point of the map h0 W PS ! R � S1,
observe that we can write

�.z/ D �1.z/˝ dh0
1 C �2.z/˝ dh0

2

with �2.z/C J.u/�1.z/ D 0, since � is a (0,1)-form. It follows that

hrG.j; z; u/˝dh0
1 �J.u/rG.j; z; u/˝dh0

2; �.z/i
D hrG.j; z; u/˝dh0

1 �J.u/rG.j; z; u/˝dh0
2; �1.z/˝dh0

1 �J.u/�1.z/˝dh0
2i

D hrG.j; z; u/; �1.z/i � kdh0
1k2 C hJ.u/rG.j; z; u/; J.u/�1.z/i � kdh0

2k2

D kdh0k2 � hrG.j; z; u/; �1.z/i D kdh0k2 � dG.j; z; u/ � �1.z/;

where kdh0k2 D kdh0
1k2 C kdh0

2k2 and dG.j; z; �/ denotes the differential of
G.j; z; �/ W M ! R.

With this we now prove that � vanishes identically on the complement of the set
of branch points of h0, which by unique continuation implies � D 0. Assume to the
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contrary that �.z0/ ¤ 0 for some z0 2 PS , which is not a branch point. Since ˛ is a
(0,1)-form it follows that �1.z0/ ¤ 0 and we obviously can find G0 2 C1.M/ such
that

dG0.u.z0// � �1.z0/ > 0:

Setting j0 WD j , let ' 2 C1. xM0;nC1; Œ0; 1�/ be a smooth cut-off function around
.j0; z0/ 2 M0;nC1 with '.j0; z0/ D 1 and '.j; z/ D 0 for .j; z/ 62 U.j0; z0/. Here
the neighborhood .j0; z0/ 2 U1.j0/ � U2.z0/ D U.j0; z0/ � xM0;nC1 is chosen so
small that

U.j0; z0/ \ . xM0;nC1 � M0;nC1/ D ;; U2.z0/ \N0 D ;;
and dG0.z; u.z// � �1.z/ 	 0 for all z 2 U2.z0/.

With this defineG W xM0;nC1 �M ! R byG.j; z; p/ WD '.j; z/ �G0.p/. But this
leads to the desired contradiction since we found G 2 THH

` D H `
n.M I 0; : : : ; 0/

with

hDH �G; �i D
Z

U2.z0/

kdh0.z/k2 � dG.j; z; u/ � �1.z/ dz > 0: �

Proof of Theorem 4.1. For n 	 3 we must show that the linearization D Nh;u;j;H of

the universal Cauchy–Riemann operator N@J is surjective at any element . Nh; u; j;H/
in M.S1 �M IPC; P�I .JH .k/

/n�1
kD2

/. Using the splittingD Nh;u;j;H D D Nh;u;H CDj

we show that the first summand

D Nh;u;H W H 1;p;d
const . PS;C/˚ TuBp.M IPC; P�/˚ TH H `

! Lp;d .ƒ0;1
j̋;i C/˚ Lp.ƒ0;1

j̋;J u
�TM/

is onto. However, since
D Nh;u;H D diag.N@;Du;H /;

this follows directly from the surjectivity of N@ and Du;H D Du CDH . �

The importance of the above theorem is that, combined with Lemma 2.5, we
obtain transversality for all moduli spaces of holomorphic curves in R � S1 � M

asymptotically cylindrical over periodic orbits up to the given maximal period 2N .
Moreover we can achieve that this holds for all maximal periods simultaneously.

Corollary 4.4. For n D 2 and T � 2N the moduli spaces

M.S1 �M I .xC; T /; .x�; T /IJH=2N

/

are transversally cut out by the Cauchy–Riemann operator for allN 2 N. For n 	 3

we can chooseH .n/ 2 H `, simultaneously for all N 2 N, so that the moduli spaces
M.S1 � M IPC; P�IJH=2N

/ are transversally cut out by the resulting Cauchy–
Riemann operator for all PC; P� � P.H .2/=2N ;� 2N / with #PC C #P� D n.
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Proof. For n D 2 the linear operator

D Nh;u D diag.N@;Du/

is surjective since Du is onto by Lemma 2.5. Indeed, recall that we have chosen the
pair .H .2/; J / to be regular in the sense that .H .2/; !.�; J �// is Morse–Smale, which
implies that all pairs .H .2/=2N ; J / for anyN 2 N are again regular, since the stable
and unstable manifolds are the same.

For n 	 3 and N D 0 the Sard–Smale theorem applied to the map

M.S1 �M IPC; P�I .JH .k/

/n�1
kD2/ ! H `

n.M I .H .k//n�1
kD2/; . Nh; u; j;H/ 7! H

tells us that the set of Hamiltonian perturbations H `
reg.P

C; P�/ D H `
reg.P

C; P�; 0/,
for which the moduli space M.S1 � M IPC; P�IJH / is cut out transversally by
the Cauchy–Riemann operator N@J H , is of the second Baire category in H ` D
H `

n.M I .H .k//n�1
kD2

/. Since there exist just a countable number of tuples .PC; P�/
with ]PC C ]P� D n, it follows that H `

reg D H `
reg.0/ D TfH `

reg.P
C; P�; 0/ W

]PC C ]P� D ng is still of the second category.
Replacing H .2/; : : : ;H .n�1/ in the above argumentation, for each N 2 N, by

H .2/=2N ; : : : ;H .n�1/=2N , we obtain sets of regular structures H `
reg.N /, for which

the moduli spaces M.S1 � M IPC; P�IJH=2N
/ are cut out transversally for all

PC; P� � P.H .2/=2N ;� 2N /. However, it follows that H `
reg D TfH `

reg.N / W
N 2 Ng is still of the second category in H `. �

5. Cobordism

Since our statements only hold up to a maximal period for the asymptotic orbits,
we cannot use the same coherent Hamiltonian perturbation to compute the full con-
tact homology. As seen above we must rescale the Hamiltonian for the cylindrical
moduli spaces, which clearly affects the Hamiltonian perturbations for all punctured
spheres. For showing that the graded vector space isomorphism we obtain is actually
an isomorphism of graded algebras, we construct chain maps between the differential
algebras for the different coherent Hamiltonian perturbations, which are defined by
counting holomorphic curves in an almost complex manifold with cylindrical ends.

5.1. Moduli spaces. For a given Hamiltonian H W M ! R let zH W R � M ! R
be a smooth homotopy with zH.s; �/ D H=2 for s � �1 and zH.s; �/ D H for s 	
C1. Besides that zH defines a homotopy of stable Hamiltonian structures .! zH ; � zH /
with corresponding (constant) symplectic hyperplane bundles � zH D TM and R-
dependent Reeb vector fieldsR zH .s; t; p/ D @t CX

zH .s; t; p/, it equips R �S1 �M
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with the structure of a symplectic manifold with stable cylindrical ends

..�1;�1� � S1 �M;!H=2; �H=2/ and .ŒC1;C1/ � S1 �M;!H ; �H /;

where the symplectic structure on the compact, non-cylindrical part .�1;C1/ �
S1 �M is given by

!
zH D !

zH C ds ^ dt
with ! zH D ! C d zH ^ dt .

Together with the fixed !-compatible almost complex structure J on M , the
homotopy zH further equips R � S1 �M with an almost complex structure J zH by
requiring that it turns � zH D TM into a complex subbundle with complex structure
J and

J
zH � @s D R

zH .s; �/ D @t CX
zH .s; �/:

It follows that .R � S1 � M;J
zH / is an almost complex manifold with cylindrical

ends ..�1;�1� � S1 �M;JH=2/ and .ŒC1;C1/ � S1 �M;JH /. Note that J zH

is indeed ! zH -compatible.
For our applications we clearly have to replace the Hamiltonian H W M ! R by

the domain-dependent Hamiltonian perturbation H W `n M0;nC1 � M ! R from
before. It follows that the Hamiltonian homotopy zH has to depend explicitly on
points on the underlying stable punctured spheres, i.e., for the following we consider
coherent Hamiltonian homotopies

zH W
a

n

M0;nC1 � R �M ! R;

with corresponding domain-dependent almost complex structures

J
zH W

a
n

M0;nC1 ! J.S1 �M/:

While it is again clear that the moduli spaces ofJ zH -holomorphic curves with more
than two punctures come with an S1-symmetry, it remains to verify nondegeneracy
for the asymptotic orbits and transversality for the curves. Note for the first that we
again have to consider rescaled versions zHN W `n M0;nC1 � R � M ! R with
zHN .s/ D zH.s=2N /=2N . Since zHN .s/ D H=2N C1 for s � �2N and zHN .s/ D
H=2N for s 	 C2N , it is clear that the nondegeneracy holds for all asymptotic orbits
of period less or equal to 2N .

While we show below that we can again achieve transversality for all J zH -holo-
morphic curves with more than three punctures making use of the domain-dependency
of the almost complex structure, it remains to guarantee transversality for J zH -
holomorphic cylinders. Note that in analogy to Proposition 2.4 it follows that all
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J
zH

N -holomorphic cylinders connecting orbits .xC; T / and .x�; T / with T � 2N are
in natural correspondence to cylinders in M connecting the critical points xC, x�,
which satisfy the R-dependent perturbed Cauchy–Riemann equation

N@J;Hu � @s D @suC J.u/ � .@tuC T �X zH .T s; u// D 0:

While in general transversality generically only holds for t -dependent Hamiltonian
homotopies zH , we can now make use of the following natural generalization of
Lemma 2.5.

Lemma 5.1. Let .H; J / be a pair of a HamiltonianH and an almost complex struc-
ture J on a closed symplectic manifold with hŒ!�; �2.M/i D 0 so that .H; !.�; J �// is
Morse–Smale. Choose ' 2 C1.R;RC/ with '.s/ D 1=2 for s � �1 and '.s/ D 1

for s 	 1, and let zH W R � M ! R, zH.s; p/ D '.s/ � H.p/. Then the following
holds:

� The linearization zFu of rJ; zHu D @su C J.u/X
zH .s; u/ is surjective at all

solutions.

� If 
 > 0 is sufficiently small, all finite energy solutions u W R � S1 ! M of
N@J; zH �u D @suC J.u/.@tuC XH �

.s; u// D 0 with zH � .s; �/ D 
 zH.
s; �/ are

independent of t 2 S1.

� In this case, the linearization zDu D zD�
u of N@J; zH � is onto at any solution

u W R � S1 ! M .

Proof. The proof is a simple generalization of the arguments given in [SZ] and we
just show the first statement. Let Q' W R ! RC with @s Q' D '. Then Qu.s/ D u. Q'.s//
satisfies rJ; zH Qu D 0 whenever u W R ! M is a solution of rJ;Hu D 0, since

@s QuC r zH.s; Qu/ D @s Q'.s/ � @suC '.s/ � rH.u/:
For Q� 2 Lp. Qu�TM/ we find � 2 Lp.u�TM/ so that Q�.s/ D �. Q'.s//. Assuming
that hF Qu Q�; Q�i D 0 for all Q� 2 H 1;p. Qu�TM/, it follows that hFu�; �i D 0 for all � 2
H 1;p.u�TM/ by identifying Q�.s/ D �. Q'.s//, where zF Qu, Fu denote the linearizations
of rJ; zH , rJ;H at Qu; u, respectively. The regularity of .H; J / provides us with
the surjectivity of Fu at any solution u W R ! M , so that � and therefore Q� must
vanish. �

With the fixed Hamiltonian H .2/ W M ! R for the cylinders we choose the
Hamiltonian homotopy for the cylinders zH .2/ W R �M ! R to be

zH .2/.s; p/ D '.s/ �H .2/.p/;
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so that zH .2/.s; �/ D H .2/=2 for s � �1 and zH .2/.s; �/ D H .2/. After possibly
rescaling H .2/, we can and will assume that both Lemma 2.5 and Lemma 5.1 hold
with 
 D 1 for the fixed J and the chosen H .2/, zH .2/, respectively.

Before we prove transversality in the next subsection, let us state the following
analogue of Theorem 2.6. Denote by J zH

N the domain-dependent almost complex
structure on R � S1 �M induced by zHN .

Theorem 5.2. Depending on the number of punctures n we have the following result
about the moduli spaces of J zH

N -holomorphic curves in R � S1 �M :
� n D 0: All holomorphic spheres are constant.
� n D 1: Holomorphic planes do not exist.
� n D 2: For T � 2N the automorphism group Aut.CP 1/ acts on the para-

metrized moduli space M0.S1 � M; .xC; T /; .x�; T /; J zH
N / of holomorphic

cylinders with constant finite isotropy group ZT and the quotient can be nat-
urally identified with the space of gradient flow lines of H .2/ with respect to
the metric !.�; J �/ on M between the critical points xC and x� of H .2/. In
particular, we have

]M.R � S1 �M I .xC; T /; .x�; T /IJ zH
N / D ıx�;xC

since the zero-dimensional components are empty for xC ¤ x� and just contain
the constant path for xC D x�.

� n 	 3: For PC � P.H .2/=2N ;� 2N / and P� � P.H .2/=2N C1;� 2N / the
action of Aut.CP 1/ on the parametrized moduli space is free. There remains a
free S1-action on the moduli space, where the quotient is given by

f.s0; u; z/ W s0 2 R; u W CP 1 � fzg ! M W .
1/; .
2/g=Aut.CP 1/

with

.
1/: duCX
zHN

z .z; h0
1 C s0; u/˝ dh0

2

C J.u/ � .duCX
zHN

z .z; h0
1 C s0; u/˝ dh0

2/ � i D 0;

.
2/: u B  ˙
k .s; t/

s!˙1�����! x˙
k :

Proof. The proof is completely analogous to the one of Theorem 2.6. Note that
it follows by Lemma 2.3 that h W CP 1 � fzg ! R � S1 can be identified with
.s0; t0/ 2 R�S1 and that the mapu now satisfies an s0-dependent perturbed Cauchy–
Riemann equation. For n D 2 observe that by Lemma 4.1 we can identify M.S1 �
M I .xC; T /; .x�; T /IJ zH

N /with the space of allu W R ! M satisfying rJ; zH .2/u D 0,

u.s; t/ ! x˙, which following the proof of Lemma 4.1 can be identified with the
space of Qu.s/ D u. Q'.s// satisfying rJ;H .2/u D 0. �
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5.2. Transversality. For the remaining part of this section we discuss transversality,
where we again restrict ourselves to the case N D 0.

Since N@
J zH .h; u/ D .N@h; N@J; zH;s0

u/ with

N@J; zH;s0
u D duCX

zH .j; z; h0
1 C s0; u/˝ dh0

2

C J.u/ � .duCX
zH .j; z; h0

1 C s0; u/˝ dh0
2/ � i;

where X zH .j; z; s; u/ denotes the symplectic gradient of zH.j; z; s; �/ W M ! R, it
follows that the linearization Dh;u of N@

J zH is again of diagonal form.

It follows that for n D 2 we get transversality from Lemma 4.2 and Lemma 5.1
by the special choice of zH .2/.

For n 	 3 let us describe the setup for the underlying universal Fredholm problem.
As before the Cauchy–Riemann operator extends to a C1-section in a Banach

space bundle zEp;d ! Bp;d � zH `. Here Bp;d D Bp;d .R � S1 � M IPC; P�/
denotes the manifold of maps from Section 5, which is given by the product

Bp;d .R � S1 �M I .x˙
k ; T

˙
k // D H

1;p;d
const . PS;C/ � Bp.M I .x˙

k // � M0;n;

while the set of coherent Hamiltonian perturbations H `
n.M I .H .k//n�1

kD2
/ is now re-

placed by the set of coherent Hamiltonian homotopies

zH ` D zH `
n.M IH I . zH .k//n�1

kD2/

for fixed coherent Hamiltonian H W `n MnC1 �M ! R and zH .2/; : : : ; zH .n�1/.

Any zH .n/ 2 zH ` is a C `-map

zH .n/ W M0;nC1 � R �M ! R;

which extends to a C `-map on xM0;nC1 � R �M , so that

� on
�
. xM0;nC1�M0;nC1/[.M0;n�N0/

��R�M it is given by zH .2/; : : : ; zH .n�1/,

� zH .n/ D H .n/=2 on M0;nC1 � .�1;�2N / �M ,

� and zH .n/ D H .n/ on M0;nC1 � .C2N ;C1/ �M ,

whereN0 � PS again denotes the fixed neighborhood of the punctures. It follows that
the tangent space at zH D zH .n/ 2 zH ` is given by

T zH zH `
n D zH `

n.M I 0I .0/n�1
kD2/:
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Since the linearization of N@
J zH at . Nh; u; j; zH/ 2 Bp;d � zH ` is again of diagonal

form,

D Nh;u;j; zH D Dj C diag.N@;Du; zH /;

Tj M0;n ˚H
1;p;d
const . PS;R2/˚H 1;p.u�TM/˚ T zH zH `

! Lp;d .T � PS j̋;i R2/˚ Lp.ƒ0;1
j̋;J u

�TM/;

it remains by Lemma 4.2 to prove surjectivity of Du; zH , which is the linearization of

the perturbed Cauchy–Riemann operator N@J;s0
.u; zH/ D N@J; zH;s0

.u/. Since the proof
is in the central arguments completely similar to Lemma 4.3, we just sketch the main
points.

Assume for some � 2 Lq.ƒ0;1
j̋;J u

�TM/ that hDu; zH .�; zG/; �i D 0 for all

.�; zG/ 2 H 1;p.u�TM/˚T zH zH `, where again 1=pC 1=q D 1. From h�;Du�i D 0

for all � we already know that it suffices to show that � vanishes on an open and dense
subset.

Now observe that it follows from the same arguments used to prove Lemma 4.3
that

0 D hD zH zG; �i D
Z

PS�B

kdh0
1.z/k2 � d zG.j; z; h1

0.z/C s0; u.z// � �1.z/ dz

for all zG 2 T zH zH `, whereB is the set of branch points of h0 W PS ! R�S1, we again
write �.z/ D �1.z/˝dh0

1 C�2.z/˝dh0
2 with �2.z/CJ.u/�1.z/ D 0 for z 2 PS�B

and whered zG.j; z; h1
0.z/Cs0; �/ is the differential of zG.j; z; h1

0.z/Cs0; �/ W M ! R.
But with this we can prove as before that � vanishes identically on the open and dense
subset PS � B .

Assume to the contrary that �.z0/ ¤ 0, i.e., �1.z0/ ¤ 0 for some z0 2 PS �B . As
in the proof of Lemma 4.3 we find G0 2 C1.M/ so that

dG0.u.z0// � �1.z0/ > 0:

Setting j0 WD j , we organize all fixed maps h0 W PS ! R � S1 for different j
on PS into a map h0 W M0;nC1 ! R � S1. Let z' 2 C1. xM0;nC1 � R; Œ0; 1�/ be a
smooth cut-off function around .j0; z0; h

1
0.j0; z0/Cs0/ 2 M0;nC1 �R with '.j0; z0;

h1
0.j0; z0/C s0/ D 1 and '.j; z; h1

0.j; z/C s/ D 0 for .j; z; s/ 62 U.j0; z0; s0/. Here
the neighborhood U.j0; z0; s0/ � xM0;nC1 � R is chosen so small that

U.j0; z0; s0/ \ ��
. xM0;nC1 � M0;nC1/ [ .M0;nC1 �N0/

� � R
� D ;;

U.j0; z0; s0/ \ � xM0;nC1 � �
.�1;�1/ [ .C1;C1/

�� D ;;
and dG0.z; u.z// � �1.z/ 	 0 for all .z; j; h1

0.j; z/C s/ 2 U.j0; z0; s0/.
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Defining zG W xM0;nC1 � R �M ! R by zG.j; z; s; p/ WD '.j; z; s/ �G0.p/, this
leads to the desired contradiction since we found zG 2 T zH zH ` D zH `

n.M I 0I 0; : : : ; 0/
with

hD zH � zG; �i D
Z

PS�B

kdh0
1.z/k2 � d zG.j0; z; h

1
0.j0; z/C s0; u.z// � �1.z/ dz > 0:

We have shown that the universal moduli space

M
�
R � S1 �M IPC; P�IJH I .J zH;.k//n�1

kD2

�
is again transversally cut out by the Cauchy–Riemann operator N@J . Further it follows
by the same arguments as in Section 4 that we can choose a (smooth) coherent
Hamiltonian homotopy zH W `n M0;nC1 � R ! C1.M/ such that for all N 2 N

and PC; P� the moduli spaces M.R �S1 �M IPC; P�IJ zH
N / are transversally cut

out by the Cauchy–Riemann operator.

6. Contact homology

6.1. Chain complex. The contact homology of S1 � M equipped with the stable
Hamiltonian structure .!H ; �H / is defined as the homology of a differential graded
algebra .A; @/, which is generated by closed orbits of the Reeb vector field RH and
whose differential counts JH -holomorphic curves with one positive puncture. As in
[EGH] we start with assigning to any .x; T / 2 P.H/, which is good in the sense of
[BM], a graded variable q.x;T / with

deg q.x;T / D dimM=2 � 2C �CZ.x; T /:

Here�CZ denotes the Conley–Zehnder index for .x; T /, which is defined as in [EGH]
after fixing a basis for H1.S

1 � M/ and choosing a spanning surface between the
orbit .x; T / and suitable linear combinations of these basis elements. Note that in
the corresponding definition in [EGH] one addsm�3, wherem denotes the complex
dimension of R � S1 �M . Further we assume, as in [EGH], that H1.S

1 �M/ and
henceH1.M/ is torsion-free, where we use that the torsion-freedom ofH�.S1/ also
yields the Künneth formula for H�.S1 �M/. Let

QŒH2.S
1 �M/� D ˚P

q.A/eA W A 2 H2.S
1 �M/; q.A/ 2 Q

�
be the group algebra generated by H2.S

1 �M/ Š H2.M/˚ .H1.S
1/˝H1.M//

with grading given by
deg eA D hc1.TM/;Ai:
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Since c1.TM/ clearly vanishes onH1.S
1/˝H1.M/ we can and will work with the

reduced group ring QŒH2.M/�. With this let A� be the graded commutative algebra
of polynomials in the formal variables q.x;T / assigned to good periodic orbits with
coefficients in QŒH2.M/�. LetC� be the vector space over Q freely generated by the
graded variables q.x;T /, which naturally splits, C� D L

T C
T� with C T� generated

by the good orbits of integer period T . Since C� is graded, we can define a graded
symmetric algebra S.C�/ and it follows that

A� D S.C�/˝ QŒH2.M/�:

For the following we assume that all occuring periodic orbits are good. Note that
to any holomorphic curve in M.S1 � M IPC; P�IJH / we assign as in [EGH] a
homology class A 2 H2.S

1 �M/ after fixing a basis forH1.S
1 �M/ and choosing

spanning surfaces between the asymptotic orbits in PC; P� � P.H/ and suitable
linear combinations of these basis elements. Requiring that the differential @ W A ! A
satisfies a graded Leibniz rule, it is defined by (see [EGH], p. 621)

@q.x0;T0/ D
X

P �;A

]MA.S
1 �M IPC; P�IJH /=R q.x�

1
;T �

1
/ : : : q.x�

n ;T �
n / e

A;

where MA.S
1 � M IPC; P�IJH / denotes the one-dimensional component of

the moduli space of holomorphic curves with PC D f.x0; T0/g and with arbitrary
orbit set P� D f.x�

1 ; T
�
1 /; : : : ; .x

�
n ; T

�
n /g representing the class A 2 H2.M/ Š

H2.S
1 �M/=.H1.S

1/˝H1.M//.
For .T1; : : : ; Tn/ 2 Nn let A.T1;:::;Tn/ denote the subspace of A spanned by

monomials q.x1;T1/ : : : q.xn;Tn/,

A.T1;:::;Tn/ D S.T1;:::;Tn/.C�/˝ QŒH2.M/�

with

S.T1;:::;Tn/.C�/ D S.C T1� ˝ � � � ˝ C Tn� /;

where S denotes the projection from the tensor to the symmetric algebra, in par-
ticular, A.T1;:::;Tn/ does not depend on the ordering of the T1; : : : ; Tn. Since
]M.S1 � M IPC; P�IJH /=R D 0 for T �

1 C � � � C T �
n ¤ Tk by Lemma 1.1.3,

it follows that the differential @ respects the splitting

A D
M
T 2N

AT ;

where AT D L
T1C���CTnDT A.T1;:::;Tn/.
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6.2. Proof of the main theorem. In what follows we use our results about holo-
morphic curves in R � S1 � M to prove the main theorem. At first we compute
H�.A�2N

; @/ D L
T �2N H�.AT ; @/ using our results about moduli spaces of holo-

morphic curves in R�S1 �M in Theorem 2.6 together with the transversality results.
With the fixed almost complex structure J onM letH W `M0;nC1 ! C1.M/

be a coherent Hamiltonian perturbation as before, in particular, H .2/ satisfies
Lemma 2.5 with 
 D 1. Following corollary 4.4 we further assume thatH is chosen
such that transversality holds for all moduli spaces M.S1 � M IPC; P�IJH=2N

/,
P˙ � P.H .2/=2N ;� 2N /, simultaneously for all N 2 N. Together with The-
orem 2.6 it then follows that for defining the algebraic invariants we only have
to count gradient flow lines of the function H .2/ on M with respect to the metric
gJ D !.�; J �/ on M . For N 2 N let .AN ; @N / denote the differential algebra for
the domain-dependent Hamiltonian H=2N W `M0;nC1 ! C1.M/ and the fixed
almost complex structure J on M . For the computation of the contact homology
subcomplex we use special choices for the basis elements in H1.S

1 � M/ and the
spanning surfaces as follows: Choose a basis forH1.S

1 �M/ D H1.S
1/˚H1.M/

containing the canonical basis element ŒS1� of H1.S
1/, which is represented by the

circle .x�; 1/ W S1 ! S1 �M , t 7! .t; x�/ for some point x� 2 M . For any periodic
orbit .x; T / 2 P.H .2/=2N ;� 2N /we have Œ.x; T /� D T ŒS1� 2 H1.S

1 �M/, since
x is a constant orbit inM , and we naturally specify a spanning surfaceS.x;T / between
.x; T / and the T -fold cover of .x�; 1/ by choosing a path �x W Œ0; 1� ! M from x�
to x and setting S.x;T / W S1 � Œ0; 1� ! S1 �M , S.x;T /.t; r/ D .T t; �x.r//.

Lemma 6.1. Let HM� D HM�.M;�H .2/; gJ I Q/ denote the Morse homology
for the Morse function �H .2/ and the metric gJ D !.�; J �/ on M with rational
coefficients. Then we have

H�.A�2N

N ; @N / D S�2N
�M

N

HM��2

�
˝ QŒH2.M/�;

where

S�2N
�M

N

HM��2

�
D

M
T1C���CTn�2N

S.T1;:::;Tn/
�M

N

HM��2

�
:

Proof. For the grading of the q-variables we have

deg q.x;T / D dimM=2 � 2C �CZ.x; T / D ind�H .x/ � 2;
when we choose a canonical trivialization of TM over .x�; 1/ and extend it over
the spanning surfaces to a canonical trivialization over .x; T /, that is, the map
‚ W S1 � R2m ! x�TM D S1 � TxM is independent of S1. It follows that
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C T� agrees with the chain group CM��2 for the Morse homology for T � 2N and
therefore

A�2N

N D S�2N
�M

N

CM��2

�
˝ QŒH2.M/�:

Here it is important to observe that any .x; T / 2 P.H .2/=2N ;� 2N / is indeed good
in the sense of [BM]: note that it follows from �CZ.x; T / D ind�H .x/ � dimM=2

that �CZ.x; T / has the same parity for all T � 2N .
On the other hand it follows from Theorem 2.6 that the differential @ W A ! A

indeed agrees with the differential in Morse homology. Further it follows from
the above choice of spanning surfaces that they all represent the trivial class A 2
H2.M/ D H2.S

1 �M/=.H1.S
1/˝H1.M//: Indeed, letting u denote the gradient

flow line between x0 and x it follows that u represents the class A D T ŒS1� ˝
Œ�x0

]u]� �x� 2 H1.S
1/˝H1.M/. Using the theorem of Künneth we hence in fact

have

H�.A.T1;:::;Tn/
N ; @/ D H�.S.T1;:::;Tn/

�M
N

CM��2

�
˝ QŒH2.M/�; @/

D S.T1;:::;Tn/
�
H�
�M

N

CM��2; @
Morse

��
˝ QŒH2.M/�

D S.T1;:::;Tn/
�M

N

HM��2

�
˝ QŒH2.M/�

and the claim follows. �

With this we can now complete the proof of the main theorem by usingTheorem 5.2
and the transversality result of Section 5.

To this end choose a coherent Hamiltonian homotopy zH W `n M0;nC1 � R !
C1.M/ as in Section 5, i.e., with zH.j; z; s; p/ D H.j; z; p/=2 for small s and
zH.j; z; s; p/ D H.j; z; p/ for large s such that for all N 2 N and PC; P� the

moduli spaces M.R � S1 � M IPC; P�IJ zH
N / are transversally cut out. Let J zH

N

denotes the coherent non-cylindrical almost complex structure on R�S1�M induced
by J and zH=2N .

Let ‰N W .AN ; @N / ! .AN C1; @N C1/ be the chain homotopy, defined as in
[EGH], by counting holomorphic curves with one positive puncture and an arbitrary
number of negative punctures in the resulting almost complex manifold .R � S1 �
M;J

zH
N / with cylindrical ends. Then it follows from Theorem 5.2 that the restriction

‰T
N W .AT

N ; @N / ! .AT
N C1; @N C1/ is the identity for T � 2N , since again all curves

with three or more punctures come inS1-families and all zero-dimensional cylindrical
moduli spaces just consist of trivial gradient flow lines.
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