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Conformal arc-length as 1
2
-dimensional length of the set

of osculating circles

Rémi Langevin and Jun O’Hara�

Abstract. The set of osculating circles of a given curve in S 3 forms a lightlike curve in the
set of oriented circles in S 3. We show that its “ 1

2
-dimensional measure” with respect to the

pseudo-Riemannian structure of the set of circles is proportional to the conformal arc-length of
the original curve, which is a conformally invariant local quantity discovered in the first half of
the last century.
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1. Introduction

The Frenet–Serret formula provides a local expression of a space curve in terms of
the arc-length, the curvature, and the torsion. It is well-known that a space curve is
determined by the curvature and the torsion up to motion of the Euclidean space R3,
i.e. isometric transformation of R3.

Let us consider local theory of space curves in conformal geometry. We remark
that the arc-length is not preserved by Möbius transformations. Three conformal
invariants have been found using a suitable normal form. They are conformal arc-
length, conformal curvature, and conformal torsion (the reader is referred to [CSW]
for example). Just like in the Euclidean case we have:

Theorem 1.1 ([Fi], Theorem 7.2). An oriented connected vertex-free curve is de-
termined up to conformal motion by the three conformal invariants, the conformal
arc-length, the conformal torsion, and the conformal curvature.

In this article, we study the conformal arc-length.

�This work is partly supported by the JSPS (Japan Society for the Promotion of Science) Bilateral Program
and Grant-in-Aid for Scientific Research No. 19540096.
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Definition 1.2. Let C be an oriented curve in R3. Let s, �, � be the arc-length,
curvature, and torsion of C , respectively. The conformal arc-length parameter � of
C is given by

d� D 4
p
�02 C �2�2 ds: (1.1)

It gives a conformally invariant parametrization of a vertex-free curve. We call the
1-form .c�1/�d� on the curve C the conformal arc-length element, where c is a map
from some interval I to R3 so that C D fc.s/g.

The conformal arc-length was given in [Li] and the above formula was given
in [Ta].

In this paper, we give a new interpretation of the conformal arc-length in terms of
the set of the osculating circles.

Let � be a lightlike curve. Although its length is equal to 0, we can define a
non-trivial “L

1
2 -measure” of � by

L
1
2 .�/ D lim

max jtj C1�tj j!C0
X
i

p
k�.tiC1/ � �.ti /k;

and a “1
2

-dimensional length element” d�
L

1
2 .�/

by d�
L

1
2 .�/

D 4

q
jh..� ;..� ij
12

dt so that
L

1
2 .�/ D R

�
d�
L

1
2 .�/

.

Let �.1; 3/ denote the set of the oriented circles in R3 (or S 3), where we consider
lines in R3 as circles. It has a pseudo-Riemannian structure with index 2 which is
compatible with the Möbius transformations. Let C be a curve in R3. The set of
osculating circles to C forms a lightlike curve � in �.1; 3/ (Theorem 7.2). Our main
theorem claims that the L

1
2 -measure of � is equal to a constant times the conformal

arc-length of the original curve C (Corollary 7.4).
We also study various properties of curves of osculating circles, or in general,

lightlike curves in the set of oriented circles (or spheres). In each case, a geometric
counterpart of the L

1
2 measure is given.

This article is arranged as follows. In Section 2 we explain how to realize spheres
and Euclidean spaces in Minkowski space. In Section 3 we give the bijection between
the set of codimension 1 oriented spheres and the de Sitter space. In Section 4
we define 1

2
-dimensional length element and L

1
2 -measure of a lightlike curve. In

Section 5 we study the set of osculating circles to a curve in R2 (or S 2), which becomes
a lightlike curve in 3-dimensional de Sitter space. The Section 6 is a preparation to
the Section 7, where we prove our main theorem. These two sections can be read
independently of the previous section. In the last section we relate lightlike curves
in the space of circles, lightlike curves in the space of spheres and the infinitesimal
cross ratio.
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In this article we will use the following notations: the letter s is used for the
arc-length of a curve in E3 or S 3, and the derivative with respect to s is denoted by
putting 0 . The letter t is for a general parameter, and the derivative with respect to
t is denoted by putting .. The letter Qs is for the arc-length of the set of osculating
spheres to a curve in E3 or S 3, which is a curve in de Sitter space in the Minkowski
space (Section 8).

The authors thank Gil Solanes and Martin Guest for valuable discussions.

2. Spherical and Euclidean models in the Minkowski space

Let n be 1; 2, or 3. The Minkowski space RnC2
1 is RnC2 with indefinite inner product:

hx;yiD�x0y0 C x1y1 C � � � C xnC1ynC1:

Define the Lorentz form by L.v/ D hv; vi. The norm of a vector v is given by
kvk D pjL.v/j . A vector v in RnC2

1 is called spacelike if L.v/ > 0, lightlike if
L.v/ D 0 and v ¤ 0, and timelike if L.v/ < 0. The set of lightlike vectors and
the origin, fv 2 RnC2

1 j hv; vi D 0g, is called the light cone and will be denoted by
Light. The “pseudo-sphere”, fv 2 RnC2

1 j hv; vi D 1g, is called the de Sitter space
and will be denoted by ƒ or ƒnC1.

R5
1

S 3.1/

Light

ƒ

Figure 1. Model of S 3, light cone and de Sitter space.

Let W be a vector subspace of RnC2
1 . There are three cases which are mutually

exclusive. Let h ; ijW denote the restriction of h ; i to W .
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(1) The case when h ; ijW is non-degenerate. This case can be divided into two
cases:

(1-a) The case when h ; ijW is indefinite. It happens if and only ifW intersects
the light cone transversely. In this case W is said to be timelike.

(1-b) The case when h ; ijW is positive definite. It happens if and only if W
intersects the light cone only at the origin. In this case W is said to be
spacelike.

(2) The case when h ; ijW is degenerate. It happens if and only if W is tangent to
the light cone. In this case W is said to be isotropic.

The sphere S n, the Euclidean space En, and the hyperbolic space Hn can be realized
in RnC2

1 as affine sections of the light cone, i.e., the intersection of an affine .nC 1/-
space H and the light cone (Figure 2 (top)). We call them spherical, Euclidean, and

m

mmm

mm

En

En

H

H

Hn

Hn

Light

Light
Light

S n

S n

vv v

1=kg � n1=kg � n

†††

1=k � n

Figure 2. Spherical, Euclidean, and hyperbolic models in the Minkowski space RnC2
1

(top).
The geodesic curvature kg , pictures in affine hyperplanes H (bottom).

hyperbolic models, respectively. Their metrics are induced from the Lorentz form on
RnC2
1 ([G]).

(1) When the affine space H is tangent to the hyperboloid FC D fx j L.x/ D
�1; x0 > 0g, the intersection Light \H is a sphere S n with constant curvature 1.

When the tangent point is .1; 0; : : : ; 0/, i.e., whenH D fx0 D 1g, we will denote
it by S n.1/. The n-sphere S 3 can be identified with the set of lines through the origin
in the light cone.

(2) When the affine space H is parallel to an isotropic subspace and does not
contain the origin, the intersection Light\H is an Euclidean space En. For example,
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take two lightlike vectors n1 and n2 given by

n1 D .1; 1; 0; : : : ; 0/; n2 D .1;�1; 0; : : : ; 0/:

Put

H D n2 C .Spanhn1i/? and En0 D Light \H:
Then the intersection can be explicitly expressed as

En0 D
n�
1C x � x

4
; �1C x � x

4
; x

� ˇ̌
x 2 Rn

o
; (2.1)

where � denotes the standard inner product. There is an isometry obtained by the
projection in the direction of n1 from En0 to f.1;�1;x/ j x 2 Rng Š Rn.

The lightlike lines in the light cone gives the bijection between S n.1/ n fn1g and
En0 . It is exactly same as the stereographic projection from the north pole N from
S n n fN g to Rn which is tangent to S n at the south pole through the identifications
S n Š S n.1/ and Rn Š En0 .

3. De Sitter space as the space of codimension 1 spheres

Let �.n� 1; n/ be the set of oriented .n� 1/-spheres† in En (or S n). Then there is
a bijection from �.n�1; n/ to the de Sitter spaceƒnC1. Let us express this bijection
' in two ways. In this section we consider En (or S n) as the intersection of the light
cone and an affine hyperplane H in the Minkowski space RnC2

1 .

3.1. Using pseudo-orthogonality. Let † be an oriented .n � 1/-sphere in En

(or S n). Then † can be obtained in H as the intersection of En (or S n) and an
affine hyperplane W of H . By taking a cone from the origin of RnC2

1 , † can be
realized in RnC2

1 as the intersection of the light cone and an oriented codimension 1
vector subspace of RnC2

1 ,… (Figure 3). Let � 2 ƒnC1 be the endpoint of the positive
unit normal vector to ….

Definition 3.1. As above, the bijection ' W �.n�1; n/ ! ƒnC1 is given by assigning
� to †.

Since the pseudo-orthogonality is preserved by the action of the Lorentz group
O.4; 1/, this bijection is compatible with the action of O.4; 1/, i.e.,

' .A �†/ D A'.†/ .A 2 O.4; 1//: (3.1)
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†

�

…

l D …?

Light

Figure 3. The bijection between �.n � 1; n/ and ƒnC1.

3.2. Using geodesic curvature and a normal vector. Let † be a codimension 1
sphere in S n or in En. The geodesic curvature of a sphere † means the geodesic
curvature of any geodesic curve on it. Let it be denoted by kg . Letm be a point in†
and n the unit normal vector to † at m. As is illustrated in Figure 2 (bottom), n is a
vector in TmS n or TmEn which is a subspace of TmH .

Proposition 3.2. As above, the point � D '.†/ 2 ƒ is given by

� D kgmC n: (3.2)

When the ambient space is Euclidean, the letter “g” of kg can be dropped off.

Remark. If the orientation of † is reversed then the corresponding point � in ƒ
should be replaced by �� . Therefore, we need a sign convention for the geodesic
curvature kg , which we shall fix as follows. (We only argue for a spherical model.)

Choose the unit normal vector n so that if a basis of Tm† consisting of ordered
vectors v1; : : : ; vn�1 gives the positive orientation of Tm†, then a basis of TmS n

consisting of ordered vectors v1; : : : ; vn�1;n gives the positive orientation of TmS n.
Let a be an acceleration vector at m to a geodesic circle of † through m and p the
orthogonal projection to TmS n. Then kg is given by p.a/ D kgn.

Proof. We give two kinds of proofs for the case when n D 2.

(1) Assume kg ¤ 0. First recall that if q is a point in the light cone, the orthogonal
complement of Spanhqi in the Minkowski space is the codimension 1 hyperplane
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TqLight which is tangent to the light cone along the line Spanhqi. It implies that the
line …? which is orthogonal to … is contained in (in fact, it turns out to be equal to)T
q2† TqLight: By taking the intersection with the affine 3-space H (Figure 2), it

follows that…? \H is the vertex v of a cone which is tangent to S 2.1/ D Light\H
along †. Therefore � is given by � D ˙v=kvk ([HJ]).

Let V be the cone with vertex v which is tangent to S 2 (or E2 or H2) along †
(Figure 2 (bottom)). Develop the cone V on an Euclidean plane by rolling it. As the
cone is a developable ruled surface, this developing is a isometry. The curve obtained
from † is an arc of a circle whose curvature is equal to the geodesic curvature of †,
which means that kv �mk is equal to 1=kg (Figure 4).

E2

R2cone
center

H

Figure 4. The projection in the lightlike direction gives an isometry between E2, R2 and the
cone in H which is tangent to E2 along †.

Therefore we have v D m C 1
kg

n: Since m is lightlike and orthogonal to n, we

have hv; vi D kg
�2, which implies that the unit normal vector to … is given by

˙kgv D kgmC n.

(2) We first give a proof for the spherical case. Let † be a circle given by
† D S 2 \W and m a point in †. Since the bijection ' is O.4; 1/-equivariant, see
(3.1), we may assume, after an action of O.4; 1/ if necessary, that the spherical model
is S 2.1/, and W and m are given by

W D f.1; cos˛; y; z/ j y; z 2 Rg .0 < ˛ � �
2
/;

m D .1; cos˛; sin ˛; 0/:

Since the radius of † in the affine space W is equal to sin ˛ (Figure 5) we
have a D �

0; 0;� 1
sin˛ ; 0

�
, which implies p.a/ D �

0; cos˛;� cos2 ˛
sin˛ ; 0

�
. Since

n D ˙.0; sin ˛;� cos˛; 0/ it follows that kg D ˙ cot ˛.
Since…, where† D S 2.1/\…, is given by… D fc.1; cos˛; y; z/ j c; y; z 2 Rg,

its unit normal vector � is given by � D ˙�
cot ˛; 1

sin˛ ; 0; 0
�
. Therefore we have

� D kgmC n.
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˛ ˛

†
m

W

n

a

0

Figure 5. A picture in the section with the
plane containing the origin, m, and a.

˛

†
m

v

0

Figure 6. The vertex v of a cone tangent to
S 2.1/ at †.

A proof for the Euclidean case can be obtained exactly in the same way. The
O.4; 1/-equivariance of the bijection ' enables us to locate the model E2, the sphere
†, and the pointm in special positions which make the computation very easy. �

4. 1
2
-dimensional measure of lightlike curves

Let � be a lightlike curve in Minkowski space Rm1 , or in general, in a pseudo-
Riemannian space Rm

l
with index l . (When l > 1 a lightlike curve is called a

null curve in [O’N]. ) We define the Lorentz quadratic form L.v/ by hv; vi and the
norm by kvk D pjL.v/j for a vector v in Rm

l
.l > 1/ as well.

Proposition 4.1. Let � be a compact lightlike curve which is piecewise of class C 4.
Let t 2 Œ0; T � be the parameter, which is not necessarily the arc-length. We consider
a subdivision 0 D t0 < t1 � � � < tn D T of the interval Œ0; T �. Then the following
limit exists, is finite, and generically non-zero:

lim
ı!0

X
i

p
k�.tiC1/ � �.ti /k; (4.1)

where ı D maxfjtiC1 � ti jg.

Proof. We have

�.t C h/ � �.t/ D .
�hC

..
�

2
h2 C

...
�

6
h3 CO.h4/:



Vol. 85 (2010) Conformal arc-length 281

Since � is lightlike, we have

h.�; .
�i D 0; h.�; ..� i D 0; and h..� ; ..� i C h.�; ...� i D 0;

which implies

L.�.t C h/ � �.t// D h�.t C h/ � �.t/; �.t C h/ � �.t/i

D
�h..� ; ..� i

4
C h.�; ...� i

3

�
h4 CO.h5/

D � 1

12
h..� ; ..� i h4 CO.h5/:

(4.2)

It follows that

lim
max jtj C1�tj j!C0

X
i

p
k�.tiC1/ � �.ti /k D

Z
C

4

s
jL...�/j
12

dt: (4.3)

�

Definition 4.2. Let us call (4.1) the 1
2
-dimensional measure or L

1
2 -measure of a

lightlike curve � and denote it by L
1
2 .�/.

Definition 4.3. Let � be a lightlike curve. Define a 1-form d�
L

1
2 .�/

on � by

��d�
L

1
2 .�/

D 4

s
jL...�/j
12

dt (4.4)

and call it the 1
2
-dimensional length element or L

1
2 -length element of � .

The formula (4.3) implies that the L
1
2 -measure of a lightlike curve � satisfies

L
1
2 .�/ D

Z
�

d�
L

1
2 .�/

: (4.5)

Lemma 4.4. The L
1
2 -length element of a lightlike curve is well defined, i.e., the

right-hand side of (4.4) does not depend on the parametrization of � up to sign.

Proof. Let t and u be any parameters on � . Let us denote d
du

by putting 0 and d
dt

by .. Then we have

.
� D du

dt
� 0;

..
� D d

dt

.
� D du

dt
� d
du

�
du

dt
� 0

�
D du

dt

²�
du

dt

�0
� 0 C du

dt
� 00

³
:
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Since h� 0; � 0i D 0, and hence h� 0; � 00i D 0, we have�
d2�

dt2
;
d2�

dt2

	
D

�
du

dt

�4�
d2�

du2
;
d2�

du2

	
;

which implies

4

sˇ̌̌̌�
d2�

du2
;
d2�

du2

	ˇ̌̌̌
du D ˙ 4

sˇ̌̌̌�
d2�

dt2
;
d2�

dt2

	ˇ̌̌̌
dt: �

5. Lightlike curves in de Sitter spaces

In this section we consider two examples of lightlike curves in de Sitter space: a
curve inƒ3 consisting of the osculating circles to a curve in E2 or S 2, and that inƒ4

of the focal spheres to a surface in E3 or S 3 along a corresponding line of principal
curvature of the surface.

5.1. Lightlike curves in �.1; 2/. The set �.1; 2/ of oriented circles in S 2 can be
identified with de Sitter space ƒ3 in R41. We give a characterization of a set of
osculating circles to a curve in S 2 or E2.

Recall that a point in a plane curve is a vertex if and only if k0 D 0 holds at that
point, which happens if and only if the curve has the third order contact at that point.
As the second condition is conformally invariant, we adopt it as the definition of a
vertex of a curve in a sphere (Definition 7.8).

Theorem 5.1. A curve � in �.1; 2/ is a set of the osculating circles to a vertex-free
curve C in S 2 or E2 with a non-vanishing velocity vector if and only if � is lightlike
and dim Spanh.�; ..� i D 2.

Without the two conditions, C being vertex-free and dim Spanh.�; ..� i D 2, the
“if” part of the above statement may fail although the “only if” part still holds.

Proof. We prove the first statement first.
“Only if ” part. Suppose � is the set of osculating circles to a curve C D fm.s/g,

where s is the arc-length of C .
Let T denote the unit tangent vector to C : T D m0. The osculating circle to

the curve C at a point m.s/ has the same geodesic curvature as that of C at the
same point, which is kg.s/. Therefore Proposition 3.2 implies that �.s/ is given by
�.s/ D kg.s/m.s/C n.s/; which implies that

� 0.s/ D kg
0.s/m.s/C kg.s/m

0.s/C n0.s/:
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As m0 D T and n0 D �kgT , we have � 0.s/ D kg
0.s/m.s/, which proves that � is

lightlike.
Note that m D � 0=kg because kg

0 ¤ 0 as C is vertex-free. Since m.s/ is in an
affine subspace H that does not passes through the origin, dimhm;m0i D 2, which
implies dimh� 0; � 00i D 2.

“If ” part. Suppose � is a lightlike curve with non-vanishing tangent vectors. Each
tangent vector defines a point in S 2 by S 2 \ Spanh.�.t/i, which we denote by f .t/.
Put C D ff .t/g.

Let us denote the derivation with respect to t by putting . above. We may assume,
after reparametrization if necessary, that the x0-coordinate of

.
�.t/ is always equal

to 1. Then the point f .t/ in S 2.1/ is given by f .t/ D .
�.t/.

As h�.t/; �.t/i D 1 and h.�.t/; .�.t/i D 0 we have

h�.t/; .�.t/i D h�.t/; ..�.t/i D h�.t/; ...� .t/i D 0;

which implies

� 2 �
Spanh.�.t/; ..�.t/; ...� .t/i�? D �

Spanhf .t/;
.
f .t/;

..
f .t/i�?

:

Since dim Spanhf;
.
f i D dim Spanh.�; ..� i D 2 by the assumption,

.
f never vanishes,

therefore dim Spanhf .t/;
.
f .t/;

..
f .t/i D 3: Since the osculating circle to C at f .t/

is given by S 2 \ Spanhf .t/;
.
f .t/;

..
f .t/i, it corresponds to ˙�.t/ in ƒ3.

(2) Suppose � is a lightlike line in de Sitter space. Then it corresponds to a family
of circles which are all tangent to each other at a constant point, which cannot be a
family of osculating circles to a curve in S 2 or E2. As

..
� � 0 in this case, it implies

the second statement of the theorem. �

Let us prove that the L
1
2 -measure of the lightlike curve � � ƒ3 is equal to the

conformal arc-length of C .
Let s be the arc-length of a curve C .

Theorem 5.2. The conformal length � of a curve C in S 2, R2, or H2 is equal to
4
p
12 times the 1

2
-dimensional measure L

1
2 .�/ of the lightlike curve � � ƒ3 which

consists of the osculating circles to C . It is given by
R
C

q
jk0
g jds (we can drop the

letter “g” when C is a plane curve).

Proof. Let us denote the derivation with respect to s by putting 0 as before. Propo-
sition 3.2 and the proof of “only if ” part of Theorem 5.1 imply that � D kgm C n

and � 0 D kg
0m. Therefore the second derivative � 00 is given by kg

00mCkg
0T , where

T D m0 is the unit tangent vector to C . As the unit vector T is orthogonal to the
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�

�.ti /

�.tiC1/

Figure 7. An inscribed polygon on a lightlike curve � . A vector �.tiC1/ � �.ti / is timelike in
general.

lightlike vector m and spacelike since all the tangent vectors to the light cone which
are not tangent to a generatrix are spacelike, we see that

L.� 00/ D L.kg
00mC kg

0T / D kg
02L.T / D kg

02:

Therefore, (4.3) implies that the L
1
2 -measure of � is given by

L
1
2 .�/ D 4

q
1
12

Z
C

q
jkg 0j ds:

Since
q

jkg 0j ds D d� by (1.1), this completes the proof. �

Note that (4.2) implies that when kg
0 6D 0 the vector �.t C h/ � �.t/ is timelike

for small enough h.

5.2. Lightlike curves in �.2 ; 3/. We say that a sphere†O is an osculating sphere of
a curveC D ff .t/g if it has the third order contact withC . It happens if and only if the

point '.†O/ in ƒ which corresponds to †O satisfies '.†O/ ? Spanhf;
.
f ;

..
f ;

...
f i.

Remark. We use the word “osculating spheres” for curves and “focal spheres” for
surfaces (Theorem 5.4).

We identify the space �.2; 3/ of oriented spheres in S 3 with the 4-dimensional
de Sitter space ƒ in R51 as before.
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Proposition 5.3. Suppose � is a lightlike curve in �.2; 3/. Since � 0.t/ is lightlike,
it defines a point in S 3 by S 3 \ Spanh� 0.t/i, which will be denoted by f .t/. Put
C D ff .t/g. Then a sphere †.t/ which corresponds to �.t/ is not necessarily an
osculating sphere of C , but it contains the osculating circle to C at f .t/.

Proof. The proof is parallel to that of the “if ” part of Theorem 5.1. As h�.t/; �.t/i D
1 and h.�.t/; .�.t/i D 0 we have

h�.t/; .�.t/i D h�.t/; ..�.t/i D h�.t/; ...� .t/i D 0:

Therefore Spanh�.t/i is contained in
�
Spanh.�.t/; ..�.t/; ...� .t/i�?

, which implies that
†.t/ D S 3 \ .Spanh�.t/i/? contains S 3 \ Spanh.�.t/; ..�.t/; ...� .t/i which is the
osculating circle of C at f .t/. �

Let us now consider a surfaceM in S 3, H3, or R3. In the Poincaré ball model, the
intersection of a 2-sphere with the ball is called a sphere. It may be a usual geodesic
sphere or a plane of constant curvature between 0 and �1.

At a pointm 2 M , a sphere tangent toM atm whose geodesic curvature is equal
to one of the principal curvatures k1; k2 ofM atm, has higher contact withM . Let us
denote them by †1 and †2 and call them focal spheres to M at m. They are distinct
if the point m is not an umbilical point of M .

Theorem 5.4. The curve �1 � ƒ4 corresponding to the focal spheres†1 along a line
of principal curvatureC1 for the principal curvature k1 is lightlike. Its 1

2
-dimensional

measure is

L
1
2 .�1/ D 4

q
1
12

Z
C1

p
jX1.k1/j ds;

where X1 is the unit tangent vector to C1 which is parametrized by its arc-length s.

Proof. The proof is the same as above (Theorem 5.1) using the formula �.s/ D
kgm.s/Cn.s/, where kg D k1 is the geodesic curvature of the focal sphere†1. The
hypothesis thatC1 is a line of principal curvature associated to the principal curvature
k1 implies that n0.s/ D kgX1.s/. �

Remark. A similar statement is also valid if M is an hypersurface of some space-
form. The integral

R
C1

pjX1.k1/jds has already appeared in [Ro-Sa].

6. Space �.1; 3/ of the oriented circles in S 3

The pseudo-Riemannian structure of the space of the oriented circles in R3 (or S 3)
also arises naturally in the study of conformal geometry. Each tangent space of �.1; 3/

has an indefinite non-degenerate quadratic form which is compatible with Möbius
transformations.
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6.1. The set of circles as a Grassmann manifold. An oriented circle in R3 (or
S 3) can be realized in the Minkowski space R51 as the intersection of the light cone
and an oriented timelike 3-dimensional vector subspace. Therefore the set �.1; 3/

can be identified with the Grassmann manifold 
Gr�.3I R51/ of oriented 3-dimensional
timelike subspaces of R51.

It follows that the set �.1; 3/ is the homogeneous space SO.4; 1/=SO.2/�SO.2; 1/:
We give its pseudo-Riemannian structure explicitly in what follows.

6.2. Plücker coordinates for the set of circles. Let us recall the Plücker coordinates
of Grassmannian manifolds.

LetW be an oriented 3-dimensional vector subspace in R51, and let fx1;x2;x3g be
an ordered basis ofW which gives the orientation ofW . Define pi1i2i3 .0 � ik � 4/

by

pi1i2i3 D
ˇ̌̌̌
ˇ̌ x1 i1 x1 i2 x1 i3
x2 i1 x2 i2 x2 i3
x3 i1 x3 i2 x3 i3

ˇ̌̌̌
ˇ̌ : (6.1)

Let ŒW � denote an unoriented 3-space which is obtained from W by forget-
ting its orientation. Then it can be identified by the homogeneous coordinates
Œ: : : ; pi1i2i3 ; : : : � 2 RP 9 called the Plücker coordinates or Grassmann coordinates.
They do not depend on the choice of a base of ŒW �.

The Plücker coordinates pi1i2i3 are not independent. They satisfy the Plücker
relations:

4X
kD1

.�1/kpi1i2jk
p
j1::: yjk :::j4

D 0; (6.2)

where yjk indicates that the index jk is being removed. There are five non-trivial
Plücker relations and exactly three of them are independent.

As we are concerned with the orientation of the subspaces, we use the Euclidean
spaces for the Plücker coordinates in this article instead of the projective spaces which
are used in most cases. The exterior product of x1;x2, and x3 in R51 is given by

x1 ^ x2 ^ x3 D .: : : ; pi1i2i3 ; : : : / 2 R10 .i1 < i2 < i3/

through the identification
3V

R5 Š R10.
Let 
Gr�.3I R51/ denote the Grassmann manifold of the set of all oriented 3-

dimensional timelike vector subspaces in R51.

6.3. Pseudo-Riemannian structure of
3V

R5
1
. The indefinite inner product of the

Minkowski space R51 naturally induces that of
3V

R51 by
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hx1 ^ x2 ^ x3;y1 ^ y2 ^ y3i D �
ˇ̌̌̌
ˇ̌ hx1;y1i hx1;y2i hx1;y3i
hx2;y1i hx2;y2i hx2;y3i
hx3;y1i hx3;y2i hx3;y3i

ˇ̌̌̌
ˇ̌ (6.3)

for any xi and yj in R51. Note that this sign convention is opposite to that in [HJ].
The above formula is a natural generalization of the one for the exterior products

of four vectors which we obtained in [La-OH], where we studied the set of oriented
spheres in S 3.

It follows that
3V

R51 can be identified with R10 with a pseudo-Riemannian struc-
ture with index 4, which we denote by R104 , so that fei1 ^ ei2 ^ ei3gi1<i2<i3 is a

pseudo-orthonormal basis of
3V

R51 with

hei1 ^ ei2 ^ ei3 ; ei1 ^ ei2 ^ ei3i D
´�1 if i1 � 1;

C1 if i1 D 0:
(6.4)

Let us realize �.1; 3/ as a pseudo-Riemannian submanifold of
3V

R51 Š R104 .

Lemma 6.1. Let W be an oriented 3-dimensional vector subspace in R51 spanned
by x1;x2;x3. Then W is timelike if and only if

hx1 ^ x2 ^ x3; x1 ^ x2 ^ x3i > 0;
and isotropic (i.e., tangent to the light cone) if and only if

hx1 ^ x2 ^ x3; x1 ^ x2 ^ x3i D 0:

Proof. Case (1). Suppose W is not isotropic. We may assume without loss of
generality that fx1;x2;x3g is a pseudo-orthonormal basis of W . If W is timelike,
one of x1;x2 and x3 is timelike, and therefore hx1 ^ x2 ^ x3; x1 ^ x2 ^ x3i D 1

by (6.3). If W is spacelike, then hx1 ^ x2 ^ x3; x1 ^ x2 ^ x3i D �1.
Case (2). Suppose W is isotropic. Then W is tangent to the light cone at a

lightlike line l . Now we may assume without loss of generality that fx1;x2;x3g is a
pseudo-orthogonal basis of W and that x1 belongs to l . Then we have hx1 ^ x2 ^
x3; x1 ^ x2 ^ x3i D 0. �

6.4. Conformal invariance of the pseudo-Riemannian structure. We show that
�.1; 3/ has a pseudo-Riemannian structure which is compatible with Möbius trans-

formations of S 3. Let O.6; 4/ denote the pseudo-orthogonal group of
3V

R51 Š R104 .
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Definition 6.2. Define a map � W M5.R/ ! M10.R/ by

� W M5.R/ 3 A D .aij / 7! �.A/ D . QaIJ / 2 M10.R/;

where I D .i1i2i3/ and J D .j1j2j3/ are multi-indices, and QaIJ is given by

QaIJ D
ˇ̌̌̌
ˇ̌ ai1j1

ai1j2
ai1j3

ai2j1
ai2j2

ai2j3

ai3j1
ai3j2

ai3j3

ˇ̌̌̌
ˇ̌ :

Lemma 6.3. (1) For all x1;x2;x3 2 R51 we have

.Ax1/ ^ .Ax2/ ^ .Ax3/ D �.A/ .x1 ^ x2 ^ x3/ (6.5)

for A 2 M5.R/.
(2) If A 2 O.4; 1/ then �.A/ 2 O.6; 4/.
(3) The restriction of � to O.4; 1/ is a homomorphism.

We can say more, although we do not give proof: The matrix �.A/ can be
characterized by (6.5). The reverse statement of (2) also holds. The restriction of �
to Gl.5;R/ is a homomorphism whose kernel consists of f˙I g.

Proof. (1) The definition of QaIJ implies

�.A/ .ei1 ^ ei2 ^ ei3/ D .Aei1/ ^ .Aei2/ ^ .Aei3/:

(2) If A 2 O.4; 1/ then (6.3) and (6.5) imply

h�.A/.ei1 ^ ei2 ^ ei3/; �.A/.ej1
^ ej2

^ ej3
/i D hei1 ^ ei2 ^ ei3 ; ej1

^ ej2
^ ej3

i;
which implies �.A/ 2 O.6; 4/.

(3) Routine calculation in linear algebra implies�.AB/IJ D P
K QaIK QbKJ . �

Corollary 6.4. We have
 .A � 	/ D �.A/ .	/

for 	 2 �.1; 3/ and A 2 O.4; 1/, where  is the bijection from �.1; 3/ to ‚.1; 3/ �
R104 given by (6.7) and � the homomorphism from O.4; 1/ to O.6; 4/ given in Defi-
nition 6.2.

Proposition 6.5. Let‚.1; 3/ be the intersection of the quadric satisfying the Plücker
relations and the unit pseudo-sphere:

‚.1; 3/ D
8<:.: : : ; pi1i2i3 ; : : : / 2 R104

ˇ̌̌̌
ˇ

P4
kD1.�1/kpi1i2jk

p
j1::: yjk :::j4

D 0;

� P
i1�1 pi1i2i32 C P

i2�1 p0i2i32 D 1

9=; :
(6.6)
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It is a 6-dimensional pseudo-Riemannian submanifold of R104 with pseudo-Riemann-
ian structure of index 2.

Then the set �.1; 3/ of oriented circles in S 3 can be identifiedwith‚.1; 3/ through
a bijection  given by

 W �.1; 3/
Š�! 
Gr�.3I R51/

Š�! ‚.1; 3/ �
3V

R51 Š R104 ;2 2 2

W \ S 3.1/ 7�! W D Spanhx1;x2;x3i 7�! x1 ^ x2 ^ x3

kx1 ^ x2 ^ x3k :
(6.7)

Proof. Since �.1; 3/ can be identified with the Grassmann manifold 
Gr�.3I R51/ of
oriented 3-dimensional timelike subspaces of R51, Lemma 6.1 implies that it is enough
to show that the restriction of the indefinite inner product of R104 to each tangent space
of ‚.1; 3/ induces a non-degenerate quadratic form of index 2.

The conformal invariance of the pseudo-Riemannian structure allows us to assume
that an oriented circle 	 passes through .˙1; 0; 0; 0/ and .0; 1; 0; 0/. The index can
be calculated in several ways.

(i)	 corresponds toW D Spanhe0; e1; e2i in the Grassmannian 
Gr�.3I R51/. The
tangent space TW 
Gr�.2I R51/ is isomorphic to Hom.W;W ?/, which is isomorphic
toM3;2.R/. We can construct six vectors which form a pseudo-orthonormal basis of
the tangent space explicitly. It turns out that two of them are timelike and the other
four are spacelike.

(ii) The tangent space T�‚.1; 3/ can be identified with the pseudo-orthogonal
complements of the subspace spanned by gradients of the defining functions of‚.1; 3/
which appear in (6.6). There are five non-trivial Plücker relations and exactly three
of them are independent. Two of them give timelike gradients and the rest gives a
spacelike one. On the other hand, the gradient of � P

i1�1 pi1i22C P
i2�1 p0i22� 1

is spacelike. Hence the index can be given by 4 � 2 D 2. �

Since �.1; 3/ is the homogeneous space SO.4; 1/=SO.2/ � SO.2; 1/, Proposi-
tion 3.2.6 of [Ko-Yo] also implies that the index of ‚.1; 3/ is equal to 2.

7. Osculating circles and the conformal arc-length

Let us realize the Euclidean space R3 in the Minkowski space R51 as the isotropic
affine section of the light cone Light given by (2.1) in Section 2. We use the following
notation in what follows. Let C D fm.s/g be an oriented curve in R3 parametrized
by the arc-length s. Let xm be a map which is induced from m;

xm.s/ D
�
1C m.s/ �m.s/

4
; �1C m.s/ �m.s/

4
; m.s/

�
2 E30 � R51; (7.1)
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where E30 is given by formula (2.1).
The osculating circle of a curve C at a point x is the circle with the best contact

with C at x. We will denote it by Ox . It has the second order contact with C at x.
Suppose x, y, and z are points on C . When x, y, and z are mutually distinct, let

	.x; y; z/ denote the circle that passes through the points x, y, and z in C whose
orientation is given by the cyclic order of fx; y; zg. When two (or three) of the points
x, y, and z coincide, 	.x; y; z/means a tangent circle (or, respectively, an osculating
circle) whose orientation coincides with that of C at the tangent point.

Let �.u; v; w/ be a point in ‚.1; 3/ � R104 which corresponds to a circle

	. xm.u/; xm.v/; xm.w//
through the bijection  from �.1; 3/ to ‚.1; 3/ (see (6.7)). Put �.u/ D �.u; u; u/.
It corresponds to the osculating circle at m.u/.

7.1. The curve of the osculating circles is lightlike. Let us express the osculating
circles using the exterior products of vectors in the Minkowski space.

Observe that h xm; xmi � 0, as xm belongs to the light cone, and that

h xm 0; xm 0i � m0 �m0 � 1;

where � denotes the standard inner product of R3. Define F2 and F3 by

F2 D h xm 00; xm 00i; F3 D h xm 000; xm 000i: (7.2)

Then they satisfy

F2 D m00 �m00 D �2;

F3 D m000 �m000 D �4 C �02 C �2�2:

By derivating these equations we obtain a table of h xm.i/.0/; xm.j /.0/i needed in this
article (Table 1).

If u < v < w then xm.u/; xm.v/, and xm.w/ are linearly independent in R51, and
therefore (6.7) implies that �.u; v; w/ is given by

�.u; v; w/ D xm.u/ ^ xm.v/ ^ xm.w/
k xm.u/ ^ xm.v/ ^ xm.w/k

: (7.3)

Lemma 7.1. Let 	.s/ be an osculating circle to a curve C D f xm.s/g in E3 which is
parametrized by the arc-length s. Then 	.s/ is given by

	.s/ D E3 \ Spanh xm.s/; xm 0.s/; xm 00.s/i:
The point �.s/ in ‚.1; 3/ which corresponds to 	.s/ is given by

�.s/ D xm.s/ ^ xm 0.s/ ^ xm 00.s/: (7.4)
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Table 1. A table of h xm.i/.0/; xm.j /.0/i (F2 D �2, F3 D �4 C �02 C �2�2).

j D 0 j D 1 j D 2 j D 3 j D 4

i D 0 0 0 �1 0 F2

i D 1 1 0 �F2 	
i D 2 F2 	 	
i D 3 F3 	

Proof. Consider the limit of �.u; v; w/ as both u and w approach v. Taylor’s expan-
sion formula implies

xm.s �
s/ ^ xm.s/ ^ xm.s C
s0/

D
�

xm.s/ �
s xm 0.s/C .
s/2

2
xm 00.s/CO

�
.
s/3

�� ^ xm.s/

^
�

xm.s/C
s0 xm 0.s/C .
s0/2

2
xm 00.s/CO

�
.
s0/3

��
D 
s
s0.
s C
s0/

2
xm.s/ ^ xm 0.s/ ^ xm 00.s/C higher order terms:

It follows that the osculating circle is given by the vector xm.s/ ^ xm 0.s/ ^ xm 00.s/
multiplied by a positive number. By Formula (6.3) and Table 1 we have

h xm ^ xm 0 ^ xm 00; xm ^ xm 0 ^ xm 00i D �
ˇ̌̌̌
ˇ̌ 0 0 �1
0 1 0

�1 0 m00 �m00

ˇ̌̌̌
ˇ̌ D 1:

Therefore the osculating circle �.s/ is given by

�.s/ D xm.s/ ^ xm 0.s/ ^ xm 00.s/
k xm.s/ ^ xm 0.s/ ^ xm 00.s/k D xm.s/ ^ xm 0.s/ ^ xm 00.s/: �

Theorem 7.2. Let � be a curve in �.1; 3/ which corresponds to the set of osculating
circles of a curve C in E3. Then the curve � is a lightlike curve.

Proof. The formula (7.4) implies

� 0.s/ D xm.s/ ^ xm 0.s/ ^ xm 000.s/: (7.5)
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By Formula (6.3) and Table 1 we have

h xm ^ xm 0 ^ xm 000; xm ^ xm 0 ^ xm 000i D �
ˇ̌̌̌
ˇ̌ 0 0 0

0 1 	
0 	 	

ˇ̌̌̌
ˇ̌ D 0;

which implies that j� 0.s/j � 0. This ends the proof of Theorem 7.2. �

7.2. Conformal arc-length via osculating circles. Let C D f xm.t/g .0 � t � T /

be a curve in S 3 or E3, and � a lightlike curve in �.1; 3/ which consists of the
osculating circles of C . Let I denote the domain interval of the map xm.

Theorem 7.3. By taking the pull-back to I , the conformal arc-length element d� of
C is equal to 4

p
12 times the 1

2
-dimensional length element d�

L
1
2 .�/

of � :

d� D ���
4
p
12 d�

L
1
2 .�/

� D 4

q
L.

..
�/ dt: (7.6)

Proof. We use the arc-length parameter s ofC . Let us abbreviate � .i/.0/ and xm .i/.0/

as � .i/ and xm .i/ in the proof. Since

� 00 D xm ^ xm 0 ^ xm .4/ C xm ^ xm 00 ^ xm 000;

Formula (6.3) and Table 1 imply

L.� 00/ D h� 00; � 00i
D h xm ^ xm 0 ^ xm .4/; xm ^ xm 0 ^ xm .4/i C 2h xm ^ xm 0 ^ xm .4/; xm ^ xm 00 ^ xm 000i

C h xm ^ xm 00 ^ xm 000; xm ^ xm 00 ^ xm 000i

D �
0@ ˇ̌̌̌

ˇ̌ 0 0 F2
0 1 	
F2 	 	

ˇ̌̌̌
ˇ̌ C 2

ˇ̌̌̌
ˇ̌ 0 �1 0

0 0 �F2
F2 	 	

ˇ̌̌̌
ˇ̌ C

ˇ̌̌̌
ˇ̌ 0 �1 0

�1 	 	
0 	 F3

ˇ̌̌̌
ˇ̌
1A

D F3 � F 2
2 (7.7)

D �02 C �2�2: (7.8)

From this we conclude (7.6) since d� D 4
p
�02 C �2�2 ds by (1.1) and ��d�

L
1
2 .�/

D
4

q
jL.� 00/j
12

ds by (4.4). �

Remark. A pair of nearby osculating circles is a “timelike pair”, i.e., �.sC
s/��.s/
is timelike for j
sj 
 1.
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Corollary 7.4. The conformal arc-length parameter of a point xm.t/ in a curve C in
S 3 or E3 can be expressed using the L

1
2 -measure of an arc of the lightlike curve �

in �.1; 3/ which consists of osculating circles to C :

�.t/ � �.0/ D 4
p
12 lim

max jtj C1�tj j!C0
X
i

p
k�.tiC1/ � �.ti /k; (7.9)

where 0 < t1 < � � � < tk D t is a subdivision of the interval Œ0; t �.

Corollary 7.5. The conformal arc-length parameter can be characterized as the
parameter that satisfies h..� ; ..� i � 1: Namely, it is a parameter which makes the
curvature of a curve of osculating circles being identically equal to 1.

Definition 7.6. LetC be a curve in Rn. Suppose it can be expressed by the arc-length
as C D fm.s/g. Define the 1-form !C on C by

m�!C D 4
p
m000 �m000 � .m00 �m00/2 ds;

where 0 denotes the derivation with respect to the arc-length s.

Corollary 7.7. As above the 1-form !C is invariant under Möbius transformations.
Namely, ifG is a Möbius transformation then we haveG�!G.C/ D !C :When n D 3

this 1-form !C is equal to the conformal arc-length element d� of C .

Remark. Theorem 1.1 of Liu ([Liu]) implies that if xC D f xm.s/g is a curve in the
light cone such that xm0 is not parallel to m then the 1-form ! xC given by

xm�! xC D 4
p

h xm000; xm000i � h xm00; xm00i2 ds;
where s is the arc-length, is invariant under any transformation of the formT W xm.s/ 7!
ef .s/ xm.s/ .

Let � W Rn ! En0 � RnC2
1 be the natural bijection (2.1). Through this bijection

a Möbius transformation of Rn can be expressed as ��1 B T B A B � for some A 2
O.nC 1; 1/ and some transformation T of the previous form of the light cone. Since
� is an isometry andA 2 O.nC1; 1/ does not change ! xC , Corollary 7.7 follows from
Liu’s result.

Proof. We prove it when n D 3. Suppose G � C are expressed as G.C/ D fm2.t/g
with t being the arc-length of G.C/. Let �m and �m2

be the curves in �.1; 3/ which
consists of the osculating circles to C and G.C/, respectively. They are lightlike
curves by Theorem 7.2. The formula (7.7) implies that

4
p
m000 �m000 � .m00 �m00/2 ds D 4

q
h� 00
m ; �

00
m i ds;

4

q...
m2 � ...m2 � ...m2 � ..m2/2 dt D 4

q
h..�m2

;
..
�m2

i dt;
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where putting . above means taking the derivation with respect to t . Lemma 6.3
shows that the Möbius transformation G 2 O.4; 1/ produces a pseudo-orthogonal
transformation zG 2 O.6; 4/, and �m2

is given by �m2
D zG ��m. Since h..�m2

;
..
�m2

i D
h zG � ..�m; zG � ..�mi D h..�m;

..
�mi, Corollary 7.7 is a consequence of Lemma 4.4. �

The above proof shows that the pull-back to I of !C is equal to that of the 1
2

-
dimensional length element d�

L
1
2 .�/

of the curve of osculating circles, where I is the

domain interval of the curve C .
Corollaries 7.3 and 7.7 show that the conformal arc-length is in fact invariant

under Möbius transformations.

7.3. Characterization of vertices of space curves in terms of osculating circles

Definition 7.8. We say that a point is a vertex of a curve C if the osculating circle
has the third order contact with C at that point.

Remark. (1) The condition is same as the usual one, k0 D 0, for plane curves.
(2) The notion of a vertex is conformally invariant.
(3) By the strong transversality principle (cf. [AGV]), vertex-free curves are gener-

ical in the sense that they form an open dense subset in the C1 topology.
(4) A different definition of vertex can be found in the literature. In some works

vertices are points where the osculating sphere has the 4th order contact (cf.[Ur]).
There are many examples of vertex-free curves in our sense having the 4th order
contact with its osculating sphere. For instance, one can consider plane curves.

Bouquet’s formula says that a curve can be expressed, with suitable coordinates
around a point, as

xD s ��
6
s3 C � � � ;

y D �
2
s2 C�0

6
s3 C � � � ;

zD ��
6
s3 C � � � ;

(7.10)

where s, �, and � are the arc-length, curvature, and torsion, respectively.
It is easy to check the following lemma using Bouquet’s formula.

Lemma 7.9. Let C be a curve in R3. A point x is a vertex of C if and only if

�02 C �2�2 D 0

holds at x, where � and � are the curvature and torsion of the curveC (the derivation
is taken with respect to the arc-length parameter of C ).
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Now a vertex can be characterized in terms of the curve of osculating circles.
Suppose E3 (or S 3) is an Euclidean (or, respectively, a spherical) model in R51.

Theorem 7.10. Let C D f xm.t/g be a curve in E3 or S 3 and �.t/ a point in ‚.1; 3/
which corresponds to the osculating circle to C at xm.t/. Then the following three
conditions are equivalent for a point xm.t0/ to be a vertex of C :

(1)
.
�.t0/ D 0.

(2) h..�.t0/; ..�.t0/i D 0, i.e., the 1
2
-dimensional length element of � vanishes at t0.

(3) dim Spanh.�; ..� i < 2.
Proof. (1) Suppose m.s/ is a curve in R3 parametrized by the arc-length s, and
C D f xm.s/g is a corresponding curve in E30 which is given by (7.1). Then we have

xm D
�
1C m �m

4
; �1C m �m

4
; m

�
;

xm0 D
�
m �m0

2
;
m �m0

2
; m0

�
;

xm00 D
�
m �m00 C 1

2
;
m �m00 C 1

2
; m00

�
;

xm000 D
�
m �m000

2
;
m �m000

2
; m000

�
:

Suppose t0 corresponds to s D 0. We may assume, after a Möbius transformation
if necessary, that �.0/ ¤ 0. Lemma 7.9 implies that xm.0/ is a vertex if and only if
�02 C �2�2 D 0. Since

m.s/ D m.0/C e1s C �e2
s2

2
C .��2e1 C �0e2 C ��e3/

s3

6
CO.s4/;

xm.0/ is a vertex if and only if m000.0/ D ��2m0.0/, which can occur if and only
if xm000.0/ D ��2 xm0.0/. As a xm.0/ C b xm0.0/ C c xm000.0/ D 0 .a; b; c 2 R/ always
implies a D 0, xm.0/ is a vertex if and only if xm.0/; xm0.0/, and xm000.0/ are linearly
dependent, i.e., xm.0/ ^ xm0.0/ ^ xm000.0/ D 0. Since Formula (7.4) implies that the
left-hand side of the last equation is equal to � 0.0/, it means the equivalence of the
condition (1) and xm.t0/ being a vertex.

The condition (2) follows from Lemma 7.9 and Formula (7.8).
The condition (1) implies the condition (3).
On the other hand, if dim Spanh.�; ..� i < 2 and

.
�.t0/ ¤ 0 then

..
�.t0/ D c

.
�.t0/ for

some c 2 R, which implies the condition (2). �

7.4. Characterization of curves of osculating circles. We identify the set �.1; 3/

of the oriented circles in S 3 with the submanifold‚.1; 3/ of R104 as before. We give
a condition for a curve in �.1; 3/ to be a set of osculating circles to a curve in S 3.
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Theorem 7.11. A curve � in �.1; 3/ is a set of the osculating circles to a vertex-free
curve in S 3 with a non-vanishing velocity vector if and only if � satisfies the following
three conditions:

(i) � is a lightlike curve,

(ii)
.
�.t/ satisfies the Plücker relations for all t ,

(iii) dim Spanh.�.t/; ..�.t/i D 2.

Without the two conditions, C being vertex-free and dim Spanh.�; ..� i D 2, the
“if” part of the above statement may fail although the “only if” part still holds.

Proof. We begin with the first statement.
“Only if ” part. The condition (i) follows from Theorem 7.2, the condition (ii)

from Formula (7.5), as it means that � 0 is a pure 3-vector and therefore satisfies the
Plücker relations, and the condition (iii) follows from Theorem 7.10.

“If ” part. Lemma 6.1 implies that
.
� corresponds to an isotropic 3-space tangent

to the light cone. Therefore it defines a point in E30, which we denote by xm.t/. Since.
�.t/ and

..
�.t/ are linearly independent,

.xm.t/ does not vanish. So, we may assume
that t is equal to the arc-length s of xm. Define a map m to R3 by (7.1). We may
assume, after a Möbius transformation if necessary, that m00.s0/ ¤ 0.

Put

Nn D
�
m � n
2
;
m � n
2
; n

�
2 R51; where n D m0 �m00

km0 �m00k 2 R3:

Then xm; xm0; xm00; Nn, and n1 D .1; 1; 0; 0; 0/ are linearly independent in R51. Therefore,
10 pure 3-vectors obtained as exterior products of three of xm; xm0; xm00; Nn, and n1 are
linearly independent in R104 . We need formulae which express �.s/ and � 0.s/ as
linear combinations of them.

For this purpose, we have to show that the point m.s/ belongs to the circle 	.s/
which corresponds to �.s/.

This can be proven as follows. We may assume, without loss of generality, that
	.s/ can be obtained as the intersection of our model of S 3 or E3 in the light cone and
Spanhe0; e1; e2i. Then, a computation shows that if � 0 satisfies the two conditions (i)
and (ii) then there is a lightlike pencil P through �.s/ (that is a 1-parameter family
of the oriented circles that are contained in a 2-sphere which contains 	.s/ and that
are all tangent to 	.s/ at a point Q) such that � 0.s/ is equal to a tangent vector to P

at �.s/. It means that the tangent point Q above mentioned can be obtained as the
intersection of S 3 and the isotropic 3-space that corresponds to � 0.s/, namely Q is
equal to m.s/, which implies m.s/ 2 	.s/ (see [La-OH2] for pencils).

Since m.s/ 2 	.s/, �.s/ can be expressed as �.s/ D ˛.s/ xm.s/ ^ u0.s/ ^ v0.s/
for some ˛.s/ 2 R and u0.s/; v0.s/ 2 R51. Therefore �.s/ can be expressed as the



Vol. 85 (2010) Conformal arc-length 297

linear combination of the following 6 pure 3-vectors;

xm^ xm0 ^ xm00; xm^ xm0 ^ Nn; xm^ xm0 ^ n1; xm^ xm00 ^ Nn; xm^ xm00 ^ n1; and xm^ Nn^ n1:

If one of the three coefficients of the latter three does not vanish, there is a non-zero
coefficient of xm0 ^ u1 ^ v1 .fu1; v1g � f xm00; Nn; n1g/ of � 0.s/. On the other hand, by
the assumption (ii) of the theorem and the definition of xm, � 0.s/ can be expressed in
the form

� 0.s/ D b.s/ xm.s/ ^ u.s/ ^ v.s/ .b.s/ 2 R; u.s/; v.s/ 2 .Spanh xm.s/i/? � R51/;

which is a contradiction.
Therefore, 	.s/ is tangent to C at xm.s/, i.e., �.s/ is of the form

�.s/ D �.s/ xm ^ xm0 ^ xm00 C 
.s/ xm ^ xm0 ^ NnC �.s/ xm ^ xm0 ^ n1:

By patient computation we get

h� 0; � 0i D .� 0 C 2�0/2 C 
2 C 4�2�2;

where � is the curvature of C , km00k. Since h� 0.s/; � 0.s/i D 0 and � ¤ 0 by our
assumption, we have 
.s/ D �.s/ D 0. Then, h�.s/; �.s/i D 1 implies �.s/ D 1,
which completes the proof of the first statement.

The second statement of the theorem can be verified in the same way as in Theo-
rem 5.1. �

The authors thank Martin Guest and Fran Burstall for informing the second author
of the following condition due to Burstall.

Proposition 7.12 (Burstall condition). Suppose � 2 �.1; 3/ corresponds to a time-
like 3-space … of R51. Recall that T��.1; 3/ can be identified with Hom.…;…?/.
Suppose an element A in Hom.…;…?/ that corresponds to

.
� can be expressed as

A D
�
a b c
d e f

�
D �

a1
a2

�
with respect to orthonormal bases of … and …?. Then the

conditions (i) and (ii) of Theorem 7.11 are equivalent to the condition hA; tAi D O ,
namely,

ha1; a1i D ha2; a2i D ha1; a2i D 0;

where a1 and a2 are considered as vectors in the Minkowski space R31.

Proof. We may assume without loss of generality that ….t0/ D Spanhe0; e1; e2i,
i.e., �.t0/ D .0; : : : ; 0; 1/. Then …?.t0/ D Spanhe3; e4i. If we use fe0; e1; e2g and
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fe3; e4g as bases of….t0/ and…?.t0/, respectively, the Plücker coordinates of
.
�.t0/

are given by

.p234; p134; p124; p123 I p034; p024; p023; p014; p 013; p012/
�.
�.t0/

�
D . 0; 0; d; aI 0;�e;�b; f; c; 0 /:

Then the conditions (i) and (ii) of Theorem 7.11 are given by

�a2 � d2 C b2 C c2 C e2 C f 2 D 0;

bd � ae D 0; �cd C af D 0; ce � bf D 0;

which are equivalent to

�a2 C b2 C c2 D �d2 C e2 C f 2 D 0;

.a; b; c/==.d; e; f /;

which, in turn, are equivalent to (see Lemma 9.1.1 (2) of [O’H1])

ha1; a1i D ha2; a2i D ha1; a2i D 0: �

7.5. Conformal arc-length and conformal angles

Definition 7.13 (Doyle and Schramm). Let x and y be a pair of distinct points on
a curve C . Let �C .x; y/ .0 � �C .x; y/ � �/ be the angle between 	.x; x; y/ and
	.x; y; y/. We call it the conformal angle between x and y (see Figure 8).

We note that the conformal angle is conformally invariant because it can be defined
by angles, circles, and tangency, which are preserved by Möbius transformations.

Applying Bouquet’s formula (7.10) to sin �C we have

Lemma 7.14. ([La-OH]) Let s; �; � be the arc-length, curvature, and torsion of C ,
respectively. Then the conformal angle satisfies

�C .x; y/ D
p
�02 C �2�2

6
jx � yj2 CO.jx � yj3/: (7.11)

The formula (1.1) of the conformal arc-length implies that the conformal arc-
length can be interpreted in terms of the conformal angle as follows.

Proposition 7.15. The conformal arc-length � satisfies

d�

ds
.s/ D lim

�s!0

q
6 �C

�
m.s/;m.s C
s/

�

s

:
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�

�

x

y
	.x; x; y/

C

Figure 8. The conformal angle �C .x; y/.

Remark. Put

… D Spanh�.s; s; s C
s/; �.s; s C
s; s C
s/i:
It is a spacelike 2-plane of R104 . We claim that the intersection of … and ‚.1; 3/ is
1-dimensional, moreover it is a circle which is a geodesic of‚.1; 3/. The conformal
angle is equal to the distance in �.1; 3/ (i.e., the shorter arc-length along this geodesic)
between �.s; s; s C
s/ and �.s; s C
s; s C
s/.

The above statements can be understood in the timelike 4-space

W D Spanhm.s/;m0.s/;m.s C
s/;m0.s C
s/i � R51

as all the events take place inW . Remark thatW intersects S 3 in a “bitangent” sphere
†.m;m C 
s/ that contains the two tangent circles to the curve C , 	.m.s/;m.s/;
m.s C 
s// and 	.m.s/;m.s C 
s/;m.s C 
s//. Therefore, the intersection of
‚.1; 3/ and the set of oriented circles in the sphere †.m;mC
s/ D W \ S 3 can
be isometrically identified with 3-dimensional de Sitter space ƒ3 which consists of
oriented circles in †.m;mC 
s/. Through this identification, … \‚.1; 3/ can be
identified with the intersection of a spacelike 2-plane in R51 that corresponds to …
and ƒ3. It consists of the oriented circles in †.m;m C 
s/ that pass through both
m.s/ and m.s C
s/. It is a circle which is a geodesic of ƒ3. The distance between
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any pair of points on this circle is equal to the angle between a pair of corresponding
circles (see Theorem 9.5.1 of [O’H1] or [HJ]).

Remark. We have two kinds of infinitesimal interpretation of the conformal arc-
length as the distance between a pair of nearby circles: one by osculating circles
	.x; x; x/ and 	.y; y; y/ (Theorem 7.4) and the other by tangent circles 	.x; x; y/
and 	.x; y; y/ (Proposition 7.15). We remark that the former is a “timelike” pair and
the latter a “spacelike” pair.

8. Integral geometric viewpoint

8.1. Information from two nearby osculating circles

Definition 8.1. ([La-OH]) Let P1, P2, P3, and P4 be points on an oriented sphere
†. They can be considered as complex numbers through an orientation preserving
stereographic projection from † to C [ f1g. The cross ratio of P1, P2, P3, and P4
can be defined by that of the corresponding four complex numbers. We remark that
it does not depend on the stereographic projection that is used to define it.

Let C be a curve in S 3 or R3, and � be a sphere which intersects C orthogonally
at a point m.t1/ that passes through a nearby point m.t2/. Let Om.ti / .i D 1; 2/ be
the osculating circle to C at m.ti /, and y.ti / the intersection point of Om.ti / and �

so that Om.ti / \ � D fm.ti /; y.ti /g.

Proposition 8.2. The infinitesimal cross ratio

cross.m.t/; y.t C dt/Im.t C dt/; y.t//

D m.t/ � y.t C dt/

m.t/ � y.t/ W m.t C dt/ � y.t C dt/

m.t C dt/ � y.t/
is real. The fourth root of its absolute value is equal to 1p

6
times the pull-back of the

conformal arc-length element of the curve C .

We remark that the infinitesimal cross ratio mentioned above is different from that
defined in [La-OH] and studied in [O’H2].

Proof. Since both the cross ratio and the conformal arc-length element are invariant
under Möbius transformations, we may assume that m.t1/ is the origin and that the
curve C in R3 is given by the normal form (see [CSW])

y D x3

3Š
CO.x5/;

z D 0CO.x4/:

(8.1)



Vol. 85 (2010) Conformal arc-length 301

m.t1/

m.t2/

C

C
�

�

y.t2/
y.t1/

Om.t1/

Om.t2/

Figure 9. The intersection points of two nearby osculating circles and an almost orthogonal
small sphere � . In Proposition 8.2, t1 is t and t2 is t C dt .

The normal form above can be obtained from Bouquet’s formula (7.10) by putting
k D 0 and k0 D 1 at the origin.

Let h be the diameter of � . Since the conformal arc-length element is given by
4
p
.k0/2 C k2�2ds, where s is the arc-length of the curve, it is enough to show that

the cross ratio is of the form h4

36
CO.h5/.

Since both km.t/� y.t C dt/k and km.t C dt/� y.t/k are of order h3, we can
neglect O.h4/ terms. Therefore, the z-coordinate in the normal form (8.1) can be
neglected. Then the four pointsm.t/,m.t C dt/, y.t/, and y.t C dt/ are on a circle
that is the intersection of � and the xy-plane, which implies that the infinitesimal
cross ratio is real.

Let us now consider in the xy-plane. The coordinates of m.t C dt/ are given
by

�
h; h

3

6

�
up to O.h4/. A computation shows that the x-coordinate of the center

of the osculating circle to the curve at
�
h; h

3

6

�
is h
2

CO.h5/, which implies that the

intersection point y.t C dt/ of this osculating circle and � is equal to
�
0; h

3

6

�
up to

O.h4/. It follows that the absolute value of the infinitesimal cross ratio is given by

km.t/ � y.t C dt/k
km.t/ � y.t/k � km.t C dt/ � y.t/k

km.t C dt/ � y.t C dt/k D h4

36
CO.h5/;

which completes the proof. �

8.2. Integral geometric interpretation of the conformal arc-length element. In
the previous section we express the conformal arc-length as the L

1
2 -measure of a



302 R. Langevin and J. O’Hara CMH

lightlike curve in the space of circles. The goal of this subsection is Theorem 8.9,
where the conformal arc-length of a space curve C is expressed as the average of the
L

1
2 -measures of 1 parameter family of lightlike curves in the space of spheresƒ4 that

can be obtained from the curve of osculating spheres to C .
The statement of Theorem 8.9 is analogous to the following statement in the

sense that something can be expressed as the average of 1 parameter family of other
quantities.

Proposition 8.3. The curvature of a curve C � R3 at a point m is proportional to
the average of the curvatures at m of the plane curves obtained as the orthogonal
projections of C on the planes containing the tangent line TmC to C at m (the
proportionality coefficient is �).

Proof. We only need to project an osculating circle Om to C at m on the planes
containing TmC and observe the curvatures of these projections at the pointm. �

8.2.1. Preliminary lemmas. Theorem 8.9 has two kinds of proofs, a geometric one
using pencils of spheres, pencils of circles and cross ratios, and an algebraic one
using an “anti-isometry” F (where F being an anti-isometry means hF.u/; F.v/i D
�hu; vi for any u; v) between two Grassmann manifolds. We start with preliminary
lemmas which are needed for the geometric proof.

Definition 8.4. The Lorentz distance between a pair of spheres†1 and†2 is the length
of the geodesic � joining the two corresponding points �1 and �2 inƒ: dL.�1; �2/ DR k.
�kdt .

Since a geodesic inƒ can be obtained as the intersection ofƒwith a 2-dimensional
vector subspace of R51, the geodesic� joining�1 and�2 is a subarc ofƒ\Spanh�1; �2i.

The Lorentz distance between a pair of spheres can be expressed by the Lorentz
distance between their intersections with an orthogonal sphere or an orthogonal circle.

Lemma 8.5. Let dL.�1; �2/ be the Lorentz distance between a pair of spheres †1
and †2.

(1) Let S be a sphere orthogonal to †1 and †2. Then dL.�1; �2/ is equal to
the Lorentz distance dL.�1; �2/ between the two circles 	1 D †1 \ S and
	2 D †2 \ S .

(2) Let G be a circle orthogonal to †1 and †2. Then dL.�1; �2/ is equal to the
Lorentz distance dL.P1;P2/ between the two 0-spheres P1 D †1 \ G and
P2 D †2 \ G .
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Proof. Let �1 and �2 be the two points in de Sitter spaceƒ4 which correspond to the
two spheres †1 and †2.

(1) can be proven by considering the two points �1 and �2 in de Sitter spaces
ƒ30 � ƒ4, where ƒ30 is the set of the oriented spheres orthogonal to the sphere S .

To be more precise, let … be a 4-dimensional vector subspace of R51 so that S
is the intersection of … and S 3 or E3, namely … D Span S , and �0 be the point in
ƒ4 which corresponds to S . Then ƒ30 D ƒ4 \ .Spanh�0i/? D ƒ4 \…. Since the
geodesic � in ƒ4 joining �1 and �2 is a subarc of ƒ4 \ Spanh�1; �2i, it is contained
in ƒ30, which proves (1).

(2) can be proven similarly, using de Sitter spaceƒ20 which is the set of the oriented
spheres orthogonal to the circle G (Figure 10).

†1

†2

†1 \ �

†2 \ �

†1 \ G
†2 \ G

�

G

ƒ4

ƒ3
0

ƒ2
0

�1

�2

x1
1

x2
1x1

1
x2

2

Figure 10. Intersection and Lorentz distance.

It can also be proven by the composition of (1) and a 1-dimensional lower analogue
of (1). �

Remark. The Lorentz distance between †1 and †2 and the cross ratio of the four
intersection points of G and †1 [ †2 are related by a diffeomorphism. When the
circle G is a line the cross ratio is given by the formula

cross.x11 ; x
1
2 I x21 ; x22/ D x11 � x12

x11 � x22
W x

2
1 � x12
x21 � x22

:

When the four points are on a circle in a complex plane, the four points xji should
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be considered as complex numbers, but the cross ratio is real as the points are on a
circle.

For example, if we name the point as in Figure (10), we have

jcross.x11 ; x
1
2 I x21 ; x22/j D

�
e` � 1
e` C 1

�2
;

where ` is the Lorentz distance dL.�1; �2/.
In particular, when the Lorentz distance between †1 and †2 is small, we have

jcross.x11 ; x
1
2 I x21 ; x22/j '

�
`

2

�2
:

We need another lemma to compare the Lorentz distance between a pair of spheres
to the Lorentz distance between their intersections with a sphere or a circle almost
orthogonal to them.

Lemma 8.6. Let †1 and †2 be a pair of spheres. Let cross.x11 ; x
1
2 I x21 ; x22/ be the

cross ratio of the intersection of †1 and †2 with a circle G which intersects †1 and
†2 in the right angles.

(1) Let cross.y11 ; y
1
2 Iy21 ; y22/ be the cross ratio of the intersection of †1 and†2 with

a circle xG that makes angles �1 with †1 and �2 with †2. Then the quotient of
cross.x11 ; x

1
2 I x21 ; x22/ and cross.y11 ; y

1
2 Iy21 ; y22/ is in an interval Œ1� ı1; 1C ı1�,

where ı1 is a function of �1 and �2 which goes to 0 when �1 and �2 go to ˙�=2.
(2) Suppose that a sphere S makes angles �1 with †1 and �2 with †2, respec-

tively. Let cross.z11 ; z
1
2 I z21 ; z22/ be the cross ratio of the intersection of †1 \ S

and †2 \ S with a common orthogonal circle 	 � S . Then the quotient
of cross.x11 ; x

1
2 I x21 ; x22/ and cross.z11 ; z

1
2 I z21 ; z22/ is in an interval of the form

Œ1 � ı2; 1 C ı2�, where ı2 is a function of �1 and �2 which goes to 0 when �1
and �2 go to ˙�=2.

Proof. Let us fix the two spheres †1 and †2.
Let us consider the circle QG orthogonal to †1 at y11 and y12 . It intersects G at y11

and y12 making a small angle �=2� �1. It also intersects†2 at points z1 and z2 close
to y21 and y22 and with an angle close to �=2. All the corresponding arcs ai ; bi on
both circles have a ratio satisfying 1 � ı < ai=bi < 1C ı, which implies (1).

The second statement (2) comes from the fact that the circle � is almost orthogonal
to the spheres †1 and †2. �

8.2.2. Conformal arc-length as the average of L
1
2 -measure of lightlike curves in

ƒ4 which are associated to a curve in S 3 or R3. Let C D fc.t/g be vertex-free
curve in S 3 or E3. Let 	 D f�.t/g be a curve in ƒ4 which is the set of osculating
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spheres of C . Let Qs (Qs is in some interval I ) be the arc-length of 	 , and . denote d
d Qs .

The geodesic curvature vector kg is the image of the orthogonal projection of
..
� to

T�ƒ
4 D .Span �/?. As h�; �i D h.�; .�i D 1, and moreover, h..�; ..�i D 1 ([La-So],

[Yu]), we have h�; ..�i D �1, and therefore, the geodesic curvature vector is given by
kg D ..

� C � . It is lightlike, namely, 	 is a drill ([La-So]).
Let G�.Qs/ be the geodesic circle of ƒ4 which is tangent to 	 at �.Qs/ (Figure 11).

Then it is given by G�.Qs/ D ƒ4 \ Spanh�.Qs/; .�.Qs/i: A point on it can be expressed
as �.Qs; �/ D cos ��.Qs/ C sin �

.
�.Qs/ for some � . It corresponds to a sphere which

contains the osculating circle to C at c.Qs/.

ƒ

	O

 �1

 �2G�.Qs/

�.Qs/

Figure 11. 	O is a curve of osculating spheres 	O , G�.Qs/ is a geodesic circle inƒ that is tangent
to 	O at �.Qs/. Lightlike curves made of spheres containing the osculating circles are orthogonal
to G�.Qs/.

Let V.C / D S
Qs G�.Qs/ be a surface inƒ4 which is the union of the geodesic circles

tangent to 	:

V.C / D f�.Qs; �/ D cos ��.Qs/C sin �
.
�.Qs/ j Qs 2 I; 0 � � � 2�g:

The tangent space of V.C / at � D �.Qs; �/ is given by

T	.Qs;
/V.C / D T	ƒ
4 \ Spanh�.Qs/; .�.Qs/; ..�.Qs/i D T	ƒ

4 \ Spanh�.Qs/; .�.Qs/;kg.Qs/i:
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As
T	.Qs;
/G�.Qs/ D Spanh� sin ��.Qs/C cos �

.
�.Qs/i

its orthogonal complement in T	V.C / is given by Spanh..� C �i D Spanhkg.Qs/i.
It follows that the curves orthogonal to the “foliation” of V.C / by these geodesic

circles fG�.Qs/g are lightlike. Generically they have cuspidal edges at points of 	 .
Notice that the angle between two spheres �.s; �/ and �.s; � 0/ is independent of

the value of s.

Remark. We have d Qs D jT jc�d�, where � is the conformal arc-length and T is the
conformal torsion given by

T D 2�0� C �2�3 C ��0� 0 � ��00�
.�02 C �2�2/5=2

(see [CSW]).

Proposition 8.7. Let C be a vertex-free curve, x†0 a sphere which has the second
order contact with C , and N�0 a point in ƒ corresponding to x†0. Then there is a
unique lightlike curve N� through N�0 consisting of the spheres x† with the second order
contact with C .

The statement without “uniqueness” was proved in Corollary 10 of [La-So].
We remark that a sphere has the second order contact with a curve at a point m if

and only if it contains the osculating circle of the curve at m.

Proof. Every sphere having the second order contact at a point m.Qs/ in C can be
written by

cos � �.Qs/ � sin �
.
�.Qs/

for some � 2 Œ0; 2�/, where . denotes d=d Qs. Let 
.Qs/ be a curve in ƒ given by


.Qs/ D cosu.Qs/ �.Qs/ � sin u.Qs/ .�.Qs/;
where u.Qs/ is a function. Then we have

.

 D cosu .1 � .

u/
.
� � sin u .

.
u� C ..

�/:

As h�; �i D h.�; .�i D 1 we have h.�; �i D h.�; ..�i D 0. Furthermore we have
h..�; ..�i D 1 ([La-So], [Yu]). Therefore we have

h.
; .
i D .1 � .
u/2;

which implies that 
.Qs/ is lightlike if and only if u.Qs/ D Qs C � for some constant � .
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If N�0 can be expressed as

N�0 D cosu0 �.Qs0/ � sin u0
.
�.Qs0/

then N� is uniquely determined by

N�.Qs/ D cos .Qs C u0 � Qs0/ �.Qs/ � sin .Qs C u0 � Qs0/ .�.Qs/;
which has the following lightlike tangent vector

.N�.Qs/ D � sin.Qs C u0 � Qs0/
�
�.Qs/C ..

�.Qs/�: �

Remark. Let
 .�; Qs/ D cos.Qs C �/�.Qs/ � sin.Qs C �/

.
�.Qs/;

and  
 be a lightlike curve f .�; ./g in ƒ4. Using one of the curves  
 we can
construct a surface M
 containing C such that C is a line of principal curvature of
M
 . Then the spheres of  
 are the osculating spheres to M
 at points of C . Any
surface tangent to M
 along C has the same property.

When C is contained in R3, a developable M
 is obtained as the envelopes of
planes P
 .Qs C h/ satisfying

– the angle between P
 .Qs/ and the osculating plane to C at c.Qs/ is � ,

– the derivative, with respect to an arc-length parameter s on the curve C , of the
angle betweenP
 .QsCh/ and the osculating plane toC at c.QsCh/ is ��.QsCh/,
the opposite of the torsion of the curve C at c.Qs C h/.

Note that 
 is a curve in the surface V.C /which intersects geodesic circles G�.Qs/
orthogonally.

Corollary 8.8. The integral of the pull-back of the 1
2
-dimensional length element

(Definition 4.3) of the lightlike curves 
 ,  
�d�
L

1
2 . � /

, with � moving from 0 to 2�

is proportional to
4

q
jL..� C ...

� /j d Qs D 4

q
jL....� / � 1j d Qs: (8.2)

Proof. Computing the second derivative of  
 , we get

..
 
 D � cos.Qs C �/

�
�.Qs/C ..

�.Qs/� � sin.Qs C �/
�.
�.Qs/C ...

� .Qs/�:
As �.Qs/C ..

�.Qs/ is lightlike and orthogonal to its derivative
.
�.Qs/C ...

� .Qs/, we have

4

s
jL... 
 /j
12

D
p

j sin.Qs C �/j 4

s
jL..�.Qs/C ...

� .Qs//j
12

;
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which implies

Z 2�

0

 

�d�

L
1
2 . � /

d� D
Z 2�

0

4

s
jL... 
 /j
12

d Qs d�

D
�Z 2�

0

p
j sin � j d�

�
4

s
jL..�.Qs/C ...

� .Qs//j
12

d Qs:

This gives the left-hand side of (8.2).
On the other hand, the equation (8.2) follows from Table 2 of h� .i/; � .j /i

.0 � i; j � 3/, which can be obtained from h..�; ..�i D 1 ([La-So], [Yu]).

Table 2. A table of h� .i/; � .j /i.

�
.
�

..
�

...
�

� 1 0 �1 0

.
� 1 0 �1
..
� 1 0

...
� L.

...
� / �

Theorem 8.9. LetC be a vertex-free curve. Let	 D f�.Qs/g be a curve inƒ4 which is
the set of osculating spheres of C , where Qs is the arc-length of 	 . Then the conformal
arc-length of the curve C is, up to the multiplication by a universal constant, equal
to the average with respect to � of the L

1
2 -measures of the lightlike curves in

V.C / D f�.Qs; �/ D cos ��.Qs/C sin �
.
�.Qs/ j Qs 2 I; 0 � � � 2�g

through cos � �.Qs0/C sin �
.
�.Qs0/.

Proof. It is enough to show that the pull-back of the conformal arc-length element is
proportional to the average of that of the 1

2
-dimensional length element.

Let 	O � ƒ4 be the curve of osculating spheres to the curve C , and �.Qs/ the
osculating sphere at the pointm.Qs/ to the curveC , where Qs is an arc-length parameter
on the curve 	O � ƒ4. We remark that 	O is spacelike if C is vertex-free.

LetS be the sphere orthogonal toC atm.s/which also contains the pointm.sCh/.
We will now follow the intersection with S of the spheres of the different lightlike
curves 
 , where � is the angle of the initial sphere of the family 
 .t0/with a chosen
sphere of the second order contact with C at the point m0 D c.s0/.
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Consider two pointsm.s/ andm.sCh/ onC (here we use the arc-length parameter
on the curveC � S 3). The set of the spheres f .�; s/ j� 2 S 1g and f .�; sCh/ j� 2
S 1g are two pencils consisting of the spheres which contain Om.s/ and Om.sCh/,
respectively. They intersect the sphere S in two pencils of circles with base points
fm.s/; y.s C h/g and fy.s/;m.s C h/g (see Figure 9).

As the sphere S is orthogonal to the osculating circle to the curve C at m.s/,
which is the base circle of the pencil f .�; s/ j� 2 S 1g, the angle � is also the angle
parameter of the pencil of circles f .�; s/ \ S j� 2 S 1g. The angle of the circles
S \  .�; s C h/ and S \  .� 0; s C h/ is only close to � � � 0 as we know that the
angle of S and Om.sCh/ is close to �=2.

m.t/

m.t C h/y2 y1
	0

	�

A�
B�

Figure 12. Trace of the spheres  � .s/ and  � .s C h/ on an almost orthogonal sphere S (with
a point of S at infinity).

Let 	0 denote the circle of S containing the three pointsm.s/; y.s/ anm.sC h/.
As the cross ratio cross.m.s/; y.s C h/;m.s C h/; y.s// is almost real (that is, the
quotient of the imaginary part divided by the real part is of order o.h/), the fourth
point y.sC h/ is almost on 	0 (that is, after performing homothety which makes the
radius of S being equal to 1 the distance between y.s C h/ and 	0 is of order o.h/).
Therefore the cross ratio cross.m.s/; y.s C h/;m.s C h/; y.s// is equivalent to the
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Lorentz distance between the two circles S \ .�1; s/ and S \ .�1; s C h/, where
the value �1 is such that S \  
1

.s/ is orthogonal to 	0. Let us now consider the
intersection of the two circles S \  .�; s/ and S \  .�; s C h/ with the circle 	

which is orthogonal to S \  .�; s/ (see Figure 12). The Lorentz distance between
these two circles is equivalent to the cross ratio

cross.m.s/; A
 IB
 ; y1/ ' cos2.� � �1/ cross.m.s/; y2; m.s C h/; y1/:

Using Lemma 8.6, we see that the Lorentz distance between the spheres  
 .s/ and
 
 .s C h/ is also equivalent to

cos.� � �1/ cross.m.s/; y.s C h/;m.s C h/; y.s//:

The Lorentz distance between two close disjoint spheres is equivalent to their
Lorentz distance. We can integrate the contribution of the segments 
 .t/;  
 .sCh/

to the L1=2-lengthes of the curves  
 � ƒ. It is�Z

2S 1

j cos.� � �1/j1=2d�
� p

2 4
p

jcross.m.s/; y.s C h/;m.s C h/; y.s//j:

This provides the constant in the statement of Theorem 8.9. �

Remark. There is an alternative proof of Theorem 8.9 using (8.2) and an anti-
isometry between two Grassmann manifolds.

Recall that the set �.1; 3/ of oriented circles in S 3 can be identified with the
Grassmann manifold 
Gr�.3I R51/ of oriented 3-dimensional timelike subspaces of
R51. The orthogonal complement of a timelike 3-space is a spacelike 2-space. There-
fore, there is a bijection between 
Gr�.3I R51/ � R104 and the Grassmann manifold
GrC.2I R51/ � R106 of oriented 2-dimensional spacelike subspaces of R51 that can be
obtained by assigning the orthogonal complement. This bijection is a restriction of an
anti-isometry F (here F being an anti-isometry means hF.u/; F.v/i D �hu; vi for
any u; v) between R104 and R106 that exchanges spacelike and timelike subspaces
([La-OH2]).

Through this anti-isometry, the osculating circle � corresponds to � ^ .
� in
GrC.2I R51/, and therefore,

..
� corresponds to � ^ ...

� C .
� ^ ..

� . Then, by Table 2
we have L.

..
�/ D L.

...
� / � 1, which implies that the pull-back of the 1

2
-dimensional

length element of � , and hence the pull-back of the conformal arc-length element, is

given by 4

q
jL....� / � 1j d Qs. Now Corollary 8.8 implies that the integral of the pull-

back of the 1
2

-dimensional length element of the lightlike curves  
 ,  
�d�
L

1
2 . � /

,

with � moving from 0 to 2� is proportional to the pull-back of the conformal arc-
length element, which completes the proof.
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The reader is referred to [O’N] for pseudo-Riemannian metrics, [Ak-Go], [Fi],
[HJ], [MRS], [Ro-Sa], and [Su1], [Su2] for further details in conformal differential
geometry, and [Yu] for the construction of a conformally invariant moving frame
along a curve in a spherical model in R51.

Note added in proof. The idea of getting a sort of pseudo arc-length of lightlike
curves (Definition 4.3) has already appeared in Vessiot [Ve] in which the author
used imaginary elements in geometry. See also Study [Stu] and Blaschke [Bla],
Paragraph 22. The authors thank Dr. Steven Verpoort for the above references. Also
notice the use of imaginary elements by Darboux [Dar], Chapter 6, to study spheres
(pentaspherical coordinates).
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