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The K.�; 1/ conjecture for a class of Artin groups

Graham Ellis and Emil Sköldberg�

Abstract. Salvetti constructed a cellular space BD for any Artin group AD defined by a Coxeter
graph D. We show that BD is an Eilenberg–Mac Lane space if BD0 is an Eilenberg–Mac Lane
space for every subgraph D0 of D involving no 1-edges.
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1. Introduction

A Coxeter matrix is a symmetric n�n matrix whose entries m.i; j / are either positive
integers or the symbol 1, with m.i; j / D 1 if and only if i D j . Such a matrix
is represented by an n-vertex labelled graph D (called a Coxeter graph) with edge
joining vertices i and j if and only if m.i; j / � 3; the edge is labelled by m.i; j /.
The Artin group AD is defined to be the group generated by the set of symbols
S D fx1; : : : ; xng subject to relations .xixj /m.i;j / D .xj xi /m.i;j / for all i ¤ j ,
where .xy/m denotes the word xyxyx : : : of length m. The Coxeter group WD is
the quotient of AD obtained by imposing additional relations x2 D 1 for x 2 S .

For each Coxeter graph D there is an interesting finite CW-space BD arising as a
quotient of a union of certain convex polytopes (see Section 2 for precise details). It
has fundamental group �1.BD/ D AD and we have the following.

Conjecture 1. The space BD is an Eilenberg–Mac Lane space K.AD; 1/.

From work of Squier in the 1980s (published posthumously [16]) one can deduce
that the conjecture holds whenever the Coxeter group WD is finite. (Squier established
a free ZAD-resolution RD� of Z having the same number of free generators in each
degree as the cellular chain complex C�. zBD/. It is clear that RD� coincides with
C�. zBD/ in degrees � 2 and hence RD� is the cellular chain complex of the universal
cover of some K.AD; 1/. A detailed analysis suggests that RD� is in fact the cellular
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chain complex of zBD .) Also, it follows immediately from a result of Appel and
Schupp [1, Lemma 6] that the conjecture holds if, for every triple of generators
a; b; c 2 S , the three Artin relators .ab/k D .ba/k , .bc/l D .cb/l , .ac/m D .ca/m

are such that 1
k

C 1
l

C 1
m

� 1. (In this case BD is just the standard 2-dimensional CW-
space associated to the presentation and Lemma 6 in [1] implies that any element of
�2.BD/ would have to be represented by a non-positively curved piecewise euclidean
2-sphere.)

Given a Coxeter graph D we shall say that a subgraph D0 is an 1-free subgraph
if (1) D0 is a connected and full subgraph of D; (2) no edge of D0 is labelled by 1.
(In a full subgraph an edge must be included if its two boundary vertices are present.)
Our main result is obtained using a technique of D. E. Cohen [8] and is the following.

Theorem 2. An Artin group AD satisfies Conjecture 1 if AD0 satisfies Conjecture 1
for every 1-free subgraph D0 in D.

For Artin groups satisfying Conjecture 1 the cellular chains of the universal cover
zBD yield an explicit small free ZAD-resolution from which cohomology calculations

can be made. Section 4 gives such a cohomology calculation based on Theorem 2.
To place Theorem 2 in context we mention that there is an alternative statement of

Conjecture 1. Every Coxeter group WD acts canonically as a linear group generated
by “reflections” on a real vector space V and properly discontinuously on an open
cone I � V called the Tits cone. Denote by A the set of reflecting hyperplanes of
WD and consider the following subspace of C ˝ V D V ˚ iV :

M.WD/ D I ˚ iV n � S
H2A H ˚ iH

�
:

The group WD acts freely and properly discontinuously on M.W / and the quotient
N.WD/ D M.WD/=WD has fundamental group equal to AD .

Conjecture 3. The space N.WD/ is an Eilenberg–Mac Lane space K.AD; 1/.

Conjecture 3 is known as the K.�; 1/-conjecture for Artin groups and is attributed
to Arnold, Pham and Thom in [5]. It has been proved in many cases: Deligne [10]
proved it for finite WD; Hendriks [12] proved it for WD of large type; Charney and
Davis [5] proved it when WD is 2-dimensional and when WD is of FC type; Charney
and Peifer [7] proved it for WD of affine type QAn; Callegaro, Moroni and Salvetti [4]
have recently proved it for WD of affine type zBn.

Salvetti [15] showed that the space BD is homotopy equivalent to N.WD/ for finite
WD . This homotopy equivalence was extended to arbitrary WD by Charney and Davis
[6]. Conjectures 1 and 3 are thus equivalent and so Theorem 2 can consequently be
viewed as a generalisation of the solution to the K.�; 1/-conjecture for Artin groups
of FC type provided in [5]. (Recall that AD is said to be of FC type if WD0 is finite
for every 1-free subgraph D0 in D.)

We would like to thank the referees for helpful comments and references.
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2. The space BD

Let D be a Coxeter graph. Let Nx be the image in WD of the generator x 2 S � AD

and set xS D f Nx W x 2 Sg. We say that D is of finite type if the Coxeter group WD is
finite.

Assume for the moment that D is of finite type and let n D jS j. Then WD can
be realized as a group of orthogonal transformations of Rn with generators Nx equal
to reflections [9]. Let A be the set of hyperplanes corresponding to all the reflections
in WD . For any point e in Rn n A we denote by PD the convex hull of the orbit of e

under the action of WD . The face lattice of the n-dimensional convex polytope PD

depends only on the graph D. (To see this, first note that the vertices of PD are the
points w � e for w 2 WD and that there is an edge between w � e and w0 � e if and only
if w�1w0 2 xS . Thus the combinatorial type of the 1-skeleton of PD does not depend
on the choice of point e. Furthermore, each vertex of the n-dimensional polytope
PD is incident with precisely n edges; hence PD is simple and the face lattice of the
polytope is determined by the combinatorial type of the 1-skeleton [2].)

Label each edge in PD by the generating reflection Nx D w�1w0 2 xS determined
by the edge’s boundary vertices w � e, w0 � e. Define the length of an element g in WD

to be the shortest length of a word in the generators representing it. It is possible to
orient each edge in PD so that its initial vertex gv and final vertex g0v are such that
the length of g is less than the length of g0. With this edge orientation the 1-skeleton
coincides with the Hasse diagram for the weak Bruhat order on WD . Each k-face
in PD has a least vertex in the weak Bruhat order. Reading the edge labels along
the boundary of any 2-face, starting at the least vertex and using edge orientations
to determine exponents ˙1, yields a relator .xy/m.i;j /.yx/�1

m.i;j /
of the Artin group

AD . Furthermore, if F is any k-face of PD , then VF D fw 2 WD W w � e 2 F g is
a left coset of the parabolic subgroup hT i of WD generated by some subset T � xS
of size jT j D k; this induces an isomorphism between the face lattice of PD and the
poset of cosets fw � hT i W T � xS; w 2 WDg ordered by inclusion.

The above description of the polytope PD is well known. (We note that many
authors prefer to deal with the dual polytope: since PD is simple the dual is simplicial.)

The space BD is obtained from the polytope PD by isometrically identifying
any two cells with similarly labelled 1-skeleta. More precisely, the group WD acts
cellularly on PD . If a k-face F is mapped to a k-face F 0 under the action of w 2 WD ,
then there is a unique w0 2 WD which maps F to F 0 in such a way that the least
vertex of F maps to the least vertex of F 0; we identify w0 � f with f for each point
f 2 F . Thus the face lattice of BD is isomorphic to the poset of subsets of xS .

Suppose now that D is not of finite type. We define a subgraph Di of D to be
maximal finite if Di is a full subgraph of D of finite type that is not contained in any
larger subgraph of finite type. Let D1; : : : ; Dk be the list of maximal finite subgraphs
of D. We denote by Di \Dj the full subgraph of D with vertices common to Di and
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Dj . There is a canonical embedding of the polytope PDi \Dj
into the polytope PDi

;
such embeddings allow us to define PD as the amalgamated sum of the polytopes
PD1

; : : : ; PDk
. The space BD is the connected space obtained from PD by isomet-

rically identifying any two cells with similarly labelled 1-skeleta; the identification
is the unique one which respects orientations of edges. The face lattice of the space
BD is isomorphic to the poset Sf D fT � xS W jhT ij < 1g ordered by inclusion.

Note that if a Coxeter graph D with vertex set S is a disjoint union of two Coxeter
graphs D0; D00 with vertex sets S 0; S 00 respectively, then there is a poset isomorphism
Sf D S 0f � S 00f . It is not difficult to see that this poset isomorphism extends to a
CW-homeomorphism BD D BD0 � BD00 .

Example. Consider the graph

1
4

where edges whose label is not indicated are assumed to have edge label 3. Letting
vertices correspond to generators w; x; y; z (starting at the top left corner and working
clockwise) the associated Artin group is

AD D hw; x; y; z W wxw D xwx; wy D yw;

wzw D zwz; xz D zx; yzyz D zyzyi:
The 3-dimensional space BD is obtained from the following two 3-dimensional poly-
topes by identifying similarly labelled faces and edges.

x

x
x

x
x

x

x

x

w
w

w

w

w

w
w

w

z

z

z

z

z

z

z

z

w

w

w w

w
w

w

w

w

w
w

w

w

w

z

z

z

z

z

z

z

z

z

z

z

z

z

z

z

y

y

y

y

y

y
y

y

y
y

y

y

y

y



Vol. 85 (2010) The K.�; 1/ conjecture for a class of Artin groups 413

The space BD contains four 1-cells, five 2-cells and two 3-cells. �

3. Proof of Theorem 2

Suppose that AD satisfies the hypothesis of the Theorem 2. Let XD denote the
universal covering space of BD . We shall use induction on the number of infinity
edges in D and the number of connected components in D to show that XD is
contractible.

If there are no infinity edges and the graph D is connected then XD is contractible
by hypothesis.

If D is not connected then AD is a direct product AD D AD0 � AD00 of two
non-trivial Artin groups AD0 and AD00 where the graph D is the disjoint union of D0
and D00. The space BD is the direct product BD0 � BD00 . Thus XD is contractible if
and only if both XD0 and XD00 are contractible. Hence, by induction on the number
of connected components in D, it suffices to prove the theorem in the case where the
graph D is connected.

Suppose that the Coxeter graph D is connected. Suppose that there is an infinity
edge in D whose endpoints correspond to the generators a; b 2 S D fx1; : : : ; xng.
Let A Oa be the subgroup of AD generated by S nfag, and A Oa; Ob the subgroup generated
by S nfa; bg. Let Dnfag denote the graph obtained from D by removing vertex a and
all edges incident with a. Let Dnfa; bg be the subgraph obtained by removing vertices
a; b and all edges incident with them. There are clearly surjective homomorphisms
ADnfag ! A Oa and ADnfa;bg ! A Oa; Ob . A result of H. van der Lek [13] (see also [14])
shows that these surjections are in fact isomorphisms. Note that each of the groups
ADnfag, ADnfbg, ADnfa;bg is an Artin group satisfying the hypothesis of the theorem
and with Coxeter graph involving fewer infinity edges than are in D.

Suppose that D has n � 1 infinity edges. As an inductive hypothesis as-
sume that the theorem holds for all Artin groups satisfying its hypothesis and hav-
ing Coxeter graph with fewer than n infinity edges. Thus we can assume that
BDnfag; BDnfbg; BDnfa;bg are classifying spaces for the subgroups A Oa; A Ob; A Oa; Ob . Con-
sider the homotopy pushout

BDnfa;bg ��

��

BDnfag

��
BDnfbg �� W .

The space W D BDnfag [BDnfbg is precisely the space W D BD . Now by a theorem
of J. H. C. Whitehead (see for example [3], Chapter II-7) the space W is a classifying
space. Hence its universal cover XD is contractible. �
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An argument similar to the above was used in [8] to study properties of graph
products of groups. Also, a version of this proof for Artin groups of FC type can be
found in [5] as a remark following Lemma 4.3.7.

4. An application

The cellular chain complex C�.XD/ has been implemented in the computational
algebra package hap [11]. In cases where the K.�; 1/ conjecture is known to hold
this chain complex is a free ZAD-resolution of Z and can be used to compute the
cohomology of the Artin group AD . The following was obtained in this way.

Proposition 4. The Artin group AD defined by the Coxeter graph

4
4

41

has integral cohomology groups

H 0.AD; Z/ Š Z; H 1.AD; Z/ Š Z5; H 2.AD; Z/ Š Z11;

H 3.AD; Z/ Š Z2 ˚ Z14; H 4.AD; Z/ Š Z2
2 ˚ Z12; H 5.AD; Z/ Š Z2 ˚ Z6;

H 6.AD; Z/ Š Z; H n.AD; Z/ D 0 .n � 7/:

Proof. The graph D is such that for every 1-free subgraph D0 the Artin group AD0

satisfies the K.�; 1/ conjecture by results mentioned in Section 1. By Theorem 2
the group AD itself satisfies the K.�; 1/ conjecture. We can thus use the computer
implementation of C�.XD/ in [11] to make the cohomology calculations. The space
XD is 6-dimensional in this example. �
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