# The $K(\pi, 1)$ conjecture for a class of Artin groups

Graham Ellis and Emil Sköldberg\*

**Abstract.** Salvetti constructed a cellular space  $B_D$  for any Artin group  $A_D$  defined by a Coxeter graph D. We show that  $B_D$  is an Eilenberg–Mac Lane space if  $B_{D'}$  is an Eilenberg–Mac Lane space for every subgraph D' of D involving no  $\infty$ -edges.

Mathematics Subject Classification (2000). 55P20, 20F36.

**Keywords.** Artin group, Eilenberg–Mac Lane space, cohomology groups.

#### 1. Introduction

A Coxeter matrix is a symmetric  $n \times n$  matrix whose entries m(i, j) are either positive integers or the symbol  $\infty$ , with m(i, j) = 1 if and only if i = j. Such a matrix is represented by an n-vertex labelled graph D (called a Coxeter graph) with edge joining vertices i and j if and only if  $m(i, j) \ge 3$ ; the edge is labelled by m(i, j). The Artin group  $A_D$  is defined to be the group generated by the set of symbols  $S = \{x_1, \ldots, x_n\}$  subject to relations  $(x_i x_j)_{m(i,j)} = (x_j x_i)_{m(i,j)}$  for all  $i \ne j$ , where  $(xy)_m$  denotes the word  $xyxyx\ldots$  of length m. The Coxeter group  $W_D$  is the quotient of  $A_D$  obtained by imposing additional relations  $x^2 = 1$  for  $x \in S$ .

For each Coxeter graph D there is an interesting finite CW-space  $B_D$  arising as a quotient of a union of certain convex polytopes (see Section 2 for precise details). It has fundamental group  $\pi_1(B_D) = A_D$  and we have the following.

**Conjecture 1.** The space  $B_D$  is an Eilenberg–Mac Lane space  $K(A_D, 1)$ .

From work of Squier in the 1980s (published posthumously [16]) one can deduce that the conjecture holds whenever the Coxeter group  $W_D$  is finite. (Squier established a free  $\mathbb{Z}A_D$ -resolution  $R_*^D$  of  $\mathbb{Z}$  having the same number of free generators in each degree as the cellular chain complex  $C_*(\tilde{B}_D)$ . It is clear that  $R_*^D$  coincides with  $C_*(\tilde{B}_D)$  in degrees  $\leq 2$  and hence  $R_*^D$  is the cellular chain complex of the universal cover of some  $K(A_D, 1)$ . A detailed analysis suggests that  $R_*^D$  is in fact the cellular

<sup>\*</sup>Supported by Marie Curie fellowship HPMD-CT-2001-00079.

chain complex of  $\widetilde{B}_D$ .) Also, it follows immediately from a result of Appel and Schupp [1, Lemma 6] that the conjecture holds if, for every triple of generators  $a, b, c \in S$ , the three Artin relators  $(ab)_k = (ba)_k$ ,  $(bc)_l = (cb)_l$ ,  $(ac)_m = (ca)_m$  are such that  $\frac{1}{k} + \frac{1}{l} + \frac{1}{m} \le 1$ . (In this case  $B_D$  is just the standard 2-dimensional CW-space associated to the presentation and Lemma 6 in [1] implies that any element of  $\pi_2(B_D)$  would have to be represented by a non-positively curved piecewise euclidean 2-sphere.)

Given a Coxeter graph D we shall say that a subgraph D' is an  $\infty$ -free subgraph if (1) D' is a connected and full subgraph of D; (2) no edge of D' is labelled by  $\infty$ . (In a full subgraph an edge must be included if its two boundary vertices are present.) Our main result is obtained using a technique of D. E. Cohen [8] and is the following.

**Theorem 2.** An Artin group  $A_D$  satisfies Conjecture 1 if  $A_{D'}$  satisfies Conjecture 1 for every  $\infty$ -free subgraph D' in D.

For Artin groups satisfying Conjecture 1 the cellular chains of the universal cover  $\tilde{B}_D$  yield an explicit small free  $\mathbb{Z}A_D$ -resolution from which cohomology calculations can be made. Section 4 gives such a cohomology calculation based on Theorem 2.

To place Theorem 2 in context we mention that there is an alternative statement of Conjecture 1. Every Coxeter group  $W_D$  acts canonically as a linear group generated by "reflections" on a real vector space V and properly discontinuously on an open cone  $I \subset V$  called the *Tits cone*. Denote by A the set of reflecting hyperplanes of  $W_D$  and consider the following subspace of  $\mathbb{C} \otimes V = V \oplus \mathbf{i} V$ :

$$M(W_D) = I \oplus \mathbf{i} V \setminus (\bigcup_{H \in A} H \oplus \mathbf{i} H).$$

The group  $W_D$  acts freely and properly discontinuously on M(W) and the quotient  $N(W_D) = M(W_D)/W_D$  has fundamental group equal to  $A_D$ .

**Conjecture 3.** The space  $N(W_D)$  is an Eilenberg–Mac Lane space  $K(A_D, 1)$ .

Conjecture 3 is known as the  $K(\pi, 1)$ -conjecture for Artin groups and is attributed to Arnold, Pham and Thom in [5]. It has been proved in many cases: Deligne [10] proved it for finite  $W_D$ ; Hendriks [12] proved it for  $W_D$  of large type; Charney and Davis [5] proved it when  $W_D$  is 2-dimensional and when  $W_D$  is of FC type; Charney and Peifer [7] proved it for  $W_D$  of affine type  $\tilde{A}_n$ ; Callegaro, Moroni and Salvetti [4] have recently proved it for  $W_D$  of affine type  $\tilde{B}_n$ .

Salvetti [15] showed that the space  $B_D$  is homotopy equivalent to  $N(W_D)$  for finite  $W_D$ . This homotopy equivalence was extended to arbitrary  $W_D$  by Charney and Davis [6]. Conjectures 1 and 3 are thus equivalent and so Theorem 2 can consequently be viewed as a generalisation of the solution to the  $K(\pi, 1)$ -conjecture for Artin groups of FC type provided in [5]. (Recall that  $A_D$  is said to be of FC type if  $W_{D'}$  is finite for every  $\infty$ -free subgraph D' in D.)

We would like to thank the referees for helpful comments and references.

# 2. The space $B_D$

Let D be a Coxeter graph. Let  $\bar{x}$  be the image in  $W_D$  of the generator  $x \in S \subset A_D$  and set  $\bar{S} = \{\bar{x} : x \in S\}$ . We say that D is of *finite type* if the Coxeter group  $W_D$  is finite.

Assume for the moment that D is of finite type and let n = |S|. Then  $W_D$  can be realized as a group of orthogonal transformations of  $\mathbb{R}^n$  with generators  $\bar{x}$  equal to reflections [9]. Let A be the set of hyperplanes corresponding to all the reflections in  $W_D$ . For any point e in  $\mathbb{R}^n \setminus A$  we denote by  $P_D$  the convex hull of the orbit of e under the action of  $W_D$ . The face lattice of the n-dimensional convex polytope  $P_D$  depends only on the graph D. (To see this, first note that the vertices of  $P_D$  are the points  $w \cdot e$  for  $w \in W_D$  and that there is an edge between  $w \cdot e$  and  $w' \cdot e$  if and only if  $w^{-1}w' \in \overline{S}$ . Thus the combinatorial type of the 1-skeleton of  $P_D$  does not depend on the choice of point e. Furthermore, each vertex of the n-dimensional polytope  $P_D$  is incident with precisely n edges; hence  $P_D$  is simple and the face lattice of the polytope is determined by the combinatorial type of the 1-skeleton [2].)

Label each edge in  $P_D$  by the generating reflection  $\bar{x} = w^{-1}w' \in \overline{S}$  determined by the edge's boundary vertices  $w \cdot e$ ,  $w' \cdot e$ . Define the *length* of an element g in  $W_D$  to be the shortest length of a word in the generators representing it. It is possible to orient each edge in  $P_D$  so that its initial vertex gv and final vertex g'v are such that the length of g is less than the length of g'. With this edge orientation the 1-skeleton coincides with the Hasse diagram for the weak Bruhat order on  $W_D$ . Each k-face in  $P_D$  has a least vertex in the weak Bruhat order. Reading the edge labels along the boundary of any 2-face, starting at the least vertex and using edge orientations to determine exponents  $\pm 1$ , yields a relator  $(xy)_{m(i,j)}(yx)_{m(i,j)}^{-1}$  of the Artin group  $A_D$ . Furthermore, if F is any k-face of  $P_D$ , then  $V_F = \{w \in W_D : w \cdot e \in F\}$  is a left coset of the *parabolic subgroup*  $\langle T \rangle$  of  $W_D$  generated by some subset  $T \subset \overline{S}$  of size |T| = k; this induces an isomorphism between the face lattice of  $P_D$  and the poset of cosets  $\{w \cdot \langle T \rangle : T \subset \overline{S}, w \in W_D\}$  ordered by inclusion.

The above description of the polytope  $P_D$  is well known. (We note that many authors prefer to deal with the dual polytope: since  $P_D$  is simple the dual is simplicial.)

The space  $B_D$  is obtained from the polytope  $P_D$  by isometrically identifying any two cells with similarly labelled 1-skeleta. More precisely, the group  $W_D$  acts cellularly on  $P_D$ . If a k-face F is mapped to a k-face F' under the action of  $w \in W_D$ , then there is a unique  $w_0 \in W_D$  which maps F to F' in such a way that the least vertex of F maps to the least vertex of F'; we identify  $w_0 \cdot f$  with f for each point  $f \in F$ . Thus the face lattice of  $B_D$  is isomorphic to the poset of subsets of  $\overline{S}$ .

Suppose now that D is not of finite type. We define a subgraph  $D_i$  of D to be *maximal finite* if  $D_i$  is a full subgraph of D of finite type that is not contained in any larger subgraph of finite type. Let  $D_1, \ldots, D_k$  be the list of maximal finite subgraphs of D. We denote by  $D_i \cap D_j$  the full subgraph of D with vertices common to  $D_i$  and

 $D_j$ . There is a canonical embedding of the polytope  $P_{D_i \cap D_j}$  into the polytope  $P_{D_i}$ ; such embeddings allow us to define  $P_D$  as the amalgamated sum of the polytopes  $P_{D_1}, \ldots, P_{D_k}$ . The space  $P_D$  is the connected space obtained from  $P_D$  by isometrically identifying any two cells with similarly labelled 1-skeleta; the identification is the unique one which respects orientations of edges. The face lattice of the space  $P_D$  is isomorphic to the poset  $P_D \cap P_D$  ordered by inclusion.

Note that if a Coxeter graph D with vertex set S is a disjoint union of two Coxeter graphs D', D'' with vertex sets S', S'' respectively, then there is a poset isomorphism  $S^f = S'^f \times S''^f$ . It is not difficult to see that this poset isomorphism extends to a CW-homeomorphism  $B_D = B_{D'} \times B_{D''}$ .

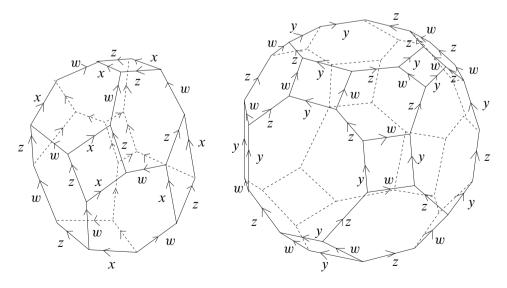
### **Example.** Consider the graph



where edges whose label is not indicated are assumed to have edge label 3. Letting vertices correspond to generators w, x, y, z (starting at the top left corner and working clockwise) the associated Artin group is

$$A_D = \langle w, x, y, z : wxw = xwx, wy = yw,$$
  
$$wzw = zwz, xz = zx, yzyz = zyzy \rangle.$$

The 3-dimensional space  $B_D$  is obtained from the following two 3-dimensional polytopes by identifying similarly labelled faces and edges.



The space  $B_D$  contains four 1-cells, five 2-cells and two 3-cells.

## 3. Proof of Theorem 2

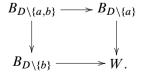
Suppose that  $A_D$  satisfies the hypothesis of the Theorem 2. Let  $X_D$  denote the universal covering space of  $B_D$ . We shall use induction on the number of infinity edges in D and the number of connected components in D to show that  $X_D$  is contractible.

If there are no infinity edges and the graph D is connected then  $X_D$  is contractible by hypothesis.

If D is not connected then  $A_D$  is a direct product  $A_D = A_{D'} \times A_{D''}$  of two non-trivial Artin groups  $A_{D'}$  and  $A_{D''}$  where the graph D is the disjoint union of D' and D''. The space  $B_D$  is the direct product  $B_{D'} \times B_{D''}$ . Thus  $X_D$  is contractible if and only if both  $X_{D'}$  and  $X_{D''}$  are contractible. Hence, by induction on the number of connected components in D, it suffices to prove the theorem in the case where the graph D is connected.

Suppose that the Coxeter graph D is connected. Suppose that there is an infinity edge in D whose endpoints correspond to the generators  $a,b \in S = \{x_1,\ldots,x_n\}$ . Let  $A_{\hat{a}}$  be the subgroup of  $A_D$  generated by  $S \setminus \{a\}$ , and  $A_{\hat{a},\hat{b}}$  the subgroup generated by  $S \setminus \{a,b\}$ . Let  $D \setminus \{a\}$  denote the graph obtained from D by removing vertex a and all edges incident with a. Let  $D \setminus \{a,b\}$  be the subgraph obtained by removing vertices a,b and all edges incident with them. There are clearly surjective homomorphisms  $A_{D \setminus \{a\}} \to A_{\hat{a}}$  and  $A_{D \setminus \{a,b\}} \to A_{\hat{a},\hat{b}}$ . A result of H. van der Lek [13] (see also [14]) shows that these surjections are in fact isomorphisms. Note that each of the groups  $A_{D \setminus \{a\}}$ ,  $A_{D \setminus \{a,b\}}$  is an Artin group satisfying the hypothesis of the theorem and with Coxeter graph involving fewer infinity edges than are in D.

Suppose that D has  $n \ge 1$  infinity edges. As an inductive hypothesis assume that the theorem holds for all Artin groups satisfying its hypothesis and having Coxeter graph with fewer than n infinity edges. Thus we can assume that  $B_{D\setminus\{a\}}, B_{D\setminus\{a,b\}}$  are classifying spaces for the subgroups  $A_{\hat{a}}, A_{\hat{b}}, A_{\hat{a},\hat{b}}$ . Consider the homotopy pushout



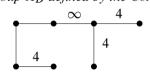
The space  $W = B_{D\setminus\{a\}} \cup B_{D\setminus\{b\}}$  is precisely the space  $W = B_D$ . Now by a theorem of J. H. C. Whitehead (see for example [3], Chapter II-7) the space W is a classifying space. Hence its universal cover  $X_D$  is contractible.

An argument similar to the above was used in [8] to study properties of graph products of groups. Also, a version of this proof for Artin groups of FC type can be found in [5] as a remark following Lemma 4.3.7.

### 4. An application

The cellular chain complex  $C_*(X_D)$  has been implemented in the computational algebra package HAP [11]. In cases where the  $K(\pi, 1)$  conjecture is known to hold this chain complex is a free  $\mathbb{Z}A_D$ -resolution of  $\mathbb{Z}$  and can be used to compute the cohomology of the Artin group  $A_D$ . The following was obtained in this way.

**Proposition 4.** The Artin group  $A_D$  defined by the Coxeter graph



has integral cohomology groups

$$H^0(A_D, \mathbb{Z}) \cong \mathbb{Z}, \qquad H^1(A_D, \mathbb{Z}) \cong \mathbb{Z}^5, \qquad H^2(A_D, \mathbb{Z}) \cong \mathbb{Z}^{11},$$
  
 $H^3(A_D, \mathbb{Z}) \cong \mathbb{Z}_2 \oplus \mathbb{Z}^{14}, \quad H^4(A_D, \mathbb{Z}) \cong \mathbb{Z}_2^2 \oplus \mathbb{Z}^{12}, \quad H^5(A_D, \mathbb{Z}) \cong \mathbb{Z}_2 \oplus \mathbb{Z}^6,$   
 $H^6(A_D, \mathbb{Z}) \cong \mathbb{Z}, \qquad H^n(A_D, \mathbb{Z}) = 0 \ (n \ge 7).$ 

*Proof.* The graph D is such that for every  $\infty$ -free subgraph D' the Artin group  $A_{D'}$  satisfies the  $K(\pi,1)$  conjecture by results mentioned in Section 1. By Theorem 2 the group  $A_D$  itself satisfies the  $K(\pi,1)$  conjecture. We can thus use the computer implementation of  $C_*(X_D)$  in [11] to make the cohomology calculations. The space  $X_D$  is 6-dimensional in this example.

#### References

- K. J. Appel and P. E. Schupp, Artin groups and infinite Coxeter groups. *Invent. Math.* 72 (1983), 201–220. Zbl 0536.20019 MR 0700768 410
- [2] R. Blind and P. Mani-Levitska, Puzzles and polytope isomorphisms. *Aequationes Math.* 34 (1987), 287–297. Zbl 0634.52005 MR 0921106 411
- [3] K. S. Brown, Cohomology of groups. Grad. Texts in Math. 87, Springer-Verlag, New York 1982. Zbl 0584.20036 MR 0672956 413
- [4] F. Callegaro, D. Moroni and M. Salvetti, The  $K(\pi, 1)$  problem for the affine Artin group of type  $\widetilde{B}_n$  and its cohomology. Preprint, 2007. arXiv:0705.2830 410

- [5] R. Charney and M. W. Davis, The  $K(\pi, 1)$  problem for hyperplane complements associated to infinite reflection groups. *J. Amer. Math. Soc.* **8** (1995), no. 3, 597–627. Zbl 0833.51006 MR 1303028 410, 414
- [6] R. Charney and M. W. Davis, Finite  $K(\pi, 1)$ s for Artin groups. In *Prospects in topology* (Princeton, NJ, 1994), Ann. of Math. Stud. 138, Princeton University Press, Princeton, NJ, 1995, 110–124. Zbl 0930.55006 MR 1368655 410
- [7] R. Charney and D. Peifer, The  $K(\pi, 1)$ -conjecture for the affine braid groups. *Comment. Math. Helv.* **78** (2003), no. 3, 584–600. Zbl 1066.20043 MR 1998395 410
- [8] D. E. Cohen, Projective resolutions for graph products of groups. *Proc. Edinburgh Math. Soc.* 38 (1995) 185–188. Zbl 0836.20074 MR 1317337 410, 414
- [9] H. S. M. Coxeter, Discrete groups generated by reflections. *Ann. of Math.* (2) 35 (1934), no. 3, 588–621. Zbl 60.0898.02 MR 1503182 411
- [10] P. Deligne, Les immeubles des groupes de tresses généralisés. *Invent. Math.* 17 (1972), 273–302. Zbl 0238.20034 MR 0422673 410
- [11] G. Ellis, Homological algebra programming. A GAP package for computational homological algebra. http://www.gap-system.org/Packages/hap.html 414
- [12] H. Hendriks, Hyperplane complements of large type. *Invent. Math.* 79 (1985), 375–381.
   Zbl 0564.57016 MR 0778133 410
- [13] H. van der Lek, The homotopy type of complex hyperplane complements. Ph.D. Thesis, Nijmegen, 1983. 413
- [14] L. Paris, Parabolic subgroups of Artin groups. J. Algebra 196 (1997), no. 2, 369–399.
  Zbl 0926.20022 MR 1475116 413
- [15] M. Salvetti, The homotopy type of Artin groups. Math. Res. Lett. 1 (1994), no. 5, 565–577.
   Zbl 0847.55011 MR 1295551 410
- [16] C. C. Squier, The homological algebra of Artin groups. *Math. Scand.* 75 (1994), no. 1, 5–43. Zbl 0839.20065 MR 1308935 409

#### Received April 18, 2008

Graham Ellis, Mathematics Department, National University of Ireland, Galway

E-mail: graham.ellis@nuigalway.ie

Emil Sköldberg, Mathematics Department, National University of Ireland, Galway, Ireland

E-mail: emil.skoldberg@nuigalway.ie