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this paper, we analyze the contribution of topological monodromy to the local signature of a
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Introduction

Let f W S ! B be a surjective holomorphic map from a compact complex surface
S to a nonsingular curve B such that the general fiber of f is a curve of genus g.
We call f a fibration of genus g. Let Sign S be the signature of the intersection form
on H 2.S ; Q/. If there exist a finite number of fiber germs .f; Fi /, Fi D f �1.Pi /

(1 � i � s, Pi 2 B) and a local invariant �.f; Fi / is geometrically well defined such
that

Sign S D
sX

iD1

�.f; Fi /;

then we say Sign S is localized and call �.f; Fi / a local signature.
Atiyah [At] had a deep insight which is, in some sense, the origin of several

formulations of this concept. Matsumoto [Ma1], [Ma2] used the Meyer function and
formulated the local signature of genus 1 and 2, and calculated them for the Lefschetz
fiber germs. Endo [E] extended it for hyperelliptic fibrations of arbitrary genus. (See
also [Mo].) Another local signature for hyperelliptic fibrations is defined by using
the double covering method ( [X], [AA1]), and these two notions are in fact coincide
with each other ([Te2]).

On the other hand, Ueno [U] used the even theta constant and defined and calcu-
lated a local signature of genus 2. Iida [Ii] gave an analytic interpretation of the local
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signature of genus 2 by using the theta divisor and the adiabatic limit of the eta in-
variant. Kuno [Ku] extended the approach of the Meyer function to non-hyperelliptic
fibrations of genus 3. For the survey articles, see [AK], [AE].

Now, through a series of papers, we present a certain type of a local signature
including generic non-hyperelliptic and unstable fibrations of arbitrary genus. From
our viewpoint, this notion should philosophically consist of two aspects of “moduli”
and “monodromy”:

local signature WD “moduli” aspect C “monodromy” aspect. (1)

With respect to the moduli aspect, we refer the joint paper with K. Yoshikawa
[AY] in detail. Here we only comment that, if f W S ! B is a stable fibration,
then the moduli aspect of (1) purely contribute it. Namely, by developing the idea of
I. Smith [Sm], we can define an explicit “signature divisor” on the Deligne–Mumford
compactification SMg and can localize Sign S via the pull back of it by the induced
map B ! SMg .

The main topic of this paper is the analysis of the monodromy aspect of (1), which
concerns the direct relation between the local monodromy around the singular fibers
and the local contribution of the stable reduction to the global signature. Namely, our
purpose here is to write down it explicitly by the language of the Nielsen’s invariants
[N1], [N2] of the monodromy map.

Note that Tan [Tan] and Viehweg [V] had important studies on the contribution of
the stable reduction to global invariants of S by certain algebro-geometric methods.
On the other hand, our method is topological based on variations of the signature
theorem historically started from [Hi1], and the setting is local in base.

We summarize the arguments here. Let f W S ! � be a degeneration of curves
with the central fiber F over a closed disk �, and let hS be a Riemannian metric on
S such that hS is a product metric near the boundary @S . We define

�.f; F I hS / D Sign S C �.@S; h@S /;

where Sign S is the signature on H 2.S; @S I Q/ and �.@S; h@S / is the eta invariant
([APS]) with respect to the restricted metric h@S of hS on the boundary @S . Let
Qf W zS ! z� be the minimal stable reduction of f with the central fiber zF which

comes from the cyclic base change z� ! � of degree N . We also put �. Qf; zF I h@ zS / D
Sign zSC �.@ zS; h@ zS / where h@ zS is a Riemannian metric on @ zS which coincides with
the natural pull back of h@ zS . We define

Lsd.f; F I h@S / WD �.f; F I h@S / � 1

N
�. Qf; zF I h@ zS /;

which we call the local signature defect of the degeneration f . This notion is analo-
gous in some sense to the “defect part” which Hirzebruch explained in [Hi2].
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Now our main theorem (Theorem 5.2.1) says that the local signature defect of f

is explicitly written in terms of the Nielsen’s monodromy data of f . In particular, this
is independent of the choice of the metric h@S . Moreover the local signature defect
is nothing but the local contribution of the difference of the global signatures for the
global stable reduction (Lemma 5.3.1).

The idea of the proof of the main theorem is as follows: The cyclic group G D
Z=.N / acts holomorphically on zS so that the resolution space of the singularities of
the quotient space zS=G coincides with the original S , and the problem is reduced
to the comparison between Sign zS and Sign zS=G. Since the spaces zS and zS=G are
also complex orbifolds, we can apply Kawasaki’s orbifold signature theorem [Ka],
which is a natural extension of Atiyah–Singer’s G-signature theorem. The data of the
integral of the equivariant L-forms on the infinitesimal neighborhoods of the G-fixed
point sets are essentially reduced to the Dedekind sum with respect to the monodromy
data, which are calculated explicitly in Sections 4 and 6.

For the preparation of this calculation, we propose the following two tools, which
themselves seem to have independent meanings. The one is a formula of Dedekind
sum (Theorem 4.1.2), which is due to Myerson and Holzapfel ([Hol], [My]). The
other is a certain precise relation between the stable reduction and the Matsumoto–
Montesinos’ method in Sections 1–3 as follows:

The study of the local monodromy has a long history, and it is settled that the local
monodromy as an element in the conjugacy class of the mapping class group of genus
g belongs to the class of pseudo-periodic map of negative twist. Conversely, for a
given pseudo-periodic map of negative twist � W †g ! †g of a Riemann surface †g ,
Matsumoto–Montesinos ([MM1] Part I) constructed a certain topological quotient
space †g ! †g=h�i, which we call MM-quotient.

An algebro-geometric interpretation of †g=h�i due to Takamura [Tak] is as
follows: We start from the stable reduction zS ! z� of f . The Galois group
G D Gal. z�=�/ acts holomorphically on zS , since it is 2-dimensional ([DM]). The G-
action has natural local expressions at the nodes and the points whose isotropy groups
are nontrivial as in Section 3.1 (cf. [Te1]). He constructed the local uniformization
spaces of these actions and determined the types of singularities on zS=G. The nor-
mally minimal model of the resolution of zS=G is nothing but the space †g=h�i.
Therefore, to say generically, the stable reduction theorem induce the MM-quotient.

The MM-quotient has richer information than the usual stable reduction theorem.
Indeed, we propose in Section 2 “a precise” stable reduction theorem based on MM-
quotient as follows: Since the numerical Chorizo space of the singular fiber of f

coincides with †g=h�i, all the irreducible components are classified into cores, tails,
arcs and quasi-tails as in Section 1. We contract all the tails, arcs and quasi-tails to
points, and put S] the resulting surface. Then the natural fibration zS ! z� of the
normalization zS of S] ��

z� via the cyclic cover z� ! � whose degree coincides with
a pseudo-period of � is nothing but the stable reduction of f (Theorem 2.2.1). This
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process is more precise than the usual one, because the birational transformations
in the process are explicit. Moreover, the description of the Milnor number of the
A-type singularities on zS , the coincidence of S] and zS=G, and the description of the
singularities on S] are all directly known.

By comparing the monodromy maps of zS ! z� and zS=G ! � D z�=G, we also
directly obtain the coincidence of the data of the local action of G to zS (which we call
G-valency etc. in Section 3.1) and the Nielsen’s monodromy data (Theorem 3.1.1).

1. Matsumoto–Montesinos quotient

In this section, we review the construction of the quotient space introduced by
Matsumoto–Montesinos ([MM1] Part I) and related facts which will be used after-
wards.1 This space is constructed by the topological quotient of a Riemann surface by
an element of the subclass of the mapping class group which is called pseudo-periodic
map of negative twist. Here our description is slightly modified from the original one
[MM1] by using the method of Takamura [Tak].

1.1. Let †g be a Riemann surface of genus g and let � W †g ! †g be a pseudo-
periodic map of negative twist. By definition, � is an orientation-preserving home-
omorphism such that the following conditions are satisfied modulo isotopy: There
exists a decomposition

†g D A [ B (2)

into the annulus-part A D `
Aj which is the disjoint union of the annular neighbor-

hoods Aj of simple closed curves on †g belonging to the admissible system of cut
curves, and the body-part B D `

Bi which is the disjoint union of Riemann surfaces
Bi with boundary, such that the boundary set @B coincides with the boundary set
@A. The restriction �jB is periodic, i.e., the power .�jB/N for some natural number
N is the identity map idB . The restriction of the power .�jAj

/N to each annulus
Aj is a right-handed integral Dehn twist. We call such an N a pseudo-period of �.
Note that N is a multiple of the minimal pseudo-period N0 (i.e., the minimal natural
number among all the pseudo-periods).

Now let Œ�� be the equivalence class of � of the conjugacy class yMg of the
mapping class group of genus g. We review the conjugacy invariants of Œ��:

Let EC be an oriented simple closed curve on †g . Suppose there is a natural
number m D m. EC / such that �m. EC / D EC as an oriented curve, where m is assumed
to be the minimal number which enjoys this property. Moreover suppose .�j EC /m

is periodic of order � D �. EC / � 1. Then for any point R on EC , there is a natural
number � D �. EC / with 1 � � � ��1 such that the iteration of �m are situated in the

1For many examples of the notion discussed here, see for instance [AI1].
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order (R; �m� .R/; �2m� .R/; : : : ; �.��1/m� .R/) when viewed in the direction of
EC . The set of triple (m. EC /; �. EC /; �. EC /) is called Nielsen’s valency at EC ([N1]). Let
ı D ı. EC / be the integer which satisfies �ı � 1 (mod �) and 1 � ı � ��1. Then the
map �mj EC behaves as the rotation of angle 2�ı=� in a suitable parametrization of EC .
Since the number ı is also important in our argument, we simply call the quadruplet
(m. EC /; �. EC /; �. EC /; ı. EC /) the valency at EC .

Let Q be a point on the inside of a body component Bin@Bi . Let m.Bi / be
the minimal natural number such that �m.Bi /jBi

D idBi
. If there exists a natu-

ral number m D m.Q/ which is strictly smaller than m.Bi / such that the points
fQ; �.Q/; : : : ; �m�1.Q/g are distinct each other and �m.Q/ D Q, we call Q a
multiple point. Then there exists a disk neighborhood DQ of Q which is invariant
under the action �m. The valency (m.Q/; �.Q/; �.Q/; ı.Q/) at Q is defined to be
the valency of the boundary curve @DQ of DQ whose orientation is defined from the
outside of the disk. (Note that the orientation of @DQ is defined from the inside in
[MM1].)

For an annulus component Aj , we put @Aj D @A
.1/
j

`
@A

.2/
j the decomposition

to connected components of the boundary curve where the orientation is defined here
from the outside of the annulus. The valency at Aj is defined to be the couple of

valencies (m.@A
.k/
j /; �.@A

.k/
j /; �.@A

.k/
j /; ı.@A

.k/
j /) for k D 1; 2. If there exists a

natural number ˇ such that �ˇ interchanges the boundary components of Aj , i.e.,

�ˇ .@A
.1/
j / D @A

.2/
j , we call Aj an amphidrome annulus. Otherwise we call Aj a

non-amphidrome annulus.
Let ˛ be the smallest natural number such that �˛.Aj / D Aj does not interchange

the boundary components. Let 	 be a non-zero integer such that �� j@Aj
is the identity

map. Then 	 is a multiple of ˛, and �� W Aj ! Aj is a result of e full Dehn twist, e

being an integer. Then we define the screw number at Aj by s.Aj / WD e˛=	 .
Then the theorem of Nielsen [N2] and Matsumoto–Montesinos [MM1] says that

the conjugacy class of � is determined by the data of

(i) valencies at the multiple points fQg and at the annuli fAj g,

(ii) screw numbers at the annuli fAj g,

(iii) the action of � to the extended partition graph �.�/, i.e., the one-dimensional
oriented graph whose points correspond to fBig and whose segments correspond
to fAj g in a natural way.

1.2. By a numerical Chorizo space, we mean a connected topological space con-
sisting of the components which are underlying topological spaces of irreducible
Riemann surfaces with nodes so that the multiplicities are attached to every compo-
nents. Moreover, if two components of them intersect each other, they intersect at
several points transversally.
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For a given conjugacy class of pseudo-periodic map of negative twist Œ��, Matsu-
moto–Montesinos [MM1] constructed the generalized quotient map �� W †g !
†g=h�i. Here †g=h�i is a certain numerical Chorizo space, which we call the

Matsumoto–Montesinos quotient of �. Let †g=h�i D P
i ˛iF

.i/
top be the decompo-

sition to its components. By the construction, F
.i/
top is classified into the following

types (i)–(iv):

(i) F
.i/
top is a core component. Namely, F

.i/
top is the unique component which contains

the support of ��.B 0
i /, where B 0

i is the complement of disk neighborhoods of
multiple points of � on a certain body connected component Bi ,

(ii) F
.i/
top is a sphere component of a tail which comes from the quotient of a disk

neighborhood of a multiple point,

(iii) F
.i/
top is a sphere component of an arc which comes from the quotient of a non-

amphidrome annulus,

(iv) F
.i/
top is a sphere component of a quasi-tail which comes from the quotient of an

amphidrome annulus.

We review the construction and the properties of the tails, the arcs and the quasi-
tails in Sections 4, 1.5 and 1.6, respectively.

1.3. Before the construction, we prepare some terminology. Let .�; �/ be any pair
of integers with 1 � � � � � 1 in this subsection. Let

�

�
D K1 � n2

�
D K1 � 1

K2 � n3

n2

D K1 � 1

K2 � 1

K3 � � � �
WD ŒŒK1; K2; : : : ; Kr ��

(3)
be the continued linear fraction. The sequence fnigrC1

iD0 of natural numbers which
satisfies n0 D �; n1 D � and

ni D Ki�1ni�1 � ni�2 .2 � i � r C 1/ (4)

is called the usual multiplicity sequence of the continued linear fraction (3). Note
that nr D 1 and nrC1 D 0.

Conversely, let fnigrC1
iD0 be any sequence of non-negative integers such that ni ¤ 0

and .niC1 C ni�1/=ni are integers for 1 � i � r . We call such fnigrC1
iD0 abstract

multiplicity sequence. We define the associated continued fraction ŒŒK1; K2; : : : ; Kr ��

of this abstract multiplicity sequence by putting Ki D .niC1 C ni�1/=ni .
For instance, we sometimes set the initial values n0; n1 another pair of natu-

ral numbers, and consider the abstract multiplicity sequence by the same recursion
formula (4) of (3) as in the following example.



Vol. 85 (2010) Local signature defect of fibered complex surfaces 423

Example 1.3.1. We consider ŒŒK1; K2; K3; K4; K5�� D ŒŒ2; 2; 2; 3; 2�� D 14=11.
Then the usual multiplicity sequence is f14; 11; 8; 5; 2; 1; 0g.

On the other hand, the abstract multiplicity sequence with the initial values n0 D 6,
n1 D 5 of this continued linear fraction is f6; 5; 4; 3; 2; 3; 4g. Indeed, we have
n2 D 2 � 5 � 6 D 4, n3 D 2 � 4 � 5 D 3, n4 D 2 � 3 � 4 D 2, n5 D 3 � 2 � 3 D 3,
n6 D 2 � 3 � 2 D 4.

Therefore, ŒŒ2; 2; 2; 3; 2�� is also the associated continued linear fraction of
f6; 5; 4; 3; 2; 3; 4g.

1.4. Let Q be a multiple point on B with the valency .m; �; �; ı/. Let (3) be the
continued linear fraction of �=� with respect to this valency data, and let fnigrC1

iD0 be
its usual multiplicity sequence.

Then we attach at a point of a disk D of multiplicity mn0 a chain of rational curves
of the length r of multiplicities mn1; mn2; : : : ; mnr (see [MM2], p. 72, Figure 1).
This is the tail arising from the multiple point Q.

1.5. Next consider a non-amphidrome annulus A D Aj . Let @A D @A.1/
`

@A.2/

be the decomposition to the connected components of the boundary and let
.m.k/; �.k/; � .k/; ı.k// be the valencies at @A.k/ (k D 1; 2). Let s.A/ be the screw
number at A. Then s.A/ is a non-positive rational number, and is written as

s.A/ D � ı.1/

�.1/
� ı.2/

�.2/
� K (5)

where K is an integer greater or equal to �1 ([MM1]). Let

�.1/

� .1/
D ŒŒK1; K2; : : : ; Kr ��;

�.2/

� .2/
D ŒŒL1; L2; : : : ; Lr 0 �� (6)

be the continued linear fractions and let fnigrC1
iD0 , fmigr 0C1

iD0 be their usual multiplicity
sequences respectively. Let O� .i/ be the natural number which satisfies

� .i/ı.i/ D O� .i/�.i/ C 1 .i D 1; 2/:

We define a natural number d and integers v; v�; Nv; Nv� by

d D ��.1/�.2/s.A/ D ı.1/�.2/ C ı.2/�.1/ C K�.1/�.2/; (7)

v D � .1/ı.2/ C�.2/ O� .1/ C� .1/�.2/K ; v� D � .2/ı.1/ C�.1/ O� .2/ C� .2/�.1/K ; (8)

Nv � v .mod d/; 1 � Nv � d � 1; Nv� � v� .mod d/; 1 � Nv� � d � 1: (9)

Lemma 1.5.1 (Takamura [Tak]). (i) vv� � 1 (mod d ),

(ii) If K � 0, then 1 � v � d � 1 and 1 � v� � d � 1, i.e., v D Nv and v� D Nv�.
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Proof. The assertion (i) follows from

vv� D . O� .1/� .2/ C � .1/ O� .2/ C � .1/� .2/K /d C 1:

The former assertion of (ii) follows from

d � v D
�
�.1/ � � .1/

�
d C �.2/

�.1/
> 0:

The latter assertion of (ii) is similar. �

Now we first assume K � 0. From (6), we define new continued fractions ˆ WD
ˆ.�.1/=� .1/; �.2/=� .2/; K / as follows:

(i) If K � 1, put

ˆ D ŒŒK1; K2; : : : ; Kr�1; Kr C 1; 2; : : : ; 2„ ƒ‚ …
K�1

; Lr 0 C 1; Lr 0�1 : : : ; L2; L1��:

(ii) If K D 0, r � 1 and r 0 � 1, put

ˆ D ŒŒK1; K2; : : : ; Kr�1; Kr C Lr 0 ; Lr 0�1 : : : ; L2; L1��:

(iii) If K D 0, r � 1 and r 0 D 0, put

ˆ D ŒŒK1; K2; : : : ; Kr�1��:

Lemma 1.5.2. The abstract multiplicity sequences with the initial values �.1/; � .1/

of the continued linear fraction ˆ are as follows:

(i) If K � 1, then fn0; n1; : : : ; nr�1; nr ; 1; : : : ; 1„ ƒ‚ …
K�1

; mr 0 ; mr 0�1; : : : ; m1; m0g.

(ii) If K D 0, r � 1 and r 0 � 1, then fn0; n1; : : : ; nr�1; 1; mr 0�1; : : : ; m1; m0g.
(iii) If K D 0, r � 1 and r 0 D 0, then fn0; n1; : : : ; nr�1; nrg.

Proof. We prove (i). Let f`igrCr 0CK
iD0 be the abstract multiplicity sequence of ˆ

with the initial values `0 D �.1/ D n0, `1 D � .1/ D n1. It is clear that `i D ni

for 0 � i � r . Since nr D 1 and Krnr � nr�1 D 0, we also have `rC1 D
.Kr C 1/nr � nr�1 D 1 and `rCi D 2 � 1 � 1 D 1 for 2 � i � K .

On the other hand, the usual multiplicity sequence fmigr 0C1
iD0 satisfies mr 0C1 D 0,

mr 0 D 1 and mi�2 D Li�1mi�1 � mi for 2 � i � r 0 C 1. Hence

`rCKC1 D 1 � .Lr 0 C 1/ � 1 D Lr 0 D mr 0�1: (10)

By (10) and `rCK D 1 D mr 0 , we inductively have

`rCKCi D Lr 0�i�1`rCKCi�1 � `rCKCi�2 D Lr 0�i�1mr 0�iC1 � mr 0�iC2 D mr 0�i

for 2 � i � r 0.
The proofs of (ii), (iii) are similar. �
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Lemma 1.5.3. The value of the continued linear fraction of each of ˆ coincides
with d=v.

Proof. See [To] p. 64, Lemma 4.9. �

Note that Lemma 1.5.3 also implies that ŒŒL1; L2; : : : ; Lr 0�1; Lr 0 C 1; 2; : : : ; 2„ ƒ‚ …
K�1

;

Kr C 1; Kr�1 : : : ; K2; K1�� D d=v� and so on.
Next we assume K D �1. This case occur only when ı.1/=�.1/ C ı.2/=�.2/ � 1.

Theorem 1.5.4 (Takamura). Assume ı.1/=�.1/ C ı.2/=�.2/ � 1.
(i) There exists an unique pair .!; !0/ of integers with 0 � ! � r , 0 � !0 � r 0,

.!; !0/ ¤ .0; 0/ which satisfies

n! D m!0 ; n!C1 C m!0C1 D n! :

In particular, the following are abstract multiplicity sequences;

(a) If ! � 1; !0 � 1, then fn0; n1; : : : ; n!�1; n! ; m!0�1; : : : ; m1; m0g.
(b) If !0 D 0, then fn0; n1; : : : ; n!�1; n!g:

(ii)The associated continued linear fractionsˆof these sequences are respectively

(a) ˆ D ŒŒK1; K2; : : : ; K!�1; K! C L!0 � 1; L!0�1; : : : ; L2; L1��,

(b) ˆ D ŒŒK1; K2; : : : ; K!�1�� for ! � 2. (Note that ˆ is empty for ! D 1.)

(iii) In the case (a), we have v D Nv and v� D Nv�. Moreover the value of the
continued linear fraction ˆ coincide with d=v by putting K D �1 in (8).

(iv) In the case (b) for ! � 2, we have v < Nv and v� D Nv�. The value of ˆ

coincide with d= Nv by putting K D �1.

Proof. See [Tak], §6.2. �

We will again discuss in Section 3.2 the geometric meaning of Lemma 1.5.3 and
Theorem 1.5.4.

Now we go back to the construction of the arc ��.A/. This is related to the
abstract multiplicity sequences in Lemma 1.5.2 and Theorem 1.5.4. Namely, this
is constructed by combining two disks D.1/ and D.2/ with multiplicities mn0 and
mm0 respectively by the following chain of spheres:

(i) If K � 1, then the chain has length r C r 0 C K � 1 such that the multiplicities
of the components are mn1; mn2; : : : ; mnr ; m; : : : ; m„ ƒ‚ …

K�1

; mmr 0 ; : : : ; mm2; mm1 (see

[MM2], p. 73, Figure 2).

(ii) If K D 0, then the chain has length r Cr 0 �1 such that the multiplicities of the
components are mn1; mn2; : : : ; mnr�1; m; mmr 0�1; : : : ; mm2; mm1 (Figure A).
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(iiia) If K D �1, ! � 1 and !0 � 1, then the chain has length ! C!0 �1 such that
the multiplicities of the components are mn1; mn2; : : : ; mn!�1; mn! ; mm!0�1; : : : ;

mm2; mm1 (Figure B).

(iiib) If K D �1, ! � 2 and !0 D 0, then the chain has length ! � 1 such that
the multiplicities of the components are mn1; mn2; : : : ; mn!�1 (Figure C).

(iiic) If K D �1 and ! D 1, !0 D 0, then the banks of both sides of the bodies
connect directly at one point transversally (Figure D).

· · · · · ·

Figure A

· · · · · ·

· · · · · ·

Figure D

Figure C

Figure B

mn0

mn0

mn0

mn0

mn0

mn1

mn1

mn1 mnr�1 m mmr 0�1

mm1

mm1

mm0

mm0

mm0

mn!�1

mn!�1 mn! mm!0�1

The above arc ��.A/ is globally attached to core components in a natural way.
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1.6. Lastly we assume that the annulus A is amphidrome. The quasi-tail ��.A/ is
constructed as follows: Let .2m0; �; �; ı/ be the valency at both sides of boundary
curves of A, and let fnigr

iD0 be the multiplicity sequence of the continued linear
fraction of �=� as in (3). Then ��.A/ is constructed by connecting a disk of multi-
plicity 2m0m0 and the set of rational curves at a point transversally. This set has the
dual graph of Dynkin diagram of type D, and the multiplicities of components are
2m0n1; 2m0n2; : : : ; 2m0nr ; m0; m0. (the last m0; m0 are the multiplicities of the two
tail components. (See [MM2], p. 73, Figure 3).

The space ��.A/ is also globally attached to a core component in a natural way.

1.7. We present two examples of MM-quotients for certain pseudo-periodic maps of
genus 2. We will again discuss them in Sections 2 and 5 via another viewpoint. For
further examples of MM-quotient, see [AI1].

Example 1.7.1. Let � W †2 ! †2 be the pseudo-periodic map of negative twist of
genus 2 as follows: The decomposition (2) for � is written as †2 D B1 [ B2 [ A,
where each Bi (i D 1; 2) is a body connected component consisting of a one-
punctured torus and A is a non-amphidrome annulus. The valencies .m; �; �; ı/ on
B1 are .1; 4; 3; 3/, .1; 4; 3; 3/ and .1; 2; 1; 1/, where .1; 4; 3; 3/ is attached to the
boundary curve @B1 D @A.1/ and the others are attached to the multiple points.
According to [AI1], we simply say that the total valency on B1 is 3=4 C 3=4 C 1=2.
By the same way, the total valency on B2 is 2=3 C 2=3 C 2=3. The screw number
s.A/ is �3=4 � 2=3 � K (K � �1). The minimal pseudo-period of � is 12. See
Figure G in Section 2.

The MM-quotient space F of � for K � 0 2 and K D �1 are written as

F D 4F .1/ C
2X

kD1

3X
j D1

.4 � j /F
.1/

kj
C 2F

.1/
3 C

K�1X
j D1

F
.0/

j C 3F .2/

C
3X

kD1

2X
j D1

.3 � j /F
.2/

kj
.K � 0/;

F D 4F .1/ C
3X

j D1

.4 � j /F
.1/
2j C 2F

.1/
3 C 3F

.1/
11 C 2F

.1�2/
12�11 C 3F .2/

C
3X

kD2

2X
j D1

.3 � j /F
.2/

kj
.K D �1/:

2If K D 0, then F
.1/
13 D F

.2/
12 and

PK �1
j D1 F

.0/

j
is empty.
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The configuration of F is as in Figure I in Section 2. Here F has two core components
F .1/ and F .2/, four connected components of the tails

P3
j D1.4 � j /F

.1/
2j , 2F

.1/
3 ,P2

j D1.3 � j /F
.2/
2j and

P2
j D1.3 � j /F

.2/
3j , and one connected component of the arcP3

j D1.4 � j /F
.1/
1j CPK�1

j D1 F
.0/

j CP2
j D1 jF

.2/
1j (resp. 3F

.1/
11 C 2F

.1�2/
12�11) for K � 0

(resp. K D �1).

Example 1.7.2. Let � W †2 ! †2 be the pseudo-periodic map with the same de-
composition †2 D B1 [ B2 [ A as in Example 1.7.1 such that the total valency of
each of Bi (i D 1; 2) is 3=4 C 3=4 C 1=2 and A is an amphidrome annulus with the
screw number �3=4 � 3=4 � 2K (K � 0). The minimal pseudo-period is 8. The
configuration of the MM-quotient F of � is as in Figure E. Here the MM-quotient
space F has one core component, two connected components of the tails and one
connected component of the quasi-tail.

8

6

6

4

4

2

2 2 2

4

1

1

Tail
Tail

Quasi-tail

Core

Figure E

2. Stable reduction in biregular sense

By a stable reduction Qf W zS ! z� of a degeneration f W S ! � of curves, we mean
that zS is birationally equivalent to the fiber product S ��

z� where z� ! � is a cyclic
cover which is totally ramified at the origin, so that the central fiber Qf �1.0/ is a stable
curve. The total space zS may have singularities of type A at the nodes of the central
fiber. Note that the stable reduction is not unique for given f . Several proofs are
known for the existence of the stable reduction in this simple situation ([DM], [AW]
and [BPV] etc.).
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Now in this section, we present another process of the stable reduction in this
situation which is different from the method of above ones. Our process seems to be
precise, because we can “catch” the stable reduction explicitly in biregular sense.

2.1. Let f W S ! � be a proper surjective holomorphic map from a complex surface
S to an unit disk � D ft 2 C j jt j < 1g such that the general fiber f �1.t0/ (t0 6D 0)
is a nonsingular curve of genus g � 1. Let F D f �1.0/ be the singular fiber,
and let F D P�

iD1 ˛iF
.i/ be its irreducible decomposition. Assume f is normally

minimal, i.e., the reduced scheme F red D P�
iD1 F .i/ is normal crossing and any

(�1) component in Fred has at least three nodes of F red on it. We call f a normally
minimal degeneration of curves of genus g.

Let �f W †g ! †g be a monodromy map of f , where †g is considered to be a
fixed general fiber of f . The conjugacy class Œ�f � 2 yMg in the mapping class group
is uniquely determined by f , which we call the topological monodromy of f . It is
well known that Œ�f � belongs to the class of a pseudo-periodic map of negative twist
([Im], [MM1] etc.).

Let Fch D P�
iD1 ˛iF

.i/
top be the numerical Chorizo space naturally obtained by the

singular fiber F D P�
iD1 ˛iF

.i/. Namely, if we only forget the analytic structure of
each F .i/, but do not forget the underlining topological structure and the multiplicity
˛i and also its configuration, then we obtain Fch.

The fundamental theorem of [MM1] says that Fch coincides with the Matsumoto–
Montesinos quotient †g=h�f i of the monodromy map �f . We call F .i/ a core (resp.

tail, arc, quasi-tail) component of F iff the corresponding F
.i/
top is a core (resp. tail, arc,

quasi-tail) component in the sense of Section 1. By changing the order if necessary,
we may assume that fF .i/g� 0

iD1 (for some 1 � 	 0 � 	 ) are core components and
fF .i/g�

iD� 0C1 are non-core (i.e., tail, arc and quasi-tail) components.

Since fF .i/g�
iD� 0C1 is a proper subset (or empty set) of F red D P�

iD1 F .i/, the in-

tersection matrix of fF .i/g�
iD� 0C1 is negative definite. Therefore we have the bimero-

morphic holomorphic map 
 W S ! S] which contract fF .i/g�
iD� 0C1 to points by

Grauert’s theorem [Gr]. Let f ] W S] ! � be the natural holomorphic map which sat-
isfies f ] B 
 D f . Putting F

]
i D 
.F .i// for 1 � i � 	 0, the fiber F ] WD .f ]/�1.0/

is written as F ] D P� 0

iD1 ˛iF
]
i .

Now the two-dimensional analytic space S] has at most isolated singularities P

so that the support of P is contained in .F ]/red D P� 0

iD1 F
]
i . Moreover one of the

following is satisfied:

(i) .F ]/red is smooth at P , and P is the contraction image by 
 of a tail.

(ii) .F ]/red is singular at P , and P is the contraction image by 
 of an arc.

(iii) .F ]/red is singular at P , and P is the contraction image by 
 of a quasi-tail.
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We determine the type of singularity at P of S] in the sense of Brieskorn [Br] for
each case. First we consider (i). Let .m; �; �; ı/ be the valency of the multiple point
corresponding to the tail, and go back to the situation in Section 1.4. The point P is
the contraction image of the chain

Pr
iD1 mniEi of rational curves. By identifying

this chain with the divisor on S which is a part of components of F , we have

0 D FEi D m.ni�1 C niE
2
i C niC1/

for 1 � i � r (where nrC1 is assumed to be 0). It follows that E2
i D .�ni�1 �

niC1/=ni D �Ki . Namely, this is the Hirzebruch–Jung string whose compo-
nents have the self-intersection numbers �K1; : : : ; �Kr . Therefore by the well-
known argument, the germ .S]; P / is a cyclic quotient singularity of type C�;ı ,
i.e., the germ at the origin of the quotient C 2=.Z=�Z/ by the action .z1; z2/ !
.e.1=�/z1; e.ı=�/z2/.

Second we consider (ii). We go back to Section 1.5, and consider the non-
amphidrome annulus corresponding to the arc. The point P is the contraction im-
age of the Hirzebruch–Jung string whose self-intersection numbers of the compo-
nents coincides with the self-intersection sequence of the continued linear fraction
ˆ.�.1/=� .1/; �.2/=� .2/; K /. Therefore it follows from the tautness of this type of
singularity, Lemma 1.5.1, Lemma 1.5.3 and Theorem 1.5.4 that .S]; P / is a cyclic
quotient singularity of type Cd; Nv .

We consider (iii). The point P is the contraction image of the tree of rational
curves whose dual graph has Dynkin diagram of type D as in Section 1.6. By the
argument in [Br], .S]; P / is a dihedral quotient singularity of type hbI 2; 1I 2; 1I ı C
�.K C 1/; ı C �K i in p. 347 of [Br]. For more simplified notation as in [R], we
call it of type D�C�;� by putting � D ı C �K . Summarizing the above argument we
obtain

Lemma 2.1.1. In Case (i), .S]; P / is a cyclic quotient singularity of type C�;ı .
In Case (ii), .S]; P / is a cyclic quotient singularity of type Cd; Nv , where d; Nv are

given in (7)–(9).
In Case (iii), .S]; P / is a dihedral quotient singularity of type D�C�;� .

2.2. In general, let M be an analytic space and M ! � be a fibration of curves.
Let a be a positive integer, and h.a/ W �.a/ ! � be the covering between small disks
defined by z ! za. Let M .a/ be the normalization of the analytic space M �� �.a/.
We call the natural morphism M .a/ ! �.a/ the pure a-th root fibration3 of M ! �.
We set Qh.a/ W M .a/ ! M the natural morphism. The following is a slightly more
precise version of the classical stable reduction theorem:

3This notion is slightly different from the root fibration in [BPV] p.92, because the modification after nor-
malization is unused.
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Theorem 2.2.1. (i) Let N be a pseudo-period of �f . Then the following hold.

(ia) The pure N -th root fibration f .N / W S .N / ! �.N / of f ] W S] ! � is a stable
reduction of f . Moreover, f .N / is the unique stable reduction of f in the
birational equivalence class of S �� �.N /.

(ib) The cyclic group G D Z=N Z acts holomorphically on S .N / so that the quotient
space S .N /=G coincides with S].

(ic) For a node zP on the singular fiber zF D .f .N //�1.0/, the germ of the point
P D Qh.N /. zP / on S] is one of (ii) and (iii) in Lemma 2.1.2. Then the germ
. zS; zP / is a rational double point of type An�1 (n � 1) such that the Milnor
number n is given by

n D �N s.A/

m.A/
;

where A is the annulus whose center curve is the vanishing cycle corresponding
to P .

(ii) Conversely, any stable reduction of f coincides with the pure N -th root
fibration f .N / of f ] for some pseudo-period N of �f . In particular, f .N0/ is the
minimal stable reduction in the sense that the covering degree N0 of the base change
is minimal among all of them.

Proof. Step 1. We first fix a pseudo-period N of �f . Let B be a connected component

of B in (2). Let fQigs
iD1 be the set of multiple points on B , and f@B

.i/
sC1�i�sCs0g be

the set of connected components of the boundary @B . Let f.mi ; �i ; �i ; ıi /g1�i�sCs0

be the valency at each multiple point or boundary component. Let N1 be the minimal
period of � at B , i.e., N1 is the minimal number such that .�B/N1 is isotopic to the
identity idB . Then N1 is a divisor of N and we have N1 D mi�i for 1 � i � s C s0.

There exists a unique component of F ] containing ��.B/ as a set, which we may

assume to be F
]
1 . Let Pi (1 � i � s C s0) be the point on F

]
1 which is the image by

the contraction map 
 of the tail or the arc or the quasi-tail corresponding to Qi or
@B.i/. The curve F

]
1 itself is smooth or irreducible with nodes.

Now we choose an open set U ] of S] containing the divisor ˛1F
]
1 so that the

complement of ˛1F
]
1 in U ] \ F ] is empty or consists of small punctured disks with

some multiplicities, and satisfies f ].U ]/ D � (see Figure F).
First we consider the pure N1-th root fibration f

.N1/
loc W U .N1/ ! �.N1/ of

f
]

U ] W U ] ! �. The unique closed component F
.N1/
1 of the central fiber F .N1/ D

.f
.N1/

loc /�1.0/ is itself smooth or irreducible with nodes. Let O�1 W NF .N1/
1 ! F

.N1/
1

be the normalization, and let Oh W NF .N1/
1 ! NF ]

1 be the lift of the restriction map
Qh1 WD Qh.N1/j

F
.N1/

1

W F
.N1/
1 ! F

]
1 to the normalization. Then Oh is an N1-fold cyclic

covering whose branch points coincides with f��1
1 .Pi /g1�i�sCs0 . Moreover the total
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valency data of the periodic automorphism of NF .N1/
1 induced by this covering trans-

formation coincides with f.mi ; �i ; �i ; ıi /g1�i�sCs0 . (cf. [AI1], §1.) Since the natural
morphism Qh.N1/

loc W U .N1/ ! U ] is unramified covering over U ]n`1�i�sCs0 Pi , the

singularities of U .N1/ are at most on . Qh.N1//�1.Pi / (1 � i � s C s0).

U ] U N1

˛1F
]

1
F

.N1/

1

�
N1 W 1

�.N1/

Figure F

But, over . Qh.N1/
loc /�1.Pi / for 1 � i � s, i.e., over the tail-contracting point, we

claim that U .N1/ is non-singular.
Indeed, since the germ .U ]; Pi / is a cyclic quotient singularity of type C�i ;ıi

, the
local fundamental group �U ];Pi

is isomorphic to Z=�iZ ([Br]). By looking at the
local monodromy, this group is trivialized by the �i -fold cyclic cover whose Galois
group is the stabilizer of each ramification point over . Qh.N1//�1.Pi /. Since the germ
of the point with trivial local fundamental group is nothing but the germ of a smooth
point ([Mu]), . Qh.N1//�1.Pi / consists of mi smooth points.

The total space U .N / of the pure N -th root fibration f
.N /

loc W U .N / ! �.N / of

f
]

U ] is also smooth on the pull back of Pi (1 � i � s), because the natural morphism

U .N / ! U .N1/ clearly lifts these smooth points to smooth points of U .N /.

Step 2. Next we consider the case s C 1 � i � s C s0. Assume P WD Pi is
an arc-contracting point. We choose an open set UP � U ] of P so that the fiber
.f ]jUP

/�1.0/ consists of two multi-disks nD.1/ C n0D.2/ (D.1/ \ D.2/ D P ) and
satisfies f ].UP / D �. We rewrite the valencies at the boundaries @Ai of the non-
amphidrome annulus Ai by .m; �.k/; � .k/; ı.j // (k D 1; 2). Note that m is a common
divisor of n and n0, and the general fiber of f ]jUP

W UP ! � consists of m disjoint
annuli.

First we consider the pure m-th root fibration f
.m/

loc W U .m/ ! �.m/ of f ]jUP
.

The central fiber of f
.m/

loc consists of two multi-disks with the multiplicities n=m and
n0=m, and the general fiber consists of an annulus. Moreover the monodromy of
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f
.m/

loc is isotopic to the linear twist with the screw number s.Ai / ([MM1], §8), i.e.,
there exists a parametrization Ai ' Œ0; 1� � R=Z 3 .t; u/ such that the monodromy
action of f

.m/
loc is written as .t; u/ 7! .t; u � ı.1/=�.1/ C s.Ai /t/.

Next we consider the pure N -th root fibration f
.N /

loc W U .N / ! �.N / of f ]jUP
.

Since N=m is a multiple of both of n=m and n0=m, the central fiber .f
.N /

loc /�1.0/

consists of two (reduced) disks zD1 C zD2 so that zD1 and zD2 meets transversally
at a point zP . The general fiber QA WD .f

.N /
loc /�1.t0/ (t0 ¤ 0) is an annulus, and

the monodromy map �
f

.N /
loc

W QA ! QA is isotopic to the linear twist with the screw

number .N=m/ s.Ai / D .N=m/
� � .ı.1/=�.1// � .ı.2/=�.2// � K

�
.

Since N=m is a multiple of lcm.�.1/; �.2//, this map is an integral Dehn twist of
�.N=m/s.Ai / times to right hand direction. Therefore the numerical Chorizo space
QA=h�

f
.N /

loc
i consists of two disks and a P1-chain of length �.N=m/s.Ai / � 1 whose

multiplicities of all the components are one, i.e., the chain of (�2) curves of length
�.N=m/s.Ai / � 1. Since .f

.N /
loc /�1.0/ consists of two disks, all the components

of this chain should be contracted to a point. Namely, the point zP 2 U .N / � zS is
nothing but the contraction image of this chain, and therefore the germ ( zS; zP ) is a
rational double point of type A�.N=m/s.Ai /�1.

If P is a quasi-tail contracting point, i.e., Ai is an amphidrome annulus, the similar
argument also works. (We omit it.)

Hence f .N / W S .N / ! �.N / is a stable family and the assertion (ic) is verified.
If a core component of the central fiber of .f .N // is a (�2) curve, it has at least

three nodes of the fiber. This fact is a direct consequence of Harvey’s theorem [Ha].
Therefore the uniqueness of the stable family with the fixed covering degree is also
clear, which induce the assertion (ia).

Step 3. Let N 0 be any positive integer which is not a multiple of N0, and we
consider the pure N 0-th root fibration f .N 0/ W S .N 0/ ! �.N 0/ of f ]. The monodromy
map �f .N 0/ W †g ! †g is isotopic to the power .�f /N 0

, and the decomposition to
the annulus part and the body part of �f .N 0/ coincides with (2) of �f .

Now the assumption of N 0 implies that there exists a connected component B

of the body part such that �f .N 0/ jB is not isotopic to idB . Namely the period of
�f .N 0/ jB is greater than one. Therefore the numerical Chorizo space †g=h�f .N 0/i
contains at least one core component with the multiplicity greater than one. If this
core component is a (�1) curve in the normally minimal fiber, then it intersects at
least three tail components by [Ha]. This fiber germ cannot be transposed birationally
to a stable fiber germ. Hence the assertions (ii) is clear.

The remaining assertion (ib) is also clear, because the natural action of Z=N Z
on the fiber product S] �� �.N / lifts to its normalization as a holomorphic Galois
action by an easy argument. �
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Example 2.2.2. Let f W S ! � be the degeneration whose topological monodromy
coincides with � which is given in Example 1.7.1. The numerical Chorizo space
of the singular fiber F of f coincides with the MM-quotient described in Exam-
ple 1.7.1. Note that f is the degeneration which is listed as the types ŒIV� � III� �m�,
ŒIV� � III� � ˛� in Namikawa–Ueno’s table [NU].

1
2

s D � 3
4

� 2
3

� K

2
3

3
4

1
2

3
4

2
3

2
3

�
12 W 1

B1

A

B2

id

id

s D �17 � 12K

�12

Figure G Figure H

Let S ! S] be the contraction defined in Section 2.1. The irreducible decom-
position of the central fiber F ] of S] ! � is written as F ] D 4F

]
1 C 3F

]
2 . The

normal analytic surface S] has five isolated singularities P
.1/
1 ; P

.1/
2 ; P12; P

.2/
1 and

P
.2/
2 . The points P

.1/
1 ; P

.1/
2 ; P

.2/
1 ; P

.2/
2 are tail contracting points, and are rational

double points of types A3; A1; A2; A2 respectively. The point P12 D F
]
1 \ F

]
2 is an

arc contraction point, and is the cyclic quotient singularity of type C17C12K ;12C9K

(resp. type C5;3) for K � 0 (resp. K D �1), because of ŒŒ2; 2; 3; 2; : : : ; 2„ ƒ‚ …
K�1

; 3; 2�� D
.17 C 12K /=.12 C 9K / (resp. ŒŒ2; 3�� D 5=3). See Figure J.

Let Qf W zS ! z� be the stable family obtained by the composition of the 12 W 1

base change. The central fiber zF consists of two components zF D zF1 C zF2 so that zF1

(resp. zF2) is a smooth elliptic curve, since it is a 4-fold (resp. 3-fold) cyclic cover of P1

branched at 3 points whose branch indices are 4, 4, 2 (resp. 3, 3, 3). The topological
monodromy around zF coincides with �12, and therefore the decomposition to the
bodies and the annuli is the same as � and the total valencies at Bi (i D 1; 2) are
trivial and the screw number at A is �17 � 12K , i.e., it is the right-handed Dehn
twist of 17 C 12K times. See Figure H. The surface zS has a rational double point of
type A16C12K at the node P D zF1 \ zF2 as in Figure K.
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4

3

3

3

2

2

2

2

2

2

1

1
1

1

1

1

Tail
Tail

Tail

Tail

Core

Core

Arc

S 	 F .K � 0/

Contract

S] 	 F ] zS 	 zF

A3

A1

A2

A2

C17C12K ;12C9K

12 W 1

A16C12K

Figure I

Figure J Figure K

Example 2.2.3. Let f W S ! � be the degeneration whose topological monodromy
coincides with � given in Example 1.7.2. The numerical Chorizo space of the singular
fiber F of f coincides with the MM-quotient described in Example 1.7.2. Note that
f is listed as the type Œ2III� � m� in [NU].

After the contraction S ! S], the surface S] has three isolated singularities on
its central fiber F ] of S] ! �. Two of them are rational double points of types A3

and A1 which are the tail contracting points, and one of them is a dihedral singularity
of type D7C4K ;3C4K which is the quasi-tail contracting point.
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Let Qf W zS ! z� be the stable family obtained by 8 W 1 base change. The central
fiber zF consists of two smooth elliptic curves with one node so that zS has a rational
double point of type A5C8K at the node.

3. Group action and monodromy

The notation is the same as Section 2. We fix a pseudo-period N of �f , and a
generator g0 of G D Z=N Z through this section. We consider the stable reduction
Qf D f .N / W zS D S .N / ! z� D �.N / of f W S ! �. In this section, we describe

the direct relation of the action of G on zS and the monodromy data of f . We also
review Takamura’s argument [Tak] for later use.

3.1. (i) We call a smooth point P on zF D Qf �1.0/ an inner multiple point of zF iff
the stabilizer StabG.P / of P in G is strictly larger than the stabilizer StabG. zF .i// of
the irreducible component zF .i/ of zF which contains P .

For an inner multiple point P , there exists a positive integer zm such that neighbor-
hoods in zS of the zm mutually distinct points P; g0.P /; : : : ; g zm�1

0 .P / are permuted
cyclically and isomorphically to each other by the action of g0, and g zm

0 stabilizes
the neighborhood UP of P as a set. We choose local coordinates .x; t/ on UP so
that t is a lift of a parameter on z� and x is a local parameter of zF .i/ which satisfy
P D f.x; t/ D .0; 0/g. Since the action of g zm

0 is locally linearizable and of finite
order, there exist relatively prime natural numbers ( Q�; Qı) with 1 � Qı � Q� � 1 so that
the action of g zm

0 on UP is written as

.x; t/ 7�!
�

e

� Qı
Q�
�

x; e

�
1

Q�`

�
t

�
(11)

where ` D N=. Q� zm/ is an integer, and e.x/ D exp.2�ix/. We also put the integer
Q� which satisfies Q� Qı � 1 (mod Q�) and 1 � Q� � Q� � 1, and call ( zm; Q�; Q�; Qı) the
G-valency at P .

(ii) Next assume P is a node of zF . There exist disks D.1/; D.2/ of both sides of
local irreducible components of zF at P such that P D D.1/ \ D.2/. We choose a
suitable local coordinate neighborhood UP on zS at P as

UP D f.x; y; t/ 2 C 3 j xy D tn; jxj � ; jyj � g (12)

where zF D ft D 0g, D.1/ D fx D t D 0g, D.2/ D fy D t D 0g and n is a
positive integer. There exists a positive integer zm such that the neighborhoods in zS
of the points P; g0.P /; : : : ; g zm�1

0 .P / are permuted isomorphically to each other by
the action of g0 and g zm

0 stabilizes UP as a set without changing the boundaries, i.e.,
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g zm
0 .D.j // D D.j / for j D 1; 2. The integer zm is assumed to be the smallest among

the positive integers which enjoy the above property.
Moreover, if zm is even and g

zm=2
0 stabilizes UP exchanging D.1/ and D.2/, we

call P an amphidrome node. Otherwise, we call P a non-amphidrome node.
(iia) Assume P is a non-amphidrome node. Then, for j D 1; 2, there exist

relatively prime natural numbers ( Q�.j /; Qı.j /) with 1 � Qı.j / � Q�.j / � 1 so that the
action of g zm

0 on UP is written as

.x; y; t/ 7�!
 

e

 Qı.1/

Q�.1/

!
x; e

 Qı.2/

Q�.2/

!
y; e

�
1

lcm. Q�.1/; Q�.2// � `

�
t

!
(13)

where ` D N=flcm. Q�.1/; Q�.2// � zmg is an integer. Since the action (13) is compatible
with the local equation in (12), there exists an integer zK � �1 such that

n D `

gcd. Q�.1/; Q�.2//

� Qı.1/ Q�.2/ C Qı.2/ Q�.1/ C zK Q�.1/ Q�.2/
�

: (14)

We also put the integer Q� .j / which satisfies Q� .j / Qı.j / � 1 (mod Q�.j /) and 1 � Q� .j / �
Q�.j / � 1 for j D 1; 2, and call ( zm; Q�.j /; Q� .j /; Qı.j /) the G-valency at P . Moreover we
set

Qs D �
Qı.1/

Q�.1/
�

Qı.2/

Q�.2/
� zK ; (15)

which we call the G-screw number at P .

(iib) Assume P is an amphidrome node. There exist relatively prime natural
numbers ( Q�; Qı) with 1 � Qı � Q� � 1 such that g

zm=2
0 acts on UP by

.x; y; t/ 7�!
 

e

 Qı
2 Q�

!
y; e

 Qı
2 Q�

!
x; e

�
1

2 Q�`

�
t

!
(16)

where ` D N=. Q� zm/ is an integer. Moreover there exists a non-negative integer zK
with

n D 2`. Qı C zK Q�/: (17)

We put the integer Q� in the same way, and call ( zm; Q�; Q�; Qı) the G-valency at P . We
set

Qs D �2 Qı
Q� � e2K (18)

which we call the G-screw number at P .
(iii) Let �. zF / be the dual graph of zF . This is the one-dimensional oriented graph

so that the vertices correspond to the irreducible components of zF and the oriented
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segments correspond to the nodes of zF in a canonical way. The action of G on zF
naturally induces an action on �. zF /.

Now we claim that the data (i)–(iii) in this section are essentially identified with
the data (i)–(iii) in Section 1.1. One way to obtain this result is to compare the types of
singularities on S] and the quotient singularities by the G-action in this section (see
Takamura [Tak] and Section 3.2). Another way is to describe directly the monodromy
map of the quotient family of the action as follows:

Theorem 3.1.1. (i) There exists a natural isomorphism �. zF / ! �.�f / so that the
action of G on �. zF / coincides with the action of �f on �.�f /. In particular, there
exists a one-to-one correspondence between the set fF .i/g of irreducible components
of zF and the set fB.i/g of body components for �f , between the set fPkg of non-
amphidrome nodes of zF and the set fAkg of non-amphidrome annuli for �f , and
between the set fP`g of amphidrome nodes of zF and the set fA`g of amphidrome
annuli for �f , respectively.

(ii) Let fPj g be the set of inner multiple points on a irreducible component
F .i/, and let fQj g be the set of multiple points on the corresponding body com-
ponent B.i/. Then there exists a one-to-one correspondence between fPj g and fQj g
such that the G-valency . zm.Pj /; Q�.Pj /; Q�.Pj /; Qı.Pj // coincides with the valency
.m.Qj /; �.Qj /; �.Qj /; ı.Qj //.

(iii) The G-valency . zm.Pk/; Q�.j /.Pk/; Q� .j /.Pk/; Qı.j /.Pk// (j D 1; 2) at a non-
amphidrome node Pk coincides with the valency .m.Ak/; �.j /.Ak/; � .j /.Ak/;

ı.j /.Ak// at the corresponding non-amphidrome annulus Ak . Moreover the G-
screw number Qs.Pk/ coincides with the screw number s.Ak/.

(iv) The G-valency . zm.P`/; Q�.P`/; Q�.P`/; Qı.P`// at an amphidrome node P` co-
incides with the valency .m.A`/; �.A`/; �.A`/; ı.A`// at the corresponding am-
phidrome annulus A`. Moreover the G-screw number Qs.P`/ coincides with the
screw number s.A`/.

Proof. Step 1. First, according to the well-known argument ([C], [MM1] etc.), we
describe the monodromy map of Qf .

We consider a general fiber zFt0 D Qf �1.t0/ (t0 ¤ 0) around the stable fiber zF .
For each node P and its neighborhood UP by (12), we put AP;t0 WD UP \ zFt0 . We
have the decomposition

zFt0 D
�a

P

AP;t0

�
[
�a

i

B
.i/
t0

�
(19)

where
`

i B
.i/
t0

is the decomposition to connected components of zFt0n`P AP;t0 .

Clearly there exists a natural one-to-one correspondence between the set fB.i/
t0

g and

the set f zF .i/g of irreducible components of zF .
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Now we specially consider the fiber zFı for a sufficiently small positive real number
ı. Set 0 D ın=. We define a homeomorphism 'P;ı W Œ0; 1��S1 ! AP;ı as follows;
We first define a map u W Œ0; � � Œ0; � ! Œ0; 1� by

u.jxj; jyj/ D

8̂̂<̂
:̂

 � jyj
2. � jxj/ if jxj � jyj � ;

1 �  � jxj
2. � jyj/ if jyj � jxj � :

For each u 2 Œ0; 1�, there uniquely exists a pair of real numbers (r.u/; s.u/) such
that r.u/s.u/ D ın, 0 � r.u/ � , 0 � s.u/ �  and u.r.u/; s.u// D u. Then
(r.u/; s.u/) defines a curve connecting the point .r.0/; s.0// D .0; / on @A

.2/

P;ı
D

fjyj D g and the point .r.1/; s.1// D .; 0/ on @A
.1/

P;ı
D fjxj D g. Then we define

'P;ı W Œ0; 1� � S1 ! AP;ı by

'P;ı.u; ˛/ WD .e.˛/r.u/; e.�˛/s.u/; ı/ (20)

where ˛ 2 R=Z ' S1.
Now we define a homeomorphism h� W zFı ! zFe.�/ı for 0 � � � 1 as follows; For

an annulus part AP;ı , by using the parametrization 'P;ı , we define h� jAP;ı
W AP;ı !

AP;e.�/ı by

.x; y; ı/ �! �
e
�
.1 � u.jxj; jyj//�n

�
x; e

�
u.jxj; jyj/�n

�
y; e.�/ı

�
: (21)

For a body part B
.i/

ı
which is locally defined by t D ı in a natural coordinate .z; t/

of zS , we define h� j
B

.i/

ı

W B
.i/

ı
! B

.i/

e.�/ı
by .z; ı/ ! .e.�n/z; e.�/ı/. These are

globally well-patched and define a homeomorphism h� W zFı ! zFe.�/ı .
Then the monodromy homeomorphism is nothing but h1 W zFı ! zFı by putting

� D 1. Since
.h1jAP;ı

B 'P;ı/.u; ˛/ D 'P;ı.u; ˛ � nu/

by (20) and (21), h1jAP;ı
is a result of n-full Dehn twist. Therefore h1 induce integral

Dehn twists on the annulus part and the identity map on the body part.

Step 2. We put ı� D ıN , and consider the smooth fiber Fı� D f �1.ı�/. Note that
g0. zFı/ D zFe.1=N /ı . Let � W zS ! zS=G be the projection, and let �1 D �j zFı

W zFı !
Fı� and �2 D �j zFe.1=n.P //ı

W zFe.1=N /ı ! Fı� be the two isomorphisms. Since f

coincides with QfG W zS=G ! � over the non-critical locus on �, the homeomorphism

h WD �2 B h1=N B .�1/�1 W Fı� �! Fı� (22)

is nothing but the monodromy homeomorphism of f .
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We set AP �;ı� D �1.AP;ı/ and B
.i/

ı� D �1.B
.i/

ı
/, and consider the decomposi-

tion
Fı� D

�a
P �

AP �;ı�

�
[
�a

i

B
.i/

ı�

�
: (23)

Since the restriction of hN to
`

B
.i/

ı� is the identity map and the restriction to AP �;ı�

is an integral Dehn twist on itself, h is a pseudo-periodic map so that (23) coincides
with the decomposition of the annular neighborhood of the admissible system of cut
curves and the body parts of h. Moreover the minimal pseudo-period of h is a divisor
of N .

Since (23) is the decomposition with respect to the monodromy h, the partition
graph �.�f / is isomorphic to �.� Qf

/. Since the dual graph �. zF / is isomorphic to
�.� Qf

/, this is isomorphic to �.�f /. These isomorphisms are canonical and clearly
compatible with the G-action and the monodromy action. Therefore we have the
assertion (i).

Now by using (20), we define a parametrization on AP �;ı� by

'P �;ı� D �1 B 'P;ı W Œ0; 1� � S1 �! AP �;ı� :

Assume P is a non-amphidrome node. It follows from (13), (14), (15), (20), (21),
(22) that �

.hmjAP �;ı� / B 'P �;ı�

�
.u; ˛/ D 'P �;ı�

�
u; ˛ � n zmu

N
C

Qı.1/

Q�.1/

�
D 'P �;ı�

�
u; ˛ C Qsu C

Qı.1/

�.1/

�
:

Namely, this is the linear twist with the screw number Qs and the valency Qı.2/= Q�.2/ at
one boundary. The valency at the other boundary coincides with Qı.1/= Q�.1/ by (15).
Therefore the assertion (iii) holds.

Assume P is an amphidrome node. It follows from (15), (16), (17), (20), (21),
(22) that�

.hmjAP �;ı� / B 'P �;ı�

�
.u; ˛/ D 'P �;ı�

�
1 � u; �˛ C zmnu

N
C

Qı
2 Q�
�

D 'P �;ı�

�
1 � u; �˛ � Qsu

2
C

Qı
2 Q�
�

:

We also have
�
.h2mjAP �;ı� / B 'P �;ı�

�
.u; ˛/ D 'P �;ı�.u; ˛C QsuC Qı= Q�/. Therefore

the assertion (iv) follows.
It remains to prove (ii). For the irreducible component zF .i/, we put zF .i/� D

zF .i/ n`P .UP \ zF .i// where P is a node of zF on zF .i/. Then there exists a canonical

analytic isomorphism '
.i/

e.�/ı
W B

.i/

e.�/ı
! zF .i/� as Riemann surfaces with boundary.
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Now let g
m.i/
0 be the generator of StabG. zF .i//. Then the restriction map

hm.i/=N j
B

.i/

ı

W B
.i/

ı
! B

.i/

e.m.k/=N /ı

is also an analytic isomorphism so that the composition map

'
.i/

e.m.i/=N /ı
B hm.i/=N j

B
.i/

ı

B .'
.i/

ı
/�1 W zF .i/� �! zF .i/�

coincides with the analytic automorphism g
m.i/
0 j zF .i/� W zF .i/� ! zF .i/�. Therefore

the body part B
.i/

ı� D �1.B
.i/

ı
/ of Fı� is analytically isomorphic to zF .i/� and the

restriction of the power of the monodromy map hm.i/j
B

.i/

ı�
W B

.i/

ı� ! B
.i/

ı� is nothing

but g
m.i/
0 j zF .i/� W zF .i/� ! zF .i/� via this isomorphism. Hence the assertion (ii) is

clear by (11) and the definition of the valency. �

3.2. Since Theorem 3.1.1 is established, we use the simplified notations zm D m, Q� D
�; : : : by omitting the “tilde”. For instance, we write .x; t/ ! .e.ı=�/x; e.1=�`/t/

for (11), etc.
We already described the singularities on S] D zS=G in Theorem 2.2.1 and

Lemma 2.1.2. Here, we also explain why these types of singularities appear on S]

by the quotient of the action (11), (13) and (16). The argument of this subsection is
essentially due to Takamura [Tak].

(i) We consider the neighborhood UP of an inner multiple point P . Since the
action on UP of the cyclic group hgm

0 i generated by gm
0 of (11) is not small, i.e.,

this group has an element which has one-dimensional fixed point locus, according
to the well-known argument in singularity theory, we descend it as follows; Let
UP ! VP 0 D f.z; u/ 2 D � Dg (D is a small disk) be the map defined by
.x; t/ ! .z; u/ D .x; t`/. As the descent map of (11), we define the action yg0 on
VP 0 by

.z; u/ 7�!
�

e

�
ı

�

�
z; e

�
1

�

�
u

�
: (24)

The action on VP 0 of the cyclic group h yg0i ' Z=�Z is small so that the quotient
space UP =hgm

0 i is isomorphic to VP 0=h yg0i, whose singularity at the origin is of type
C�;� by (24). Namely, this is the case (i) of Lemma 2.1.2.

(ii) We consider UP in (12) for a node P . Let zUP D f.X; Y / 2 D � Dg ! UP

be the minimal local uniformization map defined by

.X; Y / 7�! .x; y; t/ D .Xn; Y n; XY /: (25)

(iia) Assume P is a non-amphidrome node. In order to describe the lifting to zUP

of the action (13), we need the following elementary number theoretic lemma whose
claim essentially due to Takamura ([Tak]) :
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Lemma 3.2.1. (i) Let �.1/; ı.1/; �.2/; ı.2/; K be natural numbers with .�.1/; ı.1// D
.1/, .�.2/; ı.2// D .1/ as ideals in the ring of integers Z. Put d D �.1/ı.2/ C
�.2/ı.1/ C K�.1/�.2/. Then there exist natural numbers a1; a2 which satisfy

a1 C a2 D K ; .ı.1/ C a1�.1/; d / D .ı.2/ C a2�.2/; d / D .1/: (26)

(ii) The element .ı.2/ C a2�.2// � .ı.1/ C a1�.1//�1 in the multiplicative group
.Z=dZ/� coincides with the representative v of (8).

Proof. Let p1; : : : ; p� be the prime factors of the number d . For each pi (1 � i � �),
we define the subset M.pi / of Z by

M.pi / D fx 2 Z j .ı.1/ C x�.1/; pi / D .ı.2/ C .K � x/�.2/; pi / D .1/g:
We claim that there exists ˛i 2 Z such that the arithmetic sequence f˛i C kpigk2Z

is contained in M.pi /;
f˛i C kpigk2Z � M.pi /: (27)

Indeed, we first assume .�.1/; pi / D .�.2/; pi / D .pi /. Then the assertion (27)
is clear by M.pi / D Z.

Second, we assume .�.1/; pi / D .1/; .�.2/; pi / D .pi /. The congruence equation
ı.1/Cx�.1/ � 0 (mod pi ) has a solution, say x � ˛0

i . (We omit (mod pi ) afterwards.)
We choose an ˛i 2 Z with ˛i 6� ˛0

i . Then f˛i C kpigk2Z is contained in M.pi /.
The case where .�.1/; pi / D .pi /; .�.2/; pi / D .1/ is also similar.

Third, we assume .�.1/; pi / D .�.2/; pi / D .1/. Suppose pi � 3. Let ˛0
i ; ˇ0

i be
natural numbers with ı.1/ C ˛0

i�
.1/ � 0; ı.2/ C ˇ0

i�
.2/ � 0. The union of elements

of arithmetic sequences

A D f˛0
i C kpigk2Z [ fK � ˇ0

i C kpigk2Z

is a proper subset of Z. We choose a number ˛i 2 Z with ˛i 6� ˛0
i , ˛i 6� K � ˇ0

i .
Then f˛i C kpigk2Z is contained in Z n A, and therefore is contained in M.pi /.

Suppose pi D 2. Since d � 0, one of the following occurs (modulo symmetry):

(a) �.1/ � �.2/ � ı.1/ � ı.2/ � 1; K � 0.

(b) �.1/ � �.2/ � ı.1/ � 1; ı.2/ � 0; K � 1.

(c) �.1/ � �.2/ � 1; ı.1/ � ı.2/ � 0; K � 0.

(d) �.1/ � �.2/ � 0; ı.1/ � ı.2/ � 1 (K is arbitrary).

If (a) or (b) occurs , then f2kgk2Z � M.2/. If (c) occurs, then f2k C 1gk2Z �
M.2/. If (d) occurs, then M.2/ D Z. Hence the assertion (27) holds.

By using (27) inductively, the set of intersection

M.p1/ \ � � � \ M.p�/
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is non-empty, because it contains an arithmetic sequence fˇ C k
Qv

iD1 pigk2Z for
some ˇ 2 Z. We choose an element a1 2 M.p1/\� � �\M.pv/ and set a2 D K �a1.
Then we have the assertion (i).

By the definition of v and the equality ı.1/� .1/ D O� .1/�.1/ C 1, we easily have

.ı.1/ C a1�.1//v � .ı.2/ C a2�.2// D . O� .1/ C a1� .1//d:

Hence the assertion (ii) also follows. �

We go back to the situation in Sections 1.5 and 3.1 (iia). The number n is deter-
mined by (14). By using Lemma 3.2.1, as a lift of (13) by (25), we define the action
on zUP by

.X; Y / 7�!
 

e

 
ı.1/ C a1�.1/

�.1/n

!
X; e

 
ı.2/ C a2�.2/

�.2/n

!
Y

!
: (28)

The cyclic action generated by (28) is not small. We descend it as follows: By putting
Q�.i/ D �.i/=gcd.�.1/; �.2// .i D 1; 2/, let zUP ! VP 0 D f. NX; NY / 2 D � Dg be the

map defined by X 7! NX D X`Q�.1/
; Y 7! NY D Y `Q�.2/

. Then the descent map of (28)
is written as

yg0 W . NX; NY / 7�!
 

e

 
ı.1/ C a1�.1/

d

!
NX; e

 
ı.2/ C a2�.2/

d

!
NY
!

; (29)

which generates the small action. By (26), � D e
�
.ı.1/ C a1�.1//=d

�
is a primi-

tive d -th root of unity and the number e
�
.ı.2/ C a2�.2//=d

�
coincides with �v by

Lemma 3.2.1 (ii). The quotient space UP =hgm
0 i is isomorphic to VP 0=h yg0i, whose

singularity at the origin is of type Cd;v . Namely this is the case (ii) of Lemma 2.1.2.

(iib) Assume P is an amphidrome node. The action which is the lift by (25) of
the cyclic group generated by (16) is generated by two maps

h0 W .X; Y / 7�!
�

e

�
ı C a1�

�n

�
X; e

�
ı C a2�

�n

�
Y

�
;

h1 W .X; Y / 7�!
�

e

�
1

2�`

�
Y; e

�
1

2�`

�
X

�
;

(30)

where n D `.2ı C 2�K / and (a1; a2) is a pair of integers with a1 C a2 D 2K ; .ı C
a1�; �n/ D .ı C a2�; �n/ D 1. Note that h2

1 is contained in the subgroup generated
by h0. This action is not small. Let zUP ! VP 0 D f. NX; NY / 2 D � Dg be the map
defined by .X; Y / 7! . NX; NY / D �

X`; Y `
�

: By putting � D ı C �K , the descent
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action is written as

. NX; NY / 7�!
�

e

�
ı C a1�

2��

�
NX; e

�
ı C a2�

2��

�
NY
�

;

. NX; NY / 7�!
�

e

�
1

2�

�
NY; e

�
1

2�

�
NX
�

;

which generate the small action, and the germ of singularity at the origin of the
quotient space is nothing but D�C�;�-singularity in (iii) of Lemma 2.1.2.

4. Dedekind sum

In this section, we prepare some number-theoretic arguments which relate to the
Dedekind sum.

4.1. Let (�; � ) be any pair of mutually prime natural numbers with � � 2; 1 � � �
� � 1. Let

s.�; �/ WD
��1X
kD1

��
k

�

����
k�

�

��
be the Dedekind sum with respect to (�; � ), where ..x// D x � Œx� � 1=2 for a non-
integer x and ..x// D 0 for an integer x. (Œx� is the greatest integer not exceeding x.)
The following formula is classical.

Theorem 4.1.1. Let k1; k2 be any integers. ThenX
j

cot
�j

k1�
cot

��j

k2�
D 4k1k2 � s.�; �/

where j moves over integers satisfying 1 � j � k1k2� � 1, j 6� 0 (mod k1�) and
j 6� 0 (mod k2�).

When k1 D k2 D 1, it is the classical Rademacher’s formula. The above formula
appears in Hirzebruch–Zagier [HZ] p. 179, 180.

Let �=� D ŒŒK1; K2; : : : ; Kr �� be the continued linear fraction, and set n0 D
�; n1 D � and ni D Ki�1ni�1 � ni�2 (2 � i � r C 1). Let ı be the integer with
�ı � 1.mod �/ and 1 � ı � � � 1. Then s.�; �/ is expressed via these data of
the continued linear fraction by Myerson–Holzapfel’s formula. For the geometric
meaning of this formula, see also [AI2].
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Theorem 4.1.2 (Myerson [My], Holzapfel [Hol], p. 270).

s.�; �/ D �r

4
C 1

12

�
� C ı

�
C

rX
iD1

Ki

�
:

4.2. We consider the Dedekind sum with respect to the monodromy data at a non-
amphidrome annulus A. We follow the notations in Section 1.5.

Lemma 4.2.1.

v C v�

d
� � .1/ C ı.1/

�.1/
� � .2/ C ı.2/

�.2/
D �

�
ı.1/

�.1/
C ı.2/

�.2/

�
� .�.1//2 C .�.2//2

d�.1/�.2/
:

Proof. By (7) and �.i/ O� .i/ � � .i/ı.i/ D �1, we have

d�.1/�.2/

�
v C v�

d
� � .1/ C ı.1/

�.1/
� � .2/ C ı.2/

�.2/

�
D ��.1/�.2/f2ı.1/ı.2/ C .�.2/ı.1/ C �.1/ı.2//Kg

� .�.1//2
˚
1 C .ı.2//2

� � .�.2//2
˚
1 C .ı.1//2

�
:

(31)

On the other hand, it follows from (5) that

.�.2/ı.1/ C �.1/ı.2//K D �.1/�.2/K

�
ı.1/

�.1/
C ı.2/

�.2/

�
D .d � �.2/ı.1/ � �.1/ı.2//.�s.A/ � K /

D ˚
d � �.1/�.2/.�s.A/ � K /

�
.�s.A/ � K /

D �.s.A/ C K /d � �.1/�.2/.s.A/ C K /2:

(32)

Moreover

2�.1/�.2/ı.1/ı.2/ C .�.1//2
˚
1 C .ı.2//2

�C .�.2//2
˚
1 C .ı.1//2

�
D .�.2/ı.1/ C �.1/ı.2//2 C .�.1//2 C .�.2//2

D .�.1//2.�.2//2.s.A/ C K /2 C .�.1//2 C .�.2//2:

(33)

From (31), (32) and (33) we have the assertion. �

Now we consider the case d > 1. From the argument in Sections 1.5 and 3.2 (iia),
this condition is equivalent to saying that A does not have the invariants K D �1; ! D
1 and !0 D 0.
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Lemma 4.2.2. Assume d > 1. We put

0.A/ D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

0 if K � 0,

! C !0 � r � r 0 C 1

3

� rX
iD!C1

Ki C
r 0X

iD!0C1

Li C 2
�

if K D �1,

! � 1, !0 � 1,

! � r � r 0 C 1

3

� rX
iD!

Ki C
r 0X

iD1

Li � ˛� C 1
�

if K D �1,

! � 2, !0 D 0,

where ˛� D Nv � v

d
. (See Theorem 1.5.4 (iv).) Then we have

� 4s.v; d/ C 4s.� .1/; �.1// C 4s.� .2/; �.2//

D d

3�.1/�.2/
C .�.1//2 C .�.2//2

3d�.1/�.2/
� 1 C 0.A/:

Proof. It follows from Lemma 1.5.1, Lemma 1.5.3, Theorem 1.5.4 and Theorem 4.1.2
that

s.v; d/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

�r C r 0 C K � 1

4
C 1

12

�
v C v�

d
C

rX
iD1

Ki C
r 0X

iD1

Li C 2K

�
; K � 0;

�! C !0 � 1

4
C 1

12

�
v C v�

d
C

!X
iD1

Ki C
!0X

iD1

Li � 1

�
; K D �1;

! � 1, !0 � 1,

�! � 1

4
C 1

12

�
v C v�

d
C ˛� C

!�1X
iD1

Ki

�
; K D �1; ! � 2, !0 D 0.

Therefore, by applying Theorem 4.1.2 again to s.� .1/; �.1// and s.� .2/; �.2//, we
easily have the assertion from Lemma 4.2.1. �

Next we consider the case d D 1, i.e., K D �1; ! D 1 and !0 D 0. In order to
treat this case in the same formulation as in the case d > 1, we define a slight (trivial)
generalization of Dedekind sum s.�; �/ for � D 1. Namely, for any integer � , we
define

s.�; 1/ D 0: (34)

The analogous result of Lemma 4.2.2 for d D 1 is as follows:

Lemma 4.2.3. Assume d D 1. We put

0.A/ D �r � r 0 C 1

3

� rX
iD!

Ki C
r 0X

iD1

Li C � .1/

�.1/
C � .2/

�.2/
� �.2/

�.1/
� �.1/

�.2/
C 4

�
:
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Then we have

� 4s.v; 1/ C 4s.� .1/; �.1// C 4s.� .2/; �.2//

D 1

3�.1/�.2/
C .�.1//2 C .�.2//2

3�.1/�.2/
� 1 C 0.A/:

Proof. From s.v; 1/ D 0 and d D ı.1/�.2/ C ı.2/�.1/ � �.1/�.2/ D 1, the assertion
easily follows from Theorem 4.1.2. �

5. Local signature defect

5.1. Let 0 <  < 1 be a sufficiently small real number. In this section, let f W S !
� be a normally minimal degeneration of curves of genus g over a closed -disk
� D ft 2 C j jt j � g with the central fiber F D f �1.0/. (By a little bit abuse
of the notation, one may consider f the restriction over a small closed disk of the
degeneration defined in Section 2.1.) We denote the restriction of f to its boundary
by @f W @S ! @� ' S1.

Since the restricted family over the punctured disk f �1.��/ ! �� D � n f0g
is differentiably locally trivial, there exists a Riemannian metric hS D fhij g on S

such that the restriction over a tubular neighborhood of @S is a product metric. We
put h@S the restriction of hS to @S . The choice of hS is not unique, and we fix one
of them. Let Sign S be the signature of the intersection form on H 2.S; @S I Q/, and
�.@S; h@S / be the eta-invariant of Atiyah–Patodi–Singer [APS]. Inspired by Furuta’s
discussion [Fu]4, we put

�.f; F I h@S / D Sign S C �.@S; h@S /:

Let Qf W zS ! z� be the stable reduction of degree N of f , and let 
 W z� ! �,
Q
 W zS ! S be the natural maps. Let h zS be a Riemannian metric on zS so that h zS
is an extension of the natural pull back of the restricted metric of hS to a tubular
neighborhood of @S . Since the map Q
 is umramified near the boundary, it is well
defined. The metric h zS is a product metric near the boundary @ zS , and the eta-invariant
�.@ zS; h@ zS / is well defined. We also put �. Qf; zF I h@ zS / D Sign. zS/ C �.@ zS; h@ zS /. We
define

Lsd.f; F I h@S I N / WD �.f; F I h@S / � 1

N
�. Qf; zF I h@ zS /;

and call it the local signature defect of .f; F I h@S / of order N .

4Furuta [Fu] discussed this type of invariants under a more general setting of the linear connection.
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5.2. We summarize the notations of the monodromy data of f . Let †g D B[A0[A00
be the decomposition to the set of body connected components B D `

Bi , the set of
non-amphidrome annuli A0 D `

Aj and the set of amphidrome annuli A00 D ` QAk

with respect to (a representative of) the monodromy map �f W †g ! †g . Let
B= 
D `

ŒBi � be the orbit decomposition with respect to the cyclic action generated
by �f . Namely two components Bi1 and Bi2 are equivalent iff Bi2 D .�f /n.Bi1/

for some integer n, and B= 
 is its equivalence class. We set A0= 
 D `
ŒAj �,

A00= 
 D `
Œ 	Ak� similarly.

Let fm˛; �
.i/
˛ ; �

.i/
˛ ; ı

.i/
˛ g1�˛�'.i/ be the set of all the valencies which are attached

to multiple points and boundary curves of Bi . Set

�.i/
˛ =� .i/

˛ D ŒŒK1.˛; i/; K2.˛; i/; : : : ; Kr.˛;i/.˛; i/��:

Let .m.Aj /; �.1/.Aj /; � .1/.Aj /; ı.1/.Aj // and .m.Aj /; �.2/.Aj /; � .2/.Aj /;

ı.2/.Aj // be the valencies of both boundary curves of a non-amphidrome annulus Aj ,
and s.Aj / D �ı.1/.Aj /=�.1/.Aj /�ı.2/.Aj /=�.2/.Aj / �K .Aj / be the screw num-

ber. Set �.1/.Aj /=� .1/.Aj / D ŒŒK
.j /
1 ; K

.j /
2 ; : : : ; K

.j /

r.j /
�� and �.2/.Aj /=� .2/.Aj / D

ŒŒL
.j /
1 ; L

.j /
2 ; : : : ; L

.j /

r 0.j /
��.

Now we define a rational number .Aj / as follows:
If K .Aj / � 0, put

.Aj / D 0:

If K .Aj / D �1, put

.Aj / D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

1

3

� r.j /X
iD!.j /C1

K
.j /
i C

r 0.j /X
iD!0.j /C1

L
.j /
i � 1

�
; !.j / � 1; !0.j / � 1;

1

3

� r.j /X
iD!.j /C1

K
.j /
i C

r 0.j /X
iD1

L
.j /
i � ˛�.j / � 2

�
; !.j / � 2; !0.j / D 0;

1

3

� r.j /X
iD1

K
.j /
i C

r 0.j /X
iD1

L
.j /
i � ˇ�.j / � 2

�
; !.j / D 1; !0.j / D 0;

where !.j /; !0.j / are defined in Theorem 1.5.4, ˛�.j / is defined in Lemma 4.2.2
and ˇ�.j / is defined by

ˇ�.j / D �.2/.Aj /

�.1/.Aj /
C �.1/.Aj /

�.2/.Aj /
�

2X
iD1

� .i/.Aj /

�.i/.Aj /
:

Moreover we put `.Aj / D N=flcm.�.1/.Aj /; �.2/.Aj // � m.Aj /g.
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Let .m. 	Ak/; �. 	Ak/; �. 	Ak/; ı. 	Ak// be the valency of a boundary curve of the
amphidrome annulus 	Ak , and s. 	Ak/ D �2ı. 	Ak/=�. 	Ak/ � 2K . 	Ak/ be the screw
number. Put `. 	Ak/ D N=f�. 	Ak/m. 	Ak/g.

Note that the above data are independent of the choice of a representative of ŒBi �,
ŒAj � and Œ QAk� respectively.

Now the proof of the following theorem is postponed to Section 6.

Theorem 5.2.1.

Lsd.f; F I h@S I N / D �1

3

X
ŒBi 	

'.i/X
˛D1

�
�

.i/
˛ C ı

.i/
˛

�
.i/
˛

C
r.˛;i/X
j D1

Kj .˛; i/

�

C
X
ŒAj 	

�
gcd.�.1/.Aj /; �.2/.Aj //

`.Aj /�.1/.Aj /�.2/.Aj /
� K .Aj / C .Aj /

�

C
X
Œ 	Ak 	

�
1

2`. 	Ak/�. 	Ak/
� K . 	Ak/ � 2

�
;

where the summations move over all the classes of the orbit decompositions.

Since Lsd.f; F I h@S I N / is independent of h@S , we write it by Lsd.f; F I N / from
now on. Moreover, if we choose N minimal, then we simply write it by Lsd.f; F /

and call it the local signature defect of the degeneration f , which only depends on
the fiber germ at F .

Now let Of W yS ! � be the semi-stable reduction of f . The surface yS is obtained
from zS by the resolution yS ! zS of rational double points of type A at the double
points of zF . The boundary @ yS of yS coincides with @ zS , and has the natural Riemannian
metric h

@ yS . For the fiber germ . Of; yF /, we put �. Of; yF I h
@ yS / D Sign. yS/C�.@ yS; h

@ yS /.
Similarly we define

Lsd.f; F I h@S I N / WD �.f; F I h@S / � 1

N
�. yf ; yF I h

@ yS /:

If N is minimal, we put

Lsd.f; F / WD Lsd.f; F I h@S I N /;

which also depends on the fiber germ at F .5

5 In [AY], the invariant Lsd.f; F / is called the local signature defect instead of Lsd.f; F /. The reason is
that the result of Corollary 5.2.2 is simpler than that of Theorem 5.2.1. In this paper, we emphasize the theoretical
importance.
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Corollary 5.2.2.

Lsd.f; F I h@S I N / D �1

3

X
ŒBi 	

'.i/X
˛D1

�
�

.i/
˛ C ı

.i/
˛

�
.i/
˛

C
r.˛;i/X
j D1

Kj .˛; i/

�

C
X
ŒAj 	

�
ı.1/.Aj /

�.1/.Aj /
C ı.2/.Aj /

�.2/.Aj /
C .Aj /

�

C
X
Œ 	Ak 	

�
ı. 	Ak/

�. 	Ak/
� 2

�
:

Proof. Let n.Aj / be the Milnor number of the singularity of type A corresponding
to the non-amphidrome annulus Aj via Theorem 3.1.1. By (14), n.Aj / coincides
with

`.Aj /

gcd.�.1/.Aj /; �.2/.Aj //

� �ı.1/.Aj /�.2/.Aj / C ı.2/.Aj /�.1/.Aj / C K .Aj /�.1/.Aj /�.2/.Aj /
�
:

Moreover the number N is written as N D `.Aj / � lcm.�.1/.Aj /; �.2/.Aj //.
Let n. 	Ak/ be the Milnor number of the singularity of type A corresponding

to the amphidrome annulus 	Ak . By (17), we have n. 	Ak/ D 2`. 	Ak/
�
ı. 	Ak/

CK . 	Ak/�. 	Ak/
�

and N D 2`. 	Ak/�. 	Ak/: Therefore we have

1

N

�
Sign. zS/ � Sign. yS/

�
D
X
ŒAj 	

n.Aj / � 1

N
C
X
Œ 	Ak 	

n. 	Ak/ � 1

N

D
X
ŒAj 	

�
ı.1/.Aj /

�.1/.Aj /
C ı.2/.Aj /

�.2/.Aj /
C K.Aj / � 1

`.Aj / � lcm.�.1/.Aj /; �.2/.Aj //

�

C
X
Œ 	Ak 	

�
ı. 	Ak/

�. 	Ak/
C K. 	Ak/ � 1

2`. 	Ak/�. 	Ak/

�
:

On the other hand, it follows from �.@ zS; h@ zS / D �.@ yS; h
@ yS / that

Lsd.f; F I h@S I N / D Lsd.f; F I h@S I N / C 1

N

�
Sign. zS/ � Sign. yS/

�
:

Hence the assertion follows from Theorem 5.2.1. �
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Example 5.2.3. Let f W S ! � be the degeneration given in Example 2.2.2. If
K D �1 for the unique amphidrome annulus A, then we have r D 3, ! D 2; r 0 D 2,
!0 D 1 and  WD .A/ D .1=3/.2 C 2 � 1/ D 1. Therefore Theorem 5.2.1 implies
that

Lsd.f; F / D Lsd.f; F I 12/

D �1

3

²�
3 C 3

4
C 2 � 3

�
� 2 C

�
1 C 1

2
C 2

�
C
�

2 C 2

3
C 2 � 2

�
� 3

³
C
�

1

12
� K C 

�

D

8̂<̂
:

�K � 45

4
; K � 0

�37

4
; K D �1:

Moreover

Lsd.f; F / D
´

�119=12; K .A/ � 0;

�107=12; K .A/ D �1:

Example 5.2.4. For the degeneration f W S ! � given in Example 2.2.3, we have

Lsd.f; F / D �1

3

²�
3 C 3

4
C 2 � 3

�
� 2 C

�
1 C 1

2
C 2

�³
C
�

1

2 � 4
� K � 2

�
D �63

8
� K ;

Lsd.f; F / D �6 C
�

3

4
� 2

�
D �29

4
:

5.3. We consider the global stable reduction Qf W z� ! zC of f W � ! C of order N .
The description of Qf is as follows:

Let Ni be a pseudo-period of the local monodromy map around the singular fiber
Fi D f �1.Pi / (1 � i � r). Let N be a common multiple of all of Ni . By
adding a non-critical point P0 (“a dummy point”) if necessary, we can construct a
cyclic branched covering ' W zC ! C of order N whose branch points coincide with
P0; P1; : : : ; Pr . Moreover, for 1 � i � r , the fiber '�1.Pi / consists of N=Ni points
so that the ramification indices at them are Ni . The analytic surface z� has at most
A-type singularities and is birationally equivalent to � �C

zC . Explicit construction
is nothing but the natural patching of N=Ni -copies of the local stable reduction of
the fiber germ of Fi (1 � i � r) discussed in Section 2. Note that f �1.'�1.P0//

consists of multiple fibers whose reduced schemes are nonsingular and z� itself is
smooth around the fiber.
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The local signature defect of the germ of the singular fiber is nothing but the local
contribution of the difference of the global signature under the global stable reduction,
i.e., we have the following lemma whose proof is also postponed to Section 6.

Lemma 5.3.1.

Sign � � Sign z�
N

D
rX

iD1

Lsd.fi ; Fi I Ni /

where fi is the restricted fibration of Qf to a tubular neighborhood of Fi , and zFi is
its stable fiber of the local stable reduction Qfi of fi of order Ni .

6. Proof of main theorem

We prove Theorem 5.2.1 and Lemma 5.3.1. Our basic tool is a complex 2-dimensional
version of the orbifold signature theorem with smooth boundary. We review the
notations and the result of it in Section 6.1, and then apply it to our proof in Section 6.2.

6.1. In general, let M be a complex 2-dimensional V-manifold in the sense of Sa-
take [Sa] with a real 3-dimensional manifold boundary @M . Let M D S

U be
a V-coordinate covering, namely, the local uniformization maps zU ! U and the
finite Galois groups GU D Gal. zU =U / are defined with the natural compatibil-
ity conditions, i.e., if U1 � U2, then there exist a holomorphic open embedding
zU1 ,! zU2 and an injective group homomorphism GU1

,! GU2
which induce

zU1=GU1
D U1 ,! U2 D zU2=GU2

. Since M is a rational homology manifold,
the signature Sign M over H 2.M; @M; Q/ is well defined.

Let fhU
ij g be a V-Riemannian metric on M , i.e., each hU

ij is a GU -invariant Rie-

mannian metric on zU with the natural compatibility conditions. We assume fhU
ij g

induces a product metric near @M . The V-Levi-Civita connection f5U g with respect
to fhU

ij g, and the V-curvature matrix fRU g with respect to f5U g are defined naturally
([Sa]). The V-Pontrjagin form fp1.U /g is defined by p1.U / D .2�/�2 Tr .R2

U /.
For each V-coordinate U and an element g 2 GU , we define the equivariant L-

form Lg.U / as follows (cf. [AS], §6): If g D id, put Lg.U / D .1=3/ p1.U /, i.e.,
the Hirzebruch L-form of degree 1. Assume g ¤ id, and let zU g be the g-fixed locus
on zU , which is an isolated fixed point or a fixed complex curve.

Suppose zU g WD P is an isolated fixed point. Then g acts on the tangent space
TP . zU / linearly with its eigenvalues ei˛g and eiˇg (0 < ˛g ; ˇg < 2�). Then we put
Lg.U / D �cot.˛g=2/cot.ˇg=2/.

Suppose zU g WD C is a fixed complex curve. Then g acts on each fiber of the
normal bundle .NC= zU /Q of a generic point Q 2 C linearly with its eigenvalue ei�g
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(0 < �g < 2�). Put Lg.U / D cosec2.�g=2/ � c1.NC= zU /, where c1.NC= zU / is the
first Chern form of NC= zU .

Then the orbifold signature theorem ([Ka]) says that

Sign M C �.@M/ D
X
U

1

jGU j
X

g2GU

Z
zU g


U Lg.U /; (35)

where 
U is a cut function on U so that the system f
U g defines a partition of
unity on M and �.@M/ is the eta invariant with respect to the above V-connection.
Note that (35) is the “primitive version” in some sense, and Kawasaki reformulates
it by describing the correction term from the L-class as the equivariant L-class on
the orbifolds which are the preimages of the V-singular locus of M by the natural
immersion. (See theorem and corollary in [Ka], p. 78, 79.)

6.2. We prove Theorem 5.2.1 by several steps.

Step 1. First we consider the surface zS , which has a simple V-manifold structure.
The support of the V-singular locus (i.e., the set of points whose isotropy groups in
the Galois groups are non-trivial) of zS coincides with the set of nodes fP g on the
central fiber zF at which zS has An�1-singularities (n � 1).

We may assume that the V-chart UP containing P is unique, and the local uni-
formization map zUP ! UP is given by (25). Since the generator of the Galois group
GUP

' Z=.n/ acts on zUP as . NX; NY / 7! .e.1=n/ NX; e..n � 1/=n/ NY /, it follows from
Theorem 4.1.1 that

1

jGUP
j

X
g2GUP

nfidg
Lg.UP / D � 1

n

n�1X
j D1

cot
�j

n
cot

�.n � 1/j

n

D �4s.n � 1; n/ D n

3
� 1 C 2

3n
:

(36)

If P D Pnoam is a non-amphidrome node, by putting d D ı.1/�.2/ C ı.2/�.1/ C
K�.1/�.2/ and c D gcd .�.1/; �.2//, we have n D .`d/=c and N D .`�.1/�.2//=c. If
P D Pam is an amphidrome node, we have n D 2`� D 2`.ı C �K / and N D 2`�.
Therefore it follows from (35) and (36) that

1

N

�
Sign zS C �.@ zS/

�
D 1

3N

Z
zS

p1. zS/ C
X

Pnoam

�
d

3�.1/�.2/
� c

`�.1/�.2/
C 2c2

3`2d�.1/�.2/

�

C
X
Pam

�
�

3�
� 1

2`�
C 1

3`�n

� (37)
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where the first summation moves over all the data of non-amphidrome nodes and the
second summation moves over all the data of amphidrome nodes.

Step 2. Next we consider the surface S] defined in Section 2. The cyclic group
G D Z=.N / acts holomorphically on zS so that zS=G coincides with S]. The surface
S] has the V-manifold structure via the composition of the restriction of the global
covering map zS ! S] and the local uniformization map of the V-chart of zS .

First we calculate the contribution of the integral of the equivariant L-form of
the isolated fixed points P of the Galois groups. We may assume the V-chart UP

containing P is unique. Let G?
UP

be the subset of elements g 2 GUP
such that

zU g
P D fP g, i.e., g has the isolated fixed point at P . We set

LhP i D 1

jGUP
j
X

g2G?
UP

Lg.UP /:

Note that P is a tail contracting point, or an arc contracting point, or a quasi-tail
contracting point defined in Section 2.1.

(i) Assume P is a tail contracting point. Then zUP is a neighborhood of an inner
multiple point with the valency (m; �; �; ı) in Section 3.2 (i). The group GUP

is
isomorphic to Z=.`�/, whose generator g1 acts on zUP as the map (11). We put
J ? D fj 2 Z j 1 � j � `� � 1; j 6� 0 .mod �/g. Then G?

UP
D fgj

1 j j 2 J ?g.
Therefore it follows from Theorem 4.1.1 that

LhP i D � 1

`�

X
j 2J ?

cot
�j

`�
cot

�ıj

�
D �4s.ı; �/: (38)

(ii) Assume P is an arc contracting point. Then zUP coincides with the local
uniformization space of the neighborhood of the non-amphidrome node in Sec-
tion 3.2 (iia). The group GUP

is isomorphic to Z=
�
`2�.1/�.2/d=c2

�
, whose generator

g1 acts on zUP as the map (28). We put J ? D fj 2 Z j 1 � j � `2�.1/�.2/d=c2 �
1; j 6� 0 .mod `�.1/d=c/; j 6� 0 .mod `�.2/d=c/g. Then G?

UP
D fgj

1 j j 2 J ?g.
By changing the primitive d -th root of unity as in the argument in Section 3.2 (iia),
it follows from Theorem 4.1.1 that

LhP i D � c2

`2�.1/�.2/d

X
j 2J ?

cot
�cj

`�.1/d
cot

�cj

`�.2/d
D �4s.v; d/: (39)

(iii) Assume P is a quasi-tail contracting point. Then zUP coincides with the local
uniformization space of the neighborhood of the amphidrome node in Section 3.2 (iib).
The group GUP

is isomorphic to the dihedral group of order 2`�n D 2`2�.2ıC2�K /

whose generators h0 and h1 act on zUP as the maps (30), and is written as GUP
D

fhj
0 ; h

j
0h1 j 0 � j � `�n � 1g.
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The map h
j
0 has an isolated fixed point at P iff j 6� 0 .mod �n/. Moreover,

by putting �ı D � O� C 1 and v D �ı C � O� C 2��K , the action of the sub-
group generated by h0 equivalently descends to the action generated by .z; u/ 7!
.e.v=2��/z; e.1=2��/u/.

On the other hand, since h
j
0h1 acts as X 7! e .1=.2`�/ C .ı C a2�/j=.�n// Y ,

Y 7! e .1=.2`�/ C .ı C a1�/j=.�n// X , it follows that the eigenvalues of this action
are e..1 C j /=.2`�// and e..1 C j /=.2`�/ C 1=2/. The map h

j
0h1 has an isolated

fixed point at P iff j 6� �1 .mod `�/.
Since cot 
.1Cj /

4`�
cot

�

.1Cj /

4`�
C 


2

� D �1, it follows from Theorem 4.1.1 that

LhP i D � 1

2`�n
f4`�n � s.v; 2��/ � .`� � 1/g D �2s.v; 2��/ C `� � 1

2`�
: (40)

Step 3. Next we calculate the contribution of the fixed complex curves C on S]

of the Galois groups. Namely, let C � S
Ui be a covering of V-charts in S], and let

G?
Ui

.C / be the point-wise stabilizer of C jUi
in GUi

. Put

LhC i D
X
Ui

1

jGUi
j

X
g2G?

Ui
.C /

Z
C \Ui


Ui
Lg.Ui /:

Note that C is an irreducible component of the central fiber F ] D P
j̨ F

]
j , or a

hyperplane around a quasi-tail contracting point. We calculate it for each case.

(i) We consider the former case. Since the normal bundle of F
]

j in S] is locally

trivial on a neighborhood of a generic point of F
]

j , the data in order to determine

LhF ]
j i are concentrated on the neighborhoods of the nodes. Let Pj;k be a point

written locally as an intersection point of two components F
]

j and F
]

k
, and UPj;k

be
the chart containing Pj;k .

Choose the coordinate .X; Y / of the uniformization space zUPj;k
so that Y D 0

(resp. X D 0) defines the local lift zF ]
j (resp. zF ]

k
) of F

]
j (resp. F

]

k
). We take another

chart Ui with F
]

j \ Ui 6D ;, Ui \ UPj;k
6D ; and Ui 63 Pj;k such that the coordinate

.X 0; t / of the uniformization space zUi is chosen so that t D 0 defines the lift zF ]
j , and

the coordinate transformation on zUi \ zUPj;k
is given by t D XY , X 0 D X . Since

the transition function fi;Pj;k
of N zEj = zUPj;k

' Œ zEj �j zEj
on zUi \ zUPj;k

is given by

fi;Pj;k
D Y , the system f�j zUPj;k

D 1=Y; �j zUi
D 1g defines a meromorphic section

of the normal bundle of zEj over zUi [ zUPj;k
. Namely, a divisor corresponding to the

normal bundle has a simple pole at zPj;k D f.X; Y / D .0; 0/g. Therefore, it follows
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from the well-known local calculation (cf. [GH] p. 141) thatZ
zEj \ zUPj;k


 zUPj;k

c1.N zEj = zUPj;k

/ D �1;

Z
zEj \ zUi


 zUi
c1.N zEj = zUi

/ D 0:

If Pj;k is an arc contacting point, then G?
Pj;k

.F
]

j / is a cyclic group of order `�.1/=c

generated by n�.2/-th power of the map (28). If Pj;k is a quasi-tail contacting point,

then G?
Pj;k

.F
]

j / is a cyclic subgroup of order ` generated by h�n
0 of (30).

On the other hand, we have
r�1X
kD1

cosec2 �k

r
D r2 � 1

3

for a natural number r (cf. [HZ] p. 178 ). From these, we haveX
F

]

j

LhF ]
j i D �

X
Pnoam

c2

`2d�.1/�.2/

2X
iD1

1

3

²�
`�.i/

c

�2

� 1

³
�
X
Pam

1

2`�n
� 2.`2 � 1/

3
:

(41)

(ii) We consider the latter case. Let P be a quasi-tail contracting point, and we
follow the notations in Step 2 (iii). If j D 2k`� � 1 (1 � k � n), the map h

j
0h1 has

a fixed curve component

Hj WD
²

.X; Y / 2 zUp

ˇ̌̌
e

�
1

2`�
C .ı C a1�/j

�n

�
X � Y D 0

³
;

so that the action of h
j
0h1 on the normal bundle of Hj in zUp is the reflection, i.e.,

with eigenvalue �1. Since Hj is a horizontal hyperplane with respect to the global
fibration, the self-intersection H 2

j on zUp (cf. [AS] p. 583) is nothing but a single
point with multiplicity 1. Therefore we have

nX
kD1

LhHj i D 1

2`�n

nX
kD1

cosec2 �

2
� H 2

j D 1

2`�
: (42)

Step 4. We show

Sign S] C �.@S]/ (43)

D 1

3

Z
S]

p1.S]/ C
X
ŒBi 	

'.i/X
˛D1

²
r.˛; i/ � 1

3

�
�

.i/
˛ C ı

.i/
˛

�
.i/
˛

C
r.˛;i/X
j D1

Kj .˛; i/

�³

C
X
ŒAj 	

�
d

3�.1/�.2/
� 1 C 0.Aj / C 2c2

3`2d�.1/�.2/

�
C
X
Œ QAk 	

�
�

3�
C 1

3`�n

�
:
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Indeed, it follows from (35), (38)) (39), (40), (41), (42) that

Sign S] C �.@S]/ � 1

3

Z
S]

p1.S]/ (44)

D �
X

ŒPmult	

4s.ı; �/ �
X

ŒPnoam	

²
4s.v; d/ C .�.1//2 C .�.2//2

3d�.1/�.2/
� 2c2

3`2d�.1/�.2/

³

�
X
ŒPam	

²
2s.v; 2��/ � 1

2
C `2 � 1

3`�

³
;

where the first, the second and the third summations move over all the monodromy
data of the orbits of the monodromy map of multiple points, non-amphidrome annuli
and amphidrome annuli, respectively. Since the both banks of an amphidrome annuli
belong to the same orbit, we can write the right-hand side of the quality (44) as

�
X

Œ.ı;�/	

4s.ı; �/ �
X

ŒPnoam	

²
4s.v; d/ � 4s.ı.1/; �.1// � 4s.ı.2/; �.2//

C .�.1//2 C .�.2//2

3d�.1/�.2/
� 2c2

3`2d�.1/�.2/

³
�
X
ŒPam	

²
2s.v; 2��/ � 4s.ı; �/ � 1

2
C `2 � 1

3`�

³
;

where the first summation moves over the valencies of the orbits of multiple points
and of both sides of non-amphidrome and amphidrome annuli, i.e., the valencies of all
the bodies. Moreover, for the monodromy data of an amphidrome annulus, a similar
argument as in Lemma 4.2.3 shows that

� 2s.v; 2��/ C 4s.ı; �/ D ı

3�
C 1

6��
C K

3
� 1

2
: (45)

Hence the assertion (43) follows from Theorem 4.1.2, Lemma 4.2.2, Lemma 4.2.3
and (45).

Step 5. Since the intersection matrix of the exceptional set is negative definite, the
contraction S ! S] induces the decrease of the dimension of the negative eigenspace
of the intersection form as the same number of the exceptional curves. Therefore

Sign S�Sign S] D �
X
ŒBi 	

'.i/X
˛D1

r.˛; i/�
X
ŒAj 	

�
K � 1 C 00.Aj /

��X
Œ QAk 	

.K C2/; (46)

where

00.Aj / D
´

0 if K � 0,

! C !0 � r � r 0 C 1 if K D �1.
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Note that the number .Aj / defined in Section 5.2 for a non-amphidrome annulus
Aj coincides with 0.Aj / � 00.Aj /, where 0.Aj / is defined in Lemma 4.2.2 and
Lemma 4.2.3.

By the definition of the orbifold Pontrjagin form, we haveZ
S]

p1.S]/ D 1

N

Z
zS

p1. zS/:

Moreover, since G acts on @ zS freely, �.@S/ D �.@S]/ coincides with .1=N /�.@ zS/

([APS] II). Hence the assertion of Theorem 5.2.1 follows from (37), (43), (46). �

We prove Lemma 5.3.1. The Galois group G D Gal. zC=C/ of the base extension
zC ! C naturally acts on z� so that the restriction of this action to a neighborhood of a
singular fiber of f is nothing but the action which we already discussed here. Since
the action of G is free outside the singular fibers and the dummy fiber f �1.P0/, it
suffices to show that any data of f �1.P0/ does not contribute Sign � �.1=N / Sign z� .

Although f �1.P0/ is a component of fixed curves of some element of G , it does
not contribute the integral of the equivariant L-form because the normal bundle of
f �1.P0/ in � is trivial. Therefore the assertion is clear. �
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