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On the integro-differential equation satisfied by the p-adic
log � -function

Eduardo Friedman�

Abstract. Diamond’s p-adic analogue Log�D.x/ of the classical function log �.x/ has recently
been shown to satisfy the integro-differential equation

.�/
R

Zp
f .x C t / dt D .x � 1/f 0.x/ � x C 1=2 .x 2 Qp � Zp/;

where
R

Zp
is a Volkenborn integral and f 0 is the derivative of f . We show that this equation

characterizes Log�D.x/ up to a function with everywhere vanishing second derivative. Namely,
every solution f of .�/ is infinitely differentiable and satisfies f 00 D Log�D

00.
We show that the set of solutions of the homogeneous equation

R
Zp

y.x C t / dt D .x � 1/y0.x/

associated to .�/ is an infinite-dimensional commutative and associative p-adic algebra under
the product law

.y1 ˘ y2/.x/ WD y0

2.x/y1.x/ C y0

1.x/y2.x/ � .x � 1=2/y0

1.x/y0

2.x/;

the unit being y.x/ D x � 1=2. We also study Morita’s alternate p-adic analogue Log�M of
log �.x/ and prove similar results.
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1. Introduction

Diamond’s [Di] p-adic analogue of Euler’s log �-function was recently shown [CF]
[Co, p. 335] to be the unique strictly differentiable function f W Qp � Zp ! Cp

simultaneously satisfying the difference equation

f .x C 1/ � f .x/ D logp x (1)

�This work was partially supported by Chilean Fondecyt grant No. 1040585.
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and the “Raabe formula”Z
Zp

f .x C t / dt D .x � 1/f 0.x/ � x C 1
2
: (2)

Here f 0 is the derivative of f , Cp is the completion of the algebraic closure of the
p-adic field Qp , Zp � Qp denotes the ring of p-adic integers and logp is the Iwasawa
p-adic logarithm, so logp p D 0 [Sc, p. 132]. Recall that the Volkenborn integral of
a function g W Zp ! Cp is defined by

Z
Zp

g.t/ dt ´ lim
n!1

1

pn

pn�1X
j D0

g.j /; (3)

and that this limits exists if g is strictly differentiable on Zp [Ro, p. 264]. A function
g W X ! Cp is strictly differentiable on a subset X � Cp if for all a 2 X ,

lim
.x;y/!.a;a/

g.x/ � g.y/

x � y
(4)

exists, the limit being restricted to x; y 2 X; x 6D y [Ro, p. 221]. Diamond’s function
Log�D.x/ can be defined by the Volkenborn integral formula [Sc, p. 182]

Log�D.x/ ´
Z

Zp

.x C t / � .logp.x C t / � 1/ dt .x 2 Qp � Zp/: (5)

Since the combined difference equation (1) and Raabe formula (2) uniquely de-
termine Diamond’s function Log�D, it is natural to wonder to what extent Log�D is
determined by one of these equations alone. For the difference equation the answer
is trivial: f is a continuous solution of the difference equation (1) if and only if
y ´ f � Log�D is Zp-periodic, i.e., y.x C t / D y.x/ for all t 2 Zp . (Note that
there are many non-constant Zp-periodic functions on Qp � Zp , the quotient group
Qp=Zp being discrete and infinite.) As the derivative of any Zp-periodic function
vanishes identically, we conclude that f 0 D .Log�D/0.

Such a simple result cannot hold for the Raabe formula (2) since f .x/ ´
Log�D.x/ C x � 1

2
satisfies (2). We show that one more derivative does the trick.

Theorem 1.1. Let Log�D W Qp � Zp ! Cp be Diamond’s p-adic analogue (5) of
the classical log �-function and let f W Qp � Zp ! Cp be strictly differentiable and
satisfy the Raabe formula

Z
Zp

f .x C t / dt D .x � 1/f 0.x/ � x C 1
2

.x 2 Qp � Zp/: (6)
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Then f is infinitely differentiable, .f � Log�D/0 is Zp-periodic, f 00 D .Log�D/00
and

f .x C 1/ � f .x/ D logp x C g.x/; (7)

where g W Qp � Zp ! Cp is strictly differentiable and g0 vanishes identically. Con-
versely, given any such g, then

f .x/ WD
Z

Zp

.x C t / � �
g.x C t / C logp.x C t / � 1

�
dt .x 2 Qp � Zp/ (8)

is the unique strictly differentiable f W Qp � Zp ! Cp satisfying (6) and (7).

We will also show (see Proposition 4.2) that any f satisfying (6) can be uniquely
written in the form

f .x/ D Log�D.x/ C q.x/
�
x � 1

2

� C r.x/ .x 2 Qp � Zp/; (9)

where q is Zp-periodic and r satisfies
R

Zp
r.x C t / dt D 0 for all x 2 Qp � Zp .

Moreover, any f of the above form satisfies (6).
We note that functions r W Qp �Zp ! Cp satisfying

R
Zp

r.xC t / dt D 0 abound.
A strictly differentiable r has this property if and only if r.x/ D h.x C 1/ � h.x/ for
some strictly differentiable h satisfying h0 D 0 everywhere (see Lemma 4.1). Such
r are “trivial” solutions to

R
Zp

r.x C t / dt D .x � 1/r 0.x/, in the sense that the
equation holds because both sides vanish identically.

Morita [Mo], [Sc, §35] defined a different analogue Log�M W Zp ! Cp of the
classical log �-function. Morita’s Log�M is by definition the Iwasawa logarithm of
his p-adic �-function [Mo]. (We note in passing that Log�D is not the logarithm of
any function. Our notation is only meant to recall the kinship with log � .) Its domain
is complementary to that of Diamond’s Log�D and satisfies the modified difference
equation

f .x C 1/ � f .x/ D �.x/ logp x;

where � is the characteristic function of the units Z�
p of Zp . Morita’s Log�M satisfies

the integral formula [Sc, p. 176]

Log�M.x/ D
Z

Zp

.x C t / � �.x C t / � .logp.x C t / � 1/ dt .x 2 Zp/;

and the Raabe formula [CF], [Co, p. 344]
Z

Zp

Log�M.x C t / dt D .x � 1/.Log�M/0.x/ � x C ˙
x
p

�
; (10)

with
˙

x
p

�
as defined after (11) below.
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Theorem 1.2. Let Log�M W Zp ! Cp be Morita’s p-adic analogue of the classical
log �-function and let f W Zp ! Cp be strictly differentiable and satisfy

Z
Zp

f .x C t / dt D .x � 1/f 0.x/ � x C ˙
x
p

�
.x 2 Zp/; (11)

where
˙

x
p

�
is the p-adic limit of the usual integer ceiling function

˙
xn

p

�
as xn ! x

through xn 2 Z. Then .f � Log�M/0 is constant and

f .x C 1/ � f .x/ D �.x/ logp x C g.x/; (12)

where g W Zp ! Cp is strictly differentiable and g0 vanishes identically. Conversely,
given any such g, then

f .x/ D
Z

Zp

.xCt / ��g.x C t / C �.x C t /.logp.x C t / � 1/
�

dt .x 2 Zp/ (13)

is the unique strictly differentiable f W Zp ! Cp satisfying (11) and (12).

Again, f .x/ ´ Log�M.x/ C x � 1
2

satisfies (11), and we will show in §4 (see
Proposition 4.2) that any f satisfying (11) can be uniquely written in the form

f .x/ D Log�M.x/ C c � �
x � 1

2

� C r.x/ .x 2 Zp/; (14)

where c 2 Cp and r satisfies
R

Zp
r.t/ dt D 0, as well as r 0.x/ D 0 for all x 2 Zp .

Moreover, any f of the above form satisfies (11).
On setting y ´ f � Log�D (or y ´ f � Log�M in the Morita case), we will

obtain the two theorems above from

Theorem 1.3. Fix D as either Zp or Qp � Zp , and let y W D ! Cp be strictly
differentiable on D and satisfy

Z
Zp

y.x C t / dt D .x � 1/y0.x/ .x 2 D/: (15)

Then y is infinitely differentiable, y0 is Zp-periodic, g.x/ ´ y.x C 1/ � y.x/ is
strictly differentiable, g0.x/ D 0 D y00.x/ for all x 2 D , and

y.x/ D
Z

Zp

.x C t /g.x C t / dt: (16)

Conversely, given any strictly differentiable function g W D ! Cp with everywhere
vanishing derivative, then (16) defines the unique strictly differentiable function
y W D ! Cp satisfying (15) and y.x C 1/ � y.x/ D g.x/.
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In §3 we prove a generalization of Theorems 1.1 and 1.3 where D is allowed to
be any subset D � Cp invariant under translation by Zp . This is relevant since the
integral formula (5) allows the domain of Diamond’s Log�D to be extended from
Qp � Zp to Cp � Zp [Sc, §60].

In §4 we prove a rather different kind of consequence of Theorem 1.3.

Proposition 1.4. Fix D as either Zp or Qp � Zp , and let VD be the set of strictly
differentiable functions y W D ! Cp satisfying

R
Zp

y.x C t / dt D .x � 1/y0.x/.
Then the binary operation

.y1 ˘ y2/.x/ WD y0
2.x/y1.x/ C y0

1.x/y2.x/ � �
x � 1

2

�
y0

1.x/y0
2.x/ (17)

makes VD into an infinite-dimensional, commutative, associative Cp-algebra with
unit x � 1

2
.

Let WD be the space of all strictly differentiable Cp-valued functions on D

with everywhere vanishing derivative, a ring under the usual point-wise product of
functions. Theorem 1.3 gives a Cp-vector space isomorphism � W VD ! WD taking
a solution y of (15) to a g D �y having vanishing derivative. Trivially, VD can be
made into a ring using � to transport to VD the ring structure on WD . We shall show
in §4 that the ring VD defined in Proposition 1.4 is not isomorphic to WD , so the
˘-product is a genuinely different ring structure on VD . In fact, VD is isomorphic
to a certain subring of the ring of 2 � 2 upper-triangular matrices with coefficients
in WD .

In the p-adic content it is not surprising to see the space WD parametrizing the
space of solutions VD . For functions on D D Zp , Schikhof [Sc, §65] showed that
the general solution of a first order differential equation

y0 D T .y/

is parametrized by the space WZp
, which is infinite-dimensional over Cp [Sc, §63].

Here T W C ! C is a Lipschitz map on the space C D C 0.Zp; Cp/ of continuous
functions from Zp to Cp , endowed with the supremum norm. In other words, in the
p-adic domain one expects functions with everywhere vanishing derivative to play
the role of constants in the archimedean theory of differential equations.

Although there does not seem to be a theory of Volkenborn integro-differential
equations in the literature, it is reasonable to expect WD to play an important role in
some equations of the formZ

Zp

y.x C t / dt D T .y/.x/: (18)

Indeed, on applying the difference operator � to both sides we find

y0 D �T .y/;
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which is of Schikhof’s type if T is. In Theorem 1.3, T .y/.x/ D .x � 1/y0.x/ is not
of Schikhof’s type. Still, the first step in our proof of Theorem 1.3 will be to apply
the difference operator.

Another explanation of the importance of WD lies in the decomposition

WD D AD ˚ XD ; (19)

where AD � WD is the Cp-algebra of Zp-periodic functions on D , and XD consists
of all y 2 WD satisfying

R
Zp

y.x C t / dt D 0 for all x 2 D (see §4). We trivially

have that any y 2 XD \ T �1.0/ is a solution of (18). In particular, if XD � T �1.0/,
then all y 2 XD are solutions of (18). This is indeed the case in Theorem 1.3.

The summand AD in (19) can also play a role in (18). If h 2 AD , then
Z

Zp

h.x C t /y.x C t / dt D h.x/

Z
Zp

y.x C t / dt:

Hence, if T is an AD -module map, then the set of solutions of (18) is an AD -module.
A rather general example of this kind of equation is

Z
Zp

y.x C t / dt D T .y/.x/ D
X

0�j;k�n

aj;k.x/ � .Dj �ky/.x/;

where D and � denote the differential and difference operators, and the aj;k are
arbitrary functions on D .

2. Proof of the theorems

We begin by showing that Theorem 1.1 follows from Theorem 1.3. Diamond’s func-
tion Log�D defined by

Log�D.x/ ´
Z

Zp

.x C t / � .logp.x C t / � 1/ dt .x 2 Qp � Zp/

is locally analytic on Qp � Zp , and is therefore strictly differentiable and infinitely
differentiable [Sc, Theorem 60.2 and Corollary 29.11]. It satisfies the difference
equation

Log�D.x C 1/ � Log�D.x/ D logp.x/ .x 2 Qp � Zp/

[Sc, Theorem 60.2] and the Raabe formula [CF]Z
Zp

f .x C t / dt D .x � 1/f 0.x/ � x C 1
2

.x 2 Qp � Zp/: (20)
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If f W Qp � Zp ! Cp is any other strictly differentiable function satisfying (20),
then y.x/ WD f .x/�Log�D.x/ is a strictly differentiable function on Qp �Zp which
satisfies Z

Zp

y.x C t / dt D .x � 1/y0.x/:

Bearing in mind the above properties of Log�D, every assertion about f in Theo-
rem 1.1 is a direct translation of the corresponding statement for y in Theorem1.3 for
D D Qp � Zp .

The proof that Theorem 1.2 follows from Theorem 1.3 is similar, but we can make
better use of the difference equation on D D Zp than we could on D D Qp � Zp .
Indeed, Morita’s Log�M.x/ satisfies for x 2 Zp the difference equation

f .x C 1/ � f .x/ D �.x/ logp x; (21)

where � is the characteristic function of the units Z�
p of Zp [Sc, p. 176]. It also

satisfies the integral formula

Log�M.x/ D
Z

Zp

.x C t / � �.x C t / � .logp.x C t / � 1/ dt .x 2 Zp/

[Sc, p. 176] and the Raabe formulaZ
Zp

Log�M.x C t / dt D .x � 1/.Log�M/0.x/ � x C ˙
x
p

�
; (22)

where
˙

x
p

�
is defined in Theorem 1.2 [CF], [Co, p. 344]. Since Log�M is analytic on

pZp [Sc, Lemma 58.1] and the Iwasawa logarithm is locally analytic on Cp � f0g
[Sc, Theorem 45.12], the difference equation (21) implies that Log�M is locally
analytic on Zp .

Now suppose f W Zp ! Cp is strictly differentiable and satisfies the Raabe
formula (22). As before, y.x/ WD f .x/ � Log�M.x/ is then a strictly differentiable
function on Zp which satisfiesZ

Zp

y.x C t / dt D .x � 1/y0.x/ .x 2 Zp/:

By Theorem 1.3, g.x/ WD y.x C 1/ � y.x/ has an everywhere vanishing derivative.
Thus y0.x C 1/ D y0.x/, and y0 is continuous since y is strictly differentiable
[Sc, §27], [Ro, p. 221]. It follows that y0 is constant on Zp , as claimed in Theorem 1.2.
The rest of Theorem 1.2 follows from Theorem 1.3 just as Theorem 1.1 did.

Turning now to the proof of Theorem 1.3, we begin by recalling some general
properties of Volkenborn integrals. Let D D Zp , or D D Qp � Zp , and let

H.x/ ´
Z

Zp

q.x C t / dt .x 2 D/; (23)
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where q W D ! Cp is assumed strictly differentiable. Then [Ro, p. 265]

H.x C 1/ � H.x/ D q0.x/; (24)

and [CF, Lemma 2.1], [Co, p. 396]

H.x/ D q.x/ �
Z

Zp

.t C 1/�q.x C t / dt: (25)

Here �q.x/ ´ q.x C 1/ � q.x/.
Let y be as in Theorem 1.3. Thus y is strictly differentiable on D and

H.x/ ´
Z

Zp

y.x C t / dt D .x � 1/y0.x/ .x 2 D/: (26)

Set
g.x/ ´ �y.x/: (27)

Using (24), (26) and (27) we find

y0.x/ D H.x C 1/ � H.x/ D xy0.x C 1/ � .x � 1/y0.x/ D xg0.x/ C y0.x/: (28)

Hence, g0.x/ D 0 for all x 2 D , except possibly at x D 0 when D D Zp . As g

is strictly differentiable (because y is), g0 is continuously differentiable [Ro, p. 221].
Hence g0.x/ D 0 for all x 2 D .

But y0 being continuous and �.y0/ D .�y/0 D g0 D 0 show that y0 is Zp-
periodic. Hence y is infinitely differentiable and y00 D 0 identically, as claimed in
Theorem 1.3.

Next we show

y.x/ D
Z

Zp

.x C t /g.x C t / dt .x 2 D/: (29)

Note that the Volkenborn integral above is well-defined because g is strictly differ-
entiable on D . From (25)–(27) we find

.x � 1/y0.x/ D
Z

Zp

y.x C t / dt D y.x/ �
Z

Zp

.t C 1/g.x C t / dt;

or

y.x/ D .x � 1/y0.x/ C
Z

Zp

.t C 1/g.x C t / dt: (30)

But, by (24),

y0.x/ D �

� Z
Zp

y.x C t / dt

�
D

Z
Zp

.�y/.x C t / dt D
Z

Zp

g.x C t / dt: (31)
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On substituting (31) in (30), we obtain (29), proving the first part of Theorem 1.3.
We now prove the converse claim in Theorem 1.3. The uniqueness claim is a

special case of [CF, Proposition, p. 365], but we give the proof here for completeness.
Suppose both y1 and y2 are solutions of

y.x C 1/ � y.x/ D g.x/ and
Z

Zp

y.x C t / dt D .x � 1/y0.x/; (32)

where g is given. Then h WD y1 � y2 satisfies

h.x C 1/ � h.x/ D 0 and
Z

Zp

h.x C t / dt D .x � 1/h0.x/:

But h.x C 1/ D h.x/ implies that h0.x/ D 0 identically. It also implies, by the
very definition (3) of the Volkenborn integral, that h.x/ D R

Zp
h.x C t / dt . Hence

h.x/ D 0 and uniqueness is proved.
We now turn to rest of the converse claim in Theorem 1.3. Suppose then that

g W D ! Cp is strictly differentiable and g0.x/ D 0 for all x 2 D . We wish to show
that there is a strictly differentiable solution y to (32) and that y is given by

y.x/ D
Z

Zp

.x C t /g.x C t / dt .x 2 D/: (33)

To this end, define y by (33). Then, from (24),

y.x C 1/ � y.x/ D �
xg.x/

�0 D g.x/; (34)

since g0 D 0. Thus
�y D g: (35)

Now assume D D Zp (we will deal with the case D D Qp � Zp in a bit). Then
(35) shows

y.x/ D Sg.x/ C c; (36)

where Sg W Zp ! Cp is the indefinite sum of g [Ro, p. 177], [Sc, pp. 105–106]
and c is a constant. But Sg is strictly differentiable because g is [Ro, p. 232],
[Sc, p. 162]. Hence y is strictly differentiable, as claimed in Theorem 1.3.

We now show that y satisfies
R

Zp
y.x C t / dt D .x � 1/y0.x/. Note that

Z
Zp

g.x C t / dt D .Sg/0.x/ D y0.x/; (37)

where the first equality amounts to the proof of existence of the Volkenborn integral
[Ro, p. 264], [Sc, p. 167], and the second equality uses (36). Now (25) and �y D g
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yieldZ
Zp

y.x C t / dt D y.x/ �
Z

Zp

.t C 1/g.x C t / dt

D y.x/ C .x � 1/

Z
Zp

g.x C t / dt �
Z

Zp

.x C t /g.x C t / dt

D .x � 1/y0.x/;

(38)

where we also used (37) and (33). This completes the proof of Theorem 1.3 in the
Morita case D D Zp .

When D D Qp � Zp we meet a nuisance in (36) because the indefinite sum
operator S is only defined for (continuous) functions with domain Zp . To get around
this, for q W D ! Cp and x 2 D , define qx W Zp ! Cp by qx.t/ ´ q.x C t /. Then
�y D g in (34) becomes

�yx.t/ D yx.t C 1/ � yx.t/ D gx.t/ .x 2 D ; t 2 Zp/:

Hence
yx.t/ D S.gx/.t/ C cx .x 2 D ; t 2 Zp/; (39)

and t ! yx.t/ is strictly differentiable on Zp . Thus, for any fixed a 2 D ,

lim
.r;s/!.0;0/

ya.r/ � ya.s/

r � s
D lim

.r;s/!.0;0/

y.a C r/ � y.a C s/

r � s
(40)

exists, the limit being restricted to r; s 2 Zp; r 6D s. As a 2 D � Qp , the existence
of (40) is equivalent to the existence of

lim
.r 0;s0/!.a;a/

y.r 0/ � y.s0/
r 0 � s0 ;

the limit being restricted to r 0; s0 2 D ; r 0 6D s0. Hence y is again strictly differentiable
on D D Qp � Zp .

The proof of Theorem 1.3 in the Diamond case D D Qp � Zp now mimics the
Morita case. For example, (37) becomesZ

Zp

g.xCt / dt D
Z

Zp

gx.t/ dt D d

dt
.Sgx/

ˇ̌
tD0

D d

dt

�
y.xCt /�cx

�ˇ̌
tD0

D y0.x/;

where we used (39).

3. Other domains

Diamond’s function Log�D can be defined for x 2 Cp�Zp by theVolkenborn integral
formula (5), and is actually locally analytic on Cp � Zp [Sc, Theorem 60.2 (iv)]. The
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difference equation (1) and the Raabe formula (2) still hold for x 2 Cp �Zp and they
uniquely characterize Log�D among all strictly differentiable functions on Cp � Zp .
More generally, let D � Cp � Zp be such that x 2 D and t 2 Zp imply x C t 2 D .
Then Log�D restricted to D is again the unique strictly differentiable function on D

satisfying (1) and (2), [CF].
Part of Theorem 1.3 holds for any D � Cp , assumed invariant under translation

by Zp . Namely, if y is strictly differentiable on D and satisfies (15), then g D �y

is strictly differentiable on D and g0 D 0 everywhere on D . The proof given in §2
goes through without change.

Other parts of Theorem 1.3, however, do not seem to generalize. The problem
is that if we begin with g strictly differentiable on D and satisfying g0 D 0, the
differentiability (strict or not) of the function t ! yx.t/ D y.x C t / for t 2 Zp (see
(39)) does not imply differentiability of x ! y.x/ for x 2 D (unless D � Qp).

To account for this we shall say that y W D ! Cp is strictly Zp-differentiable on
D if for each fixed x 2 D , the map t ! y.x C t / for t 2 Zp is strictly differentiable
as a function with domain Zp . We denote the corresponding derivative by

y0.x/ ´ lim
t!0; t2Zp

y.x C t / � y.x/

t
;

and call it the Zp-derivative of y. We note that for strictly Zp-differentiable y, the
Zp-derivative y0 is Zp-continuous, i.e., t ! y0.x C t / is continuous for t 2 Zp .
Although strict Zp-differentiability is a very weak notion if D 6� Qp , it is exactly
what is needed to define the Volkenborn integral

R
Zp

y.x C t / dt . An example of a
strictly Zp-differentiable function on D D Cp which is not even continuous on D is
y.x/ ´ 1 if x 2 Qp , y.x/ ´ 0 if x 2 Cp � Qp .

Examination of the proof given in [CF] shows that f D Log�D restricted to D is
the unique strictly Zp-differentiable function on D satisfying the difference equation
(1) and the Raabe formula (2). With these adaptations we have

Theorem 3.1. Let D � Cp be invariant under translation by Zp and let y W D ! Cp

be strictly Zp-differentiable and satisfy

Z
Zp

y.x C t / dt D .x � 1/y0.x/ .x 2 D/; (41)

where y0 denotes the Zp-derivative of y. Then y is infinitely Zp-differentiable, y0 is
Zp-periodic, g.x/ ´ y.x C 1/ � y.x/ is a strictly Zp-differentiable function on D

whose Zp-derivative vanishes everywhere on D , and

y.x/ D
Z

Zp

.x C t /g.x C t / dt: (42)
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Conversely, given any strictly Zp-differentiable function g W D ! Cp with every-
where vanishing Zp-derivative, then (42) defines the unique strictly Zp-differentiable
function y W D ! Cp satisfying (41) and g.x/ D y.x C 1/ � y.x/.

Proof. The proof of Theorem 1.3 for D D Qp � Zp goes through after replacing
“strictly differentiable” everywhere by “strictly Zp-differentiable” and understanding
all derivatives to be Zp-derivatives. We should also note, regarding equation (25),
that its proof in [CF] only requires strict Zp-differentiability. �

Using the above result, it is clear that Theorem 1.1 can be extended from the
domain Qp � Zp to any D � Cp � Zp invariant under translation by Zp , provided
differentiability (strict or not) is understood in the Zp sense defined above.

4. Decomposition of the solution space

We again fix D � Cp , assumed invariant under translation by elements of Zp , and use
the notions of Zp-continuity, Zp-derivative and strict Zp-differentiability defined in
§3. When D � Qp these coincide with the usual definitions of continuity, derivative
and strict differentiability. All derivatives in this section are to be understood as
Zp-derivatives.

Let WD be the Cp-algebra (under the usual point-wise product of functions) of
all strictly Zp-differentiable Cp-valued functions on D with everywhere vanishing
Zp-derivative, and let AD � WD be the sub-algebra of Zp-periodic functions. If we
let � W WD ! WD be the usual difference operator �.y/.x/ WD y.x C 1/ � y.x/,
we have AD D ker.�/.

Lemma 4.1. For y 2 WD , let T .y/ W D ! Cp be defined by

T .y/.x/ WD
Z

Zp

y.x C t / dt;

and let XD D ker.T / � WD . Then

(1) T maps WD onto AD , T restricted to AD is the identity map on AD , and so
T 2 D T ;

(2) T and � are AD -module maps and T� D �T D 0;

(3) WD D AD ˚ XD , the internal direct sum being as Cp-vector spaces and as
AD -modules;

(4) � maps WD onto XD , and � restricted to XD is an isomorphism of XD onto
itself.
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Proof. For any strictly Zp-differentiable y, the function x ! R
Zp

y.x C t / dt is
Zp-continuous, as the Volkenborn integral is the Zp-derivative of a strictly Zp-
differentiable function, namely of the indefinite sum of t ! y.x C t / [Sc, p. 167],
[Ro, p. 267]. Also [Ro, p. 265]

�
�
T .y/

�
.x/ D T

�
�.y/

�
.x/ D

Z
Zp

�
y.xC1Ct /�y.xCt /

�
dt D y0.x/ D 0; (43)

where the last step uses y 2 WD . Since x ! T .y/.x/ is Zp-continuous, it follows
that T .y/ is Zp-periodic. Hence T .WD/ � AD . For f 2 AD ,

T .f /.x/ D
Z

Zp

f .x C t / dt D
Z

Zp

f .x/ dt D f .x/: (44)

Claim (1) in the lemma is now clear (it essentially amounts to [Sc, Corollary 55.6]).
To prove claim (2) take h 2 AD and any strictly Zp-differentiable y. ThenZ

Zp

h.x C t /y.x C t / dt D h.x/

Z
Zp

y.x C t / dt;

and so T is an AD -module map. For � the verification of this fact is equally simple.
We have already seen in (43) that T� D �T D 0, as claimed in (2).

To prove (3), take y 2 WD and write y D T .y/ C �
y � T .y/

�
. By claim (1)

in the lemma, T
�
y � T .y/

� D T .y/ � T 2.y/ D 0, so y � T .y/ 2 XD . Since we
have already shown that T .y/ 2 AD , we have WD D AD C XD . If f 2 XD \ AD ,
then T .f / D 0 as f 2 ker.T / D XD . But (44) shows f D T .f /, since f 2 AD .
Hence XD \ AD D f0g and claim (3) is proved.

To prove claim (4), note that T� D 0 implies �WD � ker.T / D XD . To prove
�WD D �XD D XD , take y 2 XD and let

h.x/ WD
Z

Zp

.x C t /y.x C t / dt: (45)

Then �h.x/ D �
xy.x/

�0 D y.x/, since y0 D 0 for y 2 WD . As in §2 (see the
paragraph containing (39)), we conclude that h is strictly Zp-differentiable. Since
�h D y, we have [Ro, p. 264], [Sc, p. 167]

h0.x/ D
Z

Zp

y.x C t / dt D T .y/.x/ D 0;

where the last step uses y 2 XD . Thus h 2 WD . To prove h 2 XD we use �h D y

and (25) to computeZ
Zp

h.xCt / dt D h.x/�
Z

Zp

.tC1/y.xCt / dt D h.x/�
Z

Zp

.tCx/y.xCt / dt D 0;
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where we also used
R

Zp
y.x C t / dt D 0 and (45). Thus � maps XD onto itself.

The injectivity of � on XD is clear from XD \ AD D f0g, which we have already
shown. �

We can now prove

Proposition 4.2. Let y W D ! Cp be strictly Zp-differentiable and satisfy
Z

Zp

y.x C t / dt D .x � 1/y0.x/: (46)

Then
y.x/ D q.x/

�
x � 1

2

� C r.x/; (47)

for a unique q 2 AD and a unique r 2 XD . Conversely, given q 2 AD and r 2 XD ,
(47) defines a strictly Zp-differentiable function y satisfying (46).

Proof. We first prove the converse claim. If r 2 XD , then
R

Zp
r.x C t / dt D 0 D

r 0.x/, and so r is trivially a solution of (46). One checks directly that y.x/ D x � 1
2

is a solution of (46) and that the set of solutions VD is an AD -module. Thus the
converse statement is clear.

To prove the main statement, note that by Theorem 3.1 the map � W VD ! WD

is a Cp-isomorphism (we again denote the difference operator by �, despite the
change of domain with respect to Lemma 4.1). One easily checks that � is an
AD -module isomorphism. Under it x � 1

2
maps to the constant function 1. Hence

AD � .x � 1
2
/ maps isomorphically onto AD � WD . But we have just seen that

XD � VD . By Lemma 4.1 (4), � restricts to an isomorphism of XD onto itself. Since
WD D AD ˚ XD (see Lemma 4.1 (3)), we conclude that VD D AD � .x � 1

2
/ ˚ XD .

�

Lastly, we turn to the ˘-product structure on VD defined in Proposition 1.4. Using
Proposition 4.2, we can write yi 2 VD as

yi .x/ D qi .x/
�
x � 1

2

� C ri .x/ .ri 2 XD ; qi 2 AD ; i D 1 or 2/:

Then

.y1 ˘ y2/.x/ ´ y0
2.x/y1.x/ C y0

1.x/y2.x/ � �
x � 1

2

�
y0

1.x/y0
2.x/

D q2.x/y1.x/ C q1.x/y2.x/ � �
x � 1

2

�
q1.x/q2.x/ (48)

D �
q1.x/q2.x/

��
x � 1

2

� C �
q1.x/r2.x/ C q2.x/r1.x/

�
;

which is again in the form of Proposition 4.2. Hence VD with the ˘-product is

isomorphic to the ring R of all upper triangular matrices of the form
�

q.x/ r.x/
0 q.x/

�
,
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where q 2 AD and r 2 XD . The ring R is clearly an associative and commutative
Cp-algebra.

The nilpotent elements of R are exactly the matrices of the form
�

0 r.x/
0 0

�
. Since

WD , under the usual point-wise product of functions, has no non-zero nilpotent
elements, we see that VD is not ring-isomorphic to WD .

To see that WD is an infinite-dimensional Cp-vector space, note the isomorphism
WD Š Q

x2D=Zp
WxCZp

and WxCZp
Š WZp

. The latter space is known to be
infinite-dimensional over Cp as it can be explicitly described in van der Put’s base
[Sc, Theorem 63.3].
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