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A converse theorem for Dirichlet L-functions
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Abstract. It is known that the space of solutions (in a suitable class of Dirichlet series with
continuation over C) of the functional equation of a DirichletL-functionL.s; �/ has dimension
� 2 as soon as the conductor q of � is at least 4. Hence the Dirichlet L-functions are not
characterized by their functional equation for q � 4. Here we characterize the conductors q
such that for every primitive character � (mod q), L.s; �/ is the only solution with an Euler
product in the above space. It turns out that such conductors are of the form q D 2a3bm with
any square-free m coprime to 6 and finitely many a and b.
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1. Introduction

A well known theorem by Hamburger, see [7] and Chapter II of Titchmarsh [16],
states that the Riemann zeta function �.s/ is determined by its functional equation in
the following sense. Let f .s/ and g.s/ be two Dirichlet series absolutely convergent
for � > 1 such that .s � 1/f .s/ and .s � 1/g.s/ are entire functions of finite order,
and f .s/ and g.s/ satisfy the functional equation

��s=2�
�
s

2

�
f .s/ D ��.1�s/=2�

�
1 � s
2

�
g.1 � s/:

Then f .s/ D g.s/ D c�.s/ for some c 2 C. In fact, the same conclusion holds under
weaker conditions on f .s/ and g.s/; we refer to Piatetski–Shapiro and Raghunathan
[15], and to the literature quoted there, for an interesting discussion of the above the-
orem, especially in connection with uniqueness properties of the Poisson summation
formula.

Hamburger’s theorem is the first and simplest example of a converse theorem,
roughly speaking a result characterizing L-functions by means of their standard ana-
lytic properties. Several converse theorems are known in the literature. We mention
here only the classical converse theorems by Hecke (see Chapter I of [8]) and Weil



464 J. Kaczorowski, G. Molteni and A. Perelli CMH

[17] concerning the L-functions associated with modular forms (see also Conrey–
Farmer [4] for an interesting variant involving Euler products), and the general con-
verse theorems for automorphic L-functions, see Cogdell and Piatetski–Shapiro [3].
Moreover, a general converse theorem for degree 1 L-functions has been established
by Kaczorowski–Perelli [9] in the framework of the Selberg class.

Hamburger’s theorem has a special feature among converse theorems. In fact, it
shows that the vector space of the Dirichlet series satisfying the functional equation
of �.s/ and some standard analytic properties is 1-dimensional. This indeed happens
rarely, as shown by Theorem 2 of [9] for degree 1 L-functions: the 1-dimensional
case arises only when the conductor equals 1 (essentially Hamburger’s theorem) or 3.
In particular, the strict analog of Hamburger’s theorem holds, among the Dirichlet
L-functions with non-trivial character, only when L.s; �/ is associated with the odd
character � (mod 3). This follows also from the arguments in [15], see p. 117, and
essentially also from the third part of Hamburger’s original paper. Similar phenomena
are expected to hold for higher degree L-functions as well.

In view of the above discussion it is natural to address the following question: un-
der what conditions a functional equation has only one solution in the set of Dirichlet
L-functions? As we shall see in Theorem 1 below, the question essentially asks for an
analog of Hamburger’s theorem where the Euler product is added to the standard ana-
lytic properties. In this paper we characterize the moduli q such that all the functional
equations (mod q) have only one solution in the set of Dirichlet L-functions.

We recall that for a primitive Dirichlet character� (mod q), the functional equation
of L.s; �/ is�

q

�

�s=2
�

�
s C a.�/

2

�
L.s; �/ D !�

�
q

�

�.1�s/=2
�

�
1 � s C a.�/

2

�
L.1 � s; N�/;

where

a.�/ D
´
0 if �.�1/ D 1;

1 if �.�1/ D �1; !� D �.�/

ia.�/
p
q

and

�.�/ D
qX
aD1

�.a/e2�ia=q:

Moreover, it is well known that a primitive character (mod q) exists if and only if
q 6� 2 (mod 4); in this paper we will always assume that q 6� 2 (mod 4). Hence,
given q 6� 2 (mod 4), the functional equation ofL.s; �/ is completely determined by
the signature of �, defined by

s.�/ D .a.�/; �.�//:

Note that this is in fact a special case of a general result, obtained in the framework
of the Selberg class, characterizing functional equations by the so-called basic in-
variants, see Kaczorowski-Perelli [10]. Indeed, for degree 1 L-functions the basic
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invariants determining the functional equation are conductor, parity and root number
(respectively q, a.�/ and !� in this case, but clearly one may replace !� by �.�/);
see [9]. Our question can therefore be rephrased as follows: under what conditions
two primitive characters (mod q) with the same signature are equal ? In this paper we
shall determine all cases where equality of signatures implies equality of primitive
characters, see Theorem 2 below.

As mentioned above, [9] contains a general converse theorem for degree 1L-func-
tions in the Selberg class � , namely that �.s/ and L.s C i�; �/ with � primitive and
� 2 R are the onlyL-functions of degree 1 in � . Using this result and Theorem 2 be-
low we can prove the following general version of Hamburger’s theorem for Dirichlet
L-functions. For a primitive character � (mod q), let W.�/ be the set of Dirichlet
series F.s/ satisfying the following three conditions:

(i) the coefficients a.n/ of F.s/ satisfy a.n/ � n" for every " > 0, and there is
an integer m such that .s � 1/mF.s/ is an entire function of finite order;

(ii) logF.s/ is a Dirichlet series with coefficients b.n/ satisfying b.n/ D 0 unless
n is a prime power > 1, and b.n/ � n# for some # < 1=2;

(iii) F.s/ satisfies the functional equation

�
q

�

�s=2
�

�
s C a.�/

2

�
F.s/ D !�

�
q

�

�.1�s/=2
�

�
1 � s C a.�/

2

�
F.1 � Ns/: (1.1)

Note that clearly L.s; �/ belongs to W.�/, and that condition (ii) means that F.s/ is
a rather general Euler product. We also denote by Q the set of non-negative integers
q 6� 2 (mod 4) of the form q D 2a3bm, with m square-free and .m; 6/ D 1, and
satisfying one of the following two conditions:

(a) a 2 f0; 2; 3; 4; 5g and b 2 f0; 1g;

(b) a 2 f0; 2; 3g and b D 2.

We have

Theorem 1. If q 2 Q then W.�/ D fL.s; �/g for every primitive character �
(mod q), while if q … Q, q 6� 2 (mod 4), there exists a primitive character �
(mod q) such thatW.�/ containsL.s; �/ and at least anotherL.s;  / with primitive
 (mod q).

As remarked in [9], the above conditions defining W.�/ can be weakened, and
still the same result follows. For example, the Ramanujan conjecture a.n/ � n" in (i)
is not necessary, the weaker assumption that F.s/ is absolutely convergent for � > 1
being sufficient. Hence Theorem 1 may be expressed by saying that for q 2 Q, every
primitive Dirichlet L-function (mod q) is characterized by the functional equation
and the multiplicativity of the coefficients. We also remark that, in view of the above
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mentioned Theorem 2 of [9], the Euler product assumption in (ii) plays an essential
role in Theorem 1.

The following result is crucial for Theorem 1 and also of independent interest.
Given q 6� 2 (mod 4), let sq be the map sending each primitive character � (mod q)
to its signature s.�/ defined above. We have

Theorem 2. The map sq is injective if and only if q 2 Q.

We refer to the next section for the proof of Theorem 2 and for more general
results related to it. Note that Theorem 2 immediately implies the following

Corollary. The functional equations of theL.s; �/’s with � primitive (mod q) are all
distinct if and only if q 2 Q.

Theorem 1 follows at once from the corollary and the above mentioned results in
[9]. In fact, given a primitive character � (mod q), W.�/ is a subset of the degree 1
L-functions in � and hence its elements are either �.s/ or L.s C i�;  / with � 2 R
and primitive  . Moreover, it is clear that � D 0 and the conductor of  is q
if L.s C i�;  / satisfies the unshifted functional equation (1.1). Therefore, W.�/
contains only Dirichlet L-functions with primitive characters (mod q) (including the
trivial character (mod 1)), and hence Theorem 1 follows from the corollary.

We remark that generalizations of Hamburger’s theorem to Dedekind zeta func-
tions and to HeckeL-functions associated with algebraic number fields do exist in the
literature, see e.g. Gurevič [6], Ehrenpreis–Kawai [5] and Yoshimoto [18]. However,
although such functions include the Dirichlet L-functions, these results are more in
the spirit of Weil’s converse theorem, i.e., characterizing an L-function by means of
analytic properties of its twits by suitable characters. In particular, as far as we can see
the results of this paper do not follow from the results in the above papers. Recalling
that the twist of a function F 2 W.�/ by a Dirichlet character  is by definition

F.s;  / D
1X
nD1

a.n/ .n/n�s;

we state the following variant of these converse theorems, which in view of Theorem 1
is interesting only when q … Q.

Theorem 3. Let �4 be the odd character (mod 4) and � be primitive (mod q). If
F 2 W.�/ satisfies F.1/ D L.1; �/ if � is even, and F.1; �4/ D L.1; ��4/ if � is
odd, then F.s/ D L.s; �/.

The proof of Theorem 3 is a consequence of Corollary 3 in Baker–Birch–Wirsing
[1], from which in particular follows that the values L.1; �j / are all distinct when �j
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runs over a finite set of even characters with distinct��
j , where��

j denotes the primitive
character inducing �j . We already know that if F 2 W.�/ then F.s/ D L.s;  /

with  primitive (mod q) having the same signature of �, hence the case of even �
follows at once. If � is odd then  �4 and ��4 are even characters (mod q0) for a
certain q0j4q, and hence . �4/� D .��4/

�. Let .a; q/ D 1 and let p � a (mod q)
be an odd prime, so that .p; q0/ D 1. By definition of induced character we have

 .a/ D  .p/ D �4.p/
�1. �4/.p/ D �4.p/

�1. �4/�.p/
D �4.p/

�1.��4/�.p/ D �4.p/
�1��4.p/ D �.p/ D �.a/;

thus  D � and Theorem 3 follows in this case as well.
We point out the interesting problem of determining the cardinality jW.�/j of

W.�/ for q … Q, the trivial upper bound being of course

jW.�/j � '�.q/ D
Y
pkkq

�
'.pk/ � '.pk�1/

�
; (1.2)

the number of primitive characters (mod q). Note that the problem asks, in particular,
for a characterization of the primitive � (mod q) such that W.�/ D fL.s; �/g when
q … Q. This problem has been recently studied by Molteni [12], [13].

We conclude with a numerical example of distinct DirichletL-functions satisfying
the same functional equation. We use the standard notation e.x/ D e2�ix , and let
�q D e.1=q/. Moreover, given a character � (mod q) we denote by �.Z/ the set
of values taken by � over the integers and write K� D Q.�q; �.Z// and k� D
Q.�q; �.�//, so that K�=k� is a field extension. Choose q D 25 and note that
'.25/ D 20 and that Z�

25 is generated by 2. We consider the primitive character �
(mod 25) defined by �.2/ D �720. Then we have

�.�/ D
19X
jD0

�.2j /�2
j

25 D
19X
jD0

e

�
35j C 2jC2

100

�
;

and a computation shows that �.�/ D 5�25. Hence in this case k� D Q.�25/ while
K� D Q.�25; �20/ D Q.�100/, thus k� ¤ K�; in fact ŒK� W k�	 D 2. Therefore,
there exists a unique non-trivial automorphism � 2 Gal.K�=k�/, and we define
�� .a/ D �.�.a//, which is clearly a primitive character (mod q) with the same
parity of �. Moreover, since � fixes k� we have

�.�/ D �.�.�// D
qX
aD1

�� .a/�aq D �.�� /:

Finally, �� ¤ � since otherwise �.�.a// D �.a/ for all a 2 Z and hence � would
fixK�, a contradiction; in particular, one finds that �� .2/ D �1720 . Therefore, L.s; �/
and L.s; �� / are distinct but satisfy the same functional equation.
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2. Proof of Theorem 2

We first recall some basic properties of the Gauss sums and of the groups Z�
pk

.
In general, given a character � (mod q) and a primitive q-th root of unity �q , the
associated Gauss sum is

�.�; �q/ D
qX
cD1

�.c/�cq

and depends on �q according to the relation

�.e/�.�; �eq/ D �.�; �q/; .e; q/ D 1:

The classical Gauss sum �.�/ corresponds to the choice �q D e.1=q/. Suppose that
.q1; q2/ D 1, �i are primitive characters (mod qi ) and let �qi be primitive qi -th roots,
i D 1; 2. Then�1�2 is a primitive character (mod q1q2), �q1�q2 is a primitive q1q2-th
root and

�.�1�2; �q1�q2/ D �.�1; �q1/�.�2; �q2/; (2.1)

and viceversa. Note that (2.1) shows the 2-variables multiplicativity of the gen-
eral Gauss sums. When dealing with Gauss sums �.�; �q/, the signature of � is
.a.�/; �.�; �q// and is denoted by s.�; �q/.

Explicit formulae for Gauss sums modulo prime-powers were given by Odoni
[14] and Mauclaire [11], see also Chapter 1 of Berndt–Evans–Williams [2]. These
formulae can easily be used to compute the value of Gauss sums modulo pk for each
fixed k and every fixed character, and in fact we used them to compute Tables 1–5
below.1 However, such formulae contain products of several roots of unity whose
dependence on the character is quite involved, and it is not clear how to use them
directly to prove our results.

The structure of the groups Z�
pk

for p odd prime and p D 2 is quite different.

Let p be an odd prime. The group Z�
pk

is cyclic of order .p � 1/pk�1. Let Uk D
fx 2 Z�

pk
W xp�1 D 1g and Vk D fx 2 Z�

pk
W xpk�1 D 1g. Then jUkj D p � 1,

jVkj D pk�1, Z�
pk

is the direct product of Uk and Vk and if g is a generator of Z�
pk

,

then gp
k�1

generates Uk and gp�1 generates Vk . The map Uk ! Z�
p sending x to

its congruence class (mod p) provides an isomorphism of groups so that for every
1The values of the Gauss sums are normalized dividing by the square-root of the conductor. In the tables we

use the notation �q D e.1=q/. For every root, some characters having the same Gauss sum are shown in bold.
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Char. n root �8 �3
8

�5
8

�7
8

�.�1/ D 1; �.5/ D �1 1 �1 �1 1

�.�1/ D �1; �.5/ D �1 i i �i �i

Table 1. Gauss sums for primitive characters (mod 23) and primitive 23-th roots of unity.

Char. n root �16 �3
16

�5
16

�7
16

�9
16

�11
16

�13
16

�15
16

�.�1/ D 1

�.5/ D i

��1
16

�3
16

��5
16

�7
16

�7
16

��5
16

�3
16

��1
16

�.5/ D �i �16 ��3
16

�5
16

��7
16

��7
16

�5
16

��3
16

�16

�.�1/ D �1
�.5/ D i

�7
16

�3
16

�3
16

�7
16

��1
16

��5
16

��5
16

��1
16

�.5/ D �i �16 �5
16

�5
16

�16 ��7
16

��3
16

��3
16

��7
16

Table 2. Gauss sums for primitive characters (mod 24) and primitive 24-th roots of unity.

integer z, the equation x D z (mod p) has a (unique) solution x 2 Uk if and only if
p − z. Given a generator g of Z�

pk
, the characters � (mod pk) are determined by the

integer ˛�, unique (mod '.pk/), such that

�.g/ D e.˛�='.p
k//:

Moreover, � is even if and only if ˛� is even and is primitive if and only if p − ˛�.
The decomposition Z�

pk
D Uk�Vk corresponds to a decomposition of each character

� (mod pk) as � D �U�V , where �U (resp. �V ) is a character of Uk (resp. of Vk),
i.e., a homomorphism from Uk (resp. Vk) to C�. According to this decomposition, �
is primitive if and only if among the values of �V there are primitive pk�1-th roots of
unity, and in this case �V is called primitive. Moreover, equality �1 D gp

k�1.p�1/=2
shows that �1 2 Uk so that � is even if and only if �U .�1/ D 1.

Let p D 2. When k > 2 group Z�
2k

is isomorphic to the direct product of a

cyclic group of order 2 and a cyclic group of order 2k�2, respectively generated by
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Char. n root �32 �3
32

�5
32

�7
32

�9
32

�11
32

�13
32

�15
32

�.�1/ D 1

�.5/ D �8

�5
32

��7
32

�32 ��3
32

�13
32

��15
32

�9
32

��11
32

�.5/ D �3
8

�3
32

��1
32

��9
32

�11
32

��5
32

�7
32

�15
32

��13
32

�.5/ D �5
8

��3
32

�32 �9
32

��11
32

�5
32

��7
32

��15
32

�13
32

�.5/ D �7
8

��5
32

�7
32

��1
32

�3
32

��13
32

�15
32

��9
32

�11
32

�.�1/ D �1
�.5/ D �8

�5
32

�9
32

�32 �13
32

�13
32

�32 �9
32

�5
32

�.5/ D �3
8

��13
32

��1
32

�7
32

�11
32

�11
32

�7
32

��1
32

��13
32

�.5/ D �5
8

��3
32

��15
32

�9
32

�5
32

�5
32

�9
32

��15
32

��3
32

�.5/ D �7
8

�11
32

�7
32

�15
32

�3
32

�3
32

�15
32

�7
32

�11
32

Table 3. Gauss sums for primitive characters (mod 25) and half of the primitive 25-th roots of
unity. The values for the roots �aq with a > 15 can be deduced using the identity �.�; N�aq / D
�.�1/�.�; �aq /.

�1 and 5. It follows that the characters (mod 2k) are uniquely determined by a couple
of integers .˛; ˇ/ with ˛ (mod 2) and ˇ (mod 2k�2) such that

�˛;ˇ .�1/ D .�1/˛; �˛;ˇ .5/ D e.ˇ=2k�2/;

and �˛;ˇ is even if and only if ˛ is even and is primitive if and only if ˇ is odd.
We recall that q 2 Q if and only if q D 2a3bm with .m; 6/ D 1, m square-free

and one of conditions (a) and (b) in the introduction is satisfied. Let �q be a q-th
primitive root of unity and denote by sq;�q the map sending primitive �’s (mod q) to
s.�; �q/. We start with

Proposition 1. Let q 2 Q and let �q be a q-th primitive root of unity. Then the map
sq;�q is injective.

Proof. Let q 2 Q, q D 2a3bm, suppose that m > 1 and let p be the largest prime
factor of m. Writing q0 D q=p, clearly p and q0 are coprime. Given a primitive �
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(mod q) and a primitive q-th root �q , let � D �0�p be the decomposition of � (mod q)
as a product of �0 (mod q0) and �p (mod p). Moreover, thanks to (2.1), let �q0 and �p
be the primitive q0-th and p-th roots satisfying

�.�; �q/ D �.�0; �q0/�.�p; �p/: (2.2)

Consider the two cyclotomic fields K0� D Q.�'.q/; �q0/ and K� D K0�.�p/,
where �'.q/ D e.1='.q//. Since p is the largest prime dividing m, we have that
.p; q0'.q// D 1, and hence ŒK� W K0�	 D '.p/. Therefore, by elementary Galois
theory, for every .a; p/ D 1 there exists an automorphism �a 2 Gal.K�=K0�/ such
that �a.�p/ D �ap . Since �a fixes �'.q/, it fixes also the values of �, �0 and �p .
Moreover, �a fixes also �q0 , hence by (2.2) we have

�a.�.�; �q// D �a.�.�
0; �q0/�.�p; �p// D �.�0; �q0/�a.�.�p; �p//

D �.�0; �q0/�.�p; �
a
p / D �.�0; �q0/�p.a/�.�p; �p/

D �p.a/�.�; �q/;

thus for every .a; p/ D 1

�p.a/ D �.�; �q/=�a.�.�; �q//:

Hence �p is completely determined by the value of �.�; �q/. In particular, if �; are
primitive characters (mod q) with �.�; �q/ D �. ; �q/ then, with the above notation,
�p D  p and by (2.2) also

�.�0; �q0/ D �. 0; �q0/:

Iterating the argument we eliminate all factors ofm, thus we may assume thatm D 1.
Suppose now that q D 2a3b with .a; b/ ¤ .0; 0/ and that we are in case (a), i.e.,

a 2 f0; 2; 3; 4; 5g and b 2 f0; 1g. If b D 1 we have '�.3/ D 1, see (1.2), hence by
the previous argument we eliminate the factor 3, so we may assume that q D 2a with
a 2 f0; 2; 3; 4; 5g. If a D 2 we have '�.4/ D 1, while in the other cases the result
follows by direct computation of the Gauss sums, see Tables 1, 2 and 3. In case (b),
i.e., a 2 f0; 2; 3g and b D 2, the result follows again by direct computation of the
Gauss sums for q D 2a32, see Tables 1 and 5. Proposition 1 is therefore proved. �

Now we deal with the case q D pk , where p is an odd prime and k � 2 (if p D 3

then k � 3), and prove the following

Proposition 2. Let q D pk with a prime p � 5 and k � 2 or p D 3 and k � 3,
and let �q be a primitive q-th root of unity. Then there exist two distinct primitive
characters �; (mod q) with s.�; �q/ D s. ; �q/.
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C
ha

r.
nr

oo
t

�
6
4

�
3 6
4

�
5 6
4

�
7 6
4

�
9 6
4

�
1
1
6
4

�
1
3
6
4

�
1
5
6
4

�
1
7
6
4

�
1
9
6
4

�
2
1
6
4

�
2
3
6
4

�
2
5
6
4

�
2
7
6
4

�
2
9
6
4

�
3
1
6
4

�
.�
1
/

D
1
;

�
.5
/

D
�
1
6

�
9 6
4

�
�
3

6
4

�
5 6
4

�
�
3
1

6
4

�
�
1
5

6
4

�
�
1
1

6
4

�
1
3
6
4

�
�
7

6
4

�
2
5
6
4

�
�
1
9

6
4

�
2
1
6
4

�
1
7
6
4

�
6
4

�
�
2
7

6
4

�
2
9
6
4

�
�
2
3

6
4

�
.5
/

D
�
3 1
6

�
�
1

6
4

�
�
2
7

6
4

�
�
1
3

6
4

�
7 6
4

�
�
9

6
4

�
3 6
4

�
1
1
6
4

�
1
5
6
4

�
�
1
7

6
4

�
�
2
1

6
4

�
�
2
9

6
4

�
2
3
6
4

�
�
2
5

6
4

�
1
9
6
4

�
�
5

6
4

�
3
1
6
4

�
.5
/

D
�
5 1
6

�
6
4

�
5 6
4

�
�
1
9

6
4

�
�
7

6
4

�
9 6
4

�
2
9
6
4

�
2
1
6
4

�
�
1
5

6
4

�
1
7
6
4

�
�
1
1

6
4

�
�
3

6
4

�
�
2
3

6
4

�
2
5
6
4

�
1
3
6
4

�
�
2
7

6
4

�
�
3
1

6
4

�
.5
/

D
�
7 1
6

�
2
3
6
4

�
3 6
4

�
�
5

6
4

�
�
1

6
4

�
�
1
7

6
4

�
1
1
6
4

�
�
1
3

6
4

�
�
2
5

6
4

�
7 6
4

�
1
9
6
4

�
�
2
1

6
4

�
1
5
6
4

�
3
1
6
4

�
2
7
6
4

�
�
2
9

6
4

�
�
9

6
4

�
.5
/

D
�
9 1
6

�
�
2
3

6
4

�
�
3

6
4

�
5 6
4

�
6
4

�
1
7
6
4

�
�
1
1

6
4

�
1
3
6
4

�
2
5
6
4

�
�
7

6
4

�
�
1
9

6
4

�
2
1
6
4

�
�
1
5

6
4

�
�
3
1

6
4

�
�
2
7

6
4

�
2
9
6
4

�
9 6
4

�
.5
/

D
�
1
1
1
6

�
�
1

6
4

�
�
4

6
4

�
1
9
6
4

�
7 6
4

�
�
9

6
4

�
�
2
9

6
4

�
�
2
1

6
4

�
1
5
6
4

�
�
1
7

6
4

�
1
1
6
4

�
3 6
4

�
2
3
6
4

�
�
2
5

6
4

�
�
1
3

6
4

�
2
7
6
4

�
3
1
6
4

�
.5
/

D
�
1
3
1
6

�
6
4

�
�
2
7

6
4

�
1
3
6
4

�
�
7

6
4

�
9 6
4

�
�
3

6
4

�
�
1
1

6
4

�
�
1
5

6
4

�
1
7
6
4

�
2
1
6
4

�
2
9
6
4

�
�
2
3

6
4

�
2
5
6
4

�
�
1
9

6
4

�
5 6
4

�
�
3
1

6
4

�
.5
/

D
�
1
5
1
6

�
�
9

6
4

�
3 6
4

�
�
5

6
4

�
3
1
6
4

�
1
5
6
4

�
1
1
6
4

�
�
1
3

6
4

�
7 6
4

�
�
2
5

6
4

�
1
9
6
4

�
�
2
1

6
4

�
�
1
7

6
4

�
�
1

6
4

�
2
7
6
4

�
�
2
9

6
4

�
2
3
6
4

�
.�
1
/

D
�1
;

�
.5
/

D
�
1
6

�
9 6
4

�
2
9
6
4

�
5 6
4

�
6
4

�
�
1
5

6
4

�
2
1
6
4

�
1
3
6
4

�
2
5
6
4

�
2
5
6
4

�
1
3
6
4

�
2
1
6
4

�
�
1
5

6
4

�
6
4

�
5 6
4

�
2
9
6
4

�
9 6
4

�
.5
/

D
�
3 1
6

�
3
1
6
4

�
2
7
6
4

�
1
9
6
4

�
7 6
4

�
2
3
6
4

�
3 6
4

�
�
2
1

6
4

�
1
5
6
4

�
1
5
6
4

�
�
2
1

6
4

�
3 6
4

�
2
3
6
4

�
7 6
4

�
1
9
6
4

�
2
7
6
4

�
3
1
6
4

�
.5
/

D
�
5 1
6

�
6
4

�
�
2
7

6
4

�
�
1
9

6
4

�
2
5
6
4

�
9 6
4

�
�
3

6
4

�
2
1
6
4

�
1
7
6
4

�
1
7
6
4

�
2
1
6
4

�
�
3

6
4

�
9 6
4

�
2
5
6
4

�
�
1
9

6
4

�
�
2
7

6
4

�
6
4

�
.5
/

D
�
7 1
6

�
�
9

6
4

�
3 6
4

�
2
7
6
4

�
�
1

6
4

�
1
5
6
4

�
1
1
6
4

�
1
9
6
4

�
�
2
5

6
4

�
�
2
5

6
4

�
1
9
6
4

�
1
1
6
4

�
1
5
6
4

�
�
1

6
4

�
2
7
6
4

�
3 6
4

�
�
9

6
4

�
.5
/

D
�
9 1
6

�
�
2
3

6
4

�
2
9
6
4

�
5 6
4

�
�
3
1

6
4

�
1
7
6
4

�
2
1
6
4

�
1
3
6
4

�
�
7

6
4

�
�
7

6
4

�
1
3
6
4

�
2
1
6
4

�
1
7
6
4

�
�
3
1

6
4

�
5 6
4

�
2
9
6
4

�
�
2
3

6
4

�
.5
/

D
�
1
1
1
6

�
3
1
6
4

�
�
5

6
4

�
�
1
3

6
4

�
7 6
4

�
2
3
6
4

�
�
2
9

6
4

�
1
1
6
4

�
1
5
6
4

�
1
5
6
4

�
1
1
6
4

�
�
2
9

6
4

�
2
3
6
4

�
7 6
4

�
�
1
3

6
4

�
�
5

6
4

�
3
1
6
4

�
.5
/

D
�
1
3
1
6

�
6
4

�
5 6
4

�
1
3
6
4

�
2
5
6
4

�
9 6
4

�
2
9
6
4

�
�
1
1

6
4

�
1
7
6
4

�
1
7
6
4

�
�
1
1

6
4

�
2
9
6
4

�
9 6
4

�
2
5
6
4

�
1
3
6
4

�
5 6
4

�
6
4

�
.5
/

D
�
1
5
1
6

�
2
3
6
4

�
3 6
4

�
2
7
6
4

�
3
1
6
4

�
�
1
7

6
4

�
1
1
6
4

�
1
9
6
4

�
7 6
4

�
7 6
4

�
1
9
6
4

�
1
1
6
4

�
�
1
7

6
4

�
3
1
6
4

�
2
7
6
4

�
3 6
4

�
2
3
6
4

Table 4. Gauss sums for primitive characters (mod 26) and half of the primitive 26-th roots of
unity. The values for the roots �aq with a > 31 can be deduced using the identity �.�; N�aq / D
�.�1/�.�; �aq /.
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Char. n root �9 �2
9

�4
9

�5
9

�7
9

�8
9

�.2/ D �6 ��8
9

�2
9

��7
9

�5
9

��2
9

�8
9

�.2/ D �2
6

�9 �7
9

�4
9

�4
9

�7
9

�9

�.2/ D �4
6

�8
9

�2
9

�5
9

�5
9

�2
9

�8
9

�.2/ D �5
6

�9 ��7
9

�4
9

��4
9

�7
9

�2
9

Table 5. Gauss sums for primitive characters (mod 32) and the primitive 32-th roots of unity.

Note that the primitive characters (mod 9) have distinct signatures with respect
to every choice for the 9-th root of unity (see Table 5). In the proof of Proposition 2
we need Lemma 1 below. Let q and �q be as in Proposition 2 and � be a character
(mod q). The decomposition Z�

q D Uk�Vk described at the beginning of this section
allows one to write

�.�; �q/ D
X
c

�.c/�cq D
X
u2Uk
v2Vk

�.uv/�uvq D
X
u2Uk

�.u/�uqT .�; u/; (2.3)

where
T .�; u/ D

X
v2Vk

�.v/�u.v�1/
q :

Let g be a generator of Z�
q and w (mod p) be such that

gp�1 D 1C wp (mod p2):

Since gp�1 generates Vk whose order is pk�1, �.gp�1/ is a pk�1-th roots of unity.
Hence �.gp�1/ D �

�p
q for some uniquely determined 
 (mod pk�1); moreover,

.
; p/ D 1 if and only if � is primitive. Therefore, the congruence

uw � �
 (mod p) (2.4)

has a solution u 2 Uk only when 
 6� 0 (mod p), i.e., only for primitive characters,
and in this case it is unique and is denoted by u�. With such a notation we have

Lemma 1. Let q and �q be as in Proposition 2 and� be a primitive character (mod q).
Then

�.�; �q/ D �.u�/�
u�
q T .�; u�/:
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Proof. Let u satisfy uw 6� �
 (mod p). Since Vk is generated by gp D gp�1,
writing fu.h/ D 
hp C u.ghp � 1/ (mod q) we have

T .�; u/ D
X
v2Vk

�.v/�u.v�1/
q D

pk�1X
hD1

�.ghp/�
u.ghp�1/
q

D
pk�1X
hD1

��hpq �
u.ghp�1/
q D

pk�1X
hD1

�fu.h/q :

(2.5)

Suppose that fu.h1/ D fu.h2/ with h1 ¤ h2, and let h1 � h2 D p�l with some �
and .l; p/ D 1. We write fu.h1/ � fu.h2/ (mod q) as


.h1 � h2/p C ugh2p .g
h1�h2
p � 1/ � 0 (mod q): (2.6)

By induction on � we get

glp
�

p � 1C lwp�C1 (mod p�C2): (2.7)

The conditions 1 � h1; h2 � pk�1 imply that � C 2 � k, hence we may consider
(2.6) as a congruence (mod p�C2). Inserting (2.7) in (2.6) we get


lp�C1 C ugh2p lwp
�C1 � 0 (mod p�C2)

so that

l C ugh2p lw � 0 (mod p);

and since .l; p/ D 1 and gp � 1 (mod p) we have 
 C uw � 0 (mod p), a
contradiction. Therefore, for every uwith uw 6� �
 (mod p) the map fu W Zpk�1 !
Zpk is injective. Since pjfu.h/ for every h, it follows that the values fu.h/ run over
a complete set of representatives of pZpk�1 as h runs over Zpk�1 . Thus by (2.5)

T .�; u/ D
pk�1X
hD1

�fu.h/q D
pk�1X
hD1

�phq D 0

for every u such that uw 6� �
 (mod p), and the lemma follows from (2.3). �

Let � D �U�V be the decomposition reported at the beginning of this section.
Note thatu� andT .�; u�/ depend only on the values assumed by� onVk , i.e., depend
only on �V . In order to get distinct primitive characters with the same signature we
make use of the following strategy. We fix a primitive character � of Vk and consider
the p � 1 distinct primitive characters (mod q) of the form �U �, where �U varies
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over the characters of Uk . Hence if � and  are two such characters, �q is a q-th
primitive root and Qu D u� D u , by Lemma 1 we have

�.�U �; �q/

�. U �; �q/
D �U . Qu/
 U . Qu/ : (2.8)

Since Uk is cyclic, there exist �U ¤  U with �U . Qu/ D  U . Qu/ if and only if Qu is not
a generator of Uk . The best choice for � would be a primitive character for which
Qu D 1, since in this case (2.8) shows that �.�; �q/ D �. ; �q/, i.e., there are p � 1

distinct primitive characters (mod q) with the same Gauss sum. Moreover, both a
couple of even and a couple of odd characters are produced whenever p�1 � 4. For
p D 3 this approach produces only p�1 D 2 characters having necessarily different
parity. As a consequence, the case p D 3 must be treated with an ad hoc argument.
The following proof of Proposition 2 shows, in particular, that indeed a character �
with Qu D 1 can always be found.

Proof of Proposition 2. We look for characters � having u� D 1, and (2.4) shows
that u� D 1 if and only if 
 � �w (mod p). The identity �.gp�1/ D �

�p
q implies

that the integer ˛� introduced at the beginning of this section satisfies ˛� � c
 (mod
pk�1) where c is such that �q D e.c=q/, thus u� D 1 if and only if ˛� � �cw
(mod p). As a consequence, there are '.pk�1/ distinct characters � having u� D 1,
corresponding to the choices

˛� D �cw C hp; h D 1; : : : ; '.pk�1/:

Among such characters �, those having the same 
 (and hence equal on Vk) must
satisfy

˛� D �cw C hpk�1; h D 1; : : : ; p � 1:
In this way we produce p � 1 distinct primitive characters (mod q) all having Qu D 1

and hence the same Gauss sum thanks to (2.8). Therefore, if p � 5 and k � 2 this
argument produces at least two distinct primitive characters (mod pk) with the same
signature (in fact, it gives a bit more, as mentioned above).

Note that if p D 3 and k � 2 the previous argument produces only two distinct
characters, with different parity since in this case h assumes only values 1 and 2. In
order to complete the proof we show that if p D 3 and k � 3 there exist two primitive
characters having distinct 
 but with the same Gauss sum and parity; we explicitly
construct such a couple of characters. We first observe that

42�3k�3 � 1C 5 � 3k�2 (mod 3k) for all k � 3,

which can be easily verified by induction on k. Next we set

f0.l/ D 6l C 4l � 1; f1.l/ D 6l.1C 3k�2/C 4l � 1



476 J. Kaczorowski, G. Molteni and A. Perelli CMH

and prove that, writing l0 D 2 � 3k�3, for every l and every k � 3 we have

f1.l/ � f0.l C l0/ (mod 3k): (2.9)

The proof is simple, since (mod 3k) we have

f0.l C l0/ � f1.l/ D 6.l C l0/C 4lCl0 � 1 � .6l.1C 3k�2/C 4l � 1/
D 4lCl0 � 4l � 2l3k�1 C 6l0

D 4l.4l0 � 1/ � 2l3k�1 C 6l0

� 4l5 � 3k�2 � 2l3k�1 C 4 � 3k�2 D 3k�2.4l5 � 6l C 4/;

and 4l5 � 6l C 4 � 0 (mod 9) since it holds for l D 0; 1; 2 and the left hand side is
periodic with period 3 when considered (mod 9). Now we choose g D 2 as generator
of Z�

3k
, so gp�1 D 1 C 3 and hence w D 1. We show that the characters � with

˛� D 2 and  with ˛ D 2 C 2 � 3k�2 have the same Gauss sum; note that both
are even primitive characters. For both characters ˛� D ˛ D �1 (mod 3) (since
k � 3), so u� D u D 1. Thus, by Lemma 1, in order to prove that their Gauss sums
are equal it is sufficient to verify that T .�; 1/ D T . ; 1/. We have 
� D 2 while

 D 2C 2 � 3k�2, therefore T .�; 1/ D T . ; 1/ means that

3k�1X
lD1

�
3l��C22l�1
3k

D
3k�1X
lD1

�
3l� C22l�1
3k

;

i.e.,

3k�1X
lD1

�
f0.l/

3k
D
3k�1X
lD1

�
f1.l/

3k
:

Clearly, the values of such sums are not modified by a shift l ! l C l0, hence
equality follows from (2.9) after shifting the left hand side. Note that a similar
argument provides also a couple of distinct odd primitive characters with the same
Gauss sum. �

We finally deal with the case q D 2k with k � 6 and prove the following

Proposition 3. Let q D 2k with k � 6 and �q be a primitive q-th root of unity. Then
there exist two distinct primitive characters �; (mod q) with s.�; �q/ D s. ; �q/.

The proof in this case is rather computational and requires several preliminary
results. Denoting by ˇ the odd integer, unique (mod q), such that �q D e.ˇ=2k/, the
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Gauss sum associated with the primitive character �˛;ˇ (see at the beginning of this
section) can be written as

�.�˛;ˇ ; �q/ D
2X
uD1

2k�2X
vD1

�˛;ˇ ..�1/u5v/e.ˇ.�1/u5v=2k/

D .�1/˛
2k�2X
vD1

e.ˇ.4v � 5v/=2k/C
2k�2X
vD1

e.ˇ.4v C 5v/=2k/

D .�1/˛ N�q
2k�2X
vD1

�
fC.v/
q C �q

2k�2X
vD1

�f�.v/
q ;

(2.10)

where
fC.v/ D 4v � 5v C 1; f�.v/ D 4v C 5v � 1:

The following lemma collects a list of useful identities satisfied by the functions
f˙.v/.

Lemma 2. The following facts hold true:

i) fC.v/C f�.v/ D 8v for every v,

ii) fC.v/ � 0 (mod 16) for every v,

iii) f�.v/ � 8 (mod 64) for every odd v,

iv) fC.v C 2k�3/ � fC.v/ (mod 2k) for every v, for k � 3,

v) fC.v C 2k�3/ � fC.v/C 2k (mod 2kC1) for every v, for k � 4,

vi) f�.v C 2k�4/ � f�.v/ (mod 2k) for every v, for k � 5,

vii) f�.v C 2k�4/ � f�.v/C 2k (mod 2kC1) for every odd v, for k � 6.

Proof. By induction on k we have

52
k�3 � 1C 2k�1 (mod 2k) for all k � 3, (2.11)

52
k�3 � 1C 2k�1 C 2k (mod 2kC1) for all k � 4, (2.12)

52
k�4 � 1C 2k�2 C 2k�1 C 2k (mod 2kC1) for all k � 6. (2.13)

Now we prove each claim. i) is trivial. ii) is clearly true when v D 0, and by induction
on v we have (mod 16)

0 � 5fC.v/ D 20v � 5vC1 C 5 � 4v � 5vC1 C 5 D 4.v C 1/ � 5vC1 C 1

D fC.v C 1/:
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iii) Clearly f�.1/ � 8 (mod 64). Let v be odd and by induction on v we assume
that f�.v/ � 8 (mod 64). Multiplying by 52 we have (mod 64)

8 � 52 � 8 � 52f�.v/ D 52 � 4v C 5vC2 � 52
D 4.v C 2/C 5vC2 � 1C 32.3v � 1/ � f�.v C 2/:

iv) By (2.11) we have

fC.v C 2k�3/ D 4v C 2k�1 � 5vC2k�3 C 1

� 4v C 2k�1 � 5v.2k�1 C 1/C 1

D fC.v/C 2k�1.1 � 5v/ � fC.v/ (mod 2k):

v) Note that

fC.v C 2k�3/ D 4v C 2k�1 � 5vC2k�3 C 1 D fC.v/C 2k�1 � 5v.52k�3 � 1/;
thus recalling that 5y � 1 (mod 4) for every y, by (2.12) we have for some integer h
that

fC.v C 2k�3/ � fC.v/C 2k�1 � .1C 4h/.1C 2k�1 C 2k � 1/
� fC.v/C 2k (mod 2kC1):

vi) The claim follows from i) and v).
vii) Note that

f�.v C 2k�4/ D 4v C 2k�2 C 5vC2k�4 � 1 D f�.v/C 2k�2 C 5v.52
k�4 � 1/;

hence recalling that 5y � 5 (mod 8) for every odd y, by (2.13) we have for some
integer h that

f�.v C 2k�4/ � f�.v/C 2k�2 C .1C 4C 8h/.1C 2k�2 C 2k�1 C 2k � 1/
� f�.v/C 2k�2 C 2k�2 C 2k�1 C 2k C 2k

� f�.v/C 2k (mod 2kC1);

and the lemma follows. �

Lemma 3. Let k � 4. The function fC.v/ (mod 2k) assumes each value exactly
twice when v D 1; : : : ; 2k�3. Moreover, for such v the range of fC.v/ (mod 2k)
coincides with the numbers 16`, ` D 1; : : : ; 2k�4, each one with multiplicity 2.

Proof. We first prove that every value of fC.v/ is assumed at least twice. A trivial
computation shows that

0 D fC.1/ � fC.2/ (mod 24);
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proving our claim for k D 4. Now we proceed by induction. Let k � 4 and
let x0; y0 2 f1; : : : ; 2k�3g, x0 ¤ y0, satisfy fC.x0/ � fC.y0/ (mod 2k). We
distinguish two cases.

Case 1. Suppose that fC.x0/ 6� fC.y0/ (mod 2kC1). Then fC.x0/� fC.y0/C
2k (mod 2kC1) and hence v) of Lemma 2 shows that .x0 C 2k�3; y0/ and .x0; y0 C
2k�3/ are solutions of fC.x/ � fC.y/ (mod 2kC1).

Case 2. Suppose that fC.x0/ � fC.y0/ (mod 2kC1). Then by v) of Lemma 2
we obtain fC.x0 C 2k�3/ � fC.x0/C 2k � fC.y0/C 2k � fC.y0 C 2k�3/ (mod
2kC1), hence .x0 C 2k�3; y0 C 2k�3/ is also a solution (mod 2kC1).

Let now x 2 f1; : : : ; 2k�2g. If x � 2k�3 then write x0 D x and there exists
y0 2 f1; : : : ; 2k�3g, y0 ¤ x0, such that fC.x0/ � fC.y0/ (mod 2k). If we are in
Case 1 then fC.x0/ � fC.y0 C 2k�3/ (mod 2kC1) and hence the value fC.x/ (mod
2kC1) is attained at least twice, while if we are in Case 2 then fC.x0/ � fC.y0/
(mod 2kC1) and again the value fC.x/ (mod 2kC1) is attained at least twice. If
2k�3 < x � 2k�2 we write x0 D x�2k�3 and again there exists y0 2 f1; : : : ; 2k�3g,
y0 ¤ x0, such that fC.x0/ � fC.y0/ (mod 2k). Then we repeat the same argument,
using the solution .x0C2k�3; y0/ in Case 1 and the solution .x0C2k�3; y0C2k�3/
in Case 2, thus proving that the value fC.x/ is assumed at least twice in this case as
well.

Now we prove that each value is assumed exactly twice. When k D 4 the claim
is true. Assume that there exists a minimal value Nk > 4 for which there are distinct
integers u0; v0; w0 2 1; : : : ; 2

Nk�3 with fC.u0/ � fC.v0/ � fC.w0/ (mod 2 Nk).
Write

Qu0 D
´
u0 if u0 � 2

Nk�4,

u0 � 2 Nk�4 if u0 > 2
Nk�4;

and similarly for Qv0 and Qw0. By iv) of Lemma 2 we have that fC. Qu0/ � fC.u0/
(mod 2 Nk�1), hence fC.u0/ � fC.v0/ (mod 2 Nk) implies that fC. Qu0/ � fC. Qv0/ (mod
2

Nk�1). Hence fC. Qu0/ � fC. Qv0/ � fC. Qw0/ (mod 2 Nk�1). From the minimality of Nk
we obtain that Qu0; Qv0; Qw0 cannot be all distinct; let Qu0 D Qv0, say. The definition of
such numbers implies that either u0 D v0, or u0 C 2

Nk�4 D v0, or u0 D v0 C 2
Nk�4.

The first case is ruled out by our assumption, and the second and third cases are treated
similarly (it is sufficient to changeu0withv0), so we may assume thatu0 D v0C2 Nk�4.
By v) of Lemma 2 we get

fC.u0/ � fC.v0 C 2
Nk�4/ � fC.v0/C 2

Nk�1 (mod 2
Nk)

which contradicts our assumption that fC.u0/ � fC.v0/ (mod 2 Nk/, thus proving the
first claim.

By ii) of Lemma 2 we know that the values of fC.v/ are of the form 16`, hence
the number of distinct values of fC.v/ (mod 2k) is at most 2k=16 D 2k�4. On the
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other hand, by the periodicity (mod 2k) expressed by iv) of Lemma 2 and the fact that
each value of fC.v/ with 1 � v � 2k�3 is attained exactly twice, we have that the
distinct values of fC.v/ (mod 2k) with 1 � v � 2k�2 are at least 2k�2=4 D 2k�4.
Therefore the values of fC.v/ (mod 2k) are the numbers 16` with 1 � ` � 2k�4,
and the lemma follows. �

The argument proving Lemma 3 shows also that when 1 � v1; v2 � 2k�3 and
fC.v1/ � fC.v2/ (mod 2k) then v1 and v2 cannot have the same parity. As a
consequence we have the following

Lemma 4. Let k � 4. The function fC.v/ (mod 2k) assumes each value exactly
once when v 2 f1; : : : ; 2k�3g runs over odd integers. Moreover, for such v the range
of fC.v/ (mod 2k) coincides with the numbers 16`, ` D 1; : : : ; 2k�4, each one with
multiplicity 1.

The following lemma gives a similar result for the function f�.v/.

Lemma 5. Let k � 6. The function f�.v/ (mod 2k) assumes each value exactly
twice when v 2 f1; : : : ; 2n�4g runs over odd integers. Moreover, for such v the range
of f�.v/ (mod 2k) coincides with the numbers 8C 64`, ` D 1; : : : ; 2k�6, each one
with multiplicity 2.

Proof. The proof is similar to the proof of Lemma 3, using iii), vi) and vii) of Lemma 2
instead of ii), iv) and v) of the same lemma. We leave the details to the interested
reader. �

Proof of Proposition 3. A direct computation shows that the two distinct primitive
characters � D �˛;4Cˇ and  D �˛;4C8Cˇ (which are even when ˛ D 0 and odd
when ˛ D 1) have �.�; e.ˇ=26// D �. ; e.ˇ=26// for every odd ˇ (see Table 4),
hence our claim for n D 6 is proved.

Ifq D 2k withk � 7write� D �˛;ˇ and D �˛;ˇCˇ2k�3 where, again,˛ D 0; 1

and ˇ is the odd integer such that �q D e.ˇ=q/. We prove that �.�; �q/ D �. ; �q/.
In fact

�. ; �q/ D .�1/˛
2k�2X
vD1

e..4ˇ.1C 2k�3/v � ˇ5v/=q/

C
2k�2X
vD1

e..4ˇ.1C 2k�3/v C ˇ5v/=q/

D .�1/˛ N�q
2k�2X
vD1

.�1/v�fC.v/
q C �q

2k�2X
vD1

.�1/v�f�.v/
q
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and hence, thanks to (2.10),

�.�; �q/ � �. ; �q/ D .�1/˛2 N�q
2k�2X
vD1
v odd

�
fC.v/
q C 2�q

2k�2X
vD1
v odd

�f�.v/
q :

Therefore, the 2k�3-periodicity of fC.v/ (mod 2k) in iv) of Lemma 2 and Lemma 4
give

2k�2X
vD1
v odd

�
fC.v/
q D 2

2k�3X
vD1
v odd

�
fC.v/
q D 2

2k�4X
`D1

e.ˇ16`=2k/ D 2

2k�4X
`D1

e.ˇ`=2k�4/ D 0

when k � 5. Analogously, the 2k�4-periodicity of f�.v/ (mod 2k) in vi) of Lemma 2
and Lemma 5 give

2k�2X
vD1
v odd

�f�.v/
q D 4

2k�4X
vD1
v odd

�f�.v/
q D 8

2k�6X
`D1

e.ˇ.8C 64`/=2k/

D 8�8q

2k�6X
`D1

e.ˇ`=2k�6/ D 0

when k � 7. Proposition 3 follows since � and  are distinct primitive characters
with the same parity. �

The proof of Theorem 2 is now a simple consequence of Propositions 1, 2 and 3.
In fact, by the special case �q D e.1=q/ of Proposition 1 we have that if q 2 Q then
the map sq is injective. Viceversa, assume that q 6� 2 (mod 4) does not belong to Q.
Then, writing q D 2a3bm with .m; 6/ D 1, we have the following cases:

(1) m is not square-free and a; b are arbitrary with a ¤ 1;

(2) m is square-free and both conditions (a) and (b) are not satisfied.

In case (1) we can write q D q1q2 with .q1; q2/ D 1 and q1 D pk for some prime
p � 5 and k � 2. Thanks to (2.1), given primitive characters �1 (mod q1) and �2
(mod q2) let �q1 and �q2 be the primitive roots (not depending on �1 and �2) such
that

�.�1�2; e.1=q// D �.�1; �q1/�.�q2 ; �q2/: (2.14)

Now fix the primitive character�2 (mod q2). By Proposition 2, there exist two distinct
primitive characters �1 and �0

1 (mod q1) with the same signature with respect to �q1 .
Finally, consider the distinct primitive characters � D �1�2 and  D �0

1�2 (mod q).
Clearly � and  have the same parity, and thanks to (2.14) we have

�.�/ D �.�1; �q1/�.�q2 ; �q2/ D �.�0
1; �q1/�.�q2 ; �q2/ D �. /:
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Thus the map sq is not injective in this case.
The argument in case (2) is similar. In this case we have either a � 6, or b � 3,

or a 2 f4; 5g and b D 2. The first two subcases are treated in a similar way, using
Proposition 3 and Proposition 2, respectively. Indeed, in both cases we can write
q D q1q2 with .q1; q2/ D 1 and q1 D 2a or q1 D 3b , thus there exist two distinct
primitive characters �1 and �0

1 (mod q1) with the same signature with respect to the
primitive root �q1 , and the non-injectivity of the map sq follows again. Finally, if
a 2 f4; 5g and b D 2, we note that modulo 24, 25 and 32 and for every primitive
root, there exist two distinct primitive characters with the same Gauss sum but with
different parity, see Tables 2, 3 and 5. Hence, multiplying such characters in a suitable
way we get two distinct primitive characters (mod q1), q1 D 2a32, with the same
signature, and we proceed as before thus showing that the map sq is not injective in
this subcase as well. �

Clearly, the above arguments give exactly the same characterization of Theorem 2
for the integers q such that the map sq;�q is injective. Indeed we have

Theorem 4. Let �q be a primitive q-th root of unity. Then the map sq;�q is injective
if and only if q 2 Q.

We also remark that the same arguments can be used to give the following charac-
terization of the integers q for which the map s0

q;�q
sending primitive �’s to �.�; �q/

is injective.

Theorem 5. Let �q be a primitive q-th root of unity. Then the map s0
q;�q

is injective
if and only if q D 2am with m odd square-free and a 2 f0; 2; 3g.
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