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Introduction

A building consists of a set ˆ (the elements of which are called “chambers”) together
with a family of equivalence relations (“adjacency relations”) on ˆ indexed by a set S

and a “W -valued distance function,” ˆ�ˆ! W , where W is a Coxeter group with
fundamental set of generators S . So, associated to any building there is a Coxeter
system .W; S/, its type.

There is a construction which associates a topological space to ˆ. This construc-
tion admits some freedom of choice. The idea is to choose a space X as a “model
chamber” and then glue together copies of it, one for each element of ˆ. To do this,
it is first necessary to choose a family of closed subspaces fXsgs2S so that copies of
X corresponding to s-adjacent chambers are glued together along Xs . (We call such
a family, fXsgs2S , a “mirror structure” on X .) Let U.ˆ; X/ denote the topological
realization of ˆ where each chamber is realized by a copy of the model chamber X .
(Details are given in Section 2.)

Classically, interest has centered on buildings of spherical or affine type, meaning
that W is a spherical or Euclidean reflection group, respectively. For example, each
algebraic group over a local field has a corresponding affine building. Here we are
mainly interested in buildings which are not classical in that their associated Coxeter
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systems are neither spherical nor affine. This is a large class of spaces, many of which
have a great deal of symmetry. For example, such buildings arise in the theory of
Kac–Moody groups (e.g., see [6], [22], [23]). Also, nonclassical buildings associated
to arbitrary right-angled Coxeter groups have been a subject of recent interest in
geometric group theory (e.g., see [8], [20], [27]).

Two choices for a model chamber X stand out. The first is X D �, a simplex
of dimension Card.S/ � 1, with its codimension one faces indexed by S . This was
Tits’ original choice (cf. [1]). We call U.ˆ; �/ the “classical realization” of ˆ. The
other choice for X is the “Davis chamber” K, defined as the geometric realization
of the poset � of spherical subsets of S (see Chapters 7 and 18 in [9]). U.ˆ; K/

is the “standard realization” of ˆ. Both realizations are contractible. The standard
realization is important in geometric group theory, the reason being that in this field
one is interested in discrete group actions which are both proper and cocompact and
these conditions are more likely to hold for the action of a group of automorphisms on
the standard realization than on the classical realization. A third choice for X which
will be important for us is X D �f , the complement in � of its “nonspherical”
faces. (If ˆ has finite thickness, then U.ˆ; K/ and U.ˆ; �f / are locally finite,
while U.ˆ; �/ need not be.) In general, K � �f � �. (For an example where the
inclusions are strict, see Figure 1 in Section 2.)

If a discrete group � acts properly and cocompactly on a locally finite, contractible
CW complex Y , then the compactly supported cohomology of Y is isomorphic to
the cohomology of � with Z� coefficients. In particular, it determines the virtual
cohomological dimension of � , as well as, the number of ends of � , and it determines
if � is a duality group. (For more information, see Part IV in [18].) However, as
we will explain, even if one is only interested in cohomological computations in the
case of the standard realization of ˆ, it is necessary to carry out similar computations
for various other realizations, in particular, for the version of the classical realization
with its nonspherical faces deleted.

In the classical case of an (irreducible) affine building, the two notions of model
chamber agree: � D K. So, in the affine case the study of the cohomology of co-
compact lattices in Aut.ˆ/ is closely tied to the study of the cohomological properties
of U.ˆ; �/. For example, in [2] Borel and Serre calculated the compactly supported
cohomology, H �

c .U.ˆ; �//, for any (irreducible) affine building and then used this
calculation to derive information about the cohomology of “S -arithmetic” subgroups.
The theorem of [2] is that H �

c .U.ˆ; �// is concentrated in the top degree (D dim �)
and is free abelian in that degree.

Our main result, Corollary 8.2, is a calculation of H �
c .U.ˆ; K//, generalizing

the theorem of Borel–Serre. In the case where ˆ D W , this was done in [7], [10],
[13]. For a general (thick) building, in the case where .W; S/ is right-angled, it was
done in [10], Theorem 6.6. It was claimed in full generality in [13]; however, there
is a mistake in the proof (see [14]).
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In order to write the formula, we need more notation. Let A be the free abelian
group of finitely supported, Z-valued functions on ˆ. For each subset T � S , let
AT denote the subgroup of all functions f 2 A which are constant on each residue
of type T . (A “residue” of type T is a certain kind of subset of ˆ; in the case of the
building W , a residue of type T is a left coset of WT , the subgroup of W generated
by T .) N.B. The empty set, ;, is a spherical subset and a residue of type ; is just a
single chamber; hence, A; D A. If U � T , then AU � AT . Let A>T � AT denote
the Z-submodule,

P
U �T AU . (Throughout this paper we will use the convention

that � denotes containment and � will be reserved for strict containment. Also, we
will use the symbol

P
for an internal sum of modules and

L
to mean either an

external direct sum or an internal sum which we have proved is direct.)
We shall show in Section 7 that A>T is a direct summand of AT . Let OAT be a com-

plementary summand. As in [10], [11], [16] the main computation is a consequence
of the following Decomposition Theorem (proved as Theorem 7.1 in Section 7).

The Decomposition Theorem.

A D
M
U 2�

OAU and, in fact, for any T 2 � , AT D
M
U �T

OAU :

The Decomposition Theorem is then used to calculate the compactly supported
cohomology of any of the various realizations of ˆ. In any such calculation we are
computing the cohomology of some cochain complex. This complex can be viewed
as the cochains on the model chamber X with coefficients in a certain (nonconstant)
system of coefficients �.A/ which depends on the free abelian group A. The point is
that the Decomposition Theorem implies a decomposition of the coefficient system
and a corresponding decomposition of the cochain complex. Each summand in this
decomposition can be identified with the ordinary cochains on a pair .X; XS�T /, for
T a spherical subset of S , with constant coefficients in OAT . (For any subset U of S ,
XU denotes the union of the Xs , with s 2 U .) Taking cohomology we get our main
results. The calculation in which we are most interested is the following (proved as
Corollary 8.2 in Section 8).

The Main Theorem. Suppose ˆ is a building of finite thickness and type .W; S/.
Let K be the geometric realization of the poset � of spherical subsets of S . Then

H �
c .U.ˆ; K// Š

M
T 2�

H �.K; KS�T /˝ OAT :

The Main Theorem applies to all buildings. A general building ˆ will not be
highly symmetric; for example, its automorphism group, Aut.ˆ/, could have in-
finitely many orbits of chambers. However, if ˆ= Aut.ˆ/ is finite and if � is a
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torsion-free cocompact lattice in Aut.ˆ/, then the Main Theorem implies that the
cohomological dimension of � is equal to the virtual cohomological dimension of
the corresponding Coxeter group. Moreover, this dimension is

cd.�/ D vcd.W / D maxfk j H k.K; KS�T / ¤ 0 for some T 2 �g
(cf. Corollary 9.4). As another example, such a torsion-free cocompact lattice is an
n-dimensional duality group if and only if for each T 2 � , H �.K; KS�T / is free
abelian and concentrated in degree n (cf. Corollary 9.5).

The central objective of [10] was to calculate H �
c .U.W; K// as a W -module.

In that paper we showed there is a filtration of H �
c .U.W; K// by W -submodules

so that the associated graded terms look like the terms on the right-hand side of the
formula in the Main Theorem. Similarly, one can ask about the G-module structure of
H �

c .U.ˆ; K// for any subgroup G � Aut.ˆ/. The methods of [10] are well adapted
to the present paper. In particular, for each T 2 � , the free abelian group AT is a
G-module, as is its quotient DT WD AT =A>T . So, as in [10], there is a filtration of
H �

c .U.ˆ; K// by G-submodules and we get the following (proved as Theorem 9.1).

Theorem. Suppose G is a group of automorphisms of ˆ. There is a filtration of
H �

c .U.ˆ; K// by right G-submodules with associated graded term in filtration de-
gree p: M

T 2�jT jDp

H �.K; KS�T /˝DT :

The proof of the Decomposition Theorem depends on first establishing a version
of the Main Theorem for U.ˆ; �f /. So, the Main Theorem ultimately depends on
first proving a version for the “faces-deleted realization.” This version (proved as
Theorem 4.3) is the following.

Theorem. When W is infinite, H �
c .U.ˆ; �f // is free abelian and is concentrated

in the top degree n (D dim �).

This result is obvious when ˆ D W , for then U.W; �f / is homeomorphic to
Euclidean space Rn (see Section 2). We prove it for a general ˆ by showing the
following (Theorem 3.1).

Theorem. U.ˆ; �f / admits a complete, CAT.0/ metric (extending Moussong’s
CAT.0/ metric on the standard realization).

The existence of this CAT.0/ metric on U.ˆ; �f / is of independent interest. (See
[21], [8] or [9] for a description of Moussong’s metric on U.ˆ; K/.)
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To finish the calculation of H �
c .U.ˆ; �f // we invoke a result of [4] which asserts

that the compactly supported cohomology of such a CAT.0/ space is concentrated in
the top degree provided the cohomology of each “punctured link” vanishes except in
the top degree. These links are joins of spherical buildings with CAT.1/ structures
on spheres and the vanishing of the cohomology groups, in degrees below the top, of
their punctured versions is a result of [17] (and independently, [25]).

As we have said, special cases of the Decomposition Theorem were proved in [10].
The method of [10] was simply to find a basis for A adapted to its decomposition
into the OAT . In the general case, finding an explicit description of such a basis is
problematic. We use instead an idea coming from an analogy with the argument of
[11]. In that paper we proved L2 versions of the Decomposition Theorem and of
the Main Theorem. The proof of the L2 version of the Decomposition Theorem was
homological: the key step was to show that certain “weighted L2-homology” groups
of certain auxiliary spaces associated to W vanished except in the bottom degree.
We then applied a certain duality (not applicable here) to deduce the Decomposition
Theorem in the cases of actual interest. Analogously, in this paper we prove the
Decomposition Theorem by establishing the vanishing, except in the top degree, of
the cohomology of certain auxiliary spaces. The most important of these auxiliary
spaces is U.ˆ; �f / and we indicated in the previous paragraphs how to prove the
result in that case.

Our thanks go to the referee for helpful comments.

1. Coxeter groups and buildings

A chamber system over a set S is a set ˆ of chambers together with a family of
equivalence relations on ˆ indexed by S . Two chambers are s-equivalent if they are
related via the equivalence relation with index s; they are s-adjacent if they are s-
equivalent and not equal. A gallery in ˆ is a finite sequence of chambers .'0; : : : ; 'k/

such that, for 1 � j � k, 'j �1 is s-adjacent to 'j for some s 2 S . The type of this
gallery is the word s D .s1; : : : ; sk/ where 'j �1 is sj -adjacent to 'j . If each sj

belongs to a given subset T of S , then the gallery is a T -gallery. A chamber system
is connected (resp., T -connected) if any two chambers can be joined by a gallery
(resp., a T -gallery). The T -connected components of a chamber system ˆ are its
residues of type T .

A Coxeter matrix over a set S is an S � S symmetric matrix M D .mst / with
each diagonal entryD 1 and each off-diagonal entry an integer� 2 or the symbol1.
The matrix M defines a presentation of a group W as follows: the set of generators is
S and the relations have the form .st/mst , where .s; t/ ranges over all pairs in S � S

such that mst ¤1. The pair .W; S/ is a Coxeter system (cf. [3], [9]). Given T � S ,
WT denotes the subgroup generated by T ; it is called a special subgroup. .WT ; T /

is itself a Coxeter system. The subset T is spherical if WT is finite.
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Definition 1.1. The poset of spherical subsets of S (partially ordered by inclusion)
is denoted � .

Also, P (D P .S/) will denote the poset of all proper subsets of S . (In Section 3
the poset P � � plays a role.)

Suppose .W; S/ is a Coxeter system and M D .mst / is its Coxeter matrix. Fol-
lowing [24] (or [10]), a building of type .W; S/ (or of type M ) is a chamber system
ˆ over S such that

(i) for all s 2 S , each s-equivalence class contains at least two chambers, and

(ii) there exists a W -valued distance function ı W ˆ � ˆ ! W . (This means that
given a reduced word s for an element w 2 W , chambers ' and '0 can be joined
by a gallery of type s from ' to '0 if and only if ı.'; '0/ D w.)

Example 1.2. The group W itself has the structure of a building: the s-equivalence
classes are the left cosets of Wfsg and the W -valued distance, ı W W �W ! W , is
defined by ı.v; w/ D v�1w.

A residue of type T is a building; its type is .WT ; T /. A building of type .W; S/

is spherical if W is finite. A building has finite thickness if each s-equivalence class
is finite, for each s 2 S . (This implies all spherical residues are finite.) Henceforth,
all buildings will be assumed to have finite thickness.

2. Geometric realizations of Coxeter groups and buildings

A mirror structure over a set S on a space X is a family of subspaces .Xs/s2S indexed
by S . Given a mirror structure on X , a subspace Y � X inherits a mirror structure
by Ys WD Y \ Xs . If X is a CW complex and each Xs is a subcomplex, then X is a
mirrored CW complex. For each nonempty subset T � S , define subspaces XT and
XT by

XT WD
\
s2T

Xs and XT WD
[
s2T

Xs: (2.1)

Put X; WD X and X; WD ;. Given a cell c of (a CW complex) X or a point x 2 X ,
put

S.c/ WD fs 2 S j c � Xsg;
S.x/ WD fs 2 S j x 2 Xsg:

Suppose now that S is the set of generators for a Coxeter system .W; S/. Let
‡.X/ denote the union of the nonspherical faces of X and Xf its complement in X ,



Vol. 85 (2010) Compactly supported cohomology of buildings 557

i.e.,
‡.X/ WD

[
T …�

XT and Xf WD X � ‡.X/: (2.2)

The mirror structure is W -finite if ‡.X/ D ;.
Given a building ˆ of type .W; S/ and a mirrored space X over S , define an

equivalence relation 	 on ˆ � X by .'; x/ 	 .'0; x0/ if and only if x D x0 and
ı.'; '0/ 2 WS.x/ (i.e., ' and '0 belong to the same S.x/-residue). The X -realization
of ˆ, denoted U.ˆ; X/, is defined by

U.ˆ; X/ WD .ˆ �X/= 	 : (2.3)

(ˆ has the discrete topology.) Suppose X is a mirrored CW complex and that we are
given a cell c of X and a chamber ' 2 ˆ. Then ' 
 c denotes the corresponding cell
in U.ˆ; X/. Let U.i/ denote the set of i -cells in U.ˆ; X/. Each such cell has the
form ' 
 c for some ' 2 ˆ and i -cell c of X .

The classical realization. � denotes the simplex of dimension jS j � 1, with its
codimension one faces indexed by S . In other words, the mirror �s is a codimension
one face and �T (the intersection of the �s over all s 2 T ) is a face of codimension
jT j.

The simplicial complex U.W; �/ is theCoxeter complex of .W; S/ while U.ˆ; �/

is the classical realization of the building ˆ.
Tits constructed a representation of W on RS called “the contragredient of the

canonical representation” in [3] and the “geometric representation” in [9]. The el-
ements of S are represented by reflections across the codimension one faces of a
simplicial cone C . The union of translates of C is denoted by W C . It is a convex
cone and W acts properly on its interior �. If W is infinite, W C is a proper cone. If
C f denotes the complement of the nonspherical faces of C , then � is equivariantly
homeomorphic to U.W; C f /. Assume W is infinite. Then the image of C � 0 in
projective space can be identified with the simplex � obtained by intersecting C with
some affine hyperplane; moreover, �f is identified with the intersection of C f and
this hyperplane. The image of � in projective space is then identified with U.W; �f /.
Since this image is the interior of a topological disk (of dimension jS j � 1), it fol-
lows that U.W; �f / is homeomorphic to a Euclidean space of that dimension. In
particular, it is contractible.

Geometric realizations of posets. Given a poset T , Flag.T / denotes the set of
finite chains in T , partially ordered by inclusion, i.e., an element of Flag.T / is a
finite, nonempty, totally ordered subset of T . If ˛ D ft0; : : : ; tkg 2 Flag.T /, where
t0 < 
 
 
 < tk , then we will write ˛ WD ft0 < 
 
 
 < tkg and min ˛ WD t0. Flag.T / is
an abstract simplicial complex with vertex set T and with k-simplices the elements
of Flag.T / of cardinality k C 1. The corresponding topological simplicial complex
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is the geometric realization of the poset T and is denoted by jT j. For example, if P

is the poset of proper subsets of S , partially ordered by inclusion, then its opposite
poset, P op, is the poset of nonempty faces of the simplex �. Flag.P / is the poset of
simplices in its barycentric subdivision, b�, and jP j D b�.

The standard realization, U. ;̂ K/. As before, � denotes the poset of spherical
subsets of S . Put K WD j� j. It is a subcomplex of b� (provided W is infinite).
The mirror structure on � induces one on K. More specifically, for each s 2 S ,
put Ks WD j��fsgj and for each T 2 � , KT D j��T j. (K is the “compact core”
of �f .) K is sometimes called the Davis chamber of .W; S/ and U.W; K/, the
Davis complex. Alternatively, U.ˆ; K/ is the geometric realization of the poset of
spherical residues of ˆ (see [8]).

By construction U.ˆ; K/ is locally finite (since ˆ is assumed to have finite
thickness). It is proved in [8] that U.ˆ; K/ is contractible.

The realization U. ;̂ �f /. �f and K have the same poset of faces (indexed
by �) and there is a face-preserving deformation retraction �f ! K. That is
to say, �f is a “thickened version” of K. Similarly, U.ˆ; �f / is a thickened
version of U.ˆ; K/. Like U.ˆ; K/, the space U.ˆ; �f / has the advantage of being
locally finite; however, the chamber �f is not compact whenever �f ¤ �. We call
U.ˆ; �f / the faces-deleted realization of ˆ.

Example 2.1. When W is infinite, K � �f � �. The inclusions can be strict.
For example, if W is the product of two infinite dihedral groups, then S has four

elements, � is a tetrahedron, �f is obtained from � by deleting two opposite edges
and K is a square. See Figure 1.

K

Figure 1. �, �f and K when W D D1 �D1.
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3. A CAT.0/ metric on U. ;̂ �f /

Our goal in this section is to prove the following.

Theorem 3.1. Let ˆ be a building of type .W; S/ with W infinite. Then there is a
complete, piecewise Euclidean, CAT.0/ metric on U.ˆ; �f /.

Review of the Moussong metric. Suppose T is a spherical subset of S . WT acts
on RT via the canonical representation. Since WT is finite there is an invariant inner
product (unique up to scaling on each irreducible factor). The Coxeter cell of type T ,
denoted PT , is defined to be the convex hull of the WT -orbit of a point x0 in the interior
of the fundamental simplicial cone. As examples, if WT is a product of n copies of
the cyclic group of order 2, then PT is an n-cube; if WT is the symmetric group on
n C 1 letters, then PT is an n-dimensional permutohedron. Its boundary complex,
@PT , is the dual of the Coxeter complex of WT (the Coxeter complex is a triangulation
of the unit sphere in RT ). The fact that @PT is dual to a simplicial complex means
that PT is a “simple polytope”. The isometry type of PT is determined once we
choose the distance from x0 to each of the bounding hyperplanes of the simplicial
cone. (We assume, without further comment, that such a choice of distance has been
made for each s 2 S .) The intersection of PT with the fundamental simplicial cone is
denoted BT and called the Coxeter block of type T . It is a convex cell combinatorially
isomorphic to a cube of dimension jT j (because PT is simple). One can identify BT

with the subcomplex j��T j of K in such a way that x0 is identified with the vertex
corresponding to ;. To be more precise, BT is the union of simplices of Flag.�/

whose maximum vertex is � T , i.e., j��T j is a subdivision of BT . See Figure 2.

BT;ftg

BT

x0

BT;fsg

s

t

Figure 2. T D fs; tg, PT is a hexagon, WT has order 6.

The convex polytope BT has two types of faces. First, there are the faces which
contain the vertex x0. Each such face is a Coxeter block of the form BV for some
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V � T . The other type of face is the intersection of BT with the face of the funda-
mental simplicial cone fixed by WV for some nonempty V � T . We denote such a
face by BT;V and call it a reflecting face of BT . For the purpose of unifying different
cases, we shall sometimes write BT;; instead of BT .

The Moussong metric on K is the piecewise Euclidean metric on K in which
each Coxeter block BT is given its Euclidean metric as a convex cell in RT (cf. [21]
or Section 12.1 in [9]). This induces a piecewise Euclidean metric on U.W; K/ as
well as one on U.ˆ; K/. The link of the central vertex corresponding to ; can be
identified with a certain simplicial complex L (D L.W; S/) called the nerve of the
Coxeter system. The vertex set of L is S and a subset T � S spans a simplex if
and only if it is spherical. Thus, the poset of simplices in L (including the empty
simplex) is � . The piecewise Euclidean metric on K induces a piecewise spherical
metric on L such that whenever mst < 1, the length of the edge corresponding to
fs; tg is � ��=mst . (When mst D1, fs; tg does not span an edge of L.) Moussong
proved that this piecewise spherical metric on L is CAT.1/. From this he deduced
that the piecewise Euclidean metric on U.W; K/ is CAT.0/ (cf. [21] and Section 12.3
in [9]). Using this, it is proved in [8] by a standard argument that for any building ˆ,
the Moussong metric on the standard realization, U.ˆ; K/, is CAT.0/.

A piecewise Euclidean metric on �f . We will define a cell structure on �f so that
each cell will have the form BT;V �Œ0;1/m for some T 2 � , V � T and nonnegative
integer m. When m > 0 such a cell will be noncompact. There are two types of
such cells. First there are the compact cells BT;V , where T 2 � and V � T . The
remaining cells are in bijective correspondence with triples .T; V; ˛/, where T 2 � ,
V � T and ˛ 2 Flag.P � �/ is such that T < min ˛. Let F be the set consisting
of pairs .T; V / and triples .T; V; ˛/, where T 2 � , V � T and ˛ 2 Flag.P � �/ is
such that T < min ˛. F is partially ordered as follows:

� .T 0; V 0/ � .T; V / if and only if T 0 � T and V 0 � V ,
� .T 0; V 0; ˛0/ � .T; V; ˛/ if and only if .T 0; V 0/ � .T; V / and ˛0 � ˛,
� .T 0; V 0/ � .T; V; ˛/ if and only if .T 0; V 0/ � .T; V /.

The cell c.T; V; ˛/ which corresponds to .T; V; ˛/ is defined to be BT;V � Œ0;1/˛ ,
where Œ0;1/˛ means the set of all functions from the finite set ˛ to Œ0;1/. For
the most part, it will suffice to deal with the case V D ; since the cells of the form
BT � Œ0;1/˛ cover �f . The piecewise Euclidean structure on �f will be defined
by declaring each BT � Œ0;1/˛ to have the product metric. Thus, the piecewise
Euclidean metric on �f will extend the one on K. See Figure 3.

Lemma 3.2. �f has a decomposition into the cells, fBT;V g [ fc.T; V; ˛/g, defined
above, where .T; V / and .T; V; ˛/ range over F .

To prove this, we need to set up a standard identification of the open cone of
radius 1 on a k-simplex � with the standard simplicial cone Œ0;1/kC1 � RkC1.
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K �f

Figure 3. �f has one vertex deleted.

Let fvbgb2B be the vertex set of � for some finite index set B and let .xb/b2B be
barycentric coordinates on � . Let RB be the Euclidean space of all functions B ! R.
Let SC.RB/ denote the intersection of the standard simplicial cone Œ0;1/B with the
unit sphere. Thus, SC.RB/ is an “all right” spherical simplex (i.e., all edge lengths
and all dihedral angles are �=2). Let febgb2B be the standard basis for RB . Define
a homeomorphism �B W � ! SC.RB/, taking vb to eb , by

X
xbvb !

X
xbeb

ı � X
x2

b

�1=2

: (3.1)

Let r W Œ0; 1/! Œ0;1/ be some fixed homeomorphism. The open cone on � can be
regarded as the points Œt; x� in the join, v � � , of � with a point v such that the join
coordinate t is¤ 1. The homeomorphism from the open cone to Œ0;1/B is defined
by Œt; x�! r.t/�B.x/.

Proof of Lemma 3.2. Suppose ˛ 2 Flag.P /. Then ˛ D fT0 < 
 
 
 < TkClg, where
Tk 2 � and TkC1 … � . Put ˛0 WD fT0 < 
 
 
 < Tkg and ˛00 WD fTkC1 < 
 
 
 < TkClg.
The simplex �˛0 lies in BTk

while the simplex �˛00 is in the nonspherical face �TkC1
.

We have �˛ D �˛0 � �˛00 and a point in �˛ has coordinates Œt; x; y�, where t 2 Œ0; 1�,
x 2 �˛0 and y 2 �˛00 . The points in �˛ � �˛00 are those where the join coordinate
t is ¤ 1. The identification �˛ � �˛00 ! �˛0 � Œ0;1/˛00

is given by Œt; x; y� !
.x; r.t/�˛00.y//. �

Next we want to consider the link of the central vertex v; (corresponding to ;)
in this cell structure. Let �op denote the simplex with vertex set S . The nerve L is
a subcomplex of �op. If W is spherical, then L D �op, while if W is infinite, then
L is a subcomplex of @�op. Moreover, @�op is a triangulation of the .n� 1/-sphere,
for n D jS j. Assume W is infinite. The link of v; in �f is a certain subdivision
L0 of @�op, which we shall now describe. The vertex set of L0 is the disjoint union
S [ .P � �/. There are three types of simplices in L0:
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1) simplices �T in L corresponding to spherical subsets T 2 �>;,

2) simplices �˛ in b@� (D b@�op) corresponding to flags ˛ 2 Flag.P � �/,

3) joins �T � �˛ , with T 2 �>;, ˛ 2 Flag.P � �/ and T < min ˛.

Lemma 3.3. L0 is a subdivision of @�op and L � L0 is a full subcomplex.

Proof. Suppose U is a minimal element of P � � . Let �U denote the corresponding
simplex in @�op. Introduce a “barycenter” vU 2 @�op and then subdivide �U to a
new simplicial complex .�U /0 by coning off the simplices in @�U . Each new simplex
will have the form vU � �T for some T � U .

Next, let U be an arbitrary element of P � � and suppose by induction that we
have defined the subdivision of .�U 0/ for each U 0 � U and hence, a subdivision
.@�U /0 of @�U . Introduce a barycenter vU of �U and subdivide by coning off .@�U /0.
Each new simplex will have the form vU ��U 0 for some U 0 � U . In other words, each
new simplex will be either of type 2 or type 3 above. It is clear that the subcomplex
L is full. �

The following lemma is also clear. (See Figure 3.)

Lemma 3.4. L0 is the link of the central vertex in the piecewise Euclidean cell
structure on �f .

The piecewise Euclidean metric induces a piecewise spherical metric on L0 ex-
tending the given metric on L. Since the link of the origin in Œ0;1/kC1 is the all
right spherical k-simplex we get the following description of the metric on L0.

Lemma 3.5. The simplices in L0 have spherical metrics of the following types.

1) For T 2 �>;, the simplex �T in L is the dual to the fundamental simplex for
WT on the unit sphere in RT . In other words, for distinct elements s, t in T , the
edge corresponding to fs; tg has length � � �=mst .

2) The simplex �˛ corresponding to ˛ 2 Flag.P � �/ has its all right structure.
In other words, each edge of �˛ has length �=2.

3) The simplex �T � �˛ has the structure of a spherical join. In other words, the
length of an edge connecting a vertex in �T to one in �˛ is �=2.

Remark 3.6. The simplicial complex L0 is the nerve of a Coxeter group .W 0; S 0/
which contains W as a special subgroup. Namely, S 0 is the disjoint union, S[.P��/.
Two generators of S are related as before. If U , V 2 P � � , then put m.U; V / WD 2

whenever U � V or V � U and m.U; V / WD 1, otherwise. Similarly, if s 2 S

and U 2 P � � , then m.s; U / D m.U; s/ D 2 when s 2 U and it is D 1,
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otherwise. Since L0 is a triangulation of Sn�2, with n D jS j, this shows that any n

generator, infinite Coxeter group is a special subgroup of a Coxeter group which acts
cocompactly on a contractible .n � 1/-manifold (such a Coxeter group is said to be
type HMn�1 in [9], p. 197).

CAT.0/ and CAT.1/ metrics. Gromov [19] proved that a piecewise Euclidean
metric on a polyhedron Y is locally CAT.0/ if and only if the link in Y of each cell
is CAT.1/. In his proof that L.W; S/ was CAT.1/, Moussong [21] gave a criterion
for certain piecewise spherical structures on simplicial complexes to be CAT.1/. We
recall his criterion below. A spherical simplex has size� �=2 if each of its edges has
length � �=2. A spherical simplex � � Sk � RkC1 with vertex set fv0; : : : ; vkC1g
and edge lengths lij WD cos�1.vi 
 vj / is determined up to isometry by the .lij /.
Conversely, a symmetric .kC 1/� .kC 1/ matrix .lij / of real numbers in [0; �/ can
be realized as the set of edge lengths of a spherical simplex if and only if the matrix
.cos lij / is positive definite, cf. [9], Lemma I.5.1, p. 513. Suppose N is a simplicial
complex with a piecewise spherical structure (i.e., each simplex has the structure of
a spherical simplex). N has size � �=2 if each of its simplices does. N is a metric
flag complex if it satisfies the following condition: given any collection of vertices
fv0; : : : ; vkg which are pairwise connected by edges, then fv0; : : : ; vkg is the vertex
set of a simplex in N if and only if the matrix of edge lengths .lij / can be realized
as the matrix of edge lengths of an actual spherical simplex. (In other words, if and
only if .cos lij / is positive definite.) Moussong’s Lemma is the following.

Lemma 3.7 (Moussong’s Lemma, [21], orAppendix I.7 in [9])). Suppose a piecewise
spherical simplicial complex N has size � �=2. Then N is CAT.1/ if and only if it
is a metric flag complex.

The next result follows immediately from our previous description of the piecewise
spherical complex L0.

Lemma 3.8. L0 has size � �=2 and is a metric flag complex.

Corollary 3.9. L0 is CAT.1/. Moreover, L is a totally geodesic subcomplex.

Proof. The second statement follows from the fact that L is a full subcomplex. �

Since the link of any simplex in a metric flag complex of size� �=2 has the same
properties (cf. [21], Lemma 8.3, or [9]), Lemma I.5.11, the link of any simplex in L0
is also CAT.1/. Since the link in �f \�V of any cell of the form BT;V � Œ0;1/˛

can be identified with the link of the corresponding simplex �T � �˛ in L0, it follows
that the link of each cell in �f is CAT.1/.
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Corollary 3.10. The piecewise Euclidean metric on U.W; �f / is CAT.0/. (This
implies that U.W; �f / is a contractible manifold.)

Proof. The union of WT -translates of a Coxeter block BT in U.W; �f / is a Coxeter
cell PT and the complete inverse image of BT in U.W; �f / is a disjoint union of
copies of PT . Hence, U.W; �f / has a cell structure in which the cells are either
translates of Coxeter cells of the form PT or translates of cells of the form PT�Œ0;1/˛

for some ˛ 2 Flag..P ��/>T /. In either case the link of such a cell in U.W; �f / is
identified with the link of the corresponding cell in �f . By Corollary 3.9, U.W; �f /

is locally CAT.0/. A space is CAT.0/ if and only if it is locally CAT.0/ and simply
connected (cf. [19], p. 119, or Chapter II.4 of[5]). U.W; �f / is contractible (hence,
simply connected), since it is homotopy equivalent to U.W; K/. Therefore, it is
CAT.0/. �

Reviewof spherical joins. In this section and the next we will need some properties of
the “spherical join” of two piecewise spherical complexes. We recall some definitions
from [5], p. 63.

Definition 3.11. For i D 1; 2, suppose .Li ; d i / is a metric space. The spherical
join L1 �L2 is the quotient space of L1 �L2 � Œ0; �=2� by the equivalence relation
	 which satisfies .x1; x2; 0/ 	 .x1; x0

2; 0/ and .x1; x2; �=2/ 	 .x0
1; x2; �=2/. The

equivalence class of .x1; x2; �/ will usually be denoted x1 cos �Cx2 sin � . Let d i
�. ; /

be the metric on Li defined by d i
�.x; y/ D maxfd i .x; y/; �g. Define a metric d. ; /

on L1 � L2 by requiring that the distance between points x D x1 cos � C x2 sin �

and x0 D x0
1 cos � 0 C x0

2 sin � 0 be at most � and that it satisfy the formula:

cos.d.x; x0// D cos � cos � 0 cos.d 1
�.x1; x0

1//C sin � sin � 0 cos.d 2
�.x2; x0

2//: (3.2)

Links of Coxeter blocks. We also want to consider links of cells of the form BT;V

or BT;V � Œ0;1/˛ in various cell complexes. (Here BT;V is a reflecting face of BT .)

Lemma 3.12. Suppose c is a cell in �f of the form c D BT;V or c D BT;V �Œ0;1/˛

for some V � T 2 �>; and ˛ 2 Flag..P � �/>T /. Let d D BT or BT � Œ0;1/˛

be the corresponding larger cell in �f and let �d be the corresponding simplex in
L0. Then

Lk.c; �f / D Lk.�d ; L0/ � �.V /; (3.3)

Lk.c; U.W; �f / D Lk.�d ; L0/ � SV : (3.4)

Here SV is the unit sphere in the canonical representation of WV on RV and �.V / �
SV is the fundamental simplex.
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Moreover, suppose that ˆ is a building of type .W; S/, that R is the spherical
residue of type V containing the base chamber and that S.R/ WD U.R; �.V // is the
spherical realization of R. Then

Lk.c; U.ˆ; �f / D Lk.�d ; L0/ � S.R/: (3.5)

Proof. Let �
f
V denote the face of �f fixed by WV (cf. (2.1)). Then

Lk.c; �f / D Lk.c; �
f
V / � Lk.�

f
V ; �f /

D Lk.d; �f / � �.V /

D Lk.�d ; L0/ � �.V /

and similarly for formulas (3.4) and (3.5). �

We can now prove the main result of this section.

Proof of Theorem 3.1. Any spherical building, such as S.R/, is CAT.1/ (e.g., see [8])
and the spherical join of two CAT.1/-spaces is CAT.1/ (e.g., see [5]), Corollary 3.15,
p. 190. So, the theorem follows from (3.5). Alternatively, it can be proved from
Corollary 3.10 by using the argument in §11 in [8]. �

A variation. In Section 4 we will need the following modification of the previous
construction. Given a subset U � S , we will define a new piecewise Euclidean metric
on �f ��U and then show that it induces CAT.0/ metrics on U.WS�U ; �f ��U /

and U.R; �f ��U / for any .S � U /-residue R of ˆ.
For each spherical subset T , let C �

T � RT be the simplicial cone determined by
the bounding hyperplanes of BT passing through the vertex x0. (In other words, C �

T

is the dual cone to the fundamental simplicial cone.) Let �S�U WD �.WS�U ; S �U /

be the poset of spherical subsets of S �U and let LS�U WD L.WS�U ; S �U / be the
nerve of WS�U . �f ��U has a cell structure with cells of the following two types:

(a) BT;V , where T 2 �S�U and V � T ,

(b) BT � Œ0;1/˛ , where ˛ 2 P � �S�U and T , V are as above.

As before, each such cell is given the natural product metric. In effect we are putting
‡.�/ [�U at infinity.

The piecewise Euclidean metric on �f ��U induces one U.R; �f ��U /. Let
us describe the link, L0

S�U , of the central vertex in the new metric on �f ��U . The
vertex set of L0

S�U is .S � U / [ .P � �S�U /. As before, there are three types of
simplices:

1) simplices �T in LS�U corresponding to spherical subsets T 2 �S�U ,

2) simplices �˛ in b@� (D b@�op) corresponding to flags ˛ 2 Flag.P � �S�U /,
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3) joins �T � �˛ , with T 2 �S�U , ˛ 2 Flag.P � �S�U / and T < min ˛.

and L0
S�U can be identified with a subdivision of @�op. Moreover, just as before,

L0
S�U has size� �=2 and is a metric flag complex; hence, it is CAT.1/. This proves

the following.

Theorem 3.13. Suppose U � S and R is any .S � U /-residue in ˆ. Then the
piecewise Euclidean metric on U.R; �f ��U /, defined above, is CAT.0/.

4. Metric spheres in U. ;̂ �f /

An n-dimensional cell complex X is CSn (for “cohomologically spherical”) if zH �.X/

is concentrated in degree n and is a free abelian group in that degree. Similarly, an n-
dimensional, noncompact, contractible space X is SIn�1 (for “spherical at infinity”)
if H �

c .X/ is concentrated in degree n and is a free abelian group in that degree. (We
will sometimes omit the superscript and write simply that a space is CS or SI when
we don’t need to specify n.) We want to prove that U.ˆ; �f / is SIn�1. This is a
consequence of Theorems 4.1 and 4.2 below.

Suppose N is a CAT.1/, piecewise spherical polyhedron and that p 2 N . Let
B.p; �=2/ � N denote the open ball of radius �=2 centered at p. Define a space
PNp , called N punctured at p, by PNp WD N � B.p; �=2/. We are interested in
this concept when N D Lk.c/, the link of a cell c in some CAT.0/ complex X . In
this case we will write PLkp.c/ for PNp and call it the punctured link of c at p.

Theorem 4.1 (Brady, McCammond and Meier [4]). Let X be a CAT.0/, piecewise
Euclidean cell complex (with finitely many shapes of cells). If for each cell c in X

and for each p 2 Lk.c/, the spaces Lk.c/ and PLkp.c/ are .n�dim c/-acyclic, then
X is n-acyclic at infinity. In particular, if X is .n � 2/-acyclic and n-dimensional,
then it is SIn�1.

Remarks. In [4] the hypothesis of the above theorem is that X is the universal
cover of a finite, nonpositively curved complex; however, the proof clearly works
with a weaker hypothesis such as that there are only finitely many shapes of cells
(which holds in our case). The proof of the theorem uses Morse theory for polyhedral
complexes. Roughly, it goes as follows. Let 	 W X ! R be the distance from some
base point x0, i.e., 	.x/ WD d.x; x0/. The spheres S.r/ of radius r centered at x0 2 X

are the level sets of 	. Call a point x a critical point (of 	) if it is the closest point
to x0 in some closed cell c. It follows from the CAT.0/ hypothesis that the critical
points are isolated. If, for sufficiently small ", there is no critical point in the annular
region between S.r C "/ and S.r/, then S.r C "/ and S.r/ are homeomorphic.
On the other hand, the effect of crossing a critical point x 2 S.r/ is to remove a
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contractible neighborhood of x in S.r/ and replace it by the punctured link PLk.x/p ,
where p is the direction at x of the geodesic from x to x0. (If x lies in the relative
interior of a k-dimensional cell c, then Lk.x/ Š Sk�1 �Lk.c/.) So, the effect on the
homotopy type of the level sets is to replace a contractible neighborhood by a copy of a
suspension of a punctured link. It follows that, under the hypotheses of Theorem 4.1,
each metric sphere is CS. Since X is CAT.0/, metric balls are contractible and since
H �

c .X/ D lim�!H �.B.r/; S.r// which is concentrated in the top degree, X is SI.

Theorem 4.2 (Dymara–Osajda [17], Theorem A.2, and Schulz [25]). Suppose R is
a spherical building of type .WT ; T / and that S.R/ is its spherical realization. Then
for any p 2 S.R/, the space P S.R/p is CS.

Theorems 4.1 and 4.2 can be used to prove the following.

Theorem 4.3. With notation as in Section 3 and above, given any building ˆ, its
faces-deleted realization U.ˆ; �f / is SI.

When W is an irreducible affine Coxeter group, �f D � and the theorem above
specializes to the theorem of Borel–Serre [2].

Complements of �
2
-balls in spherical joins. Before proving Theorem 4.3, we need

to establish some facts concerning joins of piecewise spherical polyhedra.

Lemma 4.4. For i D 1; 2, suppose Li is a piecewise spherical polyhedron and
L D L1 � L2 is the spherical join with the metric defined by (3.2). Let p D
p1 cos � C p2 sin � be a point in L with � ¤ 0; �=2. Let B1, B2 and B be the open
balls of radius �=2 in L1, L2 and L, respectively, about the points p1, p2 and p,
respectively. Then L � B deformation retracts onto .L1 � B1/ � .L2 � B2/.

Proof. We denote the corresponding spheres of radius �=2 by @B1, @B2 and @B . L

can be partitioned into four pieces, which we call the first, second, third, and fourth
quadrants:

First quadrant: xB1 � xB2.

Second quadrant: .L1 � B1/ � xB2,.

Third quadrant: .L1 � B1/ � .L2 � B2/.

Fourth quadrant: xB1 � .L2 � B2/.

The intersection of the third and fourth quadrants is @B1�.L2�B2/. The intersection
of @B with the fourth quadrant is homeomorphic to @B1 � .L2 � B2/. (This is an
easy exercise using the definition of the join metric given in (3.2).) Also, the part
of L � B in the fourth quadrant is homeomorphic to .@B1 � .L2 � B2// � Œ0; 1�/

with @B1 � Œ0; 1� collapsed down to @B1 � 0. Hence, the part of L�B in the fourth
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quadrant deformation retracts onto the intersection of the third and fourth quadrants.
Similarly, the part of L � B in the second quadrant deformation retracts onto the
intersection of the second and third quadrants. Putting these deformation retractions
together, we get that L � B deformation retracts onto the third quadrant. �

In what follows, in order to avoid constantly repeating the condition in Theo-
rem 4.1, let us say that a piecewise spherical polyhedron L is “BMM” if it is CS and
if PLp is CS for all p 2 L. A corollary of Lemma 4.4 is the following.

Corollary 4.5. Suppose L1 and L2 are BMM. Then so is L1 � L2.

Proof. If dim L1 D n1, dim L2 D n2, then it follows from the Künneth Formula
that zH �.L1 �L2/ is concentrated in degree n1Cn2C1 and H n1Cn2C1.L1 �L2/ D
H n1.L1/˝H n2.L2/ is free abelian. If p D p1 cos �Cp2 sin � is a point in the join
with � ¤ 0; �=2, then by Lemma 4.4 P.L1 � L2/p is CSn1Cn2C1. If � D 0, then
P.L1 � L2/p D PLp1

� L2 is also CSn1Cn2C1 and similarly, for � D �=2. �

Proof of Theorem 4.3. By the theorem of Brady–McCammond–Meier (Theorem 4.1),
it suffices to prove that each link in U.ˆ; �f / is BMM. By Lemma 3.12 each such
link is the spherical join of a CAT.1/, piecewise spherical structure on a sphere, call it
L00, (it is a link in L0) and a spherical building S.R/. Since the underlying PL structure
on L00 is that of a standard sphere, it follows from [12], Lemma 3b.1, p. 370, that any
closed ball of radius �=2 in L00 is homeomorphic to a closed m-disk (m D dim L00).
Hence, the complement of the open ball is also an m-disk. In particular, L00 is BMM.
It is a standard fact that S.R/ is homotopy equivalent to a wedge of spheres (one for
each apartment containing a given chamber). Hence, its cohomology is free abelian
and concentrated in the top degree. By the theorem of Dymara–Osajda and Schulz
(Theorem 4.2), the same is true for each punctured building P S.R/p . Hence, S.R/

is BMM. Finally, by Corollary 4.5, so is L00 � S.R/. �

As a corollary to Theorem 3.13, we get the following relative version of Theo-
rem 4.3.

Theorem 4.6. Suppose U � S and R is any .S�U /-residue in ˆ. Then U.R; �f �
�U / is SI.

Corollary 4.7. Suppose U � S . Then U.ˆ; �f ��U / is SI.

Proof. U.ˆ; �f ��U / is the disjoint union of the spaces U.R; �f ��U /, where R

ranges over the .S �U /-residues. By the previous theorem, the compactly supported
cohomology of each such component is free abelian and concentrated in the top
degree. �
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5. Cohomology with finite support and compact support

Given a CW complex Y , C �
fin.Y / denotes the complex of finitely supported cellular

cochains on Y and H �
fin.Y / its cohomology. When Y is only required to be a topo-

logical space, H �
c .Y / denotes its compactly supported singular cohomology, i.e.,

H �
c .Y / WD lim�!H �.Y; Y � C /;

where the direct limit is over all compact subsets C � Y . If Y is a locally finite CW
complex, H �

fin.Y / Š H �
c .Y /.

Suppose Z, Z0 are mirrored spaces over S . A map F W Z ! Z0 is mirrored if
F.ZT / � Z0

T for all T � S ; it is a mirrored homotopy equivalence if F jZT
W ZT !

Z0
T is a homotopy equivalence for all T (including T D ;).

Given a mirrored space X , let us say that ‡.X/ is collared in X if there is an
increasing family N D fN"g"2.0;a� of open neighborhoods of ‡.X/ (“increasing
means that N" � N"0 whenever " < "0) such that the following two properties hold:

(i)
T

"2.0;a� N" D ‡.X/, and

(ii) For each " > 0, the inclusion ‡.X/ ,! xN" is a mirrored homotopy equivalence.

For example, if X is the simplex �, then ‡.�/ is collared in �. (Proof: ‡.�/

is a union of closed faces and we can take N" to be its "-neighborhood in �.) More
generally, if X is any finite CW complex, then ‡.X/ is collared in X .

Property (ii) implies that U.ˆ; ‡.X// ,! U.ˆ; N"/ is a homotopy equivalence.
To simplify notation, in what follows we often write UX instead of U.ˆ; X/.

Lemma 5.1. Suppose X is a finite, mirrored CW complex . Then

H �
c .UXf / D H �

fin.UX ; U‡.X//:

Proof. Since X is a finite complex, H �
fin.UX ; U‡.X// D H �

c .UX ; U‡.X//: Since
‡.X/ is collared in X , we have a family N D fN"g of open neighborhoods. For
a given N D N" 2 N , let @N denote the boundary of xN . Since N is mirrored
homotopy equivalent to ‡.X/,

H �
fin.UX ; U‡.X// Š H �

c .UX ; U xN / Š H �
c .U.X�N /; U@N /;

where the second isomorphism is an excision. As " ! 0, X � N" ! Xf , so any
compact subset C of UXf lies within some UX�N"

. Hence,

H �
c .UXf / D lim�!H �.UXf ; UXf � C / D H �

c .UX�N ; U@N /:

Combining these equations, we get the result. �
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Example 5.2. �f is a thickened version of K and U.ˆ; �f / is a thickened version
of U.ˆ; K/. Hence, U.ˆ; �f / and U.ˆ; K/ are homotopy equivalent. On the other
hand, their compactly supported cohomology groups can be completely different. For
example, suppose W is the free product of three copies of Z=2. Then �f is a triangle
with its vertices deleted while K is a tripod. U.W; �f / can be identified with the
hyperbolic plane while U.W; K/ is the regular trivalent tree. (This is the familiar
picture of the congruence 2 subgroup of PSL.2; Z/ acting on the hyperbolic plane.)
The compactly supported cohomology of U.W; �f / is that of the plane (i.e., it is
concentrated in degree 2 and is isomorphic to Z in that degree), while the compactly
supported cohomology of U.W; K/ is that of a tree (i.e., it is concentrated in degree 1

and is a countably generated, free abelian group in that degree).

6. Cohomology with coefficients in � .A/

Let A (D A.ˆ/) be the free abelian group of finitely supported, Z-valued functions
on ˆ. For each subset T of S , define a Z-submodule of A:

AT WD ff 2 A j f is constant on each residue of type T g:
Note that A; D A. Also note that AT D 0 whenever T is not spherical.

We have AU � AT when T � U . Let A>T be the Z-submodule of AT spanned
by the AU with T a proper subset of U . Put

DT WD AT =A>T :

Remark. When ˆ D W , A is the group ring ZW and AT consists of elements
in ZW which are constant on each left coset wWT . Let us assume T is spherical
(otherwise AT D 0). Let In.w/ WD fs 2 S j l.ws/ < l.w/g be the set of letters with
which a reduced expression for w can end. Since T is spherical, each left coset of WT

has a unique representative w which has a reduced expression ending in the longest
element of WT ; hence, this representative has T � In.w/. As a basis for DT , we
can take images of the elements in AT corresponding to cosets which have longest
representatives with T D In.w/. In particular, DT ¤ 0. For a general building ˆ,
note that if ˆ0 � ˆ is a subbuilding of the same type, then AT .ˆ0/ D AT .ˆ/jˆ0

and hence, DT .ˆ0/ � DT .ˆ/. Since W � ˆ is a subbuilding this means that
DT .ˆ/ ¤ 0 for all T 2 � .

Definition 6.1. The abelian group A and the family of subgroups fAT gT 	S define a
“coefficient system” �.A/ on X so that the i -cochains with coefficients in �.A/ are
given by

C i .X I�.A// WD
Y

c2X.i/

AS.c/;
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where X .i/ denotes the set of i -cells in X .

We continue to write UX for U.ˆ; X/. Let U.i/ denote the set of i -cells in UX .
Given a chamber ' 2 ˆ and an i -cell c in X , let ' 
 c denote the corresponding i -cell
in UX . Given a finitely supported function ˛ W U.i/ ! Z, and an i -cell c 2 X .i/ with
S.c/ spherical, we get an element f 2 AS.c/ defined by f .'/ WD ˛.' 
c/: Of course,
when S.c/ is not spherical, AS.c/ D 0. So, for any finite, mirrored CW complex X ,
this establishes an isomorphism

C i .X I�.A// Š C i
fin.UX ; U‡.X//: (6.1)

In other words, the isomorphism (6.1) is given by identifying a finitely supported
function on the inverse image in U.i/ of a cell c 2 X .i/ with a function on ˆ (i.e.,
with an element of A) which is constant on S.c/-residues containing the cells ' 
 c.

The coboundary maps in C�.X I�.A// are defined by using these isomorphisms
to transport the coboundary maps on finitely supported cochains to C�.X I�.A//.
This means that the coboundary maps in C�.X I�.A// are defined by combining the
usual coboundary maps in C �.X/ with the inclusions AU ,! AT for U � T . Hence,
the isomorphism in (6.1) is an isomorphism of cochain complexes. This proves the
following.

Lemma 6.2. For X a finite, mirrored CW complex,

H �.X I�.A// D H �
fin.UX ; U‡.X// D H �

c .UXf /:

Proof. The second equation is from Lemma 5.1. �

Remark. If ˆ D W , then A D ZW . C�.X I�.ZW // can be interpreted as the
equivariant cochains on U.W; X/ with coefficients in ZW . When X is a finite
complex, (6.1) asserts

C�.X I�.ZW // D C �
fin.UX ; U‡.X//:

The corresponding cohomology groups were studied in [10], [7]. In particular, when
X D K, these cohomology groups are isomorphic to H �.W IZW /.

In what follows the coefficient system is usually �.A/ and we shall generally omit
it from our notation, writing H . / and C. / instead of H . I�.A// and C. I�.A//.
(In other words, the coefficients �.A/ are implicit when we use the calligraphic C or
H notation.)

As usual, � denotes the simplex of dimension n D jS j � 1 with its codimension
one faces indexed by S .
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Theorem 6.3 (cf. [16], Theorem B, as well as [11], [15]). H �.�/ is concentrated
in degree n and is free abelian; moreover, H n.�/ D D;. More generally, for any
subset U of S , H �.�; �U / is concentrated in degree n and is free abelian and

H n.�; �U / D A
ı X

s2S�U

As

Proof. By Lemma 6.2, H �.�/ D H �
c .U�f / and by Theorem 4.3, the right-hand

side is concentrated in degree n and is free abelian. The cochain complex looks like


 
 
 ! Cn�1.�/! Cn.�/! 0;

where Cn.�/ D A and Cn�1.�/ DL
As . It follows that cohomology in degree n

is the quotient
A

ı X
s2S

As D D;:

Similarly, H �.�; �U / D H �
c .U�f ��U /, and by Corollary 4.7 the right-hand

side is concentrated in degree n and is free abelian. Since Cn.�; �U / D A and
Cn�1.�; �U / DL

s…U As , we get the final formula in the theorem. �

Corollary 6.4. D; is free abelian.

Remark. We saw in Section 2 that whenever W is infinite, U.W; �f / is homeo-
morphic to Euclidean space Rn. Hence, the compactly supported cohomology of
U.W; �f / is that of H �

c .Rn/. Similarly, U.R; �f � .�f /U / is homeomorphic to
Rn, for each .S � U /-residue R.

Remark. U.W; �f / is a thickened version of U.W; K/. In the proof of Corol-
lary 3.10 we explained the cellulation of U.W; K/ by “Coxeter cells.” The corre-
sponding cellular chain complex, C�.U.W; K//, has the form

ZW  �
M
s2S

H s  �
M

T 2�.2/

H T  � 
 
 
 ;

where H T is the representation induced from the sign representation of WT and
where � .k/ is the set of spherical subsets with k elements (cf. §8 in [11]). The
cochain complex C�.�/ for n � 2 � � � n, looks like


 
 
 �!
M

T 2�.2/

AT�!
M
s2S

As�! ZW:

So, C�.U.W; K// and C n��
c .U.W; �f // are Poincaré dual to each other.
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7. The Decomposition Theorem

Our goal in this section is to prove the following (cf. [26], Theorem 9.11 in [11], [10],
Corollary 3.3).

Theorem 7.1 (The Decomposition Theorem). For each subset T of S , there is a
direct summand OAT � AT such that

AT D
M
V �T

OAV :

Remark 7.2. For any subgroup B � A, put BT WD AT \B . This gives a coefficient
system �.B/ on any mirrored CW complex X defined by

�.B/.c/ WD BS.c/;

where c is a cell of X . Suppose that we have a decomposition of abelian groups
A DL

Bi satisfying the following condition for all subsets T of S :

AT D
M

i

.Bi /
T : (7.1)

As explained in [10], §2, this leads to a decomposition of coefficient systems, �.A/ DL
�.Bi /, and a decomposition of cochain complexes:

C�.X I�.A// D
M

i

C�.X I�.Bi // (7.2)

Since

. OAV /T D
´ OAV if V � T ,

0 otherwise,

the formula in the Decomposition Theorem satisfies .A/T DL
V �T . OAV /T , for all

T � S . In other words, it satisfies (7.1). So, we get a decomposition of coefficient
systems �.A/ D L

�. OAV / and then a corresponding decomposition of cochain
complexes:

C�.X I�.A// D
M

V

C�.X I�. OAV // (7.3)

This leads to the decomposition theorems for cohomology in the next section.

Before embarking on the proof of the Decomposition Theorem, we roughly outline
the argument. We continue our policy from Section 6 of omitting the coefficient
system �.A/ from our notation.
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1) As we explained in the proof of Theorem 6.3, the fact (Theorem 4.3) that
U.ˆ; �f / is SIn�1 means that the cochain complex


 
 
 ! Cn�1.�/! Cn.�/! 0;

has cohomology only in the top degree n and that the cokernel D; (D A=
P

As)
of the next to top coboundary map is free abelian. Hence, it splits off as a direct
summand OA; of A.

2) There are similar cohomological statements for the face �T of � corresponding
to a spherical subset T of S (cf. Proposition 7.3 below). This means that the
quotient DT of AT is free abelian and hence, that it splits off as a direct summand
OAT of AT .

3) The cohomological statements mentioned in 2) are proved by induction on jT j
starting with Theorem 6.3 as the base case. Although the formulas in Propo-
sitions 7.3 and 7.5 seem complicated, their proofs only involve standard exact
sequences in cohomology.

4) The cohomological statements in 2) are combined to get the Decomposition
Theorem.

With regard to 2), we first want to prove a version of Theorem 6.3 for lower
dimensional spherical faces of �. Suppose T is a spherical subset of S . Put � D �T

and m D n � jT j. Let U be an arbitrary subset of S � T .

Proposition 7.3. Each of the following cohomology groups is concentrated in the
top degree and is a free abelian group in that degree:

H �.�; �U /; H �.�U ; @.�U //; and H �.�U /

(The top degrees are m, m�1, and m�1, respectively.) Moreover, there are canonical
identifications:

H m.�; �U / D AT
ı X
s2.S�T /�U

AT [fsg; (7.4)

H m�1.�U ; @.�U // D
X
s2U

AT [fsg; (7.5)

H m�1.�U / D
X
s2U

AT [fsgı X
s2U

t2.S�T /�U

AT [fs;tg: (7.6)

Proof. We first prove H �.�; �U / is concentrated in degree m and is free abelian.
The proof is by induction on the number of elements in T . It holds for jT j D 0 by
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Theorem 6.3. Suppose T D T 0 [ fsg, U 0 D U [ fsg and � D �T 0 . The exact
sequence of the triple .�; �U 0

; �U / gives


 
 
 ! H ��1.�; �U /! H �.�; �U 0

/! H �.�; �U /! 
 
 

(This uses the excision, H ��1.�U 0

; �U / Š H ��1.�; �U /.) By inductive hypothe-
sis, the last two terms are free abelian and concentrated in degree m C 1. Hence,
H �.�; �U / is concentrated in degree m. It is free abelian since it injects into a free
abelian group.

That the other cohomology groups are free abelian and are concentrated in the
top degree follows from various exact sequences. For example, for H �.�U ; @.�U //,
consider the sequence of the triple .�; @�; � .S�T /�U /:

! H ��1.�U ; @.�U //! H �.�; @�/! H �.�; � .S�T /�U /!; (7.7)

where we have used the excision H ��1.@�; � .S�T /�U / Š H ��1.�U ; @.�U // to
identify the first term. The second and third terms are free abelian and concentrated
in degree m; hence, the first term is free abelian and concentrated in degree m � 1.
For H �.�U /, we have the exact sequence of the pair .�; �U /:

! H ��1.�U /! H �.�; �U /! H �.�/!; (7.8)

where the second and third terms are free abelian and concentrated in degree m.
Hence, H �.�U / is free abelian and is concentrated in degree m � 1.

It remains to verify formulas (7.4), (7.5) and (7.6). We have Cm.�; �U / D AT

and Cm�1.�; �U / DL
s…U AT [fsg, so

H m.�; �U / D AT
ı X

s…U

AT [fsg;

proving (7.4). (In particular, H m.�/ D DT and H n.�/ D D;.) In the exact
sequence (7.7), we have H m.�; @�/ D AT and, by (7.4), H m.�; � .S�T /�U / D
AT =

P
s2U AT [fsg; hence, (7.5). Using (7.4) to calculate the second and third terms

of (7.8), we get

H m�1.�U / D
X

s2S�T

AT [fsgı X
s2.S�T /�U

AT [fsg

and this can be rewritten as (7.6). �

By Proposition 7.3, in the case where U D ;, DT is the free abelian group
H m.�T /. So, for each T 2 � , we can choose a splitting 
T W DT ! AT of the
projection map AT ! DT .
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Definition 7.4. Let OAT WD 
T .DT /. (It is a direct summand of the free abelian group
AT .)

Proposition 7.5. In the following three formulas, the obvious maps from the right-
hand sides of these equations to the right-hand sides of the corresponding equations in
Proposition 7.3 are isomorphisms. Hence, these isomorphisms induce isomorphisms
with the indicated cohomology groups on the left-hand sides:

H m.�; �U / D
M
V �T

V �T 	U

OAV (7.9)

H m�1.�U ; @.�U // D
M
V �T

.V �T /\U ¤;

OAV (7.10)

H m�1.�U / D
M
V �T

V �T 	U

OAV (7.11)

Proof. Assume by induction that (7.9) through (7.11) hold for dim � D m � 1 and
assume as well that they hold when dim � D m and U is replaced by U 0 with
jU 0j < jU j. Write U D fsg [ U 0, for some s 2 U . Consider the exact sequence of
the triple .�U ; �s [ @.�U /; @.�U //:

0! H m�1.�U 0

; @.�U 0

//! H m�1.�U ; @.�U //! H m�1.�s; .�s/S�U 0

/! 0;

(7.12)
where we have used the excisions H �.�U ; �s [ @.�U // D H �.�U 0

; @.�U 0
// and

H �.�s[@.�U /; @.�U // D H �.�s; .�s/S�U 0
/ to rewrite the first and third terms. By

induction,

H m�1.�U 0

; @.�U 0

// D
M
V �T

V \U 0¤;

OAV ;

H m�1.�s; .�s/S�U 0

/ D
M

V �T [fsg
V 	.T [fsg/[.S�U 0/

OAV

Substituting these into the last two terms of (7.12), we get

H m�1.�U ; @.�U // D
M
V �T

V \U ¤;

OAV ;

which is (7.10). Next consider the Mayer–Vietoris sequence of �U D �U 0 [ �s:

0! H m�2..�s/U 0

/! H m�1.�U /! H m�1.�U 0

/˚H m�1.�s/! 0: (7.13)
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By induction,

H m�2..�s/U 0

/ D
M

V �T [fsg
V �.T [fsg/	U 0

OAV and H m�1.�U 0

/ D
M
V �T

V �T 	U 0

OAV

and H m�1.�s// D OAT [fsg. Substituting these into (7.13) we get

H m�1.�U / D
M
V �T

V �T 	U

OAV ;

which is (7.11). Sequence (7.8) is

0! H m�1.�U /! H m.�; �U /! H m.�/! 0:

Substituting (7.11) for the first term and OAT for the third, we get formula (7.9) for
the middle term. �

We have H m.�; @�/ D AT . Hence, in the special case U D S �T , formula (7.9)
is the Decomposition Theorem.

8. Cohomology of buildings

Just as in [10], Theorem 3.5, the Decomposition Theorem (Theorem 7.1) implies the
following.

Theorem 8.1 (cf. [16], Corollary 8.2, [11], Theorem 10.3, [10], Theorem 3.5). Sup-
pose X is a finite, mirrored CW complex. Then

H �
c .U.ˆ; Xf // Š

M
T 2�

H �.X; XS�T /˝ OAT :

Proof. By Lemma 6.2, H �
c .U.ˆ; Xf // is the cohomology of C�.X I�.A//. For-

mula (7.3) gives a decomposition of cochain complexes:

C�.X I�.A// D
M
T 2�

C�.X I�. OAT //

We have
Ck.X I�. OAT // D

Y
c2X.k/

OAT \ AS.c/ D
Y

c2X.k/

c 6	XS�T

OAT :
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So, an element of Ck.X I�. OAT // is just an ordinary OAT -valued cochain on X which
vanishes on XS�T , i.e.,

C�.X I�. OAT // D C �.X; XS�T /˝ OAT I
so,

C�.X I�.A// D
M
T 2�

C �.X; XS�T /˝ OAT :

Taking cohomology, we get the result. �

The most important special case of the previous theorem is the following.

Corollary 8.2.
H �

c .U.ˆ; K// Š
M
T 2�

H �.K; KS�T /˝ OAT :

9. The G -module structure on cohomology

Assume X has a W -finite mirror structure (i.e., X D Xf ). Suppose G is a group of
automorphisms of ˆ. Then A, AT , A>T and DT are naturally right G-modules and
so is the cochain complex C �

c .U.ˆ; X// as well as its cohomology. The discussion
in Section 8 is well adapted to studying the G-module structure of H �

c .U.ˆ; X//.
As in [10], we should not expect a direct sum splitting of G-modules analogous to
the nonequivariant splitting of Theorem 8.1; rather there should be a filtration of
cohomology by G-submodules with associated graded terms similar to those in the
direct sum. We show below that this is indeed the case.

For each nonnegative integer p, define a G-submodule Fp of A by

Fp WD
X

jT j�p

AT :

This gives a decreasing filtration:

A D F0 � 
 
 
 � Fp � FpC1 
 
 
 : (9.1)

As in [10], it follows from the Decomposition Theorem that the associated graded
terms are

Fp=FpC1 D
M

jT jDp

DT :

As in Section 6, we get a coefficient system �.Fp/, a cochain complex C�.X I�.Fp//

and corresponding cohomology groups H �.X I�.Fp//. The filtration (9.1) leads to
a filtration of H �.X I�.A// (D H �

c .U.ˆ; X//) by right G-modules,
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H �.X I�.A// � 
 
 
 � H �.X I�.Fp// � H �.X I�.FpC1// 
 
 
 : (9.2)

The Decomposition Theorem implies that

0�!H �.X I�.FpC1//�!H �.X I�.Fp//�!H �
�

C�.X I�.Fp//

C�.X I�.FpC1//

�
�! 0

is short exact. From this we deduce the following.

Theorem 9.1. Suppose G is a group of automorphisms of ˆ. Then the filtration (9.2)
of H �

c .U.ˆ; X// by right G-modules has associated graded term,

H �.X IFp/=H �.X IFpC1/ Š
M

T 2�.p/

H �.X; XS�T /˝DT :

Cocompact G -action. In this final paragraph we assume that there are only finitely
many G-orbits on ˆ and that X is a finite complex. These hypotheses imply that
the quotient space U.ˆ; X/=G is compact and since X is a finite complex, that each
of the cohomology groups H �.X; XS�T / is finitely generated. As a corollary to
Theorem 9.1, we get the following.

Corollary 9.2. With the above hypotheses, H �
c .U.ˆ; X// is a finitely generated

G-module.

Proof. The assumption that G has only finitely many orbits of chambers implies that
each AT is finitely generated G-module; hence, so is each DT . �

Example 9.3. Suppose G is chamber transitive, i.e., suppose ˆ consists of a single
G-orbit. Choose a base chamber '0, let B be its stabilizer and for each T 2 � , let GT

be the stabilizer of the T -residue containing '0. Then A is the G-module Z.G=B/ of
finitely supported functions on G=B and AT can be identified with Z.G=GT /. For
each U � T , we have a natural inclusion Z.G=GU / ! Z.G=GT / induced by the
projection G=GT ! G=GU and DT is the G-module formed by dividing out the
sum of the images of Z.G=GU / in Z.G=GT / for all U � T .

Since DT ¤ 0, we get the following corollaries to Corollary 8.2 and Theorem 9.1.

Corollary 9.4. Suppose � � G is a cocompact lattice in G. Then H �.�IZ�/ has,
in filtration degree p, associated graded �-moduleM

T 2�.p/

H �.K; KS�T /˝DT :
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In particular, when � is torsion-free, its cohomological dimension is given by

cd.�/ D maxfk j H k.K; KS�T / ¤ 0 for some T 2 �g:
A torsion-free group � is an n-dimensional duality group if H �.�IZ�/ is free

abelian and concentrated in dimension n. Following Definition 6.1 in [13], we say that
the nerve of a Coxeter system has punctured homology concentrated in dimension
n if for all T 2 � , zH �.KS�T / is free abelian and concentrated in dimension n.
Corollary 8.2 gives us a (correct) proof of the following result, which was stated in
[13], Theorem 6.3.

Corollary 9.5. Suppose � � G is a torsion-free, cocompact lattice in G. Then the
following are equivalent.

1) � is an n-dimensional duality group.

2) W is an n-dimensional virtual duality group.

3) The nerve of .W; S/ has punctured homology concentrated in dimension n� 1.
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