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Small exotic Stein manifolds

Selman Akbulut�and Kouichi Yasui

Abstract. It is known that the only Stein filling of the standard contact structure on S3 is B4.
In this paper, we construct pairs of homeomorphic but not diffeomorphic simply connected
compact Stein 4-manifolds, for any Betti number b2 � 1; we do this by enlarging corks and
plugs.
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1. Introduction

A properly imbedded complex submanifold of an affine space X � CN is called a
Stein manifold. A compact smooth submanifold M � X is called a compact Stein
manifold if it is cut out from X by f � c, where f W X ! R is a strictly pluri-
subharmonic (proper) Morse function, and c is a regular value. In particular M is
a symplectic manifold with convex boundary and the symplectic form ! D 1

2
@N@f .

The form ! induces a contact structure � on the boundary @M . We call .M; !/ a
Stein filling of the boundary contact manifold .@M; �/. Stein manifolds have been
a useful tools for studying exotic smooth structures on 4-manifolds, since smooth
4-manifolds can be decomposed into codimension zero Stein pieces (e.g. [3], [5]).

In [8], [9] Eliashberg characterized the topology of Stein manifolds and proved
that S3 with the standard contact structure has a unique Stein filling B4 (for more
uniqueness results see [11]). However, Ozbagci–Stipsicz [12] and Smith [13] con-
structed infinitely many different Stein fillings of some contact 3-manifolds up to dif-
feomorphism. Their Stein fillings are distinguished by their first homology groups,
so in particular they are not homeomorphic to each other. It is thus interesting to
find pairs of homeomorphic but not diffeomorphic compact Stein 4-manifolds. Re-
cently, by using Fintushel–Stern’s knot surgery, Akhmedov–Etnyre–Mark–Smith [6]
constructed infinitely many simply connected compact Stein 4-manifolds that are
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mutually homeomorphic but not diffeomorphic, and the induced contact structures
on their boundaries are isomorphic. Here we give various examples of small simply
connected compact Stein manifold pairs, that are homeomorphic but not diffeomor-
phic to each other, and describe their handlebodies concretely. In the light of the
Eliashberg’s theorem it is interesting to seek such exotic pairs with the smallest sec-
ond Betti number b2. Our examples provide the case b2 D 1. Note that the previously
constructed exotic contractible manifold of [1] is only exotic rel boundary, and the
exotic manifold pairs of [2] have b2 D 1 but are not both Stein.

Corks and plugs are fundamental objects detecting exotic smooth structures on
4-manifolds [5]. In [1] the first example of a cork was found. In [2] an exotic pair of
simply connected 4-manifolds with boundaries was constructed, by enlarging a cork.
In [5] examples of infinitely many corks and plugs were found. In this paper, we
construct examples of exotic pairs of compact Stein 4-manifolds, by enlarging corks
and plugs. We also give handlebody pictures of these Stein manifolds.

Theorem 1.1. For every second Betti number b2 � 1, there exist pairs of simply
connected compact Stein 4-manifolds which are homeomorphic but not diffeomorphic
to each other.

Theorem 1.2. For every n � 0, there exist pairs of simply connected compact Stein
4-manifolds with the following properties:

(i) They are homeomorphic but not diffeomorphic to each other;

(ii) The first homology groups of their boundaries are Z=nZ.

Theorem 1.3. There exist pairs of simply connected compact Stein 4-manifolds with
the following properties:

(i) Their boundaries are diffeomorphic;

(ii) Their integer coefficient homology groups are isomorphic;

(iii) Their intersection forms are not isomorphic. In particular, they are not homeo-
morphic.

Let X be a simply connected compact smooth 4-manifold with H2.X I Z/ Š Z.
Define the genus G.X/ of X as the minimal number of the genera of surfaces which
represent a generator of H2.X I Z/. In this paper, by enlarging corks we also construct
the examples of exotic pairs below. These examples show that the distance of genera
of two homeomorphic (Stein) 4-manifolds can be arbitrarily large.

Theorem 1.4. For every n � 0, there exist simply connected compact Stein 4-mani-
folds Xn and Yn with the following properties:

(i) They are homeomorphic but not diffeomorphic to each other;
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(ii) H2.XnI Z/ Š H2.YnI Z/ Š Z;

(iii) G.Xn/ � G.Yn/ � n.

Acknowledgment. The second author would like to thank his adviser Hisaaki Endo
for his heartfelt encouragement. This work was partially done during the second
author’s stay at Michigan State University. The second author is grateful for their
hospitality. Finally, the authors would like to thank the referee for his/her useful
comments.

2. Corks and plugs

In this section, we briefly recall corks and plugs. For details, see [5]. For basics of
handlebody pictures, see [10].

Definition 2.1. Let C be a compact Stein 4-manifold with boundary, and let � W
@C ! @C be an involution on the boundary. We call .C; �/ a Cork if � extends to
a self-homeomorphism of C , but cannot extend to any self-diffeomorphism of C . A
cork .C; �/ is called a cork of a smooth 4-manifold X , if C � X and X changes its
diffeomorphism type when removing C and regluing it via � . Note that this operation
does not change the homeomorphism type of X .

Definition 2.2. Let P be a compact Stein 4-manifold with boundary, and let � W
@P ! @P be an involution on the boundary, which cannot extend to any self-
homeomorphism of P . We call .P; �/ a Plug of X , if P � X and X keeps its
homeomorphism type and changes its diffeomorphism type when removing P and
gluing it via � . We call .P; �/ a Plug if there exists a smooth 4-manifold X such that
.P; �/ is a plug of X .

Definition 2.3. Let Wn and Wm;n be the smooth 4-manifolds in Figure 1. Let
fn W @Wn ! @Wn and fm;n W @Wm;n ! @Wm;n be the obvious involutions obtained

n nC1

0

n

�m

W n : W m, n :

0

Figure 1

by first surgering S1 �B3 to B2 �S2 in the interiors of Wn and Wm;n, then surgering
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the other imbedded B2 � S2 back to S1 � B3 (i.e., replacing the dots in Figure 1),
respectively. Note that the diagrams of Wn and Wm;n are symmetric links.

Theorem 2.4 ([1], [5]). (1) For n � 1, the pair .Wn; fn/ is a cork.
(2) For m � 1 and n � 2, the pair .Wm;n; fm;n/ is a plug.

3. Proofs

3.1. Enlarging corks. In this subsection, we construct exotic smooth pairs of com-
pact Stein 4-manifolds by enlarging corks Wn.

Definition 3.1. Let C1.m; n; p; q/ be the simply connected compact 4-manifold in
Figure 2. Let C2.m; n; p; q/ be the simply connected compact 4-manifold in Figure 3.
Here each m-framed knot of Figure 2 and 3 is the .p; p � 1/-torus knot.

p�1

p

m

n nC1

0

�2 �2 �2 �2

q

Figure 2. C1.m; n; p; q/.

Lemma 3.2. (1) C1.m; n; p; q/ and C2.m; n; p; q/ are homeomorphic.
(2) C1.m; n; p; q/ and C2.m; n; p; q/ are compact Stein 4-manifolds for n � 1,

q � 0 and m � p2 � 3p.
(3) H1.@C1.m; n; p; 0/I Z/ Š H1.@C2.m; n; p; 0/I Z/ Š Z=mZ.
(4) H2.C1.m; n; p; q/I Z/ Š H2.C2.m; n; p; q/I Z/ Š ˚qC1Z.

Proof. (1) C2.m; n; p; q/ is obviously obtained from C1.m; n; p; q/ by removing
the contractible 4-manifold Wn and regluing it via the involution fn. The claim now
follows from Freedman’s theorem.
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p�1

p

m

n nC1

0
�2 �2 �2 �2

q

Figure 3. C2.m; n; p; q/.

(2) By isotoping the diagrams of C1.m; n; p; q/ and C2.m; n; p; q/ into Legen-
drian diagrams (and changing the 1-handle notation) as in Figure 4 and 5, respectively,
we can easily see that these manifolds are Stein, by checking the Eliashberg’s cri-
terium: The framing of each 2-handle is less than the Thurston–Bennequin number.

p�1

p

m

�2 �2 �2 �2

q

n

0

n�1

Figure 4. C1.m; n; p; q/.
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p�1

p

m

�2 �2 �2 �2

q

n

0

n�1

Figure 5. C2.m; n; p; q/.

(3) The claim follows from the fact that the intersection forms of C1.m; n; p; 0/

and C2.m; n; p; 0/ are isomorphic to hmi.
(4) This clearly follows from the definition. �

We first prove the theorem below. This theorem together with Lemma 3.2 clearly
gives Theorem 1.1 and 1.2.

Theorem 3.3. (1) C1.m; n; p; 0/ and C2.m; n; p; 0/ are homeomorphic but not dif-
feomorphic to each other, for n � 4, p � 1 and m � p2 � 3p C 1.

(2) C1.m; n; p; 0/ and C2.m; n; p; 0/ are homeomorphic but not diffeomorphic
to each other, for 1 � n � 3, p � 3 and m � p2 � 3p C 1.

(3) C1.m; n; p; q/ and C2.m; n; p; q/ are homeomorphic but not diffeomorphic
to each other, for n � 1, p; q � 1 and 0 � m � p2 � 3p C 1.

Let E.n/ be the relatively minimal simply connected elliptic surface with Euler
characteristic 12n. We begin with the theorem below.

Theorem 3.4 (Gompf–Stipsicz [10]). For n � 1, the elliptic surface E.n/ has the
handle decomposition in Figure 6. The obvious cusp neighborhood .i.e. the dotted
circle, �1-framed meridian of the dotted circle, and the left most 0-framed unknot/
is isotopic to the regular neighborhood of a cusp fiber of E.n/.
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3 33 32

�1 �1 �1 �1

9n�2

1 1 1 1

3n�2

0

�n

\

4-handle
0

Figure 6. E.n/.

Corollary 3.5. For n � 1, the elliptic surface E.n/ has a handle decomposition as
in Figure 7. The obvious cusp neighborhood is isotopic to the regular neighborhood
of a cusp fiber of E.n/.

3 33

1 1 1

n

�1 �1 �1 �1

9n�3

\

2n 2-handles [ 4-handle

0

�n
3

1

Figure 7. E.n/.

Proof. In Figure 6, pull off the leftmost 0-framed unknot from the dotted circle by
sliding over �1-framed knot. �

Proposition 3.6. For p; q; r � 1, the elliptic surface E.p C q C 2r C 1/ has
a handle decomposition as in Figure 8, where k D 3r � 2; 3r � 1; 3r . The ob-
vious cusp neighborhood is isotopic to the regular neighborhood of a cusp fiber of
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E.p C q C 2r C 1/. The symbol F denotes the class of a regular fiber of
E.p C q C 2r C 1/ in H2.E.p C q C 2r C 1/I Z/.

p�1

p

k

2r�1

�2 �2 �2 �2

q

0

\

 3-handle

\

12pC11qC24rC9  2-handles

p2 �3pC1 F

\

 4-handle

kC1

Figure 8. E.p C q C 2r C 1/ .k D 3r � 2; 3r � 1; 3r/.

Proof. We give a proof for k D 3r � 2. The other cases are only slightly different.
Figure 7 shows that E.p C q C 2r C 1/ has a handle decomposition as in Figure 9.
We slide handles as in Figure 10. Notice that we ignored many 2-handles in the
process. We next introduce a 2-handle/3-handle pair and slide the new 2-handle as
in the second and third diagrams of Figure 11. We repeat a handle slide as in the
third, fourth and fifth diagrams. (For more details, see [14, Figure 15–17] and [15,
Proposition 3.1 (1)].) We now get the sixth diagram by an isotopy. By sliding the
p2-framed knot over �1-framed knots, we obtain the last diagram. This procedure
gives a diagram of E.p C q C 2r C 1/ as in Figure 8. �

By blowing ups, we get the following corollary.

Corollary 3.7. For p; q; r � 1, the 4-manifold E.p C q C 2r C 1/ # .2r � 1/CP2

has a handle decomposition as in Figure 12. The symbol F denotes the class of a
regular fiber of E.p C q C 2r C 1/ in H2.E.p C q C 2r C 1/I Z/. The symbols
E1; E2; : : : ; E2r�1 denote a standard basis of H2..2r � 1/CP2I Z/.

We can now prove Theorem 3.3.

Proof of Theorem 3.3. Let ˛ be a generator of H2.C1.m; n; p; 0/I Z/ Š Z. Let ˇ be
a generator of H2.C2.m; n; p; 0/I Z/ Š Z. We can easily check that ˇ is represented
by a surface with its genus 1

2
.p2 � 3p C 2/.
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33

1 1

r

�1 �1 �1 �1

3pCqC1

\

22rC9pC11qC8  2-handles\

 4-handle

0

333

1 1

r

1

Figure 9. E.p C q C 2r C 1/.

(1) (i) The case m D p2 � 3p C 1 and n D 3r � 2 .r 2 Z�2/: Since PD..p C
2r � 1/F / is a Seiberg–Witten basic class of E.p C 2r C 1/ (see [10].), the blow up
formula shows that K WD PD..p C2r �1/F CE1 CE2 C� � �CE2r�1/ is a Seiberg–
Witten basic class of E.p C 2r C 1/ # .2r � 1/CP2. Here the symbol PD denotes
the Poincaré dual. Let ˛0 be the element of H2.E.p C 2r C 1/ # .2r � 1/CP2I Z/

induced from ˛ by the inclusion of C1.m; n; p; 0/ as shown in Figure 12. Put g

as the genus of a surface which represents ˛. Then the adjunction inequality for the
symplectic 4-manifold E.pC2r C1/ # .2r �1/CP2 shows the following inequality:

jK.˛0/j C ˛02 �
´

2g � 2 if g � 2;

0 if g D 0; 1:

This inequality together with Figure 12 shows that

g � 1

2
.p2 � 3p C 2r C 2/:

Note that the right side of the inequality above is greater than or equal to 2. Since
ˇ is represented by a surface with its genus 1

2
.p2 � 3p C 2/, the inequality above

shows that C1.m; n; p; 0/ and C2.m; n; p; 0/ are not diffeomorphic.
(ii) The other cases: We first blow up Figure 12 and proceed similarly as above

by using the adjunction inequality.

(2) The same argument as the proof of (1) shows the claim.

(3) Suppose that C1.m; n; p; q/ and C2.m; n; p; q/ are diffeomorphic. Then
there exists a genus 1

2
.p2 � 3p C 2/ surface with self-intersection number m in
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33
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�1 �1 �1 �1

3pCqC1

333

1 1
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1
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3pCqC1

33r

r 1

3r

r

�1 �1 �1 �1

33r �1

r�1 1

3r

r

�1 �1 �1 �1

3

1

3pCq

3r �1 3r

2r �1

slide

slid
e

slide

iso
topy

3pCq

�1 �1 �1 �1

3p�1

3

1
2r �1

3r �2 3r �1 �2 �2 �2 �2

q

slide

�1 �1 �1 �1

3pCq

3

1
2r �1

3r �2 3r �1

Figure 10. Handle slides.
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Figure 11. Handle slide.
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p�1

p

k

0

�2 �2 �2 �2

q

\

3-handle

\

12pC11qC24rC9  2-handles

p2 �3p   C1 F

\

4-handle

kC1

E1 E2 E2r�1

0

�1 �1 �1

Figure 12. E.p C q C 2r C 1/ # .2r � 1/CP2, .k D 3r � 2; 3r � 1; 3r/.

C1.m; n; p; q/, since C2.m; n; p; q/ has such a surface. Let � be an element of
H2.C1.m; n; p; q/I Z/ with self-intersection number m. Put g as the genus of a
surface which represent � .

(i) The case m D p2 � 3p C 1 and n D 3r � 2 .r 2 Z�2/: Let � 0 be the element
of H2.E.p C q C 2r C 1/ # .2r � 1/CP2I Z/ induced from � by the inclusion of
C1.m; n; p; q/ as shown in Figure 12. The fact � 02 D m � 0 and Figure 2 shows the

existence of some element x of H2.E.p C q C 2r C 1/ # .2r � 1/CP2I Z/ such that
x � ..p C q C 2r � 1/F C E1 C E2 C � � � C E2r�1/ D 0 and � 0 D a˛0 C x .a � 1/.
Since K WD PD..p C q C 2r � 1/F C E1 C E2 C � � � C E2r�1/ is a Seiberg–Witten
basic class of E.p C q C 2r C 1/ # .2r � 1/CP2, the adjunction inequality gives
the following inequality:

jK.� 0/j C � 02 �
´

2g � 2 if g � 2,

0 if g D 0; 1:

This inequality together with Figure 12 shows

g � 1

2
.p2 � 3p C 3 C a.2r � 1//:

Note that the right side of the inequality above is greater than or equal to 2. On the
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other hand, the assumption shows that � is represented by a genus 1
2
.p2 � 3p C 2/

surface. This is a contradiction.
(ii) The other cases: We first blow up Figure 12 and proceed similarly as above

by using the adjunction inequality. �

Remark 3.8. In Theorem 3.3, we split the cases into (1) and (2) to avoid the n � 3,
p D 1; 2, q D 0 case. This is because, in this case, the adjunction inequalities in the
proof above cause difficulties with the genus g D 0 case.

The proof above of Theorem 3.3 (1) shows the corollary below. This corollary
together with Lemma 3.2 clearly gives Theorem 1.4.

Corollary 3.9. If r � 2, p � 1 and m � p2 � 3p C 1, then

G.C1.m; 3r � 2; p; 0// � G.C2.m; 3r � 2; p; 0// � r

3.2. Enlarging plugs. In this subsection, by enlarging plugs Wm;n, we construct
exotic smooth pairs of compact Stein 4-manifolds. We also construct non-homeo-
morphic pairs of compact Stein 4-manifolds with the same boundary 3-manifold.

Definition3.10. Let P1.m; n/ and P2.m; n/ be the simply connected compact smooth
4-manifolds in Figure 13.

n

0

�m

0

P1(m,n) :
n

0

�m

0

P2(m,n) :

Figure 13

We can easily prove the lemma below, similarly to the proof of Lemma 3.2. See
also the equivalent diagrams of P1.m; n/ and P2.m; n/ in Figure 14.

Lemma 3.11. P1.m; n/ and P2.m; n/ are simply connected compact Stein 4-mani-
folds for m; n � 1. The boundaries @P1.m; n/ and @P2.m; n/ are diffeomorphic.

We first prove the following theorem.

Theorem 3.12. Simply connected compact Stein 4-manifolds P1.1; 3/ and P2.1; 3/

are homeomorphic but not diffeomorphic to each other.



718 S. Akbulut and K. Yasui CMH

0

0�m

n�1

0
�m

n�1

0

P1(m,n) P2(m,n)

Figure 14. P1.m; n/ and P2.m; n/.

Proposition 3.13. E.2/ # 2CP2 has a handle decomposition as in Figure 15. Here
E1 and E2 denote a standard basis of H2.2CP2I Z/.

\

21  2-handles

\

4-handle

3 �1

0

0

E1

E2

\

3-handle�1

�1

Figure 15. E.2/ # 2CP2.

Proof. The n D 2 case of Figure 7 obviously gives the first diagram of E.2/ in
Figure 16. We get the second diagram of Figure 16 by handle moves as in the p D 3

case of Figure 11. Handle slides as in Figure 17 gives the third diagram of Figure 16.
Finally blow up twice. Then we get Figure 15. �
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\

19  2-handles

\

4-handle

\

3-handle

1

3

1

�1 �1 �1

\

21  2-handles

\4-handle

\

3-handle

1 1

3

\

10  2-handles\

4-handle

1

3

1

�1 �1 �1

3

11

Figure 16. Handle moves of E.2/.

Proof of Theorem 3.12. We can easily check that the intersection forms of both
P1.1; 3/ and P2.1; 3/ are h1i ˚ h�1i. Boyer’s theorem [7] thus shows that P1.1; 3/

and P2.1; 3/ are homeomorphic.

It follows from Figure 15 that the subspace H2.P1.1; 3/I Z/ of H2.E.2/ #
2CP2I Z/ is spanned by elements x1 and x2 such that E1 � x1 D 1, E2 � x1 D 0,
E1 � x2 D 0 and E2 � x2 D 1. The blow-up formula shows that the Seiberg–Witten
basic classes of E.2/ # 2CP2 are ˙PD.E1 ˙ E2/. Using the adjunction inequality
for E.2/ # 2CP2, we can now easily prove that there exists no non-zero element of
H2.P1.1; 3/I Z/ such that the square of the element is zero and that the element is
represented by a torus.

\

1 2-handle�1 �1 �1

3

1

�1 �1

1
0

�1

1
�2 1

3

�1

\

2 2-handles

Figure 17. Handle slide.
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On the other hand, we can easily check that there exists a non-zero element of
H2.P2.1; 3/I Z/ such that the square of the element is zero and that the element is
represented by a torus. Therefore, the claim follows. �

Remark 3.14. We can easily extend Theorem 3.12 as in Theorem 3.3.

We finally give the theorem below. This shows Theorem 1.3.

Theorem 3.15. If m � 1 is odd, and n � 1 is even, then simply connected com-
pact Stein 4-manifolds P1.m; n/ and P2.m; n/ have non-isomorphic intersection
forms, whereas they have diffeomorphic boundaries and isomorphic integer homo-
logy groups.

Proof. We can easily check that the intersection form of P1.m; n/ is odd and that the
one of P2.m; n/ is even, under the assumption. �
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