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The non-triviality of the Grope filtrations of the knot and link
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Abstract. We consider the Grope filtration of the classical knot concordance group that was
introduced by Cochran, Orr and Teichner. Our main result is that each successive quotient in
this filtration has infinite rank. We also establish the analogous result for the Grope filtration of
the concordance group of string links consisting of more than one component.
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1. Introduction

We work in the smooth category. A knot is an oriented, smooth embedding of the
circle in the three-sphere. Two knots are isotopic if there is a smooth isotopy of the
three-sphere taking one knot to the other. Isotopy is a three-dimensional notion of knot
equivalence. In this paper, we study a four-dimensional notion of knot equivalence
called concordance. Two knots K0 and K1 are concordant if there exists a smooth
embedding of an annulusA D S1�Œ0; 1� intoS3�Œ0; 1� such thatA\.S3�fig/ D Ki
for i D 0; 1. One can check that isotopic knots are concordant, and one can find
counterexamples to the converse. Given two knots, one can combine them via the
connect sum operation, denoted #. See [Rol76, p. 39] for more details. The set
of knots modulo concordance, equipped with the connect sum operation, forms an
abelian group. We wish to study this concordance group C .

In [COT03], Cochran, Orr, and Teichner introduced two filtrations of the knot
concordance group by subgroups. The .n/-solvable filtration

� � � � Fn:5 � Fn � � � � � F1 � F0:5 � F0 � C

is defined byK 2 Fn ifMK , the closed 3-manifold obtained by zero-framed surgery
on S3 along K, bounds a 4-manifold W whose intersection form on H2 is a direct

�The author was partially supported by National Science Foundation Grant DMS 0240058.



752 P. D. Horn CMH

sum of hyperbolic pairs, even when homology is considered with twisted coefficients
coming from the quotient of �1.W / by its n-th derived subgroup. Precise definitions
will be provided in Section 2. A slice knot lies in Fn for all n 2 1

2
N. In this light,

the maximum n for which K 2 Fn but K 62 Fn:5 is a measure of how close K is to
being a slice knot.

The other, more geometric filtration defined in [COT03] is the Grope filtration

� � � � Gn:5 � Gn � � � � � G3 � G2:5 � G2 � C

which is defined by K 2 Gn if K bounds a Grope of height n in D4. A grope is a
2-complex that will be defined in Section 2. As in the .n/-solvable filtration, a slice
knot lies in Gn for all n, and so the largest n for whichK 2 Gn butK 62 Gn:5 is some
measure of how far K is from being slice.

The non-triviality of the .n/-solvable filtration has been a topic of study since
its introduction. That Fn=Fn:5 has infinite rank was proved by Jiang in [Jia81] for
n D 1, by Cochran, Orr and Teichner in [COT04, Theorem 4.1] for n D 2, and by
Cochran, Harvey and Leidy in [CHL09, Theorem 8.1] for all n. Our main result is
an analogous statement for the Grope filtration.

Theorem 5.2. For every n � 2, Gn=Gn:5 has infinite rank.

Our main result improves upon previous results regarding the non-triviality of
the Grope filtration. For example, Cochran and Teichner proved in [CT07, Theorem
1.4] the existence of knots of infinite order in Gn=Gn:5. Since GnC2 � Fn [COT03,
Theorem 8.11], we are able to adapt Cochran, Harvey and Leidy’s technique [CHL09]
to prove that no non-trivial linear combination of these knots lies in Fn:5, hence not
in GnC2:5.

For the Grope filtration of the group of m-component string links with m >

1, Harvey showed in [Har08, Theorem 6.13] that for all n, Gmn =G
m
nC2 contains an

infinitely generated subgroup. Let BGmn denote the subgroup of Gmn whose elements
are boundary links. Combining [Har08, Theorem 6.13] and [CH08, Theorem 4.4],
it is known that for each m > 1 and n � 2, the abelianization of BGmn =BGmnC1:5
has infinite rank. We improve the result by narrowing the index gap, arriving at what
should be the optimal result.

Theorem 6.2. For each m > 1 and n � 2, the abelianization of BGmn =BGmn:5 has
infinite rank; hence Gmn =G

m
n:5 contains an infinitely generated subgroup.

2. Definitions

If G is a group, the derived series of G is defined recursively by G.0/ D G and
G.iC1/ D ŒG.i/; G.i/�. The rational derived series of G is defined recursively by
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setting G.0/r D G and

G.iC1/r D ˚
g 2 G W gk 2 ŒG.i/r ; G.i/r �; for some k > 0

�
:

Let M be closed, connected, orientable 3-manifold. Recall from [COT03] the
definition of an .n/-solution for M .

Definition 2.1. A smooth, spin 4-manifoldW with @W D M is an .n/-solution forM
if the inclusion-induced map i� W H1 .M/ ! H1 .W / is an isomorphism and if there
are embedded surfaces Li and Di (with product neighborhoods) for i D 1; : : : ; m

that satisfy the following conditions:

(1) the homology classes fŒL1� ; ŒD1� ; : : : ; ŒLm� ; ŒDm�g form an ordered basis for
H2 .W /,

(2) the intersection form
�
H2 .W / ; �

�
with respect to this ordered basis is a direct

sum of hyperbolics,

(3) Li \Dj is empty if i ¤ j ,

(4) for each i , Li and Di intersect transversely at a point, and

(5) each Li and Di are .n/-surfaces, i.e., �1.Li / � �1.W /
.n/ and �1.Di / �

�1.W /
.n/.

If, in addition, �1.Li / � �1.W /
.nC1/ for each i , we say W is an .n:5/-solution

for M .
There is a slight generalization of n-solvability, called rational n-solvability. For

the purposes of this paper, it suffices to know that an n-solution is also a rational n-
solution. If the above conditions hold except for the isomorphism on first homology,
W is called an .n/-bordism for M .

If a closed, orientable 3-manifold bounds an .n/-solution, we say M is .n/-
solvable. A knot K in S3 is said to be an .n/-solvable knot if 0-surgery on K is
.n/-solvable.

As in [COT03], the set of all .n/-solvable knots is denoted Fn, where it was
shown that these Fn filter the topological knot concordance group C , i.e., the Fn
form a nested series of subgroups of C :

f0g � � � � � Fn:5 � Fn � � � � � F1:5 � F1 � F0:5 � F0 � C :

The following definition is modified from the definition in [FT95]:

Definition 2.2. A grope is a special pair (2-complex, base circle). A grope has a
height n 2 1

2
N. A grope of height 1 is precisely a compact, oriented surface † with

a single boundary component (the base circle). For n 2 N, a grope of height nC 1

is defined recursively as follows: let f˛i ; ˇi W i D 1; : : : ; gg be a symplectic basis of
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curves for †, the first stage of the grope. Here g is the genus of †. Then a grope of
height nC 1 is formed by attaching gropes of height n to each ˛i and ˇi along the
base circles.

A grope of height 1:5 is formed by attaching gropes of height 1 (i.e. surfaces) to
a Lagrangian of a symplectic basis of curves for †. That is, a grope of height 1:5 is
a surface with surfaces glued to ‘half’ of the basis curves (i.e. the ˛i ). In general,
a grope of height n C 1:5 is obtained by attaching gropes of height n to the ˛i and
gropes of height nC 1 to the ˇi .

Given a 4-manifoldW with boundaryM and a framed circle � � M , we say that
� bounds a Grope (note the capital ‘G’) inW if � extends to a smooth embedding of
a grope with its untwisted framing. That is, parallel push-offs of Gropes can be taken
in W . Knots in S3 are always equipped with the zero framing.

Cochran, Orr, and Teichner [COT03] also defined the Grope filtration of C . The
set of all knots that bound Gropes of height n inD4 is denoted Gn, which is a subgroup
of C . Observe the following connection between gropes and the derived series: if a
curve ` bounds a (map of a) grope of height n in a space X , then Œ`� 2 �1.X/.n/. It
was shown in [COT03, Theorem 8.11] that GnC2 � Fn (for all n 2 1

2
N).

We will also use a few definitions from [CT07].

Definition 2.3. An annular grope of height n is a grope of height n that has an extra
boundary component on its first stage. We say that the two boundary components
of an annular grope cobound an annular grope. Two knots K0 and K1 are height n
Grope concordant if they cobound a height n annular GropeG in S3� Œ0; 1� such that
G\ .S3�fig/ D Ki for i D 0; 1. For example, ifK is height nGrope concordant to
a slice knot, thenK 2 Gn. The capital ‘G’ in ‘annular Grope’ indicates the untwisted
framing.

Let G be a height n Grope in S3 � Œ0; 1� bounded by a knot K � S3 � f0g. The
union of sets of basis curves for each n-th stage surface of G is called a set of tips
for G. If the tips lie on annuli in S3 � Œ0; 1� that are disjoint from each other and
disjoint from the Grope (except at the tips) and the other boundary components of
the annuli lie in S3 � f1g, we say ‘the tips are isotopic’ to the link determined by the
other boundary components of these annuli (a link in S3 � f1g).

A capped Grope is the union of a Grope and a disjoint union of discs where the
boundaries of the discs form a full set of tips of the Grope. The interiors of these discs
must not intersect the Grope except perhaps on one of the boundary components of
the Grope’s first stage. These discs are called the ‘caps’ of the Grope. For example,
if K bounds a capped Grope, the caps are allowed to hit K.

The construction of our examples relies on a technique known as infection. Let
R be a fixed knot or link and K be a fixed knot in S3. Suppose ˛ is a simple closed
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curve in S3 � R such that ˛ is itself the unknot. Some number m of strands of R
pierce the disc bounded by ˛. Let R.˛;K/ denote the knot obtained by replacing
the m trivial strands of R by m strands ‘tied into the knot K.’ See Figure 1. More
precisely, one obtains R.˛;K/ by removing a regular neighborhood of ˛ and gluing
in S3�K in such a way that identifies the meridian of ˛ with the longitude ofK and
the longitude of ˛ with the meridian of K. We say R.˛;K/ is the result of infecting
R by K along ˛.

˛

R

� K

Figure 1. Infecting R by K along ˛.

Let .H; J / denote the zero-framed, ordered Hopf link in the complement of a
knot or link R in Figure 2. Surgery on .H; J / is homeomorphic to S3 [Kir78,
§4, Proposition 2], so the image of R after performing this Hopf surgery is a new
knot or link in S3. By sliding the strands of R (that pass through J ) over H and
cancelling the Hopf pair, one sees the effect of Hopf surgery in Figure 2. We will use
the terminology ‘performing the handle cancellation J � H ’ to mean ‘performing
.H; J / Hopf surgery.’ This convention matches [CT07, p. 350].

J

0

H

0
�

R

Figure 2. The effect of a Hopf surgery.

3. Knots bounding Gropes of height n C 2

Fix an m � 1. For each n � 1, we will construct a knot Knm by infecting a seed knot
R along certain curves in �1.S3 �R/.1/ by a knot Kn�1

m . Roughly speaking, we
construct a height nC 2 Grope bounded by Knm in two stages. First we prove each
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Kn�1
m bounds a height n C 1 Grope whose tips are isotopic to meridians of Kn�1

m .
When we infect R byKn�1

m , we will see that the tips of this Grope are isotopic to the
infection curves, which we will then prove bound capped Gropes of height 1. Gluing
these height 1 capped Gropes onto the tips of the height n C 1 Gropes for Kn�1

m

(and gluing a few annuli and slice discs) will result in a height nC 2 Grope bounded
by Knm.

3.1. The infecting knots Pm. Let Pm be the knot defined in Figure 3. A priori, we
have described Pm as a knot in some closed, oriented 3-manifold that is the image of
U after performing 0-surgery on the .10C 4m/-component link in Figure 3. Using
Kirby’s calculus of framed links (see, for example, [GS99, Chapter 5]), one can check
that this 3-manifold is S3.

� � �
� � �

� � �

„ ƒ‚ …
m

Pm

Pm�
0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0

0

0 0

0 0

0

Figure 3. A surgery description of Pm.

Proposition 3.1. Each Pm cobounds with the unknot a height 2 annular Grope in
S3 � Œ0; 1� whose tips are isotopic to a set of disjoint copies of the meridian of Pm.

Proof. We claim that Figure 5 depicts a height 2 annular grope in S3 betweenPm and
U . Let L denote the .10C 4m/-component link L D .H0; : : : ;H9C4m/ in Figure 4;
the linkL is isotopic to the link defining Pm in Figure 3. In Figure 4, we have shaded
in some punctured surfaces bounded by the components H0, H4, and H9. Once we
perform 0-surgery on L, these punctured surfaces will become closed surfaces, and
these surfaces will be used to construct a height 2 Grope.

We perform 2mC 2 handle cancellations,

H7 �H5; H8 �H6; H12 �H10; H13 �H11;
: : : ;H8C4m �H6C4m; H9C4m �H7C4m;

to arrive at Figure 5 (ignore the U and shaded parts for now). What remains is a
6-component link N D .H0;H1;H2;H3;H4;H9/. Let N 0 denote the link N �
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� � � H0

H1

H2 H3

H4

H5 H6

H7 H8

H9

H10 H11

H12 H13

H6C4m

H8C4m

H9C4m

���
H7C4m

�
�
�
��

„ ƒ‚ …
m

Figure 4. The link L.

Pm

U

H0

H1

H2 H3

H4

H9

� � �

„ ƒ‚ …
m

Figure 5. A height 2 Grope concordance from the unknot U to Pm.
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fH0;H1g; N 0 consists of two separated Hopf links, thus 0-surgery on N 0 (denoted
S3N 0) is homeomorphic to S3. LetU be the knot in Figure 5 that deviates only slightly
from Pm. The resulting knot U 0 after 0-surgery on N 0 is the unknot in S3 Š S3N 0 ,
since U does not hit the discs bounded by H1, H2 and H3.

There is a punctured annulus in S3 bounded by U and Pm; the lightest shade
of grey in Figure 5 is part of this annulus. The other part of this annulus has been
collapsed to simplify the diagram. To the puncture, glue one boundary component
of a tube. Push this annulus over H1, and glue the other boundary component to the
circle where H1 punctures the torus on which H0 lies (second darkest shade of grey
in Figure 5). So far we have a height 1 (and genus 1) annular grope between Pm and
the unknot in S3.

One may take the obvious symplectic basis elements for the aforementioned torus,
tube them overH2 andH3 and attach them to punctured the surfaces forH4 andH9
(the darkest shade of grey in Figure 5). Recall that after zero surgery on the link,H4
andH9 lie on closed surfaces. Now we have a height 2 annular grope in S3 between
Pm and the unknot. Figure 5 shows that the tips of this annular grope are isotopic to
meridians of Pm.

One can push the U boundary of component of this annular grope in the positive
I direction and the Pm boundary component in the negative I direction to arrive at
the desired result. �

3.2. The seed knot R and the infection curves. Our examples are inspired by
Cochran, Harvey and Leidy’s family Jn. They construct their family inductively by
infecting the 946 knot along the curves ˛ and ˇ in Figure 6. Note that the obvious tori

˛ ˇ

˛0

ˇ0
���

Figure 6. The infection curves ˛ and ˇ, and homotopic infection curves ˛0 and ˇ0.
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in S3�946 bounded by ˛ and ˇ intersect. For our construction of the Gropes forKnm,
it is necessary that our infection curves bound disjoint surfaces in the complement of
946. We homotope ˛ and ˇ to arrive at different infection curves ˛0 and ˇ0.

Let R D 946. By Figure 7, the curves ˛0 and ˇ0 bound tori that are disjoint and
that miss R. The torus bounded by ˛0 has a symplectic basis x1; x2 (the curve x2
has been isotoped off of the torus) of curves that inherit the zero framing from the
torus. The torus bounded by ˇ0 has a similar symplectic basis y1; y2. It is clear
from Figure 7 that the curves x1; x2; y1; y2 bound disjoint discs that hit the knot R
transversely. Thus, ˛0 and ˇ0 bound disjoint capped tori in the complement of R.

˛0

ˇ0

x1

x2

y1

y2

Figure 7. Infection curves bound disjoint capped tori.

3.3. Knots bounding Gropes of height nC2. We now describe our family of knots
Knm for n;m � 1 with the property that Knm 2 GnC2. Recall R D 946, and ˛0 and
ˇ0 be from Figure 6. The curves ˛0 and ˇ0 bound punctured tori that are disjointly
embedded in S3 � R. Let K1m denote R infected along ˛0 and ˇ0 by our knot Pm.



760 P. D. Horn CMH

Define KnC1
m by infecting R along ˛0 and ˇ0 by Knm. Observe that g.Knm/ � 3 since

˛0 and ˇ0 miss a genus three Seifert surface for R.

Proposition 3.2. LetR be a knot in S3, ˛ an unknotted curve in S3�R. IfK and J
are knots that are height n Grope concordant, then the results of infection R.˛;K/
and R.˛; J / are height n Grope concordant.

Sketch of Proof. The knots R.˛;K/ and R.˛; J / differ by what happens inside a
fixed ball D3:

K J

Let .D3; mK/ denote the left-hand side of this diagram, i.e., a 3-ball with m arcs
tied into K. Since K and J are height n Grope concordant, so are .D3; mK/

and .D3; m J /. We see this by slitting a height n Grope concordance from K to
J , which turns it into a ‘height n slit Grope concordance’ from one knotted arc to
another. Taking parallel copies of this slit Grope concordance in D3 � Œ0; 1� yields
G, the ‘height n slit Grope concordance’ in D3 � Œ0; 1� from .D3; mK/ � f0g to
.D3; m J / � f1g. We simply glue this G to

�
R � .R \D3/

� � Œ0; 1� to arrive at a
height n Grope concordance from R.˛;K/ to R.˛; J /. �

Proposition 3.3. Let R D 946 and K1m be defined as above. Then K1m is height 3
capped Grope concordant to R.

Proof. For simplicity, letK D K1m. K is R infected along ˛0 and ˇ0 by Pm. We will
first concentrate on the infection along the ˛0 curve. Let K 0 denote R infected along
˛0 by Pm. We will infect along ˇ0 later, arriving at K. Consider a diagram for the
link R; ˛0. The knot K 0 can be described by replacing the infection curve with the
framed .10C 4m/-component link that defines Pm. Figure 8 depicts this operation.

One may form a new knot L by pulling the 2 strands ofK 0 out of the upper-right-
most 0-framed curve in Figure 8. This is an ‘2-stranded analogue’ of what is done in
Figure 5. As in Proposition 3.1, there is a punctured annulus in S3 between K 0 and
L (it is punctured twice). These punctures are 2 parallel copies of a meridian of the
0-framed curve through which we pulled the 2 strands of K 0. Float these punctures
downward in the I direction so that each puncture is in a different S3 � f	g level. To
each puncture, one can glue the height 2 Grope for Pm described in Proposition 3.1.
As before, the tips of the Grope in the S3 � f	g level are isotopic to parallel copies
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� � �
� � �

� � �

„ ƒ‚ …
m

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0

0

0 0

0 0

0 ˛0

RK 0

	 j
infect

Figure 8. The knot K0 as infection on R.

of the infection curve ˛0 � f	g. Now, we may float each of these ˛0 � f	g disjointly
down to the S3 � f1g level. Since each of the pieces of the Grope (and the tips)
miss K 0 and L, we may glue L � Œ0; 1� to this Grope. The result is a height 2 Grope
concordance from K 0 � f0g to L � f1g whose tips are disjointly isotopic to parallel
copies of ˛0 � f1g.

We claim that L is in fact R. The proof of this fact is similar to the proof that
the U from Figure 5 and Proposition 3.1 is the unknot. Namely, we have expressed
L as surgery on separated Hopf links, and for each of these Hopf pairs, L does not
pass through one of the components. Thus, performing the surgery does not change
L locally, and away from the surgery link, L is identically R.

At this point we have provenK 0 D R.˛0; Pm/ is height 2 Grope concordant toR,
and the tips of this Grope concordance (which we name G) are isotopic to parallel
copies of ˛0. We can view K as K 0.ˇ0; Pm/. An argument similar to the one above
yields a height 2 Grope concordance (which we name H ) between K and K 0 whose
tips are isotopic to parallel copies ofˇ0. We can glueH � S3�Œ0; 1� toG � S3�Œ1; 2�
and float the tips of H down through S3 � Œ1; 2� so that they miss G. In order to
justify this, we recall from the proof of Proposition 3.2 that G was constructed by
gluing pieces of R � I (which miss ˇ0) to something that lived in D3 � I , where
˛0 � D3 and ˇ0 was contained in S3 � D3. Thus, G \ .ˇ0 � Œ1; 2�/ D ;. We see
that J WD G [H [ .ˇ0 � Œ1; 2� t � � � t ˇ0 � Œ1; 2�/ is a height 2 Grope concordance
between K1m and R with punctured caps, and these punctures are parallel copies of
ˇ0 union parallel copies of ˛0 such that the punctures lie in .S3 � R/ � f2g. The
result is a height 2 Grope concordance between K D K1m and R whose tips are the
union of parallel copies of ˛0 and parallel copies of ˇ0. A schematic of J is depicted
in Figure 9, with n D 0. Pushing further down into S3 � Œ2; 3�, we can glue parallel
copies of the capped tori to the copies ˛0 and ˇ0. The reader will recall that these
capped tori miss R. Since we attached a capped torus to each tip of J , we are left
with a height 3 capped Grope concordance between K1m and R, as desired. �
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Theorem 3.4. For each n;m � 1, Knm is height nC 2 capped Grope concordant to
R D 946. In particular, Knm bounds a Grope of height nC 2 inD4.

Proof. We induct on n. The claim is true in the case n D 1 by Proposition 3.3.
Assume that the claim is true for Knm.

By definition KnC1
m is R infected along ˛0 and ˇ0 by Knm. As in the proof of

Proposition 3.3, we first concentrate on the infection along ˛0. LetK 0 D R.˛0; Knm/.
By the inductive hypothesis onKnm and by Proposition 3.2,K 0 andR D R.˛; unknot/
are height nC 2 Grope concordant. This Grope concordance is built using the height
n C 2 capped Grope concordance L between Knm and R. Each cap of L hits R
transversely, and removing neighborhoods of the intersection points from the cap
yields a planar surface with boundary equal to a tip ofL and copies of the meridian of
R. The meridians ofR can float along L to be meridians ofKnm. Under the infection
ofR along ˛0 byKnm, the meridian ofKnm is identified with (the longitude of a regular
neighborhood of) ˛0. LetG denote the union ofL and these planar surfaces reaching
out from the tips. By the ‘punctures ofG,’ we mean the punctures of these punctured
caps, each of which is a copy of ˛0.

As for the infection along ˛0, between KnC1
m D K 0.ˇ0; Knm/ and K 0 there is a

height nC 2 Grope concordanceH with punctured caps whose punctures are copies
of ˇ0. Since infecting along ˇ0 is a local operation near ˇ0, H misses ˛0 � Œ0; 1�.

We now describe the height n C 3 capped Grope concordance between KnC1
m

and R. Figure 9 shows a schematic of the ultimate Grope. We start with the height
nC 2 Grope concordanceH betweenKnC1

m andK 0. Imagine thatH is embedded in
S3 � Œ0; 1� so that H \ S3 � f0g D KnC1

m and H \ S3 � f1g D K 0. The punctures
of H are parallel copies of ˇ0 in S3 � f1g. Now imagine that G, which is the Grope

KnC1
m

K0

R

copies of ˛0 copies of ˇ0

‚ …„ ƒH

‚ …„ ƒG

Figure 9. A schematic of the height nC 2 Grope concordance, J , from KnC1
m to R.
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concordance betweenK 0 andR, is imbedded in S3� Œ1; 2� so thatG\S3�f1g D K 0
and G \ S3 � f2g D R. The punctures of G are parallel copies of ˛0 in S3 � f2g.
We claim that we can ‘float down the punctures of H ’ into the S3 � f2g level while
missingG. A justification of this was given in the proof of Proposition 3.3. We see that
J WD G [H [ .ˇ0 � Œ1; 2� t � � � t ˇ0 � Œ1; 2�/ is a height nC 2 Grope concordance
betweenKnC1

m andR with punctured caps, and these punctures are parallel copies of
ˇ0 union parallel copies of ˛0 such that the punctures lie in .S3 �R/ � f2g.

Since ˛0 and ˇ0 bound disjoint capped torus in S3�R, we can glue parallel copies
of the capped torus (in S3 � Œ2; 3�) to J along the punctures of J . To summarize, we
have attached capped surfaces to each tip in the height nC 2 Grope concordance J .
What we have is a height n C 3 capped Grope concordance between KnC1

m and R.
We have proven the inductive step, and the claim is true for all n. �

At this point, we have constructed an infinite family of knots in GnC2 for each
n � 0. Before we show that each family generates an infinite-rank subgroup of
GnC2=GnC2:5, we compute the classical signatures of our infecting knots Pm.

4. Caclulation of �-invariants

We now calculate the classical signatures of the Pm and discuss why they are linearly
independent. The linear independence of these invariants will ultimately guarantee
that no linear combination of the Knm lies in GnC2:5. A proof of this will be outlined
in Section 5.

Given a knot P , a Seifert matrix V for P , and a unit complex number ! (which
is not a root of the Alexander polynomial of P ), one may form the Hermitian matrix
.1�!/V C .1� x!/V T . Let �P .!/ denote the signature of this matrix. This function
is called the Levine–Tristram signature function of P and does not depend on the
choice of the Seifert matrix V . This function �P W S1 � C ! Z is locally constant
away from roots of the Alexander polynomial of P . Let �0.P / denote the average of
�P over S1, i.e.,

�0.P / D
Z
S1

�P .!/ d! 2 R

where the circle is normalized to have unit length. We call �0.P / the classical
signature of P .

Lemma 4.1. The classical signature of Pm is given by �0 .Pm/ D 2 � 2 �m

�
where

�m is the number satisfying cos .�m/ D 2 3
p
m�1

2 3
p
m

and 0 < �m < � .

Proof. LetEm denote the exterior ofPm. Recall thatPm is defined by surgery on the
link in Figures 3 and 4. Depicted in Figure 10 is that link, isotoped for convenience.
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� � �
H0

H1

H2

H3

H4

H5 H6

H7 H8

H9

H10 H11

H12 H13

H6C4m

H8C4m

H9C4m

���
H7C4m

�
�
�
��

„ ƒ‚ …
m

U

Figure 10. The surgery link defining Pm.

After performing the handle cancellations

H1 �H0; H7 �H5; H8 �H6; H12 �H10;
H13 �H11; H8C4m �H6C4m; H9C4m �H7C4m;

we arrive at the link in Figure 11. Thus, we can describe Em as the image of S3 �U
after 0-surgery on the two component link fH9;H2g as in Figure 11. This link is the
result after performing 0-surgery on all components of the link in Figure 3 except for
the bottom-most two. As discussed in the proof of Proposition 3.1, the link fH9;H2g
is a link in S3.

As in [Rol76, §7.C], we can compute the Alexander module of Em using these
surgery instructions. Let ˛ denote a lift of H9 in the infinite cyclic cover of U , and
let ˇ denote the lift ofH2 that links ˛ once. Let � denote a generator of the group of
covering translations. Recall that the matrix

	 D
�
aC P

i2Z�f0g lk.˛; � i˛/ t i
P
i2Z lk.˛; � iˇ/ t iP

i2Z lk.ˇ; � i˛/ t i b C P
i2Z�f0g lk.ˇ; � iˇ/ t i

�

whereaCP
i2Z�f0g lk.˛; � i˛/ equals the framing ofH9 andbCP

i2Z�f0g lk.ˇ; � iˇ/
equals the framing of H2, is a presentation matrix for the Alexander module of Em.

Displayed in Figure 12 is the link fU;H9;H2g after an isotopy. Figure 13 depicts
the infinite cyclic cover of Em.
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� � �
„ ƒ‚ …

m

U

H2

0

H9

0

Figure 11. Zero surgery on the link fH2;H9g yields Em.

� � �
„ ƒ‚ …

m

U

H2

H9

Figure 12. An isotopic image of the link from Figure 11.

From Figure 13, one computes the Alexander matrix to be

	 D
�
m.2 � t � t�1/ 1

1 t2 C t�2 � 4.t C t�1/C 6

�
:

The Alexander polynomial of Pm is


m.t/ D det 	 D m

�
.t3 C t�3/ � 6.t2 C t�2/C 15.t C t�1/ � 20m � 1

m

�
:

Recall that �0 of a knot is equal to the integral of the Levine–Tristram signature
function over the unit circle (normalized to have length one), and that this function
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� � �

� � �

� � �

ˇ

0

�ˇ

0

�2ˇ

0

�2˛

0

�˛

0

˛

0




—

�

Figure 13. The infinite cyclic cover of Em.

is constant away from the roots of the Alexander polynomial. We claim that the
polynomial 
m.t/ has exactly two roots on the unit circle, namely e˙i�m , where

cos .�m/ D 2 3
p
m�1

2 3
p
m

and 0 < �m < � . After proving this claim, we can conclude the

signature of 	 is C2 when substituting t D �1, thus �0 .Pm/ D 2 � 2 �m

�
.

It is easy to verify that e˙i�m are roots of 
m.t/ and that 
m.t/ factors as

m

�
t � 2 3

p
m � 1
3
p
m

C t�1

��
t2 C t�2 �

�
4C 1

3
p
m

�
.t C t�1/C 6C 2

3
p
m

C 1
3
p
m2

�
: (1)

Assume that ei , where  2 R, is a root of the second factor in Equation (1).
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Then  must satisfy the equation

4.cos /2 �
�
8C 2

3
p
m

�
cos C 4C 1

3
p
m2

C 2
3
p
m

D 0:

The quadratic formula yields cos D 4 3
p
mC1˙ip3
4 3

p
m

. This implies that  62 R, and

we conclude that 
m.t/ has no other roots on the unit circle. �

Lemma 4.2. There is a subsequence of Pmj
of the knots Pm whose set of classical

signatures is linearly independent over Q.

Proof. By Lemma 4.1, it is sufficient to find a set f�mj
g1
jD1 that is linearly independent

over Q. Let 5 D p1 < p2 < p3 < � � � be a sequence of prime integers satisfying
pj 
 1 .mod 4/ for all j , and setmj D 1

64
.pj � 1/6 2 Z. It was shown in [COT04,

Proposition 2.6] that f�mj
g1
jD1 is linearly independent over Q. �

As a consequence of the additivity of the classical signature, we can immediately
prove Theorem 5.2 for the case n D 0.

Proof that G2=G2:5 has infinite rank. Proposition 3.1 implies that each Pm bounds a
Grope of height 2. The family fPmg generates an infinite-rank subgroup of G2=G2:5.
By [COT03, Theorem 1.1], a knot lies in G2:5 if and only if it is algebraically slice. It
is well-known that �0 vanishes on algebraically slice knots and is additive under the
connect sum operation. By the linear independence of f�0.Pm/g (Lemma 4.2) and
these remarks, any non-trivial linear combination of the Pm cannot lie in G2:5. �

5. Algebraic invariants

We outline a proof thatKnm (or a subsequence of similar knots) are linearly independent
in GnC2=GnC2:5. The following arguments are adapted from Cochran, Harvey and
Leidy’s proof that Fn=Fn:5 has infinite rank (cf. [CHL09, Theorem 8.1]).

Before the proof, a brief review of von Neumann �-invariants is in order. A
more thorough treatment can be found in [CT07]. Given a closed 3-manifold and
a homomorphism � W �1.M/ ! � where � is any group, one can define the von
Neumann �-invariant �.M; �/ 2 R. For a fixed M , Cheeger and Gromov have
proven the existence of a constant CM such that j�.M; � W �1.M/ ! �/j < CM for
all homomorphisms � and groups � [CG85].

Cochran, Orr and Teichner [COT03, Lemma 5.9] have shown that if W is a 4-
manifold with @W D M , and if � W �1.M/ ! � factors through N� W �1.W / ! � ,
then

�.M; �/ D � .2/.W; N�/ � �.W /
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where � .2/.W; N�/ is theL.2/-signature associated to N� W �1.W / ! � and �.W / is the
ordinary signature of W . We refer the reader to [COT03, Section 5] for the rigorous
definition of � .2/.W; N�/. These von Neumann �-invariants are commonly referred to
as ‘signature defects.’ Oftentimes one requires that � be a poly-torsion-free-abelian
group (PTFA). This acronym will appear in the sketch of the proof of our main result
for the sake of correctness, but its precise definition is not crucial to understanding
the main idea of the proof.

Definition 5.1. Let K be a knot in S3 and G D �1 .MK/. The real number N�.K/ is
the ‘first-order signature’ given by the von-Neumann �-invariant

�
�
MK ; � W G � G=G.2/

�
:

Theorem 5.2. For n � 0, GnC2=GnC2:5 has infinite rank.

Remark 1. As stated, our main result is not the strongest possible assertion. We pro-
duce an infinite family of knots in GnC2 whose members bound smooth embeddings
of gropes. This family is a subsequence of fKnmg1

mD1, or possibly a subsequence of
a related family (see the proof below for a discussion). A result ([CHL09, Theorem
8.1]) of Cochran, Harvey and Leidy implies that no non-trivial linear combination
of these knots is even topologically .n:5/-solvable, hence does not bound even a
topologically flat embedding of a height nC 2:5 grope inD4. To avoid unnecessary
reproduction of previous results, we will give a brief outline of the proof and refer
the reader to [CHL09] for the details. We merely push through the proof given by
Cochran, Harvey and Leidy, just to verify that their argument may be used to show
that no non-trivial linear combination of the Knm lie in Fn:5, hence not in GnC2:5.

Sketch of proof for the case n � 1. First, we must find a genus one ribbon knot R
with N�.R/ ¤ 0. If N�.946/ ¤ 0, we can set R D 946. Otherwise, we can tie one band
of 946 into the right-handed trefoil knot, as shown in Figure 14; the result, R, is a
ribbon knot with N�.R/ ¤ 0.

Second, we must find an infinite set P of knots Pm such that no non-trivial ratio-
nal linear combination of f�0 .Pm/g is a rational multiple of N�.R/. This family P is
an infinite subset of the family fPmg defined in Section 3.1. These �0-invariants are
the classical signatures discussed in Section 4. Our Lemma 4.2 provided a subfam-
ily of the Pm with linear independent classical signatures, but now we require that
f�0 .Pm/g [ f N�.R/g is linearly independent. Using elementary linear algebra, one
can show that this set is linearly independent (after possibly taking a subsequence
of Pm).

For each n � 0, we define a family of knots fKnm W m � 1g � GnC2. This family
is defined as in Section 3.3, except using the knot R as the seed knot. It should
be noted that (possibly) having tied a trefoil in one of the bands does not affect the
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˛0

ˇ0
���

Figure 14. Tying one band of 946 into a trefoil.

conclusions of any of the results in Section 3. In particular, these Knm lie in GnC2.
For notational simplicity, let K0m D Pm.

Now we must prove that no non-trivial linear combination of the knots Knm is
(even rationally) .n:5/-solvable. Since GnC2:5 � Fn:5, it will follow that no such
combination of these knots lies in GnC2:5, hence these knots are linearly independent
in GnC2=GnC2:5. Suppose that a finite sum zK D #1

mD1jmKnm is rationally .n:5/-
solvable. We may assume that j1 � 0. We construct a family of 4-manifoldsWi and
reach a contradiction. Let us abbreviate MKn

m
D M n

m.

Consider Wn with boundary M 0
1 t M 0

1 t MR. Recall that M 0
1 D MK0

1
D

MP1
. Let � D �1 .Wn/ and consider � W � ! �=�

.nC1/
r . Then by property (3) of

Proposition 5.3,

�.MP1
; �˛0/C �.MP1

; �ˇ 0/C � .MR; �R/ D � .@Wn; �/ D �
X
m

Cm �0 .Pm/ (2)

where C1 � 0 and �R W �1.MR/ ! �=�
.nC1/
r is induced by inclusion (and similarly

for �˛0 and �ˇ 0). By property (2) of Proposition 5.3, j�
�
�1

�
MP1

�� � �.n/, im-
plying that the restrictions �˛0 and �ˇ 0 factor through the respective abelianizations.
Additionally by property (2), at least one of these coefficient systems is non-trivial.
Hence, by Proposition 5.3,

�.MP1
; �˛0/C �.MP1

; �ˇ 0/ D 
 �0 .P1/
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where 
 is equal to one or two. Thus we can simplify equation 2 to yield

.
 C C1/ �0 .P1/C
X
m>1

Cm �0 .Pm/ D �� .MR; �R/ (3)

where 
 C C1 � 1. Also by property (2) of Proposition 5.3,

j� .�1 .MR// � �.n�1/

so �R factors through G=G.2/ where G D � .MR/. Since ker.�R/ � G.1/, �R is
determined by the kernel, denoted A, of the induced map

�R W G.1/=G.2/ ! im.�R/:

A is a submodule of the Alexander module G.1/=G.2/. Since the Alexander poly-
nomial of R is .2t � 1/.t � 2/, the product of two irreducible coprime factors, the
Alexander module of R has only four submodules: the trivial submodule, A itself,
and h˛0i and hˇ0i. One can examine these four possibilities for A and conclude that
� .MR; �R/ 2 f0; N�.R/g. Combining this with equation 3, we have

.
 C C1/ �0 .P1/C
X
m>1

Cm �0 .Pm/ D C0 N�.R/

where C0 2 f0; 1g. Since 
 C C1 � 1, we have written a multiple of N�.R/ as a
non-trivial linear combination of f�0 .Pm/g, a contradiction. �

Proposition 5.3 (Proposition 8.2 of [CHL09]). If zK is rationally .n:5/-solvable,
then for each 0 � i � n, there is a 4-manifold Wi with the following properties. Let
� D �1.Wi /.

(1) Wi is a rational .n/-bordism where, for i < n, @Wi D M n
1 and @Wn D M 0

1 t
M 0
1 tMR;

(2) under the inclusion(s) j W M n�i
1 � @Wi ! Wi ,

j� W �1.M n�i
1 / � �.i/;

and for each i (at least one of the copies of ) M n�i
1 � @Wi ,

j� W �
�1.M

n�i
1 /

� Š Z � �.i/=�.iC1/r

and under the inclusion j W MR � @Wn ! Wn,

j� W .�1 .MR// Š Z � �.n�1/=�.n/r I
(3) for any PTFA coefficient system � W �1 .Wi / ! � with �.nC1/

r D 1,

�.@Wi ; �/ D �
.2/
� .Wi;�/ � � .Wi / D �

X
m

Cm �0 .Pm/

for some integers Cm (depending on �) with C1 � 0.

We refer the reader to [CHL09] for a proof of this proposition.
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6. String links

We now turn our attention to generalizing our main result to links. We follow the
notation of [Har08]. Let C.m/ denote the group ofm-component string links modulo
concordance (the group operation is concatenation). If L 2 C.m/, let yL denote the
closure of L; yL is obtained by attaching the m-component trivial string link to the
ends of L in the obvious way. Let Gmn denote the subset of C.m/ defined by L 2 Gmn
if the components of yL bound disjoint Gropes of height n in D4. It can be shown
that the Grope filtration of C.m/

0 � � � � � Gmn:5 � Gmn � � � � � Gm1:5 � Gm1 � C.m/

is a filtration of C.m/ by normal subgroups. If B.m/ denotes the subgroup of C.m/

consisting of boundary string links, we define BGmn D Gmn \ B.m/.
There is also the .n/-solvable filtration of C.m/, whose definition we omit, that

is related to the Grope filtration by GmnC2 � F m
n for all n 2 1

2
N. Let BF m

n D
F m
n \ B.m/.

Remark 2. For each n 2 Z, Harvey [Har08, Definition 3.11] defined a link invariant
�n.L/ 2 R. If L is a knot and n D 0, then Harvey’s �0.L/ is equal to the classical
signature discussed in Section 4. The salient features of these �n are listed below:

(1) [Har08, Corollary 6.7] For each n � 0 and m � 1, �n W B.m/ ! R is a
homomorphism,

(2) [CH08, Theorem 4.4] �n.L/ vanishes for all L 2 BF m
n:5.

(3) [Har08, Theorem 5.8] If T is the identity element of B.m/, � an unknotted circle
in the complement ofT that lies in�1.D2�I�T /.n/��1.D2�I�T /.nC1/, and
T .�;K/ denotes T infected along � by the knotK, then �n.T .�;K// D �0.K/,
where �0.K/ is the classical signature discussed in Lemma 4.2.

Harvey proved that the Grope filtration of the string link concordance group is a
non-trivial filtration.

Theorem 6.1 (6.13 of [Har08] and 4.4 of [CH08]). For each n � 1 and m � 2,
the abelianization of BGmn =BGmnC1:5 has infinite rank; hence BGmn =BGmnC1:5 is an
infinitely generated subgroup of Gmn =G

m
nC1:5.

With our knots Pm 2 G2, we are able to close the index gap.

Theorem 6.2. For each n � 2 and m � 2, the abelianization of BGmn =BGmnC:5 has
infinite rank; hence BGmn =BGmn:5 is an infinitely generated subgroup of Gmn =G

m
nC:5.
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Proof. Forn D 2, letLk denote them-component boundary string link whose closure
is the union of the .m� 1/-component trivial link and the knot Pk as defined in Sec-
tion 3.1. Since Pk 2 G2, the components of the closure of Lk bound disjoint Gropes
of height 2,m� 1 of which are discs. Thus Lk 2 BGm2 . The linear independence of
the Lk in BGm2 =BGm2:5 follows from the argument below when n � 3.

Assumen � 1. We prove the statement fornC2. LetF denote the free group onm
generators, andT be the trivialm-component string link, so thatF Š �1.D

2�I�T /.
Pick an element Œ�� 2 F .n/ � F .nC1/. By [CT07, Lemma 3.9], we may pick an
embedded curve � in D2 � I � T that bounds a disk in D2 � I and that bounds a
Grope of heightn inD2�I�T . LetS� D fT .�; Pk/ W Pk as defined in Section 3.1g
where T .�;K/ is defined by item 3 of Remark 2. Since � 2 F .1/, there are disjoint
surfaces bounded by the components of T that miss the curve �. Thus each L 2 S�
is a boundary string link. Since Pk 2 G2, we have that if L 2 S� , then yL 2 GmnC2.
Thus, S� � BGmnC2.

By items 1 and 2 of Remark 2, �nC2 W BGmnC2=BGmnC2:5 ! R is a well-defined
homomorphism. By item 3 of Remark 2, the image of S� under this homomorphism
is �nC2.S�/ D f�0.Pk/g, which contains a Q-linearly independent subset of R by
Lemma 4.2. The conclusion follows. �
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