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Abstract. For a given de Rham p-adic Galois representation M , a conjecture of Perrin-Riou
associates ap-adicL-function forM to a norm compatible system of Galois cohomology classes
in the projective limit lim �nH1.Q.�pn/;M/. We construct such a norm compatible system for
the symplectic group GSp4. Our classes are cup-products of torsion sections of the large elliptic
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Introduction

L-functions are defined as convergent infinite series of complex numbers and their
values at integers have an algebraic meaning, like in the analytic class number formula
of Dedekind and Dirichlet. In particular, it should be possible to find ap-adic analytic
L-function taking the same values as the archimedean one at some integers. For
example, consider two positive integers a and b prime to an odd prime number p,
and fix a system of primitive pn-th roots of unity �n, such that �p

n D �n�1. The
numbers

�
�a=2
n � �a=2

n

�
�b=2
n � �b=2

n

are units of the rings of integers ZŒ�n� mapped to each other under the norms
ZŒ�m�

� ! ZŒ�n�
� for njm. We owe to Kubota–Leopold and Iwasawa that to this

compatible system of units is associated a (pseudo-)measure d�p on Z�
p such thatZ

Z�

p

xkd�p D .bk � ak/.1 � pk�1/�.1 � k/;

for any even positive integerk, where � denotes the Riemann zeta function (see [5], 4.2
for details). Via the boundary map coming from the Kummer exact sequence, these
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units should be seen as a norm compatible system of Galois cohomology classes in
the projective limit lim �nH1.Q.�n/;Zp.1// associated to the Tate motive. Now given
any de Rham p-adic Galois representationM , a conjecture of Perrin-Riou associates
a p-adicL-function forM to a compatible system of classes belonging to the inverse
limit lim �nH1.Q.�pn/;M/, via p-adic Hodge theory and a p-adic interpolation of
Bloch–Kato exponential maps ([17], Chapitre 4, Conjecture CP(M)).

Only few examples of such systems of cohomology classes are known: for exam-
ple, there is the one described above, and the system of Beilinson–Kato’s elements
defined asK-theoretical cup-products of modular units, and giving rise to the p-adic
L-function of elliptic modular forms ([10], Theorem 16.6 (2)).

This note provides another example of such a norm compatible system for the sym-
plectic group in four variables GSp4. The main ingredient is the norm compatibility
of the large elliptic polylogarithm pro-sheaf, due to Wildeshaus, and the computa-
tions of weights in the cohomology of Siegel threefolds of our previous work [15],
Section 2.2. Indeed, the cohomology classes considered here are the p-adic real-
ization of cup-products of Beilinson’s Eisenstein symbols (see [11], Theorem 3.2.1),
which are torsion sections of the elliptic polylogarithm pro-sheaf. In fact, both the
system of cyclotomic units described above and the one of modular units defined in
[10], Section 2.2, can be seen as the p-adic realization of the torsion sections of the
classical and elliptic polylogarithm respectively ([21], IV, Chapter 4, Theorem 4.5,
and [12], Theorem 4.2.9).

In a forthcoming paper we expect to relate our system to the critical values of the
degree fourL-function of cuspidal automorphic representations of GSp4 as predicted
by the conjecture of Perrin-Riou.

1. Conventions and notations

In this section we fix conventions and notations for the rest of the paper. We advise
the reader to consult this section only according to his needs.

1.1. In this note, we consider a fixed prime number p � 3. Given a Q-scheme of
finite typeX , we work in the setting of bounded derived categories Db

c .X;Qp/ of [7],
where the coefficient ring is the field Qp . The category of smooth étale Qp-sheaves
naturally embeds in the heart of Db

c .X;Qp/ and on the derived categories Db
c .X;Qp/

we have the formalism of Grothendieck’s six functors .f �; f�; fŠ; f
Š;Hom; Ő /.

1.2. The large elliptic polylogarithm is an extension of pro-sheaves. For a given
abelian category A, the category pro-A of pro-objects of A is the category whose
objects are projective systems

A D .Ai /i2I W I op ! A
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where I is some small filtered index category. The morphisms are

Hompro�A..Ai /i ; .Bj /j / D lim �j lim�!i HomA.Ai ; Bj /:

The category pro-A is again abelian ([1], A 4.5) and a functorF W A! B is extended
to the pro-categories in the obvious way F..Ai /i / D .F.Ai //i . We are interested
in the abelian category Shƒ.X/ of étale sheaves of ƒ-modules over a scheme X .
Given two pro-sheaves .Ai / and .Bi /, we denote by Extj

X ..Ai /; .Bi // the group of
j -th Yoneda extensions of .Ai / by .Bi / in the category pro-A.

1.3. Siegel threefolds. We fix a four-dimensional symplectic space .V4;  / over Z
and denote by

G D GSp4 D fg 2 GL.V4/ j there exists �.g/ 2 Gm such that

 .gv; gw/ D �.g/ .v;w/ for all v;w 2 V4g
the associated symplectic group, with center Z and derived group Sp4 D ker �.
Denote by K1 a maximal compact subgroup modulo the center Z.R/K 01 � G.R/
whereK 01 is a maximal compact subgroup of Sp4.R/. The locally compact topologi-
cal ring of adeles of Q is A D R�Af where Af D Q˝yZ and yZ D lim �N Z=NZ. For

every non zero integer N we consider the compact open subgroup K.N/ � G.Af /

kernel of the reduction G.yZ/ ! G.Z=NZ/ modulo N . Given a ZŒ 1
N
�-scheme S

we consider the set of uples fA; �; �; �g made of an abelian scheme A ! S of
relative dimension 2, a principal polarisation �, i.e., an isomorphism � W A ! OA
with the dual abelian scheme and whose dual is � itself, a primitive N -th root of
unity over S and a principal level N structure, i.e., an S -group schemes isomor-
phism V4=NV4 ˝ S ' AŒN � with the N -torsion of A, compatible with  and
� in an obvious sense. For N � 3, by a theorem of Mumford (see [16], Chap-
ter 7, Theorem 7.9), the functor S 7! fA; �; �; �g is representable by a smooth and
quasi-projective ZŒ 1

N
; �N �-scheme S.N / of dimension 3. Fixing a complex em-

bedding of the abelian extension Q.�N / generated by N -th roots of unity, we have
S.N /.C/ D G.Q/n.G.A/=K.N/K1/ ([14], Corollary 3.3). In this note we work
with a fixed complex embedding of the field Q.�N /.

2. The large elliptic polylogarithm: definition and basic properties

Let us present the definition and the basic properties of the large elliptic polylogarithm
pro-sheaf. The following introduction follows closely Section 3 in Kings [12].

In this section S will denote a connected scheme of characteristic zero. By an
elliptic curve over S , we mean a proper and smooth S -group scheme of relative
dimension one. Let � W E ! S be such a morphism, with unit section e W S ! E.
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Definition 2.1. A lisse Qp-sheaf F over E is said to be n-unipotent of length n
if it admits a filtration F D F 0 � F 1 � � � � � F n � F nC1 D 0 such that
GriF D ��G i for some lisse Qp-sheaf G i over S .

Theorem 2.2 ([3], Proposition 1.2.6). Up to unique isomorphism, there is a unique
n-unipotent sheaf Log.n/

E of length n, together with a section of the fibre at the unit

section 1.n/ W Qp ! e�Log.n/
E , such that for every n-unipotent sheaf F the map

��Hom.Log.n/
E ;F /! e�F mapping f to f B 1.n/ is an isomorphism.

Definition 2.3. The canonical maps Log.nC1/
E ! Log.n/

E that map 1.nC1/ to 1.n/

define the logarithm pro-sheaf

LogE D .Log.n/
E /n:

By the universal property of LogE , the pull-back R D e�LogE is a ring with
unit .1.n//n and the ring ��R acts on LogE .

In order to give another very simple description of the logarithm pro-sheaf, con-
sider the multiplication bypj which is an étale cover Œpj � W E ! E overS (recall that
we assumed that S is of characteristic zero). As Œpj � is smooth, of relative dimension
zero, we have Œpj �ŠQp D Œpj ��Qp D Qp and because Œpj � is finite, hence proper, we
have Œpj �Š D Œpj �� for every integer j . For j 0 � j , we have Œpj 0

� D Œpj � B Œpj 0�j �,
hence the image of the counit Œpj 0�j �ŠŒp

j 0�j �ŠQp D Œpj 0�j ��Qp ! Qp under
Œpj �� is a morphism trj 0j W Œpj 0

��Qp ! Œpj ��Qp . By [12], Proposition 3.4.2 and
Lemma 3.4.3, we have a canonical isomorphism of pro-sheaves

LogE ' .Œpj ��Qp/j ; (2.1)

where the transition maps on the right are given by the trj 0j .
Now let � be the kernel of the augmentation map R ! Qp . Denote by j the

open embedding complementary to the unit section

U D X � e.S/ j ��

�U

�������������� E

�

��
S:

The restriction of LogE to U will be denoted by LogU .

Lemma 2.4 ([3], 1.2.8). The higher direct images of LogU are

Rn�U �LogU D
´
0 if n ¤ 1;
�.�1/ if n D 1:



Vol. 85 (2010) A norm compatible system of Galois cohomology classes for GSp.4/ 889

By this lemma, the edge morphism in the Leray spectral sequence for R�U � is
an isomorphism Ext1

U .�
�
U �;LogU .1// ' HomS .�;�/.

Definition 2.5 ([3], 1.3.5.). The large elliptic polylogarithm

PolE 2 Ext1
U .�

�
U �;LogU /

is the extension class mapping to the identity map under the above isomorphism.

It is shown in Section 3.2.3 of [12] how to extend to PolE the action of ��R

on LogU and ��� so that PolE 2 Ext1
U;��R.�

�
U �;LogU / is an extension class of

��R-modules.

2.1. Functoriality and invariance by torsion sections. Let f W S 0 ! S be a con-
nected scheme over S of characteristic zero. Form the cartesian square

E 0 f 0

��

� 0

��

E

�

��
S 0 f �� S ,

and let e0 W S 0 ! E 0 be the unit section of E 0 and U 0 D E 0 � e0.S 0/. We denote with
superscripts 0 the pro-sheaves R0 D e0�LogU 0 and �0 D ker.R0 ! Qp/ over S 0.

Lemma 2.6. We have a canonical isomorphism LogE 0 D f 0�LogE and a canonical
isomorphism R0 D f �R

Proof. For every integer j � 0, as Œpj � is an étale cover, hence is proper, we have
the proper base change canonical isomorphism f 0�Œpj ��Qp D Œpj �0�f 0�Qp D
Œpj �0�Qp , where Œpj �0 denotes the multiplication by pj on E 0. Using the above
description of the logarithm pro-sheaf, we get the first announced canonical isomor-
phism. Now by functoriality

R0 D e0�LogE 0 D e0�f 0�LogE D .f 0 Be0/�LogE D .e Bf /�LogE D f �R: �

Note that the same argument shows that for any isogeny f 0 W E 0 ! E over S
we also have the canonical isomorphism LogE 0 D f 0�LogE . A consequence of
this identity that will be useful in what follows is the invariance of the logarithm by
translation by torsion sections.

Lemma 2.7. Let t W S ! E be a torsion section. Then there is a canonical isomor-
phism

t�LogE D e�LogE
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Proof. Let n be the order of t and denote by Œn� W E ! E the multiplication by n
over S . We have

t�LogE D t�Œn��LogE D .Œn� B t /�LogE D e�LogE : �

Lemma 2.8. There is a canonical isomorphism of extension of pro-sheaves PolE 0 D
f 0�PolE

Proof. The functoriality of the logarithm (Lemma 2.6) gives rise to a commutative
diagram

Ext1
U .�

�
U �;LogU .1//

�
��

f 0�

�� Ext1
U 0.�

�
U 0�

0;LogU 0.1//

�
��

HomS .�;�/
f �

�� HomS 0.�0;�0/:
As the lower horizontal arrow maps the identity to the identity, we obtain the an-
nounced result. �

2.2. Norm compatibility. This subsection is the most important for our following
application: we recall the norm compatibility property of the large elliptic polyloga-
rithm pro-sheaf.

Let us consider an arbitrary elliptic curve� 0 W E 0 ! S , with unit section e0 W S 0 !
E 0 and with complementary open U 0 D E 0� e0.S 0/. Let f W E 0 ! E be an isogeny,
with kernel Z and consider zU D f �1.U /. We have a commutative diagram with
cartesian squares:

S
i 0

��

��
��

��
��

��
��

��
��

Z
Qi ��

f

��

E 0

f

��

U 0j 0

�� zU
Qj��

f

��
S

e ��

��
��

��
��

��
��

��
��

E

�

��

U
j��

�U

�����������������

S .

The adjunction map LogU 0.1/ ! Qj� Qj �LogU 0.1/ of restriction to zU gives rise to a
map

Ext1
U 0.�

�
U 0�;LogU 0.1//

Qj �

�� Ext1
zU .�

�
U 0�; Qj� Qj �LogU 0.1//:

Now by adjunction

Ext1
zU .�

�
U 0�; Qj� Qj �LogU 0.1// D Ext1

zU . Qj ���
U 0�; Qj �LogU 0.1//

D Ext1
zU .f

���
U �; Qj �LogU 0.1// D Ext1

U .�
�
U �; f� Qj �LogU 0.1//:
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By the functoriality of the logarithm LogU 0 D f �LogU , the right hand term of the
last Ext1 can be written f� Qj �LogU 0.1/ D f�f �LogU .1/. As f is an étale cover
we have the trace map tr W f�f �LogU .1/! LogU .1/, so we finally obtain a norm
morphism

Nf D tr B Qj � W Ext1
U 0.�

�
U 0�;LogU 0.1// �! Ext1

U .�
�
U �;LogU .1//: (2.2)

Proposition 2.9 ([21], III, Chapter 5, Theorem 5.2 and [13], Proposition 2.2.1). For
every isogeny f we have

Nf .PolU 0/ D PolU :

2.3. Pull-backs along torsion sections. This subsection entirely relies on [12],
Section 3.5.3. We wish to associate some absolute étale cohomology classes to pull-
backs of the large elliptic polylogarithm along torsion sections.

This can be done in the following way. Let � W E ! S be an elliptic curve
and t W S ! E be a non zero torsion section of � . Denote by H the relative Tate
module Hom.R1��Qp;Qp/, by SymH D L

k SymkH its symmetric algebra and
by Sym�nH � SymH the ideal

L
k�n SymkH . Identifying the symmetric algebra

SymH with the universal envelopping algebra U.H / of the abelian Lie algebra H ,
we give to it the structure of a Hopf algebra. Denote by yU.H / DQ

k�0 SymkH the
completion of U.H / along the augmentation ideal.

As the logarithm is translation invariant along t (Lemma 2.7), we have t�PolE 2
Ext1

U .�;R.1//. Denote by R.n/ D e�Log.n/
E . The pro-sheaf R D .R.n//n is a

Hopf algebra ([3], 1.2.10 iv) and we have an isomorphism of Hopf algebras

�n W SymH=Sym�nC1H ��!� Gr�nR.n/

according to [loc. cit.], Proposition 1.2.6. By the structure theorem [4], chapitre II,
paragraph 1, no. 6, the maps �n lift to an isomorphism of Hopf algebras

� W yU.H / ��!� R: (2.3)

Now consider the Koszul resolution

0 �!
2̂

H ˝R D R.1/ H ˝R
b��! � �! 0

of the Lie algebra H , where the first map is .x˝y�y˝x/˝u 7! x˝yu�y˝xu
and the second is h˝ u 7! hu. By [12], Lemma 3.5.8, the map

Ext1
S .Qp;R.1// ' Ext1

S;R.R;R.1//
a��! Ext1

S;R.�;R.1//

b�

���! Ext1
S;R.H ˝R;R.1//
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has a functorial splitting �. Composing with the projection induced by R.1/ !
SymkH .1/, we get the absolute cohomology classes

Ek
t D �.b�t�PolE /

k 2 H1.S;SymkH .1//: (2.4)

The comparison of these classes with Beilinson’s Eisenstein symbol ([2], Theo-
rem 7.3) is given in [8], Theorem 2.2.4.

2.4. The compatibility between 2.2 and 2.3. Let f W E 0 ! E be an isogeny over
S and t W S ! E be a torsion section. We assume that f is trivial over S , or in other
terms, that we have a cartesian square

`
g2G S

`
t 0

g ��

f

��

E 0

f

��
S

t �� E

where G is the Galois group of f . Therefore the t 0g are non zero torsion sections
of E 0.

Lemma 2.10. In H1.S;SymkH .1// we have Ek
t D

P
g2G E

k
t 0

g
:

Proof. By the norm compatibility of the polylogarithm (proposition 2.9) we have

Ek
t D �.b�t�PolE /

k D �.b�t�Nf PolE 0/k :

Recall that the norm morphism Nf (2.2) is defined by composing the trace map

Ext1
U .�

�
U �; f�f �LogU .1//

tr��! Ext1
U .�

�
U �;LogU .1//

with the restriction to the inverse image by f of the complementary of the zero section
of E

Ext1
U 0.�

�
U 0�;LogU 0.1//

Qj �

���! Ext1
zU .�

�
U 0�; Qj� Qj �LogU 0.1//

D Ext1
U .�

�
U �; f�f �LogU .1//:

By the base change t�f�f � D .f�t 0�g f
�/g2G DP

g2G t
0�
g we have t�f�f �LogE DP

g2G t
0�
g LogE 0 . As a consequence

Ek
t D �.b�t�Nf PolE 0/k D

X
g2G

�.b�t 0�g PolE /
k D

X
g2G

Ek
t 0

g
: �
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3. The norm relations

Let N � 3 be an integer and let Y.N / be the modular curve of level N : it is a
smooth affine connected curve over Q.�N / representing the functor on Q-schemes
associating to a Q-scheme S the set of isomorphism classes of triples .E; e1; e2/

where � W E ! S is an elliptic curve over S and .e1; e2/ is a basis of the N -torsion
of E (see [6], IV. 2, for details). The group GL2.Z=N/ acts on Y.N / on the left: for
	 D �

a b
c d

� 2 GL2.Z=N/, define 	:.E; e1; e2/ D .E; e0
1; e

0
2/ where

�
e0

1

e0
2

�
D

�
a b

c d

� �
e1

e2

�
:

ForM;N � 3, the modular curves Y.M;N / are defined as follows: chose a common
multiple L of M and N , define the group

G D ˚�
a b
c d

� 2 GL2.Z=L/I a � 1 .M/; b � 0 .M/; c � 0 .N /; d � 1 .N /�
(3.1)

and
Y.M;N / D GnY.L/;

which is independent of the choice ofL. The Q-scheme Y.M;N / represents the func-
tor associating to a Q-scheme S the set of isomorphism classes of triples .E; e1; e2/

where � W E ! S is an elliptic curve over S and e1 and e2 are sections of � of
order M and N respectively and such that the map Z=M � Z=N ! E defined by
.a; b/ 7! ae1 C be2 is injective. The curves Y.N / and Y.M;N / carry a universal
elliptic curve E by their very definition.

For every two integers N jN 0 there is an étale cover fN 0N W Y.N 0/ ! Y.N /
sending the sections .e1; e2/ over Y.N 0/ to .N 0

N
e1;

N 0

N
e2/. As we are working with

rational coefficients, the pull-back map

H1.Y.N /;SymkH .1//
f �

N 0N�����! H1.Y.N 0/;SymkH .1//

is injective. We now define some cohomology classes in
S

N H1.Y.N /;SymkH .1//

as follows: let .˛; ˇ/ be a non zero element of .Q=Z/2 D S
N

1
N

Z=Z. Choose an
integer N such that N˛ D Nˇ D 0, write .˛; ˇ/ D . a

N
; b

N
/ 2 1

N
Z=Z D Z=NZ

and define the Eisenstein class

Ek
˛;ˇ D Ek

.ae1Cbe2/ 2 H1.Y.N /;SymkH .1//; (3.2)

whereEk
.˛e1Cˇe2/

is the class (2.4). In the bigger space
S

N H1.Y.N /;SymkH .1//,

the Eisenstein class does not depend on N .
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Lemma 3.1. Let .˛; ˇ/ 2 .Q=Z/2 � f0; 0g.
(i) For any 	 2 GL2.Z=N/ we have

	�Ek
˛;ˇ D Ek

˛0;ˇ 0

where .˛0; ˇ0/ D .˛; ˇ/	 .

(2) (Distribution property.) For any non zero integer a we have

Ek
˛;ˇ D

X
˛0;ˇ 0

Ek
˛0;ˇ 0

where .˛0; ˇ0/ range over all elements of .Q=Z/2 such that a˛0 D ˛ and aˇ0 D ˇ.

Proof. (i) By functoriality of the splitting � we have

	�Ek
˛;ˇ D �.	�b�.˛e1 C ˇe2/

�PolE /
k

D �.b�	�.˛e1 C ˇe2/
�PolE /

k

D �.b�.˛0e1 C ˇ0e2/
�PolE /

k :

(ii) follows by taking f D “multiplication by a” in Lemma 2.10. �

In what follows, we have to consider Qp-adic étale sheaves on the Shimura vari-
eties associated to finite dimensional algebraic representations of the group underlying
the variety. With this end in view, let us recall the adelic description of the complex
points of the modular curves Y.N /. Let Z.R/ be the center of GL2.R/ and let
L01 � SL2.R/ be a maximal compact subgroup. WriteL1 D Z.R/L01 � GL2.R/
for a maximal compact subgroup modulo the center. Consider the kernel L.N/ of
the reduction modulo N map GL2.yZ/ ! GL2.Z=NZ/. With our fixed complex
embedding of Q.�N /, we have the Shimura variety description of the modular curves

Y.N /.C/ D GL2.Q/n.GL2.A/=L.N /L1/:

Now according to (1.10) in [19], we can consider the Qp-adic étale sheaf on the
Y.N / associated to the standard representation V of GL2 and we have a canonical
isomorphism of Qp-adic sheaves V D H .

In order to give the definition of the cohomology classes we will consider, let us
first remind about the weights of algebraic representations of GL2 and GSp4: we
choose a symplectic basis .e1; e2; e3; e4/ of .V4;  / such that

 D
�
0 I2

�I2 0

�
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where I2 denotes the identity matrix of size 2. Hence we have a symplectic isomor-
phism V2˚V2 ' V4 and the embedding � W GL2�Gm

GL2 ! GSp4, the fibre product
being over the determinant, given by

�

��
a b

c d

�
;

�
a0 b0
c0 d 0

��
D

0
BB@
a 0 b 0

0 a0 0 b0
c 0 d 0

0 c0 0 d 0

1
CCA : (3.3)

Let T2, resp. T4, be the diagonal maximal torus of GL2, resp. GSp4. We have

T2 D
˚
diag.˛; ˛�1�/ D �

˛ 0
0 ˛�1�

�
; .˛; �/ 2 G2

m

�
and

T4 D
8<
:diag.˛1; ˛2; ˛

�1
1 �; ˛�1

2 �/ D
0
@ ˛1 0 0 0

0 ˛2 0 0

0 0 ˛�1
1

� 0

0 0 0 ˛�1
2

�

1
A ; .˛1; ˛2; �/ 2 G3

m

9=
; :

The group of charactersX�.Tn/ is identified to Z
n
2 C1 via �.k; t/ W diag.˛; ˛�1�/ 7!

˛k
1�

t and�.k; k0; t / W diag.˛1; ˛2; ˛
�1
1 �; ˛�1

2 �/ 7! ˛k
1˛

k0

2 �
t . Write
1 D �.1;�1; 0/

and 
2 D �.0; 2; 0/. Then the roots of T4 in GSp4 are R D f˙
1; ˙
2; ˙.
1 C

2/; ˙.2
1 C 
2/ g and the positive roots corresponding to the standard Borel are
RC D f 
1; 
2; 
1 C 
2; 2
1 C 
2 g. For T4, dominants, resp. regular weights are
the �.k; k0; t /with k � k0 � 0, resp. k > k0 > 0. Dominants, resp. regular, weights
of T2 are the �.k; t/ with k � 0, resp. k > 0. The irreducible representation of GL2

of highest weight �.k; t/ is the twisted symmetric product SymkV˝ det˝t .
Now letk � k0 � 0 be two integers and fix a finite dimensional algebraic represen-

tationW k k0

of GSp4 whose restriction ��W k k0

contains the irreducible representation
.SymkV � Symk0

V/˝ det˝3, that we will simply denote .SymkV � Symk0

V/.3/.
Note that W k k0

has highest weight �.k; k0; 3/ hence is unique up to isomorphism.
We will also denote by W k k0

the lisse étale sheaf over the Siegel threefolds corre-
sponding to W k k0

according to [19], (1.10). To � is associated a closed embedding,
purely of codimension one

Y.N / �Q.�N / Y.N /
��! S.N /:

in the Siegel modular threefold of level N . Then, the composition of the external
cup-product

H1.Y.N /;SymkV.1//˝ H1.Y.N /;Symk0

V.1//
t��! H2.Y.N / �Q.�N / Y.N /; .SymkV � Symk0

V/.2//
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of the morphism induced by the inclusion .SymkV � Symk0

V/.2/ � ��W k k0

.�1/
and of the Gysin morphism

H2.Y.N / �Q.�N / Y.N /; ��W k k0

.�1// ����! H4.S.N /;W k k0

/

is a morphism

H1.Y.N /;SymkV.1//˝ H1.Y.N /;Symk0

V.1// �! H4.S.N /;W k k0

/:

For any N � 3, we denote by

Ek k0

N D ��.Ek
1=N;0 tEk0

0;1=N / 2 H4.S.N //;W k k0

/

the image of Ek
1=N;0

˝Ek0

0;1=N
under this morphism.

The proof of the following proposition is very similar to the one of [10], Propo-
sition 2.3 in the case of GL2.

Proposition 3.2. For every two integers N jN 0 with the same prime factors the trace
morphism H4.S.N 0/;W k k0

/! H4.S.N /;W k k0

/ sends Ek k0

N 0 to d2
N;N 0E

k k0

N where
dN;N 0 D .N 0=N/2 is the degree of the étale cover Y.N;N 0/! Y.N /.

Proof. The Gysin morphism and the trace are induced by the adjunction morphisms
�Š�

Š ! 1 and f�f � D fŠf
Š ! 1 respectively, so by functoriality they commute. As a

consequence it is enough to show thatEk
1=N 0;0

tEk0

0;1=N 0
is mapped to d2

N;N 0E
k
1=N;0

t
Ek0

0;1=N
under the trace

H2.Y.N 0/ � Y.N 0/; .SymkV � Symk0

V/.2//

�! H2.Y.N / � Y.N /; .SymkV � Symk0

V/.2//:

Denote by pi W Y.N 0/ � Y.N 0/ ! Y.N 0/ the i -th projection. In terms of the usual
cup-product, the external cup product is given by

Ek
1=N 0;0 tEk0

0;1=N 0 D p�
1E

k
1=N 0;0 [ p�

2E
k0

0;1=N 0 :

Then, denoting by U the Galois group of fN 0N W Y.N 0/! Y.N /, we have

tr.Ek
1=N 0;0 tEk0

0;1=N 0/ D tr.p�
1E

k
1=N 0;0 [ p�

2E
k0

0;1=N 0/

D
X

��� 02U �U

.	 � 	 0/�.p�
1E

k
1=N 0;0 [ p�

2E
k0

0;1=N 0/

D
X

��� 02U �U

Œ.	 � 	 0/�p�
1E

k
1=N 0;0/� [ Œ.	 � 	 0/�p�

2E
k0

0;1=N 0/�
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D
X

��� 02U �U

.p�
1	

�Ek
1=N 0;0/ [ .p�

2	
0�Ek0

0;1=N 0/

D p�
1

	 X
�2U

	�Ek
1=N 0;0/



[ p�

2

	 X
�2U 0

	 0�Ek0

0;1=N 0




D tr.Ek
1=N 0;0/ t tr.Ek0

0;1=N 0/

and we are led to show that tr.Ek
1=N 0;0

/ D dN;N 0Ek
1=N;0

.
The étale coverfN 0N W Y.N 0/! Y.N / factors as Y.N 0/! Y.N;N 0/! Y.N /.

By (3.1) the Galois group of the first cover is

H D ˚�
a b
0 1

� 2 GL2.Z=N
0/I a � 1 .N /; b � 0 .N /� :

Write ˛ D N 0=N . As N 0 and N have the same prime factors, for any .x; y/ 2
.Z=˛/2 we can fix an element sx;y 2 GL2.Z=N 0/ of the form

�
1CNu Nv

0 1

�
with

u � x .˛/ and v � y .˛/ and H D fsx;y I .x; y/ 2 .Z=˛/2g. Hence the trace map
H1.Y.N 0/;SymkV.1//! H1.Y.N;N 0/;SymkV.1// sends Ek

1=N 0;0
to

X
.x;y/2.Z=˛/2

s�
.x;y/E

k
1=N 0;0 D

X
.x;y/2.Z=˛/2

Ek
1=N 0Cx=˛;y=˛ D Ek

1=N;0;

the first and the second equality follow from Lemma 3.1 (i) and (ii) respectively.
Now consider the second étale cover g W Y.N;N 0/ ! Y.N / factorizing fN 0;N .
In H1.Y.N;N 0/;SymkV.1// we have Ek

1=N;0
D g�Ek

1=N;0
hence the trace map

H1.Y.N;N 0/;SymkV.1//! H1.Y.N /;SymkV.1// sends Ek
1=N;0

to dN;N 0Ek
1=N;0

.
�

Now fix an integer N and define

Ek k0

Npt D 1Qt
iD1 d

2
Npi�1;Npi

Ek k0

Npt 2 H4.S.Npt /;W k k0

/

where dNpi�1;Npi D p2 is the degree of the cover Y.Npi�1; Npi /! Y.Npi�1/.

Corollary 3.3. The class Ek k0

Npt is mapped to Ek k0

Npt�1 under the norm map

H4.S.Npt /;W k k0

/ �! H4.S.Npt�1/;W k k0

/:

4. The final result

This section heavily relies on the computations in Section 2.2 of [15]. We wish to
show that our classes define a norm compatible system in the projective limit of Galois
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cohomology groups

lim �t�1 H1.Q.�Npt /;H3.S.Npt /˝ xQ; W k k0

//

as predicted by the conjecture of Perrin-Riou. But let us first recall how the conjecture
of Perrin-Riou associates a p-adic L-function to such a norm compatible system of
Galois cohomology classes: p-adic L-functions live in a certain ring H1 which
we need to introduce first. Let Gn D Gal.Q.�pn/=Q/ and G1 D lim �nGn. The

cyclotomic character gives an isomorphism � W G1 ' Z�
p . Let � be the maximal

finite subgroup of G1, then we have the decomposition G1 D � � G11 where
G11 D 1 C pZp � Z�

p . Let u be a topological generator of G11. The Iwasawa
algebra ZpŒŒG1�� is identified with the ring ZpŒ��ŒŒu � 1�� of formal power series
over the group algebra ZpŒ�� in one variable u � 1. For h � 1, let

Hh D
˚ P

n�0;�2� cn;�	.u � 1/n 2 QpŒ��ŒŒu � 1��I limn jcn;� jpn�h D 0;
for all 	 2 ��

where j jp denotes the multiplicative valuation of Qp normalized by jpjp D 1
p

. Then

ZpŒŒG1�� � H1 � H2 � � � � :
Define H1 D S

h Hh. Then H1 is a ring since HiHj � HiCj for any i; j � 1.
For any continuous character 
 of G1 we have a ring homomorphism H1 ! xQp

defined by X
n�0;�2�

cn;�	.u � 1/n 7�!
X

n�0;�2�

cn;�
.	/.
.u/ � 1/n:

In the following we consider the usual Fontaine rings Bcrys � BdR: recall that they
have a continuous action of Gal.xQp=Qp/ and that Bcrys has a Frobenius � commuting
with the Galois action. Given a p-adic Galois representation M , let DdR.M/ D
.M ˝ BdR/

Gal. xQp=Qp/ and let Dcrys.M/ D .M ˝ Bcrys/
Gal. xQp=Qp/. We say that M

is a de Rham representation of Gal.xQp=Qp/ if dimQp
DdR.M/ D dimQp

M .

Theorem 4.1 (Perrin-Riou, see [10], Theorem 16.4). Let M be a p-adic represen-
tation of Gal.xQp=Qp/, i.e., a finite dimensional Qp-vector space endowed with a
continuous Qp-linear action of Gal.xQp=Qp/. Assume M is de Rham. Let � 2
Dcrys.M

�.1// where M � is the dual Galois representation. Then there exists a
unique homomorphism

L� W lim �nH1.Qp.�pn/;M/ �! H1

having the following properties for any integer r � 1.
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(i) Let n � 1 and let 
 W Gn ! xQ�
p be a homomorphism which does not factor

through Gn�1. Then for any x 2 lim �nH1.Qp.�pn/;M/, we have

L�.x/.�
r
�1/ D .r � 1/ŠG.
; �pn/�1

X
�2Gn


.	/Œ	.exp�.x�r;n//; .p
�r�/�n.�/�:

HereG.
; �pn/ denotes the usual Gauss sum, exp� denotes the dual exponential map
([10], 9.3), x�r;n denotes the image of x under the composite

lim �nH1.Qp.�pn/;M/! lim �nH1.Qp.�pn/;M.�r//! H1.Qp.�pn/;M.�r//

where the first arrow is the product with ..�pj /˝.�r//j �1 and the second arrow is
the canonical projection (so exp�.x�r;n/ is an element of Q.�pn/˝DdR.M.�r// D
Q.�pn/˝DdR.M/), Œ ; � is the canonical pairing

.Q.�pj /˝DdR.M// �Dcrys.M
�.1//! xQp

induced byDdR.M/ �Dcrys.M
�.1//! xQp and � is the Frobenius.

(2) Assume � D .1 � p�r�/�0 with �0 2 Dcrys.M
�.1//. Then for any x 2

lim �nH1.Qp.�pn/;M/,

L�.x/.�
r/ D .r � 1/ŠŒexp�.x�r;0/; .1 � pr�1��1/�0�:

According to this theorem, once the norm compatible system x is constructed, one
has the p-adic L-function L�.x/ 2 H1. Then the difficult part is to show that this
p-adic L-function interpolates the special values of the usual L-function. This will
be carried over in a forthcoming paper by the explicit computation of the image of our
norm compatible system under the dual exponential, result which is also expected to
yield the non-vanishing of our classes, which is not known for the moment.

In order to obtain first Galois cohomology classes from our elements, we would
like to show that the rank four étale cohomology H4.S.N / ˝ xQ; W k k0

/ has no
invariants under the absolute Galois group of Q.�N /, and then invoke the Hochschild–
Serre spectral sequence. This relies on the following vanishing theorem of Saper: let
G be a connected reductive group over Q, let K1 be a maximal compact subgroup
of G.R/, let AG be the identity component of a maximal Q-split torus in the center
of G and let � � G.Q/ be an arithmetic subgroup. Write D D G.R/=K1AG and
X D �nD.

Theorem 4.2 ([20], Theorem 5). Assume X is an arithmetic quotient of a Hermitian
symmetric space of dimension d . Let E be an algebraic irreducible representation
of G with regular highest weight. Then the singular cohomology Hi .S;E/ with
coefficients in E vanishes for i < d

2
.
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As this theorem is stated for arithmetic quotients of Hermitian symmetric spaces,
let us recall how the Siegel threefolds S.N /.C/ are a disjoint union of such: let HC
be Siegel upper half-plane

HC D f� 2 M2.C/ jt � D �; Im�	 0g
of complex symmetric matrices of size two whose imaginary part is positive definite.
It is known that HC is a Hermitian symmetric space. The symplectic group Sp4.R/
acts transitively on the left on HC via�

A B

C D

�
:� D .A�C B/.C�CD/�1

Let �.N/ D ker.Sp4.Z/ ! Sp4.Z=NZ// � Sp4.R/. The stabilizer of the matrix
i I2 is a maximal compact subgroup of Sp4.R/. As the center of Sp4 is f˙I4g, note
that HC is of the shape D as above. According to [14], Proposition 3.2, we have an
isomorphism of complex analytic varieties

S.N /.C/ D
a

.Z=N Z/�

�.N/nHC:

We also have a similar statement for the modular curves Y.N /when the Siegel upper
half-space is replaced by the Poincaré upper half-space.

The proof of the following Proposition 4.4 also relies on the main theorem of [19]
that we are going to explain now in the needed particular case of GSp4.

4.1. Higher direct images of p-adic sheaves in the Baily–Borel compactification.
The boundary of the Baily–Borel compactification of a Shimura variety associated
to a group G is stratified by (finite quotients of) Shimura varieties associated to the
Levi subgroups ofG. The main result of [19], that is stated at the end of this section,
describes the restriction to a stratum of the higher direct image in the Baily–Borel
compactification of the p-adic étale sheaf associated to an algebraic representation
of G.

Let us first describe the construction of the Baily–Borel compactification of
the Siegel threefolds. We will need the notion of pure and mixed Shimura da-
tum for which we refer the reader to [18], 2. Consider the pure Shimura datum
.GSp4;GSp4.R/=K1/ associated to the symplectic group GSp4. For every maximal
parabolic subgroup Q � GSp4 there exists a normal subgroup P1 � Q underly-
ing a mixed Shimura datum .P1;X1/ ([loc. cit.], 4.11), called a rational boundary
component of .GSp4;GSp4.R/=K1/. Let W1 be the unipotent radical of P1 and
let q W P1 ! G1 D P1=W1 be the projection on the Levi. Denote by .G1;H1/ the
quotient pure Shimura datum .P1;X1/=W1 ([loc. cit.], Proposition 2.9). There are
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two conjugacy classes of maximal parabolic subgroups of GSp4, namely the ones of

Q0 D W 0 Ì .Gm � GL2/ D
˚�

˛A A:M
0 t A�1

�
; ˛ 2 Gm; A 2 GL2;

tM DM �
; (4.1)

Q1 D W 1 Ì .GL2 �Gm/ D
²� ˛ � � �

0 a � b
0 0 ˇ 0
0 c � d

�
2 GSp4; ˛ˇ D ad � bc

³
: (4.2)

We also have, with obvious notations P 0
1 D W 0 Ì Gm, G0

1 D Gm and P 1
1 D

W 1 Ì GL2, G1
1 D GL2 according to [loc. cit.], 4.25.

Let H � D`
.P1;X1/ H1, the sum running over all rational boundary components

of .GSp4;GSp4.R/=K1/. We endow H � with the Satake topology ([loc. cit.], 6.2).
Let

S.N /�.C/ D GSp4.Q/n.H � � GSp4.Af /=K.N//:

Then S.N /�.C/ is the analytification of a normal projective Q.�N /-scheme S.N /�
([loc. cit.], 8.2). There is an open embedding S.N /.C/! S.N /�.C/which descends
to an open embedding

j W S.N /! S.N /�:

For n D 0; 1 and every g 2 GSp4.Af / let Kn
1 D gKg�1 \ P n

1 .Af / and

@S.N /n.C/ D Gn
1 .Q/n.H n

1 �Gn
1 .Af /=q.K

n
1 //:

By [loc. cit.], Section 12.3 (b), the map @S.N /n.C/! S.N /�.C/ descends to

in W @S.N /n ! S.N /�:

Varying n and g we obtain a stratification of the boundary @S.N / D S.N /� � S.N /
by locally closed subschemes. For what follows, note that @S.N /n is of dimension n.

Theorem 4.3 ([19], Theorem 4.2.1). Denote by� the canonical construction of étale
sheaves associated to representations of the group underlying a given Shimura variety
([loc. cit.], 1.10). Forn D 0; 1 there exists an arithmetic subgroupHC � Qn=P n

1 .Q/
such that

i�nRmj��.W k k0

/ D
M

pCqDm

�.Hp.HC ;H
q.W n; W k k0

///

Remark. In the proof of the following proposition we will quote the results of [15]
where the computations are realized in the framework of mixed Hodge modules,
rather than in the one of étale sheaves. There, Theorem 4.3 is replaced by the anal-
ogous theorem of Burgos–Wildeshaus (see [loc. cit.], Theorem 2.1). The result is
exactly the same but on one shift that occurs in the graduation of the higher direct
images due to the perverse t-structure: for example, as @S.N /0, resp. @S.N /1, is of
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codimension three, resp. two, in S.N /�, the higher direct image i�0Rmj��.W k k0

/,
resp. i�1Rmj��.W k k0

/, in the framework of mixed Hodge modules corresponds to
the higher direct image i�0RmC3j��.W k k0

/, resp. i�1RmC2j��.W k k0

/, in our étale
setting.

4.2. The weight computation

Proposition 4.4. Assume k > k0 > 0. Then the étale cohomology space H4.S.N /˝
xQ; W k k0

/ has no weight zero. As a consequence, it has no invariants under the action
of the absolute Galois group of Q.�N /.

Proof. Let

S.N /
j��! S.N /� i �� @S.N /

be the open embedding of S.N / into its Baily–Borel compactification and the reduced
closed imbedding of the boundary. We have an exact sequence of Galois modules

H4
c.S.N /˝ xQ; W k k0

/ �! H4.S.N /˝ xQ; W k k0

/

�! H4.@S.N /˝ xQ; i�Rj�W k k0

/:

With our assumption on the weight k > k0 > 0, we can apply Theorem 4.2, which,
together with Poincaré duality and the comparison theorem between étale and singular
cohomology, shows the vanishing of the space H4

c.S.N /˝ xQ; W k k0

/. So it is enough
to show that H4.@S.N /˝ xQ; i�Rj�W k k0

/ has no weight zero. Now let

@S.N /1
i1��! @S.N /

i0 �� @S.N /0

be the open embedding of the strata of dimension one and the reduced closed embed-
ding of the strata of dimension zero respectively in the boundary. We have an exact
sequence of Galois modules

H4
c.@S.N /1 ˝ xQ; i�1 i�Rj�W k k0

/ �! H4.@S.N /˝ xQ; i�Rj�W k k0

/

�! H4.@S.N /0 ˝ xQ; i�0 i�Rj�W k k0

/:

On the one hand, because @S.N /0 is of dimension zero we have

H4.@S.N /0 ˝ xQ; i�0 i�Rj�W k k0

/ D H0.@S.N /0 ˝ xQ; i�0 i�R4j�W k k0

/

which has weight> 0 according to [15], Lemma 2.5. On the other hand, we have the
spectral sequence

E
p;q
2 D Hp

c .@S.N /1˝xQ; i�1 i�Rqj�W k k0

/ H) HpCq
c .@S.N /1˝xQ; i�1 i�Rj�W k k0

/:
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Now Theorem 4.3 and Lemma 2.6 in [15] show that

i�1 i�R0j�W k k0 D i�1 i�R3j�W k k0 D Symk0

V.3/;

i�1 i�R1j�W k k0 D i�1 i�R2j�W k k0 D SymkC1V.3/:

Recall that @S.N /1 is a disjoint union of modular curves. The fact that @S.N /1
is a non proper curve together with theorem 4.2 imply that the lisse étale sheaves
above have cohomology concentrated in degree one. As a consequence our spectral
sequence gives that

H4
c.@S.N /1 ˝ xQ; i�1 i�Rj�W k k0

/ D H1
c.@S.N /1 ˝ xQ; i�1 i�R3j�W k k0

/

D H1
c.@S.N /1 ˝ xQ;Symk0

V.3//:

The lisse sheaf V has weight �1, so the sheaf Symk0

V.3/ has weight �k0 � 6 and
the étale cohomology space H1

c.@S.N /1 ˝ xQ;Symk0

V.3// has weight smaller than
�k0�6C1 hence has no weight zero. As a consequence H4.@S.N /˝xQ; i�Rj�W k k0

/

has no weight zero and the proof is complete. �

Corollary 4.5. Assume k > k0 > 0. Then we have a canonical isomorphism

H1.Q.�N /;H
3.S.N /˝ xQ; W k k0

// ��!� H4.S.N /;W k k0

/:

Proof. Considering continuous Galois cohomology, we have the Hochschild–Serre
spectral sequence

E
p;q
2 D Hp.Q.�N /;H

q.S.N /˝ xQ; W k k0

// H) HpCq.S.N /;W k k0

/

([9], Corollary 3.4). By Theorem 4.2 and the comparison isomorphism between étale
and singular cohomology, we have Hq.S.N / ˝ xQ; W k k0

/ D 0 for q < 3. Hence
E

p;q
2 D 0 for q < 3. As a consequence

E0;41 D ker.d W H0.Q.�N /;H
4.S.N /˝ xQ; W k k0

//

�! H2.Q.�N /;H
3.S.N /˝ xQ; W k k0

///

and E1;31 D E
1;3
2 . But Proposition 4.4 asserts that H4.S.N / ˝ xQ; W k k0

/ has no
weight zero. As a consequence E0;41 D 0 and we have a canonical isomorphism

H1.Q.�N /;H
3.S.N /˝ xQ; W k k0

/ ��!� H4.S.N /;W k k0

/: �

From Corollary 3.3 and Corollary 4.5 we can now deduce the main result of this
paper.

Proposition 4.6. Let N � 1 be an integer. Assume k > k0 > 0. Then we have a
norm compatible system

.Ek k0

Npt / 2 lim �t�1 H1.Q.�Npt /;H3.S.Npt /˝ xQ; W k k0

//:
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