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Actions of automorphism groups of free groups on homology
spheres and acyclic manifolds
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Abstract. Forn � 3, let SAut.Fn/denote the unique subgroup of index two in the automorphism
group of a free group. The standard linear action of SL.n;Z/ on Rn induces non-trivial actions
of SAut.Fn/ on Rn and on Sn�1. We prove that SAut.Fn/ admits no non-trivial actions by
homeomorphisms on acyclic manifolds or spheres of smaller dimension. Indeed, SAut.Fn/

cannot act non-trivially on any generalized Z2-homology sphere of dimension less than n � 1,
nor on any Z2-acyclic Z2-homology manifold of dimension less than n. It follows that SL.n;Z/
cannot act non-trivially on such spaces either. When n is even, we obtain similar results with
Z3 coefficients.
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1. Introduction

In geometric group theory one attempts to elucidate the algebraic properties of a group
by studying its actions on spaces with good geometric properties. For irreducible
lattices in higher-rank semisimple Lie groups, versions of Margulis superrigidity
place severe restrictions on the spaces that are useful for this purpose. Our focus in
this article is on the rigidity properties of the group Aut.Fn/ of automorphisms of a
free group, which is not a lattice but nevertheless enjoys many similar properties.

In [5] we exhibited strong constraints on homomorphisms from Aut.Fn/ and
pointed out that such constraints restrict the way in which Aut.Fn/ can act on various
spaces. We illustrated this point by showing that if n � 3 then any action of Aut.Fn/

on the circle by homeomorphisms must factor through the determinant homomor-
phism det W Aut.Fn/ ! Z2. We now show that similar restrictions apply much more
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generally, to actions on higher-dimensional generalized homology spheres over Zp

and to generalized manifolds that are Zp-acyclic, for p D 2; 3.
For n � 3 we denote by SAut.Fn/ the unique subgroup of index two in Aut.Fn/.

The action of Aut.Fn/ on the abelianization of the free group Fn gives a natural
map Aut.Fn/ ! GL.n;Z/, sending SAut.Fn/ onto SL.n;Z/. Thus the standard
linear action of SL.n;Z/ on Rn induces non-trivial actions of SAut.Fn/ on Rn and
on the sphere Sn�1. However, we will prove that SAut.Fn/ cannot act non-trivially
on spheres or contractible manifolds of any smaller dimension. For linear actions,
elementary results in the representation theory of finite groups can be combined with
an understanding of the torsion in SAut.Fn/ to prove this statement; the real challenge
lies with non-linear actions.

Smooth actions are considerably easier to handle than topological ones. Thus we
begin by proving, in Section 2, that for n � 3, SAut.Fn/ cannot act non-trivially by
diffeomorphisms on a Z2-acyclic smooth manifold of dimension less than n. The
proof we present is deliberately constructed so as to point out the difficulties encoun-
tered in the purely topological setting. In particular, the proof requires understanding
the fixed point sets of involutions. This immediately creates a problem in the topo-
logical setting because the fixed point sets of involutions are not in general manifolds,
but only homology manifolds over Z2. A second difficulty arises because there is no
tangent space in the topological setting; in the smooth case the tangent space allows
one to use linear algebra to transport information about the action near fixed point
sets to information about the action on the ambient manifold.

These are well-known difficulties that lie at the heart of the theory of transfor-
mation groups and much effort has gone into confronting them [4], [3]. They are
overcome using (local and global) Smith theory, but one has to accept the necessity of
working with generalized manifolds rather than classical manifolds. (See Section 4
for definitions concerning generalized manifolds.)

We shall prove the following results by following the architecture of the proof we
give in the smooth setting, combining Smith theory with an analysis of the torsion in
SAut.Fn/ to overcome the technical problems that arise.

Theorem 1.1. If n � 3 and d < n� 1, then any action of SAut.Fn/ by homeomor-
phisms on a generalized d -sphere over Z2 is trivial, and hence Aut.Fn/ can act only
via the determinant map.

Theorem 1.2. If n � 3 and d < n, then any action of SAut.Fn/ by homeomorphisms
on a d -dimensional Z2-acyclic homology manifold over Z2 is trivial, and hence
Aut.Fn/ can act only via the determinant map.

As special cases we obtain the desired minimality result for the standard linear
action of SAut.Fn/ on Rn and Sn�1.
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Corollary 1.3. If n � 3, then SAut.Fn/ cannot act non-trivially by homeomorphisms
on any contractible manifold of dimension less than n, or on any sphere of dimension
less than n � 1.

We also note that these theorems have as immediate corollaries the analogous
statements for SL.n;Z/ and GL.n;Z/.

Corollary 1.4. If n � 3 and d < n, then SL.n;Z/ cannot act non-trivially by home-
omorphisms on any generalized .d � 1/-sphere over Z2, or on any d -dimensional
homology manifold over Z2 that is Z2-acyclic. Hence GL.n;Z/ can act on such
spaces only via the determinant map.

Corollary 1.4 was conjectured by Parwani [13]; see Remark 4.16.
In Section 3 we describe a subgroup T � SAut.F2m/ isomorphic to .Z3/

m that
intersects every proper normal subgroup of SAut.F2m/ trivially. This provides a
stronger degree of rigidity than is offered by the 2-torsion in SAut.Fn/ and conse-
quently one can deduce the following theorems from Smith theory more readily than
is possible in the case of Z2 (see Section 4.3).

Theorem 1.5. If n > 3 is even and d < n � 1, then any action of SAut.Fn/ by
homeomorphisms on a generalized d -sphere over Z3 is trivial.

Theorem 1.6. If n > 3 is even and d < n, then any action of SAut.Fn/ by homeo-
morphisms on a d -dimensional Z3-acyclic homology manifold over Z3 is trivial.

We expect that our results concerning SL.n;Z/ should be true for other lattices
in SL.n;R/, but our techniques do not apply because we make essential use of the
torsion in SL.n;Z/. What happens for subgroups of finite index in SAut.Fn/ is
less clear: there are subgroups of finite index in SAut.Fn/ that map non-trivially to
SL.n � 1;R/ and hence act non-trivially on Rn�1, but one does not know if such
subgroups can act non-trivially on contractible manifolds of dimension less thann�1.

In a brief final section we explain how our results concerning torsion in Aut.Fn/,
together with the application of Smith theory in [12], imply the following result.

Theorem 1.7. Let p be a prime and let M be a compact d -dimensional homology
manifold over Zp . There exists an integer �.p; d; B/, depending only on p, d and
the sumB of the mod p Betti numbers ofM , so that Aut.Fn/ cannot act non-trivially
by homeomorphisms onM if n > �.p; d; B/.

Acknowledgements. We would like to thank the colleagues who helped us struggle
with the technicalities of generalized manifolds and Smith theory over the past year,
including in particular Mladen Bestvina, Mike Davis, Ian Hambleton and Shmuel
Weinberger. We also thank Linus Kramer and Olga Varghese for their comments
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2. Smooth actions

In this section we indicate how to prove Theorem 1.2 for smooth actions. Our intent
here is to explain the structure of the proof of our general results without the technical
difficulties that occur in the topological setting.

Theorem 2.1. Let X be a k-dimensional differentiable manifold that is Z2-acyclic
(i.e., has the Z2-homology of a point). If n � 3 and k < n then any action of
SAut.Fn/ by diffeomorphisms on X is trivial.

Proof. The proof proceeds by induction on n. We omit the cases n � 4, where ad
hoc arguments apply (cf. subsection 4.5). Suppose, then, that n � 5, fix a basis
a1; : : : ; an for Fn and consider the involutions "ij of Fn defined as follows:

"ij W

8̂<
:̂
ai 7! a�1

i ;

aj 7! a�1
j ;

ak 7! ak; k ¤ i; j:

These involutions are all conjugate in SAut.Fn/, and the quotient of SAut.Fn/ by the
normal closure of any "ij is SL.n;Z2/, which is a simple group (cf. Proposition 3.1).
Thus to prove that an action of SAut.Fn/ is trivial it suffices to show first that some
"ij acts trivially, so that the action factors through SL.n;Z2/, and then that some
non-trivial element of SL.n;Z2/ acts trivially.

SinceX is Z2-acyclic it must be orientable, and since SAut.Fn/ is perfect it must
act by orientation-preserving diffeomorphisms. Therefore either the action of "12 is
trivial or the fixed point set F12 of "12 is a smooth submanifold of codimension at
least 2, and Smith theory [22] tells us that this fixed point set will itself be Z2 -acyclic.

The centralizer of "12 contains an obvious copy of SAut.Fn�2/, corresponding to
the sub-basis a3; : : : ; an, and by induction this must act trivially on F12. In particular,
the automorphism "45 acts trivially, so its fixed point set F45 contains F12. But "12

and "45 are conjugate, so in fact F12 D F45, i.e., we have two commuting involutions
with the same (non-empty) fixed point set. On the tangent space at a common fixed
point these induce commuting linear involutions of Rk with the same fixed vectors,
which must be identical by basic linear algebra. But the action of a finite group on
a connected smooth manifold is determined by its action on the tangent space of a
fixed point, so the actions themselves must be identical. Thus the product "12"45 acts
trivially. A similar argument shows that "23"45 acts trivially, and we conclude that
the product "12"45"23"45 D "13 acts trivially.

Now look at the induced action of SL.n;Z2/ on X , and consider the elementary
matricesE1j . These generate a subgroup isomorphic to Zn�1

2 , and we claim that any
such group acting by orientation-preserving homeomorphisms onX must contain an
element which acts trivially. To see this, choose an element of Zn�1

2 whose fixed point
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set F has the largest dimension. By induction (starting with the trivial case n D 3),
some other element of the group must act trivially on F , and one thus obtains two
commuting involutions that have the same fixed point set, as in the previous paragraph.
As before, the involutions must be the same and the product acts trivially. �

3. Concerning the quotients of Aut.Fn/

3.1. Notation. Fix a generating set fa1; : : : ; ang for Fn. The right and left Nielsen
automorphisms �ij and �ij are defined by

�ij W
´
ai 7! aiaj ;

ak 7! ak; k ¤ i I �ij W
´
ai 7! ajai ;

ak 7! ak; k ¤ i:

We denote by ei the automorphism which inverts the generator ai . Elements of the
subgroup †n of automorphisms which permute the generators ai will be denoted
using standard cycle notation; for example .ij / is the automorphism interchanging
ai and aj :

ei W
´
ai 7! a�1

i ;

ak 7! ak; k ¤ i I .ij / W

8̂<
:̂
ai 7! aj ;

aj 7! ai ;

ak 7! ak; k ¤ i; j:

Wn is the subgroup of Aut.Fn/ generated by †n and the inversions ei , and SWn is
the intersection of Wn with SAut.Fn/. The subgroup of Wn generated by the ei is a
normal subgroupN Š .Z2/

n, andWn decomposes as the semidirect productN Ì†n.
The intersection of N with SAut.Fn/ is denoted SN . Note that the central element
� D e1e2 : : : en of Wn is in SN if and only if n is even.

Although it seems awkward at first glance, it is convenient to work with the right
action of Aut.Fn/ on Fn: so ˛ˇ acts as ˛ followed by ˇ. An advantage of this is
the neatness of the formula Œ�ij ; �jk� D �ik , where our commutator convention is
Œa; b� D aba�1b�1.

3.2. How kernels can intersect SWn. The following variation on Proposition 9 of
[5] will be useful here.

Proposition 3.1. Suppose n � 3 and let � be a homomorphism from SAut.Fn/ to a
group G. If �jSWn

has non-trivial kernel K, then one of the following holds:
1. n is even, K D h�i and � factors through PSL.n;Z/,
2. K D SN and the image of � is isomorphic to SL.n;Z2/, or
3. � is the trivial map.
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Proof. In Aut.Fn/ one has the semidirect product decompositionWn D N Ì†n and
accordingly we write elements of SWn as ˛� , with ˛ D e

�1

1 e
�2

2 : : : e
�n
n 2 N and

� 2 Sn. (Note that it may be that neither ˛ nor � is itself in SAut.Fn/.)
Using exponential notation to denote conjugation, we have

�˛
ij D

8̂̂̂
<
ˆ̂̂:
�ij if 	i D 	j D 0,

�ij if 	i D 	j D 1,

��1
ij if 	i D 0 and 	j D 1,

��1
ij if 	i D 1 and 	j D 0.

(1)

Also, for 
 2 f�; �g, we have 
�
ij D 
�.i/�.j /. Hence �˛�

ij D 
˙1
�.i/�.j /

for some for

 2 f�; �g.

IfK contains the center h�i ofWn then nmust be even and the relations��ij� D
�ij imply that the map � factors through SL.n;Z/, since by [9] adding the relations
�ij D �ij to a presentation for SAut.Fn/ gives a presentation for SL.n;Z/. Since�
maps to the center of SL.n;Z/, the map in fact factors through PSL.n;Z/.

If K contains an element ˛ 2 SN which is not central in Wn, then we can write
˛ D e

�1

1 e
�2

2 : : : e
�n
n with

P
	i even and some 	k D 0. Given any indices i and j we

can conjugate ˛ by an element of the alternating groupAn � SWn to obtain elements
in the kernel of � with any desired values of 	i ; 	j 2 f0; 1g. Conjugating �ij by these
elements, we see from (1) that �ij ; �ij ; �

�1
ij and ��1

ij all have the same image under �.
This implies not only that � factors through SL.n;Z/, but also that the images of
all Nielsen automorphisms have order 2, and so � factors through SL.n;Z2/. The
image of SN is trivial under this map, i.e. K � SN . Since SL.n;Z2/ is simple, the
image of � is either trivial or isomorphic to SL.n;Z2/.

Finally, suppose thatK contains an element ˛� which is not in SN , i.e. � ¤ 1. If
� is not an involution, then for some i; j; k with i ¤ k we have �.i/ D j and �.j / D
k, hence ��

ij D 
jk with 
 2 f�; �g. By combining the relations Œ�ij ; �jk� D �ik

and Œ
i̇j ; �ij � D 1 with the fact that �.xy/ D �.x/ for all x 2 SAut.Fn/ and y 2 K,
we deduce:

�.�ik/ D Œ�.�ij /; �.�jk/� D Œ�.�˛�
ij /; �.�jk/�

D Œ�.
˙1
jk /; �.�jk/� D �.Œ
˙1

jk ; �jk�/ D 1:

Since all Nielsen automorphisms are conjugate in SAut.Fn/ and they together gen-
erate SAut.Fn/, we conclude that � is trivial (and K D SWn).

Finally, if � is an involution interchanging j ¤ k, then a similar calculation
produces the conclusion that

�.�ik/ D Œ�.�ij /; �.�
˛�
jk /� D �.Œ�ij ; 


˙1
kj �/ D 1

so that � is again trivial. �
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3.3. All non-trivial quotients of SAut.F2m/ contain .Z3/m. In this subsection we
are only interested in free groups of even rank. It is convenient to switch notation: if
n D 2m we fix a basis fa1; b1; : : : ; am; bmg for Fn; we write �ai bi

and �ai bi
for the

Nielsen transformations that send ai to biai and aibi , respectively; we write .ai bi /

for the automorphism that interchanges ai and bi , fixing the other basis elements; we
write ea1

instead of e1, and so on.
Let T be the subgroup of SAut.Fn/ generated by fRi j i D 1; : : : ; mg where

Ri W

8̂̂
<̂
ˆ̂̂:
ai 7! b�1

i ;

bi 7! b�1
i ai ;

aj 7! aj ; j ¤ i;

bj 7! bj ; j ¤ i:

Lemma 3.2. T Š .Z3/
m.

Proof. One can verify this by direct calculation but the nature of T is most naturally
described in terms of the labelled graph Tm depicted in Figure 1.

v0

a1

b1

v1 a2

b2

v2

a3 b3

v3

am

bm

vm

Figure 1. Graph realizing the subgroup T .

Tm has mC 1 vertices v0; v1; : : : ; vm and 3 edges joining v0 to each of the other
vertices. A maximal tree is obtained by choosing an (unlabelled) edge joining v0 to
each of the other vertices. For each i , the remaining two edges incident at vi are
oriented towards v0 and labelled ai and bi .

This labelling identifies �1.Tm; v0/ with F2m D F.a1; b1; : : : ; am; bm/ and de-
fines an injective homomorphism  W Sym.Tm; v0/ ! Aut.Fn/ whose image con-
tains T . Indeed Ri is the image under  of the symmetry of order 3 that cyclically
permutes the edges joining vi to v0, sending the edge labelled ai to that labelled bi

and sending the edge labelled bi to the unlabelled edge. �

A routine calculation yields:

Lemma 3.3. For i D 1; : : : ; m, let ˇi 2 SAut.Fn/ be the automorphism that sends
ai to a�1

i and bi to a�1
i b�1

i ai while fixing the other basis elements.
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(1) Rieai
ebi
R�1

i D ˇi .

(2) ŒRj ; eai
� D ŒRj ; ebi

� D 1 if j ¤ i .

(3) Riebi
R�1

i eai
D �2

bi ai
.

(4) R�1
i eai

Riebi
D �2

ai bi
.

Proposition 3.4. For m � 2 and any group G, let � W SAut.F2m/ ! G be a homo-
morphism. If �jT is not injective, then � is trivial.

Proof. Let t 2 T be a non-trivial element of the kernel of �. Replacing t by t�1 if
necessary, we may write t D Riuwhere u is a word in theRj with j ¤ i . Since each
Rj commutes with eai

and ebi
, we have teai

ebi
t�1 D Rieai

ebi
R�1

i D ˇi . Since
�.t/ D 1, applying � to this equation gives �.eai

ebi
/ D �.ˇ/.

We now note that eai
ebi

conjugates �ai bi
to �ai bi

, whereas ˇi commutes with
�ai bi

. Since the images of eai
ebi

and ˇi under � are the same, this gives

�.�bi ai
/ D �.�bi ai

/:

As in the proof of Proposition 3.1, we appeal to [9] to deduce that � factors through
SAut.Fn/ ! SL.n;Z/.

Next we consider the effect of the relations (3) and (4) from Lemma 3.3. Unfor-
tunately, these are relations in Aut.Fn/ not SAut.Fn/. But since Ri commutes with
eaj

when j ¤ i we have the following relation in SAut.Fn/,

R�1
i eai

eaj
Riebi

eaj
D �2

ai bi
:

If t D Ri then applying � to this equation gives �.eai
ebi
/ D �.�ai bi

/2. Conjugat-
ing both sides by the permutation .ai aj /.bi bj /, we get the same equality with j
subscripts. Since all the automorphisms with i subscripts commute with those that
have j subscripts, we deduce

.�/ �.ebi
ebj
eai
eaj
/ D �.�2

ai bi
�2

aj bj
/:

If t D RiRj v for some j ¤ i and v a (possibly empty) word in the Rk with
k ¤ i; j , then combining relation (4) for i and j gives

t�1eai
eaj
tebi

ebj
D R�1

i R�1
j eai

eaj
RjRiebi

ebj
D �2

ai bi
�2

aj bj
:

Applying � to this equation gives equation .�/ in this case as well.
If t D RiR

�1
j v, then relation (3) for i and relation (4) for j give

tebi
eaj
t�1eai

ebj
D RiR

�1
j ebi

eaj
R�1

i Rj eai
ebj

D �2
ai bi

�2
bj aj

:
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Applying � to this equation gives �.eai
ebj
ebi
eaj
/ D �.�2

ai bi
�2

bj aj
/: Conjugating

both sides by .aj bj /eak
for some k ¤ i; j gives equation .�/ once again.

Next we claim that equation .�/ forces � to factor not only through SAut.Fn/ !
SL.n;Z/ but also through SAut.Fn/ ! SL.n;Z2/. In order to prove this, it suffices
to argue that the image under � of some Nielsen transformation has order at most 2.

Let N̨ denote the image of ˛ 2 SAut.Fn/ in SL.n;Z/. Consider the subgroup
SL.4;Z/ � SL.n;Z/ corresponding to the sub-basis fai ; bi ; aj ; bj g. Equation .�/
tells us that N�2

ai bi

N�2
aj bj

becomes central in the image of SL.4;Z/ under �. But in this

copy of SL.4;Z/ one has the relations Œ N�2
ai bi

; N�bi bj
� D N�2

ai bj
and Œ N�2

aj bj
; N�bi bj

� D 1.

So forcing N�2
ai bi

N�2
aj bj

to become central implies that �.�ai bj
/2 D 1, as required.

We have proved that � factors through SAut.Fn/ ! SL.n;Z2/. The final point
to observe is that the restriction to T of this last map is injective; in particular the
image of t is non-trivial, and hence so is the image of ker �. Thus the image of � in
G is a proper quotient of the simple group SL.n;Z2/, and therefore is trivial. �

4. Actions on generalized spheres and acyclic homology manifolds

Because the fixed point set of a finite-period homeomorphism of a sphere or con-
tractible manifold need not be a manifold, we must expand the category we are work-
ing in to that of generalized manifolds. We follow the exposition in Bredon’s book
on sheaf theory [3]. All homology groups in this section are Borel–Moore homology
with compact supports and coefficients in a sheaf A of modules over a principle ideal
domainL. The homology groups ofX are denotedH c� .X I A/. IfX is a locally finite
CW-complex and A is the constant sheaf X � L (which we will denote simply by
L), then H c� .X IL/ is isomorphic to singular homology with coefficients in L (see
[3], p. 279).

All cohomology groups are sheaf cohomology with compact supports, denoted
H�

c .X I A/. If A is the constant sheaf, this is isomorphic to Čech cohomology with
compact supports. If F is a closed subset of X , then sheaf cohomology satisfies
H k

c .X; F I A/ Š H k
c .X X F I A/.

In fact, the only sheaves we will consider other than the constant sheaf are the
sheaves Ok associated to the pre-sheaves U 7! H c

k
.X;X X U IL/.

4.1. Homology manifolds. Let L be one of Z or Zp (the integers mod p, where p
is a prime).

Definition 4.1 ([3], p. 329). Anm-dimensional homology manifold over L (denoted
m-hmL) is a locally compact Hausdorff space X with finite homological dimension
overL, that has the local homology properties of a manifold. Specifically, the sheaves
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Ok are locally constant with stalk 0 if k ¤ m and L if k D m. The sheaf O D Om

is called the orientation sheaf.

We will further assume that our homology manifolds are first-countable.

Definition 4.2. If X is an m-hmL and H c� .X IL/ Š H c� .SmIL/ then X is called a
generalized m-sphere over L.

Definition 4.3. If X is an m-hmL with H c
0 .X IL/ D L and H c

k
.X IL/ D 0 for

k > 0, then X is said to be L-acyclic.

There is a similar notion of cohomology manifold over L, denoted m-cmL (see
[3], p. 373). If L D Zp , a connected space X is an n-cmL if and only if it is
an n-hmL and is locally connected ([3], p. 375 Theorem 16.8 and footnote). If X
is a locally connected homology manifold over Zp , then the fixed point set of any
homeomorphism of order p is also locally connected (see [4], Theorem 1.6, p. 72,
where there is a stronger connectivity statement (clcL), but the proof, which relies on
Proposition 1.4, p. 68, also applies to local connectivity). These remarks show that
the theorems we state below for homology manifolds are also valid for cohomology
manifolds.

Finally, we note that homology manifolds satisfy Poincaré duality between Borel–
Moore homology and sheaf cohomology ([3], Theorem 9.2), i.e., if X is an m-hmL

then
H c

k .X IL/ Š Hm�k
c .X I O/:

4.2. Elements of Smith theory. There are two types of Smith theorems, usually
referred to as “global” and “local” Smith theorems. The global theorems require only
that X be a locally compact Hausdorff space with the homology of a sphere or a
point, while the local theorems concern homology manifolds. These were originally
proved by P. A. Smith ([14],[15]), but we follow the exposition in Bredon’s book and
Borel’s Seminar on Transformation groups [4].

Theorem 4.4 (The Local Smith Theorem, [3], Theorem 20.1, Proposition 20.2,
pp. 409–410). Let p be a prime and L D Zp . The fixed point set of any action
of Zp on an n-hmL is the disjoint union of (open and closed) components each of
which is an r-hmL with r � m. If p is odd then each component of the fixed point
set has even codimension.

By invariance of domain for homology manifolds ([3], Corollary 16.19, p. 383)
the fixed point set of any non-trivial action of Zp on a connected, locally connected
m-hmZp

is a (locally connected) r-hmZp
with r � m � 1.
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Theorem 4.5 (Global Smith Theorems, [3], Corollaries 19.8 and 19.9, p. 144). Let
p be a prime and X a locally compact Hausdorff space of finite dimension over Zp .
Suppose that Zp acts on X with fixed point set F .

� IfH c� .X I Zp/ Š H c� .SmI Zp/, thenH c� .F I Zp/ Š H c� .Sr I Zp/ for some r with
�1 � r � m. If p is odd, then m � r is even.

� If X is Zp-acyclic, then F is Zp-acyclic (in particular non-empty and con-
nected).

In Section 19 of [3] the Global Smith Theorem is stated for cohomology; the
homology version above follows using the Smith theory sequence (132) on page 408
of [3]. The details of this translation have been worked out by Olga Varghese in [21].

Together these theorems imply

Corollary 4.6. Let X be an m-hmZp
.

� IfX is a generalizedm-sphere overZp , thefixedpoint set of any homeomorphism
of order p is a (possibly empty) generalized r-sphere, with r � m � 1. If p is
odd, r � m � 2.

� If X is Zp-acyclic, the fixed point set of any homeomorphism of order p is a
(non-empty) Zp-acyclic r-hmZp

, for some r � m � 1. If p is odd, r � m � 2.
We want to use this corollary as the basis for an induction that bounds the di-

mensions in which elementary p-groups can act effectively on generalized spheres
and acyclic homology manifolds. But in the case of spheres we need an additional
result that guarantees the existence of fixed points. This is provided by P. A. Smith’s
theorem that Zp � Zp cannot act freely on a generalized sphere over Zp (see [16]; cf
Theorem 4.8 below).

The proof of the following theorem is again due to P. A. Smith [16]. (In [16] he
only gave the proof for generalized spheres, but the acyclic case is similar.)

Theorem 4.7. Ifm < d � 1, the group .Z2/
d cannot act effectively on a generalized

m-sphere over Z2 or a Z2-acyclic .mC1/-dimensional homology manifold over Z2.
If m < 2d � 1 and p is odd, then .Zp/

d cannot act effectively a generalized
m-sphere or a Zp-acyclic .mC 1/-dimensional homology manifold over Zp .

Proof. The cases that arise when d D 1 are vacuous or trivial except when p is
odd and the putative action is on a 1-hmZp

, in which case one needs to recall that a
1-hmZp

is an actual manifold.
We assume d � 2 and proceed by induction. Let X be one of the spaces that the

theorem asserts G WD .Zp/
d cannot act effectively on.

Among the non-trivial elements of G we choose one, a say, whose fixed point
set Fa is maximal with respect to inclusion. We also choose a complement G0 Š
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.Zp/
d�1 to hai in G. From Theorem 4.5 (in the acyclic case) and Smith’s theorem

for Zp � Zp (in the case of spheres), we know that Fa is non-empty. We shall prove
that Fa D X by assuming it false and obtaining a contradiction.

If Fa is not the whole of X then it has codimension at least 1 if p D 2 and
codimension at least 2 if p is odd. In the light of Corollary 4.6, we may apply
induction to the action ofG0 on Fa and hence conclude that some non-trivial element
b 2 G0 fixesFa pointwise; in other wordsFa 	 Fb . ButFa is maximal, soFb D Fa,
which implies Fa D Fix.A/ for A D ha; bi. Thus for any non-trivial element x of A
we have Fa 	 Fx , so again maximality tells us that Fa D Fx .

Theorem 4.3 on page 182 of [4] (which requires us to know that Fix.A/ is non-
empty) provides a formula relating the dimensions of the fixed point sets of elements
of A: writing n D dimp.X/; r D dimp.Fix.A//, and rC D dimp.Fix.C // for each
cyclic subgroup C < A, we have

n � r D
X

.rC � r/;
where the sum is taken over the non-trivial cyclic subgroups ofA. We have just argued
that Fa D Fix.C / D Fix.A/ for all non-trivialC < A, so each summand on the right
is 0 and hence n D r D dimp.Fa/. SinceX is connected, invariance of domain gives
X D Fa, i.e., a acts trivially. This contradiction completes the induction. �

We need one more result from Smith theory:

Theorem 4.8. LetX be a generalized sphere over Z2 or a Z2-acyclic hmZ2
, and let

a and b be commuting homeomorphisms of X , each of order 2, with fixed point sets
Fa and Fb . If Fa D Fb then a D b.

Proof. For actions on generalized spheres, this is explicit in [16], so we consider only
the acyclic case.

If a ¤ b then the subgroup A � Homeo.X/ generated by a and b is isomorphic
to Z2 � Z2 and Fix.a/ D Fix.b/ D Fix.A/. Thus in the formula n� r D P

.rC � r/
displayed in the preceding proof, the only non-zero summand on the right is the one
for habi. Hence n D rC , that is, dimp.X/ D dimp.Fix.ab//. Since X is connected,
invariance of domain gives X D Fix.ab/, which means that a D b. �

4.3. Actions on generalized spheres and Z3-acyclic homology manifolds over Z3,
for n even. The results we have developed to this point easily yield the following
theorem, for n even.

Theorem 4.9. Let X be a generalized m-sphere over Z3 or a Z3-acyclic .mC 1/-
dimensional homology manifold over Z3, and let � W SAut.Fn/ ! Homeo.X/ be an
action. If n is even and m < n � 1, then � is trivial.
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Proof. Write n D 2d and let T � SAut.F2d / be as in Lemma 3.2. Since T Š .Z3/
d

and m < n � 1 D 2d � 1, Theorem 4.7 tells us that T cannot act effectively on X ,
so �.t/ D 1 for some t 2 T X f1g. We proved in Proposition 3.4 that this forces �
to be the trivial map. �

4.4. Actions on generalized spheres and Z2-acyclic homology manifolds over
Z2. The proof of Theorems 1.1 and 1.2 is considerably more involved than that of
the preceding result. This is largely due to the fact that Corollary 4.6 yields a weaker
conclusion for p D 2 than for odd primes. Lemma 4.12 will allow us to circumvent
this difficulty. It relies on the separation property of codimension 1 fixed point sets
that is established in Lemma 4.11 using Poincaré duality and the following theorem
about sheaf cohomology.

Theorem 4.10 (Theorem 16.16, [3]). If X is a connected m-cmL with orientation
sheaf O, and F is a proper closed subset, then for any non-empty open subset U

(1) Hm
c .U I O/ is the free L-module on the components of U ;

(2) Hm
c .F IL/ D 0.

Lemma 4.11. Let X be a generalized m-sphere over Z2 or a Z2-acyclic m-hmZ2
,

and let � be an involution ofX . If Fix.�/ has dimensionm� 1, thenX X Fix.�/ has
two Z2-acyclic components and � interchanges them.

Proof. If m D 1, then X is a circle or a line, Fix.�/ is two points or one, and the
theorem is clear, so we may assumem � 2. Let F D Fix.�/, and set L D Z2. Since
F is closed, the long exact sequence in sheaf cohomology for the pair .X; F / reads


 
 
 ! Hm�2
c .F IL/ ! Hm�1

c .X X F IL/ ! Hm�1
c .X IL/ ! Hm�1

c .F IL/
! Hm

c .X X F IL/ ! Hm
c .X IL/ ! Hm

c .F IL/ ! 0

By (2) above, the last term Hm
c .F IL/ is 0. Since L D Z2, the orientation sheaf O

is actually constant, and by (1), we get Hm
c .X IL/ D Hm�1

c .F IL/ D L.
Poincaré duality says H k

c .X IL/ Š H c
m�k

.X IL/; in particular, Hm�1
c .X IL/ Š

H c
1 .X IL/ D 0 (since m � 2), and the end of the sequence is

0 ! L ! Hm
c .X X F IL/ ! L ! 0

ThusHm
c .X XF IL/ Š L˚L, and another application of (1) shows thatX XF has

two components. (This is the argument in [3], Corollary 16.26.)
SupposeX isL-acyclic. Applying Poincaré duality to each remaining term in the

long exact sequence (F has dimension m � 1) gives


 
 
 ! H c
k .F IL/ ! H c

k .X X F IL/ ! H c
k .X IL/ ! 
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for k � 1. Since F and X are L-acyclic, this shows that each component of X X F
is also L-acyclic.

If X is a generalized m-sphere then F is a generalized .m � 1/-sphere, and the
above argument shows that most of the homology ofX XF vanishes as in the acyclic
case. In dimensions m and m � 1 we have

0 ! H c
m.X X F IL/ ! H c

m.X IL/ ! H c
m�1.F IL/ ! H c

m�1.X X F IL/ ! 0

which becomes

0 ! H c
m.X X F IL/ ! L Š L ! H c

m�1.X X F IL/ ! 0;

so again the homology of X X F vanishes in positive degrees, and each component
of X X F is acyclic.

In both situations the complement of F has two Z2-acyclic components. Since
the involution acts freely on this complement, it cannot preserve either component,
by the Global Smith Theorem. �

Lemma 4.12. Let X be a generalized m-sphere over Z2 or a Z2-acyclic .mC 1/-
hmZ2

, and let G be a group acting by homeomorphisms on X . Suppose G contains
a subgroup P Š Z2 � Z2 all of whose non-trivial elements are conjugate inG. If P
acts non-trivially, then the fixed point sets of its non-trivial elements have codimension
at least 2, and m � 2.

Proof. Since the non-trivial elements of P are all conjugate, they must all act non-
trivially.

Let a and b be generators ofP . If Fix.a/ had codimension 1, then by Lemma 4.11,
its complement in X would have two components and the action of a would inter-
change these. Consider the action of b: since it commutes with a it leaves Fix.a/
invariant, so it either interchanges the components of the complement or leaves them
invariant. Reversing the roles of b and ab if necessary, we may assume that it in-
terchanges them and hence that Fix.b/ � Fix.a/. Since a and b are conjugate,
invariance of domain for homology manifolds implies that Fix.a/ D Fix.b/ and
hence, by Theorem 4.8, that the actions of a and b on X are identical. Thus ab acts
trivially, contradicting the assumption that the action of P is non-trivial.

Thus the fixed point set of any non-trivial element ofP has codimension at least 2.
If m D 1 and X is a generalized sphere this says Fix.a/ D Fix.b/ D ;. If X is
2-dimensional and acyclic, then Fix.a/ and Fix.b/ are 0-dimensional acyclic homol-
ogy manifolds, i.e. points, so Fix.a/ � Fix.b/ implies Fix.a/ D Fix.b/. In either
case, Theorem 4.8 again implies that ab acts trivially, contradicting our assumptions.

�

Proposition 4.13. Let X be a generalized m-sphere or Z2-acyclic .m C 1/-hmZ2
.

If m < n � 1 and n � 3, then any action of SL.n;Z2/ on X is trivial.
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Proof. Since SL.n;Z2/ is simple, it is enough to find a subgroup of SL.n;Z2/ that
cannot act effectively on X .

The elementary matrices Ej1, j ¤ 1, generate an elementary 2-group Q Š
.Z2/

n�1. All elementary matrices are conjugate in SL.n;Z2/. Furthermore,
E32E21E32 D E31E21. Thus we are in the situation of Lemma 4.12 with a D E21

and b D E31. An appeal to that lemma completes the proof in the case n D 3.
If n � 4 then SL.n;Z2/ contains a larger elementary 2-group than Q, namely

that generated by the elementary matrices Eij with i � n=2 and j > n=2. This has
rank at least n, so Theorem 4.7 tells us it cannot act effectively X . �

Proposition 3.1 and Proposition 4.13 together give:

Corollary 4.14. LetX be a generalizedm-sphere over Z2 or a Z2-acyclic .mC 1/-
hmZ2

, with m < n � 1. If a non-central element of Wn is in the kernel of an action
of SAut.Fn/ on X , then the action is trivial.

4.5. Proof of Theorems 1.1 and 1.2. We retain the notation introduced at the be-
ginning of Section 3.

LetX be a generalizedm-sphere or a Z2-acyclic .mC1/-dimensional homology
manifold over Z2, with m < n � 1. Let ˆ W SAut.Fn/ ! Homeo.X/ be an action
of SAut.Fn/ on X . In the light of the preceding corollary, we will be done if we
can prove that the kernel of ˆ contains an element of SN Š .Z2/

n�1 other than
� D e1 : : : en.

If n D 3, then conjugating a WD e1e2 by .1 3/e2 and .2 3/e1, respectively, yields
b WD e2e3 and ab D e1e3. Thus we may appeal to Lemma 4.12, to see that the action
of SN on X is trivial if m < 2.

If n D 4, then SN is generated by a, b, and c WD e2e4, which are conjugate in
SWn to each other and to each of the products ab, ac and bc. If the action of SN
on X is trivial then we are done. Suppose that this is not the case. We know from
Lemma 4.12 that Fix.a/ is a generalized d -sphere over Z2 or a Z2-acyclic .d C 1/-
hmZ2

with d < 1. Since b and c commute with a, the group hb; ci Š Z2
2 acts on

Fix.a/, so by Theorem 4.7 some element acts trivially, say g. Then Fix.g/ � Fix.a/.
But since a and g are conjugate in SWn, this implies Fix.a/ D Fix.g/, and then by
Theorem 4.8, ag acts trivially onX . If g D b or g D c, we have found a non-central
element of the kernel of ˆjSWn

, so ˆ is trivial by Corollary 4.14 . If g D bc, the
action factors through PSL.4;Z/, which contains a subgroup isomorphic to .Z2/

4

generated by e1e2, e2e3, � D .12/.34/, and � D .13/.24/. By Theorem 4.7, some
nontrivial element of this subgroup must map trivially to Homeo.X/. Pulling back
these elements to SWn, we see that some element of the form eiej or  or eiej  ,
with  2 h�; �i, is in the kernel. Corollary 4.14 again shows that ˆ is trivial.

Now we suppose n > 4 and proceed by induction. If e1e2 acts trivially then we
are done by Corollary 4.14. If not then, appealing to Lemma 4.12 once more, we may
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suppose that the fixed point set of e1e2 in X is a generalized r-sphere or Z2-acyclic
.rC1/-homology manifold over Z2 with r < n�3; call it Y . The centralizer of e1e2

will act on Y . This centralizer contains a copy of SAut.Fn�2/ corresponding to the
sub-basis a3; : : : ; an, and by induction this acts trivially on Y . In particular, the fixed
point set of e3e4 contains that of e1e2. Similarly, the reverse inclusion holds. But then
by Theorem 4.8 the actions of e3e4 and e1e2 onX must be the same. Thus the kernel
of any homomorphism SAut.Fn/ ! Homeo.X/ intersectsN in e1e2e3e4 ¤ �, and
Corollary 4.14 says that the action is therefore trivial. �

Remark 4.15. For n D 3, Theorem 1.1 also follows from the results of [5] because
a generalized Z2-sphere of dimension one is just a circle and it is shown in [5] that
any action of SAut.Fn/ by homeomorphisms on a circle is trivial for n � 3.

Remark 4.16. This work was stimulated in part by the proof of Corollary 1.4 sug-
gested by Zimmermann in [22]. His proof relied on earlier work of Parwani [13]
which sets forth a good strategy but contains a flaw: it is assumed in [13] that if X is
a homology manifold over Z with the Z2-homology of a sphere, then the fixed point
set of any involution of X will again be such a space; this is false (see the following
remark). It is also assumed in [13] that such a fixed point set will be an ENR, and
this is also false.

Remark 4.17. In [11], L. Jones showed that almost any PL homology manifold over
Z2 satisfying the Smith conditions can arise as the fixed point set of a involution of
a genuine sphere. In particular, the fixed point set of an involution of a sphere need
not be a Z-homology manifold.

There are also involutions of spheres for which the fixed point set is not locally
1-connected, so in particular is not an ENR. Indeed Ancel and Guilbault [1] proved
that if xM D M [ † is any Z-set compactification of a contractible n-manifold M ,
with n > 4, then the double of xM along † is homeomorphic to the n-sphere. One
can realize † as the fixed point set of the involution that interchanges the two copies
of M in this double, and † need not be locally 1-connected. To obtain a concrete
example, we can takeM to be the universal cover of one of the aspherical manifolds
constructed by Davis [6] and take † to be its ideal boundary (cf. [7]).

5. Actions on arbitrary compact homology manifolds

In [12], Mann and Su use Smith theory and a spectral sequence developed by Swan
[18] to prove that for every prime p and every compact d -dimensional homology
manifold X over Zp , the sum of whose mod p Betti numbers is B , there exists an
integer �.d; B/, depending only on d and B , so that Zr

p cannot act effectively by
homeomorphisms on X if r > �.d; B/. (An explicit bound on � is given.)
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If n is sufficiently large then the alternating group An will be simple and contain
a copy of Z�

p . Hence it will admit no non-trivial action on X . Theorem 1.7 stated
in the introduction is an immediate consequence of this result and Proposition 3.1,
since SWn � SAut.Fn/ contains a copy of An. �

The preceding argument allows one to bound the constant �.p; d; B/ in Theo-
rem 1.7 by a multiple (depending on p) of �.d; B/. In the cases p D 2 and p D 3

one can sharpen this estimate by appealing directly to Propositions 3.1 and 3.4 instead
of using An.

Remark 5.1. Various of the Higman–Thompson groups, including Richard Thomp-
son’s vagabond group V , are finitely presented, simple, and contain an isomorphic
copy of every finite group [10]. Given any class of objects each of which has the
property that some finite group cannot act effectively on it, groups such as V cannot
act non-trivially on any object in the class. In particular, it follows from the Mann
and Su result that V cannot act non-trivially by homeomorphisms on any compact
manifold. And Theorem 4.7 above implies that V cannot act non-trivially by home-
omorphisms on any finite-dimensional Zp-acyclic homology manifold over Zp for
any prime p (cf. [2] and [8]).
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