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Formal deformations and their categorical general fibre

Daniel Huybrechts, Emanuele Macrì, and Paolo Stellari

Abstract. We study the general fibre of a formal deformation over the formal disk of a projective
variety from the view point of abelian and derived categories. The abelian category of coherent
sheaves of the general fibre is constructed directly from the formal deformation and is shown to
be linear over the field of Laurent series. The various candidates for the derived category of the
general fibre are compared.

If the variety is a surface with trivial canonical bundle, we show that the derived category
of the general fibre is again a linear triangulated category with a Serre functor given by the
square of the shift functor. The paper is a companion to [9], where the results are applied to
Fourier–Mukai equivalences of K3 surfaces.
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1. Introduction

Let � W X �� Spf.CŒŒt ��/ be a formal deformation of a smooth complex projective va-
riety X given by an inductive system of flat morphisms �n W Xn

�� Spec.CŒt �=.tnC1//

with X0 D X and isomorphisms XnC1 �CŒt�=.tnC2/ Spec.CŒt �=.tnC1// ' Xn

over CŒt �=.tnC1/. Thus, X as a ringed space is the topological space X with
OX WD lim OXn

as its structure sheaf. Interesting examples arise as formal neigh-
borhoods of an actual deformation of X over a smooth one-dimensional base, which
may be algebraic or just a complex disk.

In order to understand the generic behavior of certain classes of varieties, it
is often necessary to study the general fibre of formal deformations of the type
� W X �� Spf.CŒŒt ��/. If the deformation is given as the formal neighbourhood of
an algebraic deformation of X over a curve, then the usual concept of the scheme-
theoretical general fibre yields a variety defined over the function field of the curve.
For arbitrary formal deformations, e.g. obtained as formal neighborhoods of defor-
mations in non-algebraic directions, a geometric construction of the general fibre as
a rigid analytic variety is provided by the work of Raynaud [15].
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The aim of this paper is to present a categorical approach to the general fibre.
We construct the abelian category of coherent sheaves on the general fibre directly
without first passing to the rigid analytic variety representing it geometrically. This
simplifies going back and forth from sheaves on the original variety X or its formal
deformation X to sheaves on the general fibre. The passage from the abelian category
to its derived category, which plays a central role in the applications we have in mind,
is more difficult. Here we have to address subtle points related to Verdier quotients
of triangulated categories.

To appreciate the results of this paper, we should briefly explain the main applica-
tion we developed in [9]. For a smooth projective K3 surface X , Orlov proved in [14]
that any autoequivalence of the bounded derived category of coherent sheaves Db.X/

induces an isomorphism of the total cohomology group H �.X; Z/ preserving a nat-
ural weight-2 Hodge structure and the lattice structure induced by the cup-product.
In particular, there exists a homomorphism of groups � between the group of autoe-
quivalences Aut.Db.X// and some orthogonal group (denoted by O. zH.X; Z//) of
the total cohomology group of X (see [9], [14]).

Despite this nice result, a description of the image of � had been missing for some
time. In [18], Szendrői proposed a conjecture saying that � should send an equivalence
to an isometry in O. zH.X; Z// with the additional property that the orientation of some
4-dimensional positive definite subspace of H �.X; R/ is preserved.

In [9], we gave a positive answer to this conjecture using a deformation argument
whose main steps are the following. Given a smooth projective K3 surface X , we
study a very special formal deformation of X based on its hyperkähler geometry. At
this point, we argue that the derived category of the general fibre of such a deformation,
despite being C..t//-linear and not C-linear, has the same basic features as the derived
category of a generic complex analytic K3 surface (i.e. a K3 surface with trivial Picard
group). The same conjecture has been solved in [8] for those surfaces. Hence, by the
special choice of the deformation, we can conclude that it holds true for X as well.

The main result of this paper (Theorem 1.1 below) establishes some of the fun-
damental properties of the derived category of the general fibre which are needed in
the above strategy.

To state precisely this result, we first define the abelian and the derived category of
the general fibre of a formal deformation � W X �� Spf.CŒŒt ��/ of X . Let Coh.X/0 �
Coh.X/ be the full abelian subcategory of coherent sheaves on X which are torsion
over CŒŒt ��, i.e. the full subcategory of all sheaves E 2 Coh.X/ supported on some
Xn, for n � 0. With this definition, Coh.X/0 is a Serre subcategory and the quotient
category

Coh.XK/ WD Coh.X/=Coh.X/0

is called the abelian category of coherent sheaves on the general fibre. Here, K

denotes the quotient field of CŒŒt ��, i.e. the field of all Laurent series. One can indeed
show that Coh.XK/ is a K-linear abelian category.



Vol. 86 (2011) Formal deformations and their categorical general fibre 43

Next we denote by Db.X/ WD Db
coh.OX-Mod/ the bounded derived category of

the abelian category of OX-modules with coherent cohomology. This category has
a full triangulated subcategory

Db
0.X/ � Db.X/

consisting of all complexes with cohomology in Coh.X/0: The Verdier quotient

Db.XK/ WD Db.X/=Db
0.X/

is the derived category of the general fibre of the formal deformation

� W X �� Spf.CŒŒt ��/:

The fundamental properties of the derived category of the general fibre for smooth
projective surfaces with trivial canonical bundle are explained in the following theo-
rem which is the main result of the paper.

Theorem 1.1. Let X �� Spf.CŒŒt ��/ be a formal deformation of a smooth projective
surface X with trivial canonical bundle. The derived category of the general fibre
Db.XK/ is a K-linear triangulated category and the square of the shift functor defines
a Serre functor. Moreover, there exists an exact K-linear equivalence Db.XK/ '
Db.Coh.XK//.

The latter property, which is proved in Proposition 3.10, is extensively used in [9].
Both interpretations of the derived category of the general fibre, as theVerdier quotient
of triangulated categories and as the bounded derived category of the abelian category
of coherent sheaves on the general fibre, are used. E.g. in [8] all autoequivalences
(and in particular spherical twists) of Db.Coh.X// are described for a generic (non-
projective) K3 surface X . The arguments apply as well to Db.Coh.XK// for XK

the general fibre of a very general formal deformation of a projective K3 surface X .
More precisely, we show that, up to shift, Db.Coh.XK// contains just one spherical
object (namely the image of the structure sheaf OXK

). On the other hand, in order
to deform a given autoequivalence of Db.X/ to an autoequivalence of the derived
category of the general fibre XK we need to work with Db.X/ and its quotient
Db.XK/. In the end we prove that the deformation of the autoequivalence of Db.X/

to a Fourier–Mukai equivalence ˆ W Db.XK/ �� Db.X0
K/ has kernel in the abelian

category Coh..X �R X0/K/.
In the process of proving Theorem 1.1, we will be considering a number of related

technical results. To make the overview of the paper more complete, let us mention
a few of them which will be particularly relevant in [9]:

(A) The spaces of morphisms in quotient categories are often difficult to describe.
However, for the natural quotients Coh.X/ �� Coh.XK/ and Db.X/ �� Db.XK/
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they are simply given by the tensor product with the quotient field K, which makes
both categories K-linear (Propositions 2.3 and 2.9).

(B) One advantage of the categorical approach to the general fibre is that the
Fourier–Mukai machinery carries over easily. For example, we prove that if the

Fourier–Mukai kernel E0 of an equivalence Db.X/
� �� Db.X 0/ deforms to a com-

plex E on the product of two formal deformations X; X0 �� Spf.CŒŒt ��/, then its

restriction EK to the general fibre defines again an equivalence Db.XK/
� �� Db.X0

K/

(Corollary 2.13).

We have not attempted to develop the theory in its most general form. It would
certainly be natural to study the general fibre of formal deformations over more
general formal rings from a categorical perspective. Unfortunately, in that case, the
results (e.g. the description of the space of morphisms) would not nearly be as nice
as in the simple situation of deformations over CŒŒt ��. But even the one-dimensional
formal deformations studied here, should be useful in other situations, although our
discussion is tailored to the application to Fourier–Mukai equivalences between K3
surfaces in [9].

The plan of the paper is as follows. In Section 2 we define the abelian and derived
categories of the general fibre of a formal deformation. We study their Hom-spaces
and, in Sections 2.3 and 2.4, we analyze the behavior of Fourier–Mukai transforms
and Fourier–Mukai equivalences when passing to the derived categories of the general
fibres.

In Section 3 we complete the proof of Theorem 1.1. As a first step, we compare
the Hom-spaces and the Euler pairing on the general and special fibres of a formal
deformation (Section 3.1). In Section 3.2 we describe the Serre functor of the general
fibre. Finally, in Section 3.4, we restrict to the case of smooth projective surfaces
with trivial canonical bundle and prove the main theorem.

Notation. Denote by R WD CŒŒt �� the ring of power series in t which is a complete
discrete valuation ring. Its spectrum Spec.R/ consists of two points: The closed
point 0 WD .t/ 2 Spec.R/ with local ring R and residue field C and the generic point
.0/ 2 Spec.R/ with residue field K WD C..t//, the field of Laurent series. Moreover,
we put Rn WD CŒt �=.tnC1/ with the natural surjection R �� �� Rn defining a closed
embedding Spec.Rn/ � Spec.R/, which is the n-th infinitesimal neighbourhood of
0 2 Spec.R/. The formal scheme Spf.R/ is then described by the increasing sequence
of closed subschemes 0 D Spec.R0/ � Spec.R1/ � � � � � Spec.Rn/ � � � � .
Throughout we will use the following notations for the natural inclusions (m < n):

�n W Xn
� � �� X and � WD �0 W X

� � �� XI

im;n W Xm
� � �� Xn; in WD in;nC1 W Xn

� � �� XnC1; and jn D i0;n W X
� � �� Xn:
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2. The derived category of the general fibre

In this section we study the basic properties of the abelian category Coh.XK/ of
coherent sheaves on the general fibre and of the triangulated category Db.XK/. At
the end of the section we also discuss the extension of the definition and of some
interesting basic properties of Fourier–Mukai functors in the setting of formal defor-
mations and of the derived categories of their general fibres (Corollary 2.13, see also
(B) in the introduction).

The reader not familiar with the notion of quotients of abelian categories by Serre
subcategories or with that of Verdier quotients is strongly encouraged to read the
Appendix before proceeding with this section. For the convenience of the reader we
list now the main abelian and triangulated categories which will be introduced in
course of the paper. We also indicate the precise section where they are defined.

� OX-Mod: the abelian category of OX-modules (Section 2.1);

� Coh.X/: the abelian category of coherent sheaves on X (Section 2.1);

� Coh.X/0: the Serre subcategory of Coh.X/ consisting of sheaves supported
on some Xn (Section 2.1);

� Coh.X/f : the full additive category Coh.X/ consisting of CŒŒt ��-flat sheaves
(Section 2.1);

� Coh.XK/: the quotient of the category Coh.X/ by Coh.X/0 (Section 2.1);

� Db.OX-Mod/: the bounded derived category of the abelian category OX-Mod
(Section 2.2);

� Db.Coh.X//: the bounded derived category of the abelian category Coh.X/

(Section 2.2)

� Db.X/ D Db
coh.OX-Mod/: the full triangulated subcategory of Db.OX-Mod/

consisting of complexes with coherent cohomology (Section 2.2);

� Db
0.X/ D Db

Coh.X/0
.OX-Mod/: the full thick triangulated subcategory of

Db.X/ consisting of complexes with cohomology in Coh.X/0 (Section 2.2);

� Db.XK/: the Verdier quotient Db.X/=Db
0.X/ (Section 2.2);

� Db
0.Coh.X//: the full thick triangulated subcategory of Db.Coh.X// consisting

of complexes with cohomology in Coh.X/0 (Section 2.2);

� Dperf.Xn/: the full triangulated subcategory of perfect complexes on Xn (Sec-
tion 2.2);

� Db.Xc
K/: the Verdier quotient Db.Coh.X//=Db

0.Coh.X// (Section 2.2).
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2.1. The abelian category of the general fibre. Given a formal deformation
� W X �� Spf.R/ of a smooth projective variety X , the abelian category of all OX-
sheaves will be denoted OX-Mod. Any OX-sheaf E yields an inverse system of OXn

-
sheaves En WD ��nE with OXn

-linear transition maps En
�� im;n�Em, for n > m,

inducing isomorphisms i�
m;nEn ' Em. Then lim En is again an OX-sheaf, but the

natural homomorphism E �� lim En is in general not an isomorphism. However, if
we restrict to coherent OX -modules E, then indeed E ' lim En. This proves that a
coherent OX-module is the same as an inverse system of coherent OXn

-sheaves En

together with transition maps En
�� im;n�Em inducing isomorphisms i�

m;nEn ' Em

(see [6, II.9] or [11]).
By Coh.X/ � OX-Mod we denote the full abelian subcategory of all coherent

sheaves on X and we tacitly use the equivalence of Coh.X/ with the abelian category
of coherent inverse systems as just explained. The restriction to Xn will be written
as

Coh.X/ �� Coh.Xn/; E
� �� En:

So in particular, E0 2 Coh.X/ will denote the restriction of a sheaf E 2 Coh.X/ or
En 2 Coh.Xn/ to the special fibre X D X0. As we assume our formal scheme to
be smooth, any coherent sheaf on X admits locally a finite free resolution. However,
since X is not necessarily projective, locally free resolutions might not exist globally.

The category Coh.X/ of coherent sheaves on the formal R-scheme X is in a
natural way an R-linear category. A coherent sheaf E 2 Coh.X/ has support on Xn

if tnC1E D 0 and, as in the introduction, the subcategory consisting of all sheaves
having support on some Xn is denoted by Coh.X/0.

A coherent sheaf E 2 Coh.X/ is R-flat if multiplication with t yields an injective
homomorphism t W E �� E. By Coh.X/f � Coh.X/ we denote the full additive
subcategory of R-flat sheaves. This subcategory is clearly not abelian, but the two
subcategories

Coh.X/0; Coh.X/f � Coh.X/

define a torsion theory for the abelian category Coh.X/. More precisely, there are
no non-trivial homomorphisms from objects in Coh.X/0 to objects in Coh.X/f and
every E 2 Coh.X/ is in a unique way an extension

0 �� Etor
�� E �� Ef

�� 0

with Etor 2 Coh.X/0 and Ef 2 Coh.X/f . Indeed, set Etor WD S
ker.tn W E �� E/,

i.e. the R-torsion subsheaf of E. The union must stabilize, as E is coherent, and
Ef WD E=Etor is R-flat. (Note that in general this torsion theory is not cotilting, i.e.
not every R-torsion sheaf is a quotient of an R-flat one.)

Let us now define the abelian category of coherent sheaves on the general fibre

Coh.XK/ WD Coh.X/=Coh.X/0:
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Remark 2.1. Since we divide out by a small subcategory, the quotient is a category
with Homsets. The same remark applies to all later quotient constructions and we
will henceforth ignore the issue.

The image of a sheaf E 2 Coh.X/ under the natural projection from Coh.X/

onto Coh.XK/ is denoted EK .
For two coherent sheaves E; E 0 2 Coh.X/ we shall write Hom.E; E 0/ for the

group of homomorphisms in Coh.X/ and HomK.EK ; E 0
K/ for the group of ho-

momorphisms of their images EK ; E 0
K in Coh.XK/. The natural homomorphisms

induced by the projection will be denoted

� W Hom.E; E 0/ �� HomK.EK ; E 0
K/:

By construction of the quotient, any morphism EK
�� E 0

K in Coh.XK/ is an equiv-

alence class of diagrams . E E0
s0�� g �� E 0 / with ker.s0/; Coker.s0/ 2 Coh.X/0.

The composition

. E E0
�� �� E 0 / B . E 0 E 0

0
�� �� E 00 /

of two morphisms EK
�� E 0

K and E 0
K

�� E 00
K is naturally defined by means of the

fibre product . E E0 �E 0 E 0
0

�� �� E 00 /.

Also note that Coh.X/f
�� Coh.XK/ is essentially surjective, i.e. every object

F 2 Coh.XK/ can be lifted to an R-flat sheaf on X. Indeed, if F D EK , then
.Ef/K ' EK D F and, therefore, Ef is an R-flat lift of F .

Remark 2.2. As mentioned in the introduction, to the formal R-scheme X one can
associate the general fibre XK which is a rigid analytic space (see [2], [15], [16]). The
abelian category Coh.XK/ is in fact equivalent to the category of coherent sheaves
on XK , which explains the notation.

Proposition 2.3. The abelian category Coh.XK/ is K-linear and for all F; G 2
Coh.X/ the natural projection Coh.X/ �� Coh.XK/ induces a K-linear isomor-
phism

Hom.F; G/ ˝R K
� �� HomK.FK ; GK/:

Proof. As a quotient of the R-linear category Coh.X/, the category Coh.XK/

is also R-linear. The multiplication with t�1 is defined as follows. Let f 2
HomK.FK ; GK/ be a morphism represented by f W . F F0

s0�� g �� G / with

Ker.s0/; Coker.s0/ 2 Coh.X/0. Then set t�1f W . F F0
ts0�� g �� G /, which

is a well-defined morphism in Coh.XK/. This is because the objects Ker.ts0/ and
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Coker.ts0/ are in Coh.X/0. Moreover, one has t .t�1f / D f due to the following
commutative diagram

F0ts0

����������� tg

�����������

t �id
��

F G:

F0
s0

����������� g

�����������

The K-linearity of the composition is obvious.
Consider now the induced K-linear map

�K W Hom.F; G/ ˝R K �� HomK.FK ; GK/:

To prove the injectivity of �K , let f 2 Hom.F; G/ with �.f / D �K.f / D 0.
Then there exists a commutative diagram

F 0
s

		������ 0



������

F
f

�� G;

with Ker.s/; Coker.s/ 2 Coh.X/0 and hence f factorizes through

f W F
q �� Coker.s/

f 0

�� G:

Thus, if tnCoker.s/ D 0 for some n > 0, then this yields tnf D f 0 B .tnq/ D 0. In
particular, f ˝ 1 2 Hom.F; G/ ˝ K is trivial.

In order to prove the surjectivity of �K , we have to show that for any f 2
HomK.FK ; GK/ there exists an integer k, such that tkf is induced by a mor-

phism F �� G in Coh.X/. Write f W . F F0
s0�� g �� G / with tnKer.s0/ D

tmCoker.s0/ D 0 for some positive integers m; n. Consider the exact sequence

0 �� Hom.F 0; G/
Bp �� Hom.F0; G/

Bi �� Hom.Ker.s0/; G/

which is induced by the natural projection p W F0
�� �� F 0 WD im.s0/ and by its kernel

i W ker.s0/
� � �� F0. Since .tng/ B i D g B .tni/ D 0, there exists a (unique) ho-

momorphism g0 W F 0 �� G such that g0 B p D tng. This yields the commutative
diagram

F0s0

����������� tng

�����������

p

��
F G;

F 0� �

�����������
g0

�����������
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which allows one to represent tnf by . F F 0� ��� g0

�� G /.
As F=F 0 ' Coker.s0/ is annihilated by tm, the homomorphism tmg0 W F 0 �� G

lifts to a homomorphism g00 W F �� G, i.e. g00jF 0 D tmg0. This yields the commuta-
tive diagram

F 0� 	

��									 tmg0

��








� �

��
F G:

F
id













g00

��									

Hence tmCnf is represented by . F F
id�� g00

�� G /, i.e. tmCnf D �.g00/. �

2.2. The derived category of the general fibre. Let � W X �� Spf.R/ be a formal
deformation of X and consider the bounded derived category of X defined as

Db.X/ WD Db
coh.OX-Mod/;

which by definition is an R-linear triangulated category.

Remark 2.4. We will always tacitly use the well-known (at least for schemes) fact
that any bounded complex with coherent cohomology on a smooth formal scheme is
perfect, i.e. locally isomorphic to a finite complex of locally free sheaves of finite type
(see e.g. [10, Corollary 5.9]). In other words Dperf.X/ ' Db.X/. This is however
not true for Xn, n > 0. Indeed, e.g. for n D 1 one has Tori

R1
.R0; R0/ ' R0 for all

i � 0. So, the R1-module R0 does not admit a finite free resolution. So we will have
to work with

Dperf.Xn/ � Db.Xn/;

the full triangulated subcategory of perfect complexes on Xn.

Recall that for the noetherian scheme Xn the functor

Db.Coh.Xn//
� �� Db.Xn/ WD Db

coh.OXn
-Mod/

is an equivalence. Contrary to the case of a noetherian scheme, the natural functor

Db.Coh.X// �� Db.X/ D Db
coh.OX-Mod/ (2.1)

is in general not an equivalence. However, (2.1) induces an equivalence between the
full subcategories of R-torsion complexes. To be more precise, let

Db
0.X/ WD Db

Coh.X/0
.OX-Mod/ � Db.X/ and Db

0.Coh.X// � Db.Coh.X//

be the full triangulated subcategories of complexes with cohomology contained in
Coh.X/0. Then one has:
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Proposition 2.5. i) The natural functor Db.Coh.X/0/ �� Db.Coh.X// induces an
equivalence

Db.Coh.X/0/
� �� Db

0.Coh.X//:

ii) The natural functor Db.Coh.X/0/ �� Db.X/ induces an equivalence

Db.Coh.X/0/
� �� Db

0.X/:

Proof. i) It suffices to show (see the dual version of [7, Lemma 3.6]) that for
any monomorphism f W E

� � �� E 0 in Coh.X/ , with E 2 Coh.X/0, there exists
g W E 0 � �� E 00, with E 00 2 Coh.X/0 such that g B f is injective.

By the Artin–Rees Lemma, we know that the filtration Ek WD E \ tkE 0 is
t -stable, that is, there is some n 2 N such that tEk D EkC1, whenever k � n.
Let ` be a positive integer such that t`E D 0 and let g W E 0 �� E 00 WD E 0=tnC`E 0
be the projection. The composition g B f is injective, as ker.g B f / D EnC` D
t`En

� � �� t`E D 0.
ii) We follow Yekutieli [19], but see also [1]. Let QCoh.X/ � OX-Mod be the

full abelian subcategory of quasi-coherent sheaves on X, i.e. of sheaves which are
locally cokernels of OI

X
�� OJ

X
for some index sets I; J . Then define QCoh.X/d �

QCoh.X/ as the full thick abelian subcategory of discrete quasi-coherent sheaves
(see the Appendix for the definition of thick abelian subcategory). By definition, a
sheaf E on X is discrete if the natural functor �d.E/ WD lim Hom.OXn

; E/ �� E
is an isomorphism.

Clearly, a coherent sheaf on X is discrete if and only if it is R-torsion, i.e.
Coh.X/0 D Coh.X/ \ QCoh.X/d which is a thick subcategory of QCoh.X/d.
Moreover, by [19, Proposition 3.8] every E 2 QCoh.X/d is the limit of coherent
R-torsion sheaves. Thus Db

Coh.X/0
.QCoh.X/d/ is the same as Db

coh.QCoh.X/d/.

Lemma 2.6 below gives an equivalence Db.Coh.X/0/ ' Db
Coh.X/0

.QCoh.X/d/.

Hence we conclude the equivalence Db.Coh.X/0/ ' Db
coh.QCoh.X/d/.

Finally, one applies [19, Theorem 4.8] which asserts that the natural functor
induces an equivalence of Db.QCoh.X/d/ with the full triangulated subcategory
of Db.OX-Mod/ of all complexes with cohomology in QCoh.X/d. (The inverse
functor is given by R�d.) Adding the condition that the cohomology be coherent
proves ii). �

Lemma 2.6. Let A � B be a full thick abelian subcategory of an abelian category
B with infinite direct sums. Assume that every object of B is the direct limit of its
subobjects belonging to A and that A is noetherian (i.e. every ascending sequence
of subobjects is stationary). Then the natural functor yields an equivalence

Db.A/
� �� Db

A.B/;
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where Db
A

.B/ is the full triangulated subcategory of Db.B/ of complexes with coho-
mology in A.

Proof. Let f W E �� �� E 0 be a surjection in B, with E 0 2 A. We need to show that
there exists a morphism g W G �� E with G 2 A such that f B g W G �� E 0 is again
surjective (see e.g. [7, Lemma 3.6]).

By assumption, there exists a direct system of objects fEig in A such that lim Ei '
E. Hence, there exists a surjection j W L

i Ei
�� �� E �� �� E 0.

Then let E 0
k

WD im
� Lk

iD0 Ei
�� E �� �� E 0�, which form an ascending sequence

of subobjects of E 0. Since A is a noetherian, the sequence fE 0
k
g stabilizes, and, as j

is surjective, E 0
k

D E 0 for k � 0. Then set G WD Lk
iD0 Ei 2 A, for some k � 0,

and let g be the natural morphism. �

Remark 2.7. i) The equivalences of Proposition 2.5 put in one diagram read

Db.Coh.X/0/ ' Db
0.Coh.X// ' Db

0.X/: (2.2)

ii) The categories Db
0.X/ � Db.X/ and Db.Coh.X/0/ � Db.Coh.X// can also

be described as the smallest full triangulated subcategories containing all R-torsion
coherent sheaves. Here, a sheaf E 2 Coh.Xn/ is at the same time considered as
an object in Db.X/ and Db.Coh.X//. This is clear, as any bounded complex with
R-torsion cohomology can be filtered (in the triangulated sense) with quotients being
translates of such sheaves.

In the introduction we have already defined the derived category of the general
fibre Db.XK/, i.e. the Verdier quotient

Db.XK/ WD Db.X/=Db
0.X/ D Db

coh.OX-Mod/=Db
Coh.X/0

.OX-Mod/:

One can also consider the quotient Db.Coh.X//=Db
0.Coh.X// which, for a lack of

a better notation, will be called

Db.Xc
K/ WD Db.Coh.X//=Db

0.Coh.X//:

(For a thorough discussion of the Verdier quotient see the Appendix.)
In both cases, the quotients are triangulated and the natural projections

Db.X/ �� Db.XK/ and Db.Coh.X// �� Db.Xc
K/ (2.3)

are exact. The image of a complex E under any of these projections shall be de-
noted EK .
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Remark 2.8. As Coh.X/0 � Coh.X/ � OX-Mod are Serre subcategories, the
subcategories Db

0.OX-Mod/ � Db.X/ and Db
0.Coh.X// � Db.Coh.X// are thick.

This means that the direct summands of their objects are again contained in the
subcategories. This has the consequence that the kernel of the two projections in
(2.3) are indeed Db

0.X/ and Db
0.Coh.X// respectively.

Proposition 2.9. The triangulated category Db.XK/ is K-linear and for all E; E 0 2
Db.X/ the natural projection Db.X/ �� Db.XK/ induces K-linear isomorphisms

HomDb.X/.E; E 0/ ˝R K
� �� HomDb.XK/.EK ; E 0

K/:

Similarly, Db.Xc
K/ is K-linear and for E; E 0 2 Db.Coh.X// one has

HomDb.Coh.X//.E; E 0/ ˝R K
� �� HomDb.Xc

K
/.EK ; E 0

K/:

In particular, Db.XK/ and Db.Xc
K/ have finite-dimensional Hom-spaces over K.

Proof. As we work with bounded complexes, the proof of Proposition 2.3 carries
over. �

2.3. Derived functors and Fourier–Mukai transforms. First of all we prove that
the usual derived functors (tensor product, pull-back push-forward, Hom’s) are well-
defined in the geometric setting we are dealing with.

Proposition 2.10. Let f; g W X �� X0 be morphisms of smooth and proper formal
schemes over Spf.R/ and assume f to be proper. Then the following R-linear
functors are defined:

RHomX.�; �/ W Db.X/op � Db.X/ �� Db.X/;

.�/ ˝L .�/ W Db.X/ � Db.X/ �� Db.X/;

Lg� W Db.X0/ �� Db.X/;

Rf� W Db.X/ �� Db.X0/;
RHomDb.X/.�; �/ W Db.X/op � Db.X/ �� Db.R-mod/;

where we denote by R-mod the abelian category of R-modules of finite rank.

Proof. Due to [17], the functors previously considered are all well-defined if we
work with unbounded derived categories of modules D.OX-Mod/, D.OX0-Mod/ and
D.R-Mod/ (here R-Mod denotes the abelian category of R-modules). To prove the
proposition, we only have to show that, by restricting the domain to the corresponding
derived categories of bounded complexes with coherent cohomology, the images of
these functors are still the bounded derived categories of complexes with coherent
cohomology. This is clear since all complexes are perfect. �
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All the basic properties of the functors considered in the previous proposition (e.g.
commutativity, flat base change, projection formula) hold in the formal context. For
an object E 2 Db.X/ a trace map trE W EL˝ E �� OX is well-defined (see [10]).

Passing to the triangulated category Db.XK/ of the generic fibre, the result in
Proposition 2.10 still hold. Indeed, all the functors are R-linear and hence they
factorize through the category Db.XK/. Indeed, F 2 Db.X/ is contained in Db

0.X/

if and only if tnF D 0 for n � 0. Since the functors are R-linear, the same would
hold for the image of F which would therefore as well be contained in the subcategory
Db

0. Thus we get the following list of functors:

RHomXK
.�; �/ W Db.XK/op � Db.XK/ �� Db.XK/;

.�/ ˝L .�/ W Db.XK/ � Db.XK/ �� Db.XK/;

Lg� W Db.X0
K/ �� Db.XK/;

Rf� W Db.XK/ �� Db.X0
K/;

RHomDb.XK/.�; �/ W Db.XK/op � Db.XK/ �� Db.K-vect/;

where we denote by K-vect the abelian category of finite dimensional K-vector
spaces. Of course, all the usual relations between these functors continue to hold in
Db.XK/. In particular, given an object EK 2 Db.XK/, its dual EKL 2 Db.XK/ is well-
defined and EKLL ' EK . Moreover, we have a trace map trEK

W EKL˝ EK
�� OXK

,
where OXK

is the image of OX in Db.XK/.
Using those facts, we define Fourier–Mukai functors for formal deformations

or for the derived categories of the general fibres. Indeed, consider two smooth and
proper formal schemes X �� Spf.R/ and X0 �� Spf.R/ of dimension d respectively
d 0, with special fibres X respectively X 0. The fibre product X �R X0 �� Spf.R/,
described by the inductive system Xn �Rn

X0
n, is again smooth and proper and its

special fibre is X � X 0. The two projections shall be called q W X �R X0 �� X and
p W X �R X0 �� X0.

Let E 2 Db.X�R X0/. Due to the results in the previous section, one can consider
the induced Fourier–Mukai transform

ˆE W Db.X/ �� Db.X0/ ; E
� �� Rp�.q�E ˝L E/:

As before, ˆE is R-linear, for E lives on the fibre product over Spf.R/.
Now, for two given Fourier–Mukai transforms ˆE W Db.X/ �� Db.X0/ and

ˆF W Db.X0/ �� Db.X00/ with X00 a smooth and proper formal scheme over Spf.R/,
the composition ˆF B ˆE is again a Fourier–Mukai transform with kernel F 	 E WD
.pX;X00/�.E�F /, where pX;X00 W X�X0�X00 �� X�X00 is the natural projection.

Left and right adjoint functors of a Fourier–Mukai transform ˆE can be con-
structed as Fourier–Mukai transforms as follows. The left adjoint ˆEL and the right
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adjoint ˆER are the Fourier–Mukai transforms with kernel

EL WD EL˝ p�!pŒd 0� respectively ER WD EL˝ q�!qŒd �;

where d D dim.X/ and d 0 D dim.X0/. (To adapt to this context the standard proof
that those kernels define the left and right adjoints of ˆE , we actually need Lemma 3.4
which will be proved later.)

The adjunction morphisms ˆEL B ˆE
�� idDb.X/ and ˆE B ˆER

�� idDb.X0/ are
isomorphisms if and only if the natural morphisms trX W EL 	E �� O�X

respectively
trX0 W E 	 ER

�� O�X
induced by the trace morphisms are isomorphisms. Here �X

and �X0 denote the relative diagonals in X�R X respectively X0�R X0. (Sometimes
(see e.g. [5]) the construction of the adjunction morphisms uses Grothendieck–Verdier
duality for certain embeddings, e.g. for X�R X0 � � �� X�R X0�R X. This can easily
be replaced by an argument using relative duality over R in the sense of Lemma 3.4
for the two sides. We leave the details to the reader.)

Remark 2.11. Everything said above is also valid for the non-reduced schemes
Xn

�� Spec.Rn/ and X0
n

�� Spec.Rn/ with the only difference that we have to
assume now that the Fourier–Mukai kernel En 2 Db.Xn �Rn

X0
n/ is perfect. Then

one can consider the two Rn-linear functors

ˆEn
W Db.Xn/ �� Db.X0

n/ and ˆEn
W Dperf.Xn/ �� Dperf.X

0
n/:

Analogously, one wants to define the Fourier–Mukai transform

ˆF W Db.XK/ �� Db.X0
K/

associated to an object F 2 Db..X �R X0/K/.
As the objects of Db.X �R X0/ are the same as those of Db..X �R X0/K/ (see

the Appendix), take E 2 Db.X �R X0/ such that EK ' F . Then, by the R-linearity,
the Fourier–Mukai transform ˆE W Db.X/ �� Db.X0/ descends to a Fourier–Mukai
transform ˆF W Db.XK/ �� Db.X0

K/, i.e. one has a commutative diagram

Db.X/

Q

��

ˆE �� Db.X0/

Q

��
Db.XK/

ˆF

�� Db.X0
K/.

Since the objects of Db.X/ and Db.XK/ coincide, it is enough to check that
ˆE.Db

0.X// D Db
0.X0/. Indeed, G 2 Db.X/ is contained in Db

0.X/ if and only
if tnG D 0 for n � 0. As ˆE is R-linear, this would imply tnˆE.G / D 0 and hence
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ˆE.G / 2 Db
0.X0/. The behavior of ˆF on the level of morphisms is determined by

Proposition 2.9. Moreover, ˆF is independent of the chosen lift E . From this, it
follows that right and left adjoints of Fourier–Mukai transforms as well as trace maps
pass to the triangulated category of the generic fibre.

2.4. Fourier–Mukai equivalences of the general fibre. Here we will show that if
the kernel of a Fourier–Mukai equivalence deforms to a complex on some finite order
deformation or even to the general fibre, then it still induces derived equivalences of
the finite order deformations or general fibres, respectively. This is certainly expected,
as ‘being an equivalence’ should be an open property and indeed the proof follows
the standard arguments.

Consider two smooth and proper formal schemes X �� Spf.R/ and X0 �� Spf.R/,
with special fibres X respectively X 0. The fibre product X �R X0 �� Spf.R/, de-
scribed by the inductive system Xn�Rn

X0
n

�� Spec.Rn/, is again smooth and proper
and its special fibre is X � X 0.

Set X1 WD X, X01 WD X0, and R1 WD R (notice that Dperf.X �R X0/ '
Db.X �R X0/).

Proposition 2.12. Let En 2 Dperf.Xn �Rn
X0

n/, with n 2 N [ f1g, be such that
its restriction E0 WD Lj �

n En to the special fibre X � X 0 is the kernel of a Fourier–

Mukai equivalence ˆE0
W Db.X/

� �� Db.X 0/. Then the Fourier–Mukai transform
ˆEn

W Dperf.Xn/ �� Dperf.X
0
n/ is an equivalence.

Proof. It suffices to show that in both cases left and right adjoint functors are quasi-
inverse. Complete the trace morphism to a distinguished triangle

.En/L 	 En

trXn �� O�Xn
�� Gn:

Restricting it to the special fibre yields the distinguished triangle

.E0/L 	 E0
trX �� O�X

�� G0:

(Use that the pull-back of the trace is the trace. Also the restriction of .En/L yields
the kernel of the left adjoint of the restriction E0.)

As by assumption ˆE0
W Db.X/ �� Db.X 0/ defines an equivalence, the cone G0 is

trivial. Thus, Gn 2 Db.Xn �Rn
X0

n/ has trivial restriction to the special fibre X � X 0
and, therefore, Gn ' 0. This shows that trXn

is an isomorphism. A similar argument
proves that trX0

n
is an isomorphism for the case of the right adjoint. �

Under the assumptions of the previous proposition, the same proof also yields an
equivalence ˆEn

W Db.Xn/ �� Db.X0
n/.
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Corollary 2.13. Let E 2 Db.X �R X0/, such that ˆE0
W Db.X/

� �� Db.X 0/ is an

equivalence. Then the Fourier–Mukai transform ˆEK
W Db.XK/

� �� Db.X0
K/ is an

equivalence, where EK denotes the image of E in Db..X �R X0/K/.

Proof. Indeed the inverse Fourier–Mukai functor ˆF WD ˆ�1
E

W Db.X0/ �� Db.X/,
which exists due to Proposition 2.12, descends to a Fourier–Mukai transform (see
Section 2.3)

ˆFK
W Db.X0

K/ �� Db.XK/;

which clearly is an inverse to ˆEK
. �

3. Properties of the derived category of the general fibre

In this section we conclude the proof of Theorem 1.1. However, for most of the
results it is enough to assume that X is a smooth projective variety. More precisely,
the assumption that X is a surface with trivial canonical bundle is needed for the first
time in Proposition 3.10.

In particular, we prove that Db.XK/ is indeed equivalent to the derived category
of Coh.XK/ and we study the Serre functor of Db.XK/.

3.1. Comparing Hom-spaces. Let us now consider the pull-back under the closed
embedding �n W Xn

� � �� X which is a right exact functor ��n W Coh.X/ �� Coh.Xn/

compatible with the R-linear respectively Rn-linear structure of the two categories.
Its left derived functor

L��n W Db.X/ �� Dperf.Xn/

takes bounded complexes to perfect complexes (see Remark 2.4). When the derived
context is clear, we will often simply write ��n instead of L��n. For E 2 Db.X/ one
writes

En WD ��nE D L��nE 2 Db.Xn/:

In particular, E0 denotes the restriction of a complex E on X to the special fibre X .
Clearly, E 2 Db.X/ is trivial if E0 ' 0.

One needs to be careful with the pull-back under in W Xn
� � �� XnC1, whose left

derived functor i�
n W Dperf.XnC1/ �� Dperf.Xn/ is well-defined for perfect complexes

but not for bounded ones (see Remark 2.4).

Lemma 3.1. i) For E; E 0 2 Db.X/ there exists a functorial isomorphism

RHomDb.X/.E; E 0/ ˝L
R Rn

� �� RHomDperf .Xn/.L��nE; L��nE 0/:
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ii) For m < n and E; E 0 2 Dperf.Xn/ there exists a functorial isomorphism

RHomDperf .Xn/.E; E 0/ ˝L
Rn

Rm
� �� RHomDperf .Xm/.Li�

m;nE; Li�
m;nE 0/:

Proof. The proofs of i) and ii) are identical. We just consider the first case.
Since we continue to work under the simplifying assumption that X �� Spf.R/ is

smooth and proper, the derived local Hom’s are functors RHomX W Db.X/op �
Db.X/ �� Db.X/. Also, by definition .�/ ˝L

R Rn is

L��n W Db.Spf.R// �� Dperf.Spec.Rn//;

the derived pull-back of the inclusion �n W Spec.Rn/
� � �� Spec.R/.

Thus the assumptions of [10, Proposition 7.1.2] are satisfied and we therefore
have a functorial isomorphism

L��nRHomX.E; E 0/ � �� RHomXn
.L��nE; L��nE 0/: (3.1)

Further, applying the global section functor R�Xn
WD R�.Xn; �/ W Db.Xn/ ��

Db.Spec.Rn// to both sides, one finds

L��nR�XRHomX.E; E 0/
.�/' R�Xn

L��nRHomX.E; E 0/
� �� R�Xn

RHomXn
.L��nE; L��nE 0/:

Together with R� B RHom D RHom, this proves the assertion.
Note that in (	) we used the base change formula L��n B R�X ' R�Xn

B L��n
which can be easily proved by adapting the argument of [12, Section 2.4]. More
precisely, one could apply Kuznetsov’s discussion to the cartesian triangle given by
Xn

� � �� X over Spec.Rn/
� � �� Spf.R/. Corollary 2.23 in [12] shows that from the

flatness of � W X �� Spf.R/ one cannot only deduce the standard flat base change,
but also the above assertion (see also [7, Chapter 3, Remark 3.33]). For flat base
change in our more general context see [17]. �

The categories Db.X/ and Db.XK/ are C-linear respectively K-linear triangulated
categories with finite-dimensional Hom-spaces. The following numerical invariants
turn out to be useful and well-behaved. For E0; E 0

0 2 Db.X/ one sets:

	0.E0; E 0
0/ WD

X
.�1/i dimC Exti

X .E0; E 0
0/

and analogously for EK ; E 0
K 2 Db.XK/:

	K.EK ; E 0
K/ WD

X
.�1/i dimK Exti

K.EK ; E 0
K/:

As an immediate consequence of the discussion in Section 2.2, one finds the
following two results which will be used in [9] to describe spherical and semi-rigid
objects in Db.XK/, when X is a smooth projective K3 surface.



58 D. Huybrechts, E. Macrì, and P. Stellari CMH

Corollary 3.2. For any E; E 0 2 Db.X/ one has

	0.E0; E 0
0/ D 	K.EK ; E 0

K/:

Proof. We have an isomorphism RHomDb.X/.E0; E 0
0/ ' RHomDb.X/.E; E 0/˝LC.

This follows from Lemma 3.1 i). Since R is a DVR, we have a decomposition of the
R-module

RHomDb.X/.E; E 0/ ' RHomDb.X/.E; E 0/free ˚ RHomDb.X/.E; E 0/tor

in its free and torsion part. Since for a torsion R-module M one has M ˝L C D 0,
this yields

	0.E0; E 0
0/ D dimC RHomDb.X/.E0; E 0

0/ D dimC.RHomDb.X/.E; E 0/free ˝ C/:

On the other hand, by Proposition 2.9,

dimK RHomDb.XK/.EK ; E 0
K/ D dimK.RHomDb.X/.E; E 0/free ˝ K/:

This concludes the proof. �

Of course, the single Hom-spaces could be quite different on the special and on
the general fibre, but at least the standard semi-continuity result can be formulated in
our setting.

Corollary 3.3. Let E; E 0 2 Db.X/. Then

dimC Hom.E0; E 0
0/ � dimK HomK.EK ; E 0

K/:

Proof. We know that

dimK HomDb.XK/.EK ; E 0
K/ D rkR HomDb.X/.E; E 0/free:

The conclusion follows from Lemma 3.1. �

3.2. Serre functors. The relative canonical bundles !�n
WD !Xn=Rn

of �n W Xn
��

Spec.Rn/ define a coherent sheaf !� on X, the dualizing or canonical line bundle.
The name is justified by the following observation (for more general statements see
[1], [19]):

Lemma 3.4. Suppose � W X �� Spf.R/ is a smooth proper formal scheme of relative
dimension d . Then there are functorial isomorphisms

RHomDb.X/.E; !� Œd �/
� �� RHomDb.Spf.R//.R�XE; R/;

for all E 2 Db.X/.
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Proof. Notice that !�n
is the dualizing complex in Dperf.Xn/, that is

RHomDperf .Xn/.En; !�n
Œd �/

� �� RHomDperf .Rn/.R�Xn
En; Rn/;

for any En 2 Dperf.Xn/.
For any positive integer n, we have the following natural isomorphisms (using

Lemma 3.1 twice)

RHomDb.X/.E; !� Œd �/ ˝L
R Rn ' RHomDperf .Xn/.L��nE; !�n

Œd �/

' RHomDperf .Rn/.R�Xn
L��nE; Rn/

' RHomDb.Spf.R//.R�XE; R/ ˝L
R Rn:

(Notice that the last isomorphism uses again L��n B R�X ' R�Xn
B L��n as in the

proof of Lemma 3.1.) Moreover, the resulting isomorphisms

fn W HomDb.X/.E; !� Œd �/ ˝L
R Rn

� �� RHomDb.Spf.R//.R�XE; R/ ˝L
R Rn

are compatible under pull-back, i.e. NfnC1 WD fnC1 ˝L
R idRn

D fn.
Taking the projective limits allows us to conclude the proof. More precisely, one

uses the following general argument: Suppose we are given complexes K�; L� 2
Db.R-Mod/ and isomorphisms fn W K� ˝L

R Rn
� �� L� ˝L

R Rn in Db.Rn-Mod/ com-
patible in the above sense. Replacing K� and L� by complexes of free R-modules,
we can assume that the fn are morphisms of complexes. Again using the projectivity
of the modules Ki and Li , we deduce from the compatibility of fn and fnC1 the
existence of a homotopy ki W Ki ˝ Rn

�� Li�1 ˝ Rn between fn and NfnC1, i.e.
f i

n � Nf i
nC1 D kiC1d i

K C d i�1
L ki . Lift ki to hi W Ki ˝ RnC1

�� Li ˝ RnC1 and
replace fnC1 by the homotopic one fnC1 ChdK CdLh. With this new definition one
has fn D NfnC1 as morphism of complexes homotopic to he original one. Continuing
in this way, one obtains a projective system of morphisms of complexes. The limit is

then well defined and yields an isomorphism K� � �� L�.
The functoriality of the constructions is straightforward. �

We are now ready to show that the derived category of the general fibre, which is a
K-linear category, has a Serre functor in the usual sense. The following proposition,
saying that Serre duality holds true in Db.XK/, shows the advantage of working with
Db.XK/. The canonical bundle of the general fibre is by definition !XK

WD .!�/K 2
Coh.XK/.

Proposition 3.5. Suppose � W X �� Spf.R/ is a smooth proper formal scheme of
relative dimension d . Then the functor E

� �� E ˝ !XK
Œd � is a Serre functor for the

K-linear category Db.XK/, i.e. there are natural isomorphisms

HomDb.XK/.EK ; E 0
K/

� ��
�
HomDb.XK/.E

0
K ; EK ˝ !XK

Œd �/
��

;
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for all EK ; E 0
K 2 Db.XK/, where .�/� denotes the dual K-vector space.

Proof. We follow the proof of [3, Proposition 5.1.1]. Let E 2 Db.X/ and let EK 2
Db.XK/ be its image under the natural projection. We have

HomDb.XK/.EK ; !XK
Œd �/ ' HomDb.X/.E; !� Œd �/ ˝R K

' HomDb.Spf.R//.R�XE; R/ ˝R K

' HomR.˚sRs�XEŒ�s�; R/ ˝R K

' HomR.R0�XE; R/ ˝R K

' HomR.HomDb.X/.OX ; E/; R/ ˝R K

' .HomDb.X/.OX ; E/ ˝R K//�

' .HomDb.XK/.OXK
; EK//�;

where the first and the last isomorphisms follow from Proposition 2.9, while the
second is Lemma 3.4, and all the others are simple consequences of the fact that R is
a DVR. Dualizing (with respect to K) we have

HomDb.XK/.OXK
; EK/ ' .HomDb.XK/.EK ; !XK

Œd �//�:

Now, let E; E 0 2 Db.X/ and let EK ; E 0
K 2 Db.XK/ be their images. Since E and

E 0 are perfect complexes, the natural map

RHomX.E 0; E ˝ !�/ �� RHomX.RHomX.E; E 0/; !�/

is an isomorphism. Indeed the statement is local and we can assume E and E 0 be
bounded complexes of free sheaves. In that case the claim is obvious.

Then one concludes by

HomDb.XK/.EK ; E 0
K/

' HomDb.X/.E; E 0/ ˝R K

' HomDb.X/.OX ; RHomX.E; E 0// ˝R K

' .HomDb.X/.RHomX.E; E 0/; !� Œd �/ ˝R K/�

' .HomDb.X/.OX ; RHomX.RHomX.E; E 0/; !� Œd �// ˝R K/�

' .HomDb.X/.OX ; RHomX.E 0; E ˝ !� Œd �// ˝R K/�

' .HomDb.X/.E
0; E ˝ !� Œd �/ ˝R K/�

' .HomDb.XK/.E
0
K ; EK ˝ !XK

Œd �//�;

where the first and the last isomorphisms follow from Proposition 2.9 while the third
is Lemma 3.4. The functoriality is clear. �

If X is a smooth projective surface with trivial canonical bundle, then !� is
trivial and thus !XK

is trivial as well. Therefore, in this case, the Serre functor of
Db.XK/ is isomorphic to the square of the shift functor and Db.XK/ is thus a K3 (or
2-Calabi–Yau) category as claimed in Theorem 1.1.
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3.3. A technical result. Instead of taking Verdier quotients of derived categories,
one could also consider derived categories of Serre quotients of the underlying abelian
categories. Let us start with a few observations that should hold for the more general
situation of the natural projection Db.B/ �� Db.B=A/ induced by the quotient of a
(non localizing) Serre subcategory A � B of an abelian category B. We could not
find a good reference for the general case and since the proofs are technically easier,
we restrict to the Serre subcategory Coh.X/0 � Coh.X/ with quotient Coh.XK/.

The following technical result is probably well-know in other contexts. It is the
first step towards the proof of the existence of an exact equivalence Db.XK/ '
Db.Coh.XK//. We include the proof here for the convenience of the reader.

Proposition 3.6. The natural exact functor Q W Db.Coh.X// �� Db.Coh.XK// in-
duces an exact equivalence

Db.Xc
K/ D Db.Coh.X//=Db

0.Coh.X//
� �� Db.Coh.XK//:

For an abelian category A, we denote by Cb.A/ the abelian category of bounded
complexes of objects in A and by Kb.A/ the category of bounded complexes modulo
homotopy.

Lemma 3.7. The natural projection Q W Db.Coh.X// �� Db.Coh.XK// is essen-
tially surjective.

Proof. Let F � be a bounded complex in the quotient category Cb.Coh.XK//, i.e.
F i D Ei

K for some Ei 2 Coh.X/ and differentials d i 2 HomK.F i ; F iC1/ D
Hom.Ei ; EiC1/ ˝ K (see Proposition 2.3).

Suppose F i D 0 for ji j > n for some n > 0. Then there exists N � 0 such
that tN d i 2 Hom.Ei ; EiC1/. Furthermore, we can choose N large enough such
that .tN d iC1/ B .tN d i / is trivial in Coh.X/ for all i . Let zE� be the complex with

objects zEi D Ei and differentials Qd i WD tN d i . Then tN.n�i/ W zEi
K

� �� F i defines

an isomorphism of complexes Q. zE�/
� �� F �. �

Thus, in particular, in order to prove Proposition 3.6, that is, to demonstrate

that the natural functor induces an equivalence Db.Xc
K/

� �� Db.Coh.XK//; it re-
mains to show HomDb.Xc

K
/ ' HomDb.Coh.XK//. By Proposition 2.9 we already

know that HomDb.Xc
K

/ ' HomDb.Coh.X// ˝ K. We therefore just need to show that
Db.Xc

K/ �� Db.Coh.XK// induces as well isomorphisms HomDb.Coh.X// ˝ K '
HomDb.Coh.XK//. This will be the content of Lemma 3.9.

In the following we shall frequently use the much easier fact that

HomCb.Coh.X//.E
�
1 ; E�

2/ ˝ K ' HomCb.Coh.XK//.Q.E�
1/; Q.E�

2//; (3.2)
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which is proved by the same argument as Proposition 2.3. One only has to observe
in addition that in order to lift a morphism of complexes f � W Q.E�

1/ �� Q.E�
2/,

one first lifts all tnf i to Qf i W Ei
1

�� Ei
2 for some n � 0 and to make Qf � a map of

complexes on X one might have to annihilate kernel and cokernel of d i
E�

2

B Qf i �
Qf iC1 B d i

E�
1

by multiplying with yet another high power of t .

Lemma 3.8. LetE�
1 ; E�

2 2 Cb.Coh.X//and leth 2 HomCb.Coh.X//.E
�
1 ; E�

2/be such
that Q.h/ is a quasi-isomorphism in Cb.Coh.XK//. Then there exist two complexes
F �

1 ; F �
2 and two morphisms f1 W F �

1
�� E�

1 , f2 W F �
2

�� E�
2 in Cb.Coh.X// such that

Q.f1/andQ.f2/are isomorphisms in Cb.Coh.XK//andQ.f2/�1BQ.h/BQ.f1/ D
Q.
/, with 
 a quasi-isomorphism in Cb.Coh.X//.

Proof. The proof is based on calculations similar to the ones in the proof of Lemma
3.7, we will therefore be brief. We shall outline a construction that yields a 
 inducing
an isomorphism in the lowest cohomology and leave the higher cohomologies to the
reader.

Up to shift, we can assume that E�
1 , E�

2 and hence h are concentrated in Œ0; r�.
The induced maps H i .h/ W H i .E�

1/ �� H i .E�
2/ on cohomology have kernels and

cokernels in Coh.X/0 since Q.h/ is a quasi-isomorphism in Cb.Coh.XK//,.
In the following discussion we use the observation that for any K 2 Coh.X/ and

n � 0, the sheaf tnK is R-flat and the cokernel of the inclusion tnK
� � �� K is an

object of Coh.X/0 (see Section 2.1).
We first construct a complex Z�

1;0 2 Cb.Coh.X// and a morphism f 0
1;0 W Z�

1;0
��

E�
1 such that ker.H 0.h B f 0

1;0// is trivial. If n � 0, then Z0
1;0 WD tnE0

1 is R-flat and
the inclusion i 0

1;0 W Z0
1;0 WD tnE0

1
� � �� E0

1 is an isomorphism in Coh.XK/. Then the
map of complexes

Z0
1;0 W

f 0
1;0

��

0 ��

��

Z0
1;0

d0
E1

Bi 0
1;0 ��

i 0
1;0

��

E1
1

d1
E1 ��

id
��

E2
1

��

id
��

: : :

E�
1 W 0 �� E0

1

d0
E1 �� E1

1

d1
E1 �� E2

1
�� : : :

yields an isomorphism in Cb.Coh.XK//. As a subsheaf of the R-flat sheaf Z0
1;0, the

kernel ker.d 0
E1

B i 0
1;0/ is also R-flat. Since ker.H 0.h B f 0

1;0//
� � �� ker.d 0

E1
B i 0

1;0/

and ker.H 0.h B f 0
1;0// 2 Coh.X/0, this implies ker.H 0.h B f 0

1;0/ D 0. To simplify
the notation, we assume henceforth E�

1 D Z�
1;0 and h D h B f 0

1;0, i.e. that H 0.h/ is
injective.

Now we define two complexes F �
1;0 and F �

2;0 in Cb.Coh.X// and morphisms
f1;0 W F �

1;0
�� E�

1 and f2;0 W F �
2;0

�� E�
2 yielding isomorphisms in Cb.Coh.XK//,
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such that there exists a morphism h0 W F �
1;0

�� F �
2;0 with h B f1;0 D f2;0 B h0 and

ker.H 0.h0// D Coker.H 0.h0// D 0.
To this end, consider the diagram

0

��
0

��

�� A0

��

�� Q0

id
��

0 �� ker.d 0
E1

/

��

�� E0
1

h0

��

�� Q0 �� 0

E0
2

��

id �� E0
2

��
C 0

��

�� B0 ��

��

0

0 0

(3.3)

with exact rows and columns. The aim is to reduce to the case where C 0 is R-flat.
Let D0 denote the cokernel of A0 �� Q0. Choose n � 0 and consider the

short exact sequence 0 �� D0
flat WD tnD0 �� D0 �� D0

tor
�� 0; where

D0
tor 2 Coh.X/0 and D0

flat is R-flat, and define F 0
1;0 as the kernel of the composition

E0
1

�� Q0 �� D0
tor. By construction, the map of complexes

F �
1;0 W

f1;0

��

0 ��

��

F 0
1;0

d0
E1

Bi1;0
��

i1;0

��

E1
1

d1
E1 ��

id
��

E2
1

��

id
��

: : :

E�
1 W 0 �� E0

1

d0
E1 �� E1

1

d1
E1 �� E2

1
�� : : :

yields an isomorphism in Cb.Coh.XK//. Note that by construction the inclusion
A0 � � �� E0

1 factorizes through F 0
1;0 and that the inclusion ker.d 0

E1
/

� � �� E0
1 factorizes

through F 0
1;0. Replace E�

1 by F �
1;0 and h by h B f1;0. Now, in the corresponding

diagram (3.3) the inclusion A0 � � �� Q0 has an R-flat cokernel.

Next, consider the exact sequence 0 �� B0
flat

�� B0 �� B0
tor

�� 0

and define F 0
2;0 as the kernel of the composition E0

2
�� B0 �� B0

tor, which natu-
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rally contains im.h0/. As before, the map of complexes

F �
2;0 W 0

f2;0

��

��

��

F 0
2;0

d0
E2

Bj2;0
��

j2;0

��

E1
2

d1
E2 ��

id
��

E2
2

��

id
��

: : :

E�
2 W 0 �� E0

2

d0
E2 �� E1

2

d1
E2 �� E2

2
�� : : :

yields an isomorphism in Cb.Coh.XK// and h factorizes through f2;0. Replace E�
2

by F �
2;0 and consider the corresponding diagram (3.3). Observe that now C 0 is R-

flat (use the Snake Lemma). Since Coker.H 0.h// injects into C 0 and belongs to
Coh.X/0, it must be trivial, as wanted. �

In the spirit of Proposition 2.3 one can describe the homomorphisms in the derived
category of the quotient as follows.

Lemma 3.9. For all complexes E�
1 ; E�

2 2 Db.Coh.X// the natural exact functor Q

induces isomorphisms

Q ˝ K W HomDb.Coh.X//.E
�
1 ; E�

2/ ˝R K
� �� HomDb.Coh.XK//.Q.E�

1/; Q.E�
2//:

Proof. We will prove the bijectivity of Q ˝ K in two steps.

i) Injectivity. Let f 2 HomDb.Coh.X//.E
�
1 ; E�

2/ such that Q.f / D 0. By defini-
tion, f may be represented by

E�
1 F �

0

s0�� g �� E�
2 ;

with s0 a quasi-isomorphism in Cb.Coh.X//. Since Q.f / D 0, there exists a
commutative diagram in Kb.Coh.XK// of the form

Q.F �
0 /

Q.s0/

�����������
Q.g/

�����������

Q.E�
1/ Q.E�

2/;

zF �
1

Qs1

��









 0

������������

Qh

��

with Qs1 and Qh quasi-isomorphisms in Cb.Coh.XK//. By Lemma 3.7 and (3.2), we
can assume that Qs1; Qh, and zF �

1 are in the image of Q, i.e. Qs1 D Q.s1/, Qh D Q.h/, and
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zF �
1 D Q.F �

1 /. By Lemma 3.8 we have a commutative diagram in Kb.Coh.XK//

Q.F �
3 /

Q.F �
0 /

Q.f2/�1

��

Q.s0/

�����������
Q.g/

�����������

Q.E�
1/ Q.E�

2/;

Q.F �
1 /

Q.s1/

��








 0

�����������

Q.h/

��

Q.F �
2 /

Q.f1/

��

with 
 a quasi-isomorphism in Cb.Coh.X// such that Q.
/ D Q.f2/�1 B Q.h/ B
Q.f1/. So we have a commutative diagram in Kb.Coh.XK//

Q.F �
3 /

Q.gBf2/

�����������

Q.F �
2 /

0 ��

Q.�/
�����������

Q.E�
2/:

Hence, one finds Qki W Q.F i
2 / � �� Q.Ei�1

2 / in Coh.XK/ such that

dQ.E2/ B Qk C Qk B dQ.F2/ � Q.g B f2 B 
/ D 0

in Coh.XK/. By Proposition 2.3, there exists N � 0 such that tN Qk D Q.k/ and

dE2
B k C k B dF2

� ..tN .g B f2// B 
/ D 0

in Coh.X/. So .tN .g B f2// B 
 D 0 in Kb.Coh.X//. Therefore, there is a quasi-
isomorphism 
 0 W E�

2 � �� F �
4 in Kb.Coh.X// such that 
 0 B .tN .g B f2// D 0.

Then by Lemma 3.8, saying in particular that Q.f2/ is an isomorphism in
Cb.Coh.XK//, and by (3.2), there exist h 2 HomCb.Coh.X//.F

�
0 ; F �

3 / and n � 0,
such that tnf2 B h D id and hence 
 0 B .tnCN g/ D 
 0 B .tN .g B f2// B .tnh/ D 0

in Kb.Coh.X//. Hence 
 0 B .tnCN f / D 0 in Db.Coh.X//. Since 
 0 is a quasi-
isomorphism, this yields tnCN f D 0 in Db.Coh.X//.

ii) Surjectivity. Let Qf 2 HomDb.XK/.Q.E�
1/; Q.E�

2//. Again by Lemma 3.7 and

(3.2) we can assume that Qf is of the form

Q.E�
1/ Q.F �

0 /
Q.s0/�� Q.g/ �� Q.E�

2/:
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Applying Lemma 3.8 to Q.s0/ we get a commutative diagram in Cb.Coh.XK//:

Q.F �
2 /

Q.s0Bf1/

�����������
Q.f1/

��










Q.E�
1/

Q.f2/�1

�����������
id

��









Q.F �

0 /

Q.s0/

�����������
Q.g/

�����������

Q.F �
1 / Q.E�

1/ Q.E�
2/;

(3.4)

with Q.f2/�1 B Q.s0 B f1/ D Q.
/ and 
 a quasi-isomorphism, giving rise to a
morphism ˛ 2 HomDb.Coh.X//.F

�
1 ; E�

2/ such that Q.˛/ is represented by (3.4).

If Q̌ 2 HomDb.Coh.XK//.Q.F �
1 /; Q.E�

1// corresponds to the diagram

Q.F �
1 / Q.E�

1/
Q.f2/�1

�� id �� Q.E�
1/;

we have Qf B Q̌ D Q.˛/ and Hence Qf D Q.˛/ B Q̌�1. Applying (3.2) to Q.f2/�1

one finds n � 0 and g, such that tn Q̌�1 D Q.g2/. Thus tn Qf D Q.˛/ B Q.g2/, as
desired. �

3.4. Back to the general fibre. In the definitions of Db.XK/ and Db.Xc
K/ one di-

vides by the categories Db
0.X/ and Db.Coh.X/0/ which, by Proposition 2.5, are

equivalent. The categories Db
coh.OX-Mod/ and Db.Coh.X// are in general not

equivalent, so neither should be their quotients Db.Xc
K/ and Db.XK/. However,

for surfaces with trivial canonical bundle the situation is slightly better.
In the sequel we will write, by abuse of notation, Q.E/ D EK where

Q W Db.Coh.X// �� Db.Coh.XK//

is defined as in Lemma 3.7.

Proposition 3.10. Suppose X �� Spf.R/ is a smooth proper formal scheme of di-
mension two with trivial canonical bundle, i.e. !� ' OX . Then the natural exact
functor

Db.Coh.X// �� Db.X/ �� Db.XK/

induces an exact equivalence

Db.Coh.XK//
� �� Db.Coh.X//=Db

0.Coh.X//
� �� Db.X/=Db

0.X/

D Db.Xc
K/ D Db.XK/:
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Proof. The first equivalence is the content of Proposition 3.6, so only the second equi-
valence needs a proof. By the universal property of localization and Remark 2.7, the
induced functor Db.Xc

K/ �� Db.XK/ exists. We need to prove it to be an equivalence.
Let us first show that it is fully faithful. Using induction on cohomologies, this

would follow from

HomDb.Xc
K

/.EK ; FK Œi �/
� �� HomDb.XK/.EK ; FK Œi �/ (3.5)

for all objects EK ; FK 2 Coh.XK/ and all i 2 N. Here we use that the natural
K-linear functor Coh.XK/ �� Db.XK/, which by Propositions 2.3 and 2.9 is fully
faithful, identifies Coh.XK/ with the heart of a bounded t -structure on Db.XK/ (see,
e.g. [4, Lemma 3.2]).

In order to prove (3.5), we imitate the proof of [3, Proposition 5.2.1]. For fixed
F 2 Coh.X/, write Ext�

I .�; F / and Ext�
II .�; F / for the two contravariant ı-functors

Ext�
Db.Coh.X//

.�; F / ˝R K and Ext�
Db.X/

.�; F / ˝R K on Coh.X/ with values in
the category of K-vector spaces. They coincide in degree zero and Ext�

I .�; F / is
clearly universal. Thus, it suffices to prove that also Ext�

II .�; F / is universal. By
Grothendieck’s result (see [6, Theorem 1.3.A]), this would follow from Exti

II .�; F /

being coeffaceable for i > 0. Recall that Exti
II .�; F / is coeffaceable if for any

E 2 Coh.X/, there exists an epimorphism E 0 �� �� E in Coh.X/ such that the
induced map Exti

II .E; F / �� Exti
II .E 0; F / is zero. Clearly Ext�

I .�; F / is universal
and Ext1

I .E; F / ' Ext1
II .E; F / (use that Coh.XK/ is the heart of a bounded t -

structure on Db.XK/ and so the extensions in the abelian category coincides with
those in the triangulated category). An easy modification of Grothendieck’s original
argument shows that it is enough to prove that Exti

II .�; F / is coeffaceable for i > 1.
Moreover, by Proposition 3.5, we also have Exti

II .E; F / D 0 for i > 2. Hence we
only have to show that Ext2

II .�; F / is effaceable.
By Lemma 3.11, for all rational sections s of X over R, there exists a positive

integer n such that Ext2
II .Mn

s E; F / D 0, where Ms denotes the ideal sheaf corre-
sponding to s. Then, take s and s0 two disjoint rational R-sections of X and choose
n such that Ext2

II .Mn
s E; F / D Ext2

II .Mn
s0E; F / D 0. Since the canonical map

Mn
s E ˚ Mn

s0E �� E is surjective, we conclude by setting E 0 WD Mn
s E ˚ Mn

s0E.
Finally, one shows that Db.Xc

K/ �� Db.XK/ is also essentially surjective. Indeed,
since Coh.XK/ is in the natural way a heart of t -structures on both categories, this
follows by induction over the length of complexes and the full faithfulness proved
before. �

Lemma 3.11. Let E; F 2 Coh.X/ and let s be a rational section of X over R whose
ideal sheaf in OX is Ms . Then there exists a positive integer n such that

Ext2
Db.X/

.Mn
s E; F / ˝R K D 0:
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Proof. By Proposition 3.5 it suffices to show that one has HomDb.X/.F; Mn
s E/ ˝R

K D 0 for n � 0. Since HomDb.X/.F; Mn
s E/ ˝R K is finite dimensional over

K, it is sufficient to show that, for a 2 N, there exists b > a such that the natural
inclusion HomDb.X/.F; Mb

s E/ ˝R K � HomDb.X/.F; Ma
s E/ ˝R K is strict. (Use

that .Mb
s E/K

�� .Ma
s E/K is still injective.)

Pick a non-zero f 2 HomDb.X/.F; Ma
s E/ ˝R K. After multiplying with some

power of t , we can assume f 2 HomDb.X/.F; Ma
s E/. Consider the exact sequence

0 �� Etor
�� E �� Ef

�� 0;

with Etor 2 Coh.X/0 and Ef flat over R. Consider the induced map f W F �� Ma
s Ef .

This is non-zero, since f is not a torsion element. It is sufficient to show that there
exists an integer b > a such that tnf … HomDb.X/.F; Mb

s Ef/, for all n 2 N. Thus,
if G WD Im.f /, it is enough to show that GK � .Ma

s Ef/K is not contained inT
k.Mk

s Ef/K .
Suppose to the contrary that GK � T

.Mk
s Ef/K . We will show that then G �T

Mk
s Ef , which by the Krull Intersection Theorem would show G D 0. Indeed, if

G � Mk
s Ef , then also G � MkC1

s Ef , as the induced map G �� .Mk
s =MkC1

s /Ef

becomes the trivial map in Coh.XK/, but Ef is R-flat and t … Ms . �

This applies to the case of X a smooth complex projective surface with trivial
canonical bundle and proves the last part of Theorem 1.1.

Remark 3.12. It should be possible to deduce from Proposition 3.10 that for smooth

formal surfaces with trivial canonical bundle, Db.Coh.X//
� �� Db

coh.OX-Mod/ '
Db.X/ is in fact an equivalence, but we shall not use this.

Appendix. Verdier quotients and Serre subcategories

This appendix collects known facts and definitions concerning quotients by Serre
subcategories and Verdier quotients which were used throughout this paper. The
main source we follow in the exposition is [13]. The reader is encouraged to look at
Chapter 2 and Appendix A of [13] for a complete and readable account. Notice that
we forget all set-theoretical issues which, in the case considered in the paper, do not
give rise to problems (see [13, Section 2.2]).

A.1. Verdier quotients. Assume that T is a triangulated category with shift functor
† W T �� T (see [13, Chapter 1]). A full additive subcategory D is a triangulated
subcategory if every object isomorphic to an object in D is in D and the inclusion
functor i W D � � �� T is a triangulated functor with the additional requirement that, for
any D 2 D the isomorphism �D W i.†.D// �� †.i.D// is the identity.
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Definition A.1. A subcategory D of T is thick if it is triangulated and contains all
direct summands of its objects.

If D is a triangulated subcategory of T one can form the Verdier quotient T=D
which is a triangulated category whose objects are the same as those of T. To define
the morphisms in T=D first consider the collection MorD of morphism f W T1

�� T2

in T sitting in an exact triangle

T1
f �� T2

�� Z �� †.T1/

with Z 2 D. A morphism in T=D between T1 and T2 is an equivalence class of
diagrams

. T1 T0
f�� g �� T2 /

with f 2 MorD. We say that . T1 T0
f1�� g1 �� T2 / and . T1 S0

f2�� g2 �� T2 /

are equivalent if there is a third diagram . T1 Z0
f3�� g3 �� T2 / and morphisms

u W Z0
�� T0 and v W Z0

�� S0 in MorD making the following diagram commutative

T0

f1

����
��

��
�� g1

���
��

��
��

�

T1 Z0
f3�� g3 ��

u

��

v

��

T2:

S0

f2

���������� g2

����������

Roughly speaking, all morphisms in MorD become invertible.
Let Q W T �� T=D be the natural triangulated functor which is called the Verdier

localization. The kernel of Q (i.e. the full additive subcategory of T consisting of
objects mapped to zero by Q) is thick (see [13, Remark 2.1.7]). Hence, if D is thick,
the kernel of Q coincides with D.

A.2. Serre subcategories. Let A be an abelian category and let B � A be a full
abelian subcategory. We say that B is thick if for B1; B2 2 B and any short exact
sequence

0 �� B1
�� A �� B2

�� 0

in A, then A belongs to B as well.

Definition A.2. A thick full subcategory B is a Serre subcategory of A if
i) Every object of A isomorphic to an object of B is in B;
ii) Every quotient or subobject in A of an object in B is in B.
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Given a Serre subcategory B of an abelian category A one can construct the
quotient A=B where the objects of A=B are the same as those of A. On the other
hand, a morphism A1

�� A2 in A=B is an equivalence class of diagrams

. A1 A0
s�� t �� A2 /

with ker.s/; Coker.s/ 2 B. The equivalence relation we mentioned has a definition
which is analogue to the one explained in Section A.1 (see [13, Section A.2]).

A key fact is the following (see [13, Lemma A.2.3]):

Lemma A.3. The category A=B is abelian. The natural functor Q W A �� A=B is
exact and takes object of B to objects in A=B isomorphic to zero. Furthermore, Q

is universal with this property. The subcategory B � A is the full subcategory of all
objects B 2 A such that Q.A/ is isomorphic to zero.
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