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Abstract. We investigate the Kähler–Ricci flow modified by a holomorphic vector field. We
find equivalent analytic criteria for the convergence of the flow to a Kähler–Ricci soliton. In
addition, we relate the asymptotic behavior of the scalar curvature along the flow to the lower
boundedness of the modified Mabuchi energy.
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1. Introduction

Let M be a compact Kähler manifold of complex dimension n with c1.M/ > 0. A
Kähler–Ricci soliton onM is a Kähler metric! D i

2
g Nkjdz

j ^d Szk in the cohomology
class � c1.M/ together with a holomorphic vector field X such that

Ric.!/ � ! D LX!; (1.1)

or R Nkj � g Nkj D rjX Nk , in coordinate notation with X Nk D g Nk`X
`. Let ˆt be

the 1-parameter group of automorphisms of M generated by ReX . The family
of metrics g Nkj .t/ � ˆ��t .g Nkj / provides then a solution of the Kähler–Ricci flow,
Pg Nkj .t/ D �R Nkj C g Nkj , where the evolution in time is just by reparametrization.

If X is the zero vector field then (1.1) reduces to the Kähler–Einstein equation.
Kähler–Ricci solitons are in many ways similar to extremal metrics, which generalize
constant scalar curvature Kähler metrics and are characterized by the condition that
the vector field riR is holomorphic. A classic conjecture of Yau [Y2] asserts that
the existence of constant scalar curvature metrics in a given integral Kähler class
should be equivalent to the stability of the polarization in the sense of geometric
invariant theory. Notions of K-stability for constant scalar curvature metrics have
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been proposed by Tian [T] and Donaldson [D2], and extended to the case of extremal
metrics by Szekelyhidi [Sz1] (see also [M]). Similarly, the existence of Kähler–Ricci
solitons is expected to be equivalent to a suitable notion of stability.

Kähler–Ricci solitons are the stationary points of the modified Kähler–Ricci flow

Pg Nkj D �R Nkj C g Nkj C rjX Nk (1.2)

which is the Kähler–Ricci flow reparametrized by the automorphismsˆt generated by
ReX . Similar reparametrizations of Hamilton’s original flow [H] had been introduced
by DeTurck [DeT] to simplify the proof of the short-time existence of the flow.

The modified Kähler–Ricci flow appears in the work of Tian–Zhu [TZ2] as part
of their study of the Kähler–Ricci flow assuming a priori the presence of a Kähler–
Ricci soliton. They make use of a Moser–Trudinger type inequality from [CTZ] to
deduce the Cheeger–Gromov convergence of the flow. (When there are no nontrivial
holomorphic vector fields, it is known by the work of Perelman, [TZ2], [PSSW1],
that the existence of a Kähler–Einstein metric implies the exponential convergence
of the Kähler–Ricci flow to that metric.)

In this paper, we study the long-time behavior of the modified Kähler–Ricci flow
without assuming the existence of a Kähler–Ricci soliton. We give analytic conditions
which are both necessary and sufficient for the convergence of the flow to a Kähler–
Ricci soliton. These conditions are analogous to the ones given in [PSSW1] for the
convergence of the Kähler–Ricci flow. As explained in [PS1] and [PSSW1] they can
be interpreted as stability conditions in an infinite-dimensional geometric invariant
theory, where the orbits are those of the diffeomorphism group acting on the space of
almost-complex structures.1 The arguments and viewpoint in this paper are parallel
to the case X D 0 treated in [PSSW1]. In the proofs, we emphasize only the main
changes due to non-vanishing X .

More precisely, let M be a compact Kähler manifold with c1.M/ > 0 and X a
holomorphic vector field whose imaginary part ImX induces an S1 action on M .
Write KX for the space of Kähler metrics in�c1.M/which are invariant under ImX .
Given ! D i

2
g Nkjdz

j ^ dz Nk 2 KX , define the Hamiltonian �X;! as the real-valued
function satisfying

Xjg Nkj D @ Nk�X;! ;

Z
M

e�X;!!n D
Z

M

!n DW V:

The Ricci potential f D f .!/ is given by g Nkj �R Nkj D @ Nk@jf ,
R

M
e�f !n D V (we

note that in the Kähler geometry literature, f often has the opposite sign). Define
the modified Ricci potential uX;! by

uX;! D f C �X;! :

1In [D1], Donaldson also considers an infinite-dimensional geometric invariant theory, with the group of
symplectomorphisms acting on the space of almost complex structures.
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If M admits a Kähler–Ricci soliton ! 2 � c1.M/ with respect to X , then ! is
necessarily in KX and uX;! D 0. Let g Nkj .t/ evolve by the modified Kähler–Ricci
flow and set

YX .t/ D
Z

M

jruX;! j2 e�X;! !n: (1.3)

The modified Kähler–Ricci flow preserves the Kähler class, and can be expressed as
a flow of Kähler potentials. Identify (modulo constants) KX with

PX .M;!0/ D f' 2 C1.M/ j ! D !0 C i
2
@N@' > 0; ImX.'/ D 0g:

Let ' D '.t/ 2 PX .M;!0/ be the solution of the equation

P' D log
!n

!n
0

C ' C �X;! C f .!0/; '.0/ D c0: (1.4)

Then the Kähler metrics ! D !0 C i
2
@N@' evolve by the modified Kähler–Ricci flow

(1.2). The initial constant c0 can affect the growth of ' for large time, and has to
be chosen with some care. We choose it to be given by the value (2.5) described in
Section §2 below.

Our first theorem is a characterization of the convergence of the modified Kähler–
Ricci flow, which shows in particular that if convergence occurs, it is always expo-
nential:

Theorem 1. Let !0 2 KX , !0 WD i
2
g0Nkj

dzj ^ d Nzk , and consider the modified

Kähler–Ricci flow (1.2) with initial metric !0. Then the following conditions are
equivalent:

(i) The modified Kähler–Ricci flow g Nkj .t/ converges in C1 to a Kähler–Ricci
soliton g Nkj .1/ with respect to X .

(ii) The function kR � n � rjX
j kC 0 is integrable, i.e.,

Z 1

0

kR � n � rjX
j kC 0 dt < 1:

(iii) Let '.t/ evolve by (1.4), with initial value c0 as specified in (2.5) below. Then

supt�0k'.t/kC 0 < 1:

(iv) Let YX .t/ be defined by (1.3). Then there exist constants �; C > 0 so that

YX .t/ � C e�� t :

(v) The modified Kähler–Ricci flow g Nkj .t/ converges exponentially fast in C1 to
a Kähler–Ricci soliton g Nkj .1/ with respect to X .
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We remark that our method does not obviously extend to the case where condi-
tion (i) is weakened to sequential convergence of the flow.

A criterion for the convergence of the Kähler–Ricci flow in terms of a uniform
bound for volume forms has been given by Pali [Pa]. Indeed, such a bound implies
immediately that k'kC 0 is uniformly bounded, in view of the defining equation
log.!.t/n=!n

0 / D �f .!0/�'C P' for the Kähler–Ricci flow and Perelman’s uniform
bound for k P'kC 0 . A similar observation is used in the proof of (ii) implies (iii) below.

Theorem 1 relates the convergence of the flow rather to the growth of YX .t/ or
kR � n � rjX

j kC 0.t/. Our next result addresses the behavior of these quantities
under a stability assumption. Following [TZ1], we define the modified Mabuchi
K-energy �X W PX .M;!0/ ! R by

ı�X .'/ D � 1

V

Z
M

ı'
�
R � n � rjX

j �XuX;!

�
e�X;!!n; �X .0/ D 0:

Since R� n� rjX
j �Xu D �.�C ReX/uX;! , the integrand is real and �X does

map into R. For a proof that �X .'/ is independent of choice of path in PX .M;!0/,
see [TZ1].

We consider the following condition:

(AX ) �X is bounded from below on PX .M;!0/.

In [TZ1] it is shown that (AX ) is a necessary condition for the existence of a
Kähler–Ricci soliton ! with respect to X . Here we shall establish the following
theorem:

Theorem 2. Assume that Condition .AX / holds, and let !0 2 KX . Then we have,
along the modified Kähler–Ricci flow (1.2) starting at !0,

YX .t/ ! 0 and kR � n � rjX
j kC 0 ! 0; as t ! 1:

Furthermore, for any p > 2, we have

Z 1

0

kR � n � rjX
j kp

C 0dt < 1:

Note that a metric! 2 KX satisfiesR�n�rjX
j D 0 if and only if! is a Kähler–

Ricci soliton with respect toX . However, the convergence kR�n�rjX
j kC 0 ! 0 is

of course weaker than the convergence of the metrics g Nkj .t/ themselves to a Kähler–
Ricci soliton. This is to be expected, since the condition .AX / is only a semi-stability
condition.

It was shown in [CTZ] using the continuity method that the ‘properness’of�X in a
certain sense is equivalent to the existence of a Kähler–Ricci soliton. The properness
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condition can be thought of as a strong Moser–Trudinger inequality, while Condition
.AX / corresponds to a weaker form of the Moser–Trudinger inequality.

Associated to the modified K-energy is the modified Futaki invariant FX (see
[TZ1]),

FX .Z/ D �
Z

M

.ZuX;!/ e
�X;!!n;

defined for holomorphic vector fields Z. The modified Futaki invariant FX is inde-
pendent of the choice of ! 2 KX . It follows immediately that FX � 0 is a necessary
condition for the existence of a Kähler–Ricci soliton in KX .

In the unmodified case, corresponding to X D 0, the condition .AX / reduces to
the condition .A/ from [PS1] of lower boundedness of the Mabuchi K-energy. It is
then easy to show that .A/ implies that the unmodified Futaki invariant FXD0.Z/

vanishes for all holomorphic vector fields Z 2 H 0.M; T 1;0/, by differentiating the
functional along the integral paths of Z. We show how to rework this argument to
prove the analogous statement when X ¤ 0 (to our knowledge, this result is not in
the literature).

Proposition 1. If .AX / holds then FX .Z/ D 0 for all holomorphic vector fields Z.

Our third theorem shows that .AX / together with an eigenvalue condition give nec-
essary and sufficient conditions for the convergence of the metrics g Nkj .t/ themselves.
Set

�.t/ D infV ?H 0.M;T 1;0/

kN@V k2

kV k2
;

whereH 0.M; T 1;0/ is the space of holomorphic vector fields onM and we are using
the natural L2 inner product induced by g Nkj .t/. This quantity was first introduced in
the context of the Kähler–Ricci flow in [PS1]. Recall the following condition from
[PSSW1]:

.S/ inf t�0 �.t/ > 0:

Theorem 3. The modified Kähler–Ricci flow (1.2), starting at an arbitrary metric
!0 2 KX , converges exponentially fast in C1 to a Kähler–Ricci soliton with respect
to the holomorphic vector field X if and only if the conditions .AX / and .S/ are
satisfied.

Since condition .S/ is invariant under automorphisms, a consequence of The-
orem 3 is that convergence modulo automorphisms implies full convergence, i.e.,
if g Nkj .t/ is a solution of the modified Kähler–Ricci flow starting at !0 2 KX and
‰�

t .g Nkj / converges to a Kähler–Ricci soliton with respect toX for some family of au-
tomorphisms f‰tgt2Œ0;1/ , theng Nkj .t/ converges exponentially fast to a Kähler–Ricci
soliton with respect to X .
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It would be interesting to determine whether condition .S/ by itself is sufficient.
Finally we discuss in more detail the behavior of YX .t/which, as can be seen from

Theorem 1, is key to the convergence of the Kähler–Ricci flow. It is convenient to
introduce a quantity �X which is uniformly equivalent to the eigenvalue � described
above (see Lemma 4 below). Equip the spaces T 1;0 and T 1;0 ˝ .T �/0;1 with the
Hilbert space norms

kV k2
� D

Z
M

g NkjV
jV k e�X;!!n; kW k2

� D
Z

M

g NkjW
j
Np W

kNq gq Np e�X;!!n:

Define the eigenvalue �X .t/ by �X .t/ D infV ?H 0.M;T 1;0/kN@V k2
�
=kV k2

�
, where the

notion of perpendicularity is taken with respect to the norm k � k� . Then we have:

Theorem 4. Consider the modified Kähler–Ricci flow (1.2) with initial metric !0 2
KX . Then there exist C > 0 depending only on !0, and N , ıj � 0, 0 � j � N ,
depending only on n and satisfying

PN
j D0 ıj > 2, so that for all t � 2N ,

PYX .t/ � �2 �X .t/ YX .t/ � 2 �X .t/ FX .�.xr.uX;!///

C C

NY
j D0

YX .t � 2j /
ıj
2 :

(1.5)

Here xruX;! D gj Nk@ NkuX;! , and � is the orthogonal projection, with respect to the
norm k�k� , of the space of T 1;0 vector fields onto the subspace of holomorphic vector
fields.

The main point of the estimate (1.5) is to relate the convergence of the modified
Kähler–Ricci flow to three issues, namely the vanishing of the modified Futaki in-
variant FX ; the convergence of YX .t/ to 0 as t ! 1; and the existence of a strictly
positive uniform lower bound for �X .t/ (or equivalently, to �.t/, cf. Lemma 4).

As mentioned above, our results extend those of the paper [PSSW1] which con-
sidered the case X D 0. Accordingly, some of our proofs are brief, and we focus on
those changes due to non-vanishing X .

2. Preliminaries

In this section, we give a proof of Proposition 1, and determine an initial value c0 for
the modified Kähler–Ricci flow so that P' is bounded.

2.1. Proof of Proposition 1. We first show that FX .Z/ D 0 for all holomorphic
vector fields Z satisfying LIm XZ D 0. Fix a Kähler metric !0 2 KX . Write ‰t for
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the 1-parameter family of automorphisms ofM induced by ReZ. Define !t and  t

by

‰�
t !0 D !t D !0 C i

2
@N@ t :

Note that  t 2 PX .M;!0/ is defined only up to the addition of a constant. Also,
i
2
@N@ P D LRe Z!, where we are now dropping the t subscript. On the other hand,

there exists a complex-valued function �Z;! , invariant under ImX , such that �Z! D
i
2

N@�Z;! : Indeed, all manifolds M with c1.M/ > 0 are simply connected so the N@-

closed .0; 1/-form Zjg Nkjdz
k must be N@-exact. Since @N@ P D @N@Re �Z;! we can

assume that P D Re �Z;! .
Compute

d

dt
�X . / D �Re

�
n

V

Z
M

i

2
@uX;! ^ N@ P ^ e�X;!!n�1

�

D n

V

Z
M

uX;!e
�X;!

�
i

2
@N@ P C Re

�
i

2
@�X;! ^ N@ P 

��
^ !n�1

D 1

V

Z
M

uX;!e
�X;!

�
� P !n C nRe

�
i

2
@�X;! ^ N@�Z;! ^ !n�1

��

D 1

V

Z
M

uX;!LRe Z.e
�X;!!n/ D � 1

V

Z
M

.ReZ/.uX;!/e
�X;!!n

D 1

V
Re.FX .Z//:

(2.1)

To go from the 2nd to the 3rd line, we have used the fact that P D �Z;! � i Im �Z;!

and nRe
�

1
2
@�X;! ^ N@Im �Z;! ^ !n�1

� D �nRe
�

1
2
@Im �Z;! ^ N@�X;! ^ !n�1

� D
�.ImX/.Im �Z;!/ !

n D 0, since Im �Z;! is invariant under ImX .
Condition .AX / implies from (2.1) that Re.FX .Z// D 0. Replacing Z by iZ

shows that FX .Z/ D 0 for all holomorphic vector fields Z invariant under ImX . If
Z is now an arbitrary holomorphic vector field and yZ its average over the S1 orbit
we obtain FX .Z/ D FX . yZ/ D 0 as required.

2.2. Choice of initial value c0. We show how to choose c0 so that supt�0k P'kC 0 <

1. This bound was proved in [TZ2] assuming the existence of a Kähler–Ricci soliton.
Here we only require the invariance of the initial metric !0 under ImX .

Fix !0 D i
2
g0Nkj

dzj ^ dzk 2 KX . The Kähler–Ricci and modified Kähler–Ricci

flows are

@

@t
Qg Nkj .t/ D � zR Nkj C Qg Nkj ; Qg Nkj .0/ D g0Nkj

(2.2)

@

@t
g Nkj .t/ D �R Nkj C g Nkj C rjX Nk; g Nkj .0/ D g0Nkj

; (2.3)
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respectively. Note that if fˆtgt2Œ0;1/, ˆ0 D id, is the subgroup of automorphisms
ofM generated by ReX , then the solutions to (2.2) and (2.3) are related by g Nkj .t/ D
ˆ�

t . Qg Nkj /. The Kähler–Ricci flow preserves the S1 action induced by ImX and so the
Kähler forms Q!.t/ and !.t/ lie in KX . In the sequel, we will often drop the t . Also,
we will denote by Qf , zr and z� the Ricci potential, covariant derivative and Laplacian
with respect to Qg Nkj .

Next, recall Perelman’s estimates (see [ST]) for the Kähler–Ricci flow: with all
norms taken with respect to Qg Nkj .t/, there exists a constant C depending only on !0

so that
k Qf kC 0 C kzr Qf kC 0 C k z� Qf kC 0 � C:

Furthermore, the diameters diam Qg.t/M are uniformly bounded by a constant depend-
ing only on!0, and for any 	 > 0, there exists c > 0 depending only on!0 and 	 such
that for all x 2 M and all r with 0 < r � 	 we have

R
Br .x/

Q!n.t/ � c r2n, where
Br.x/ is the geodesic ball centered at x of radius r with respect to Qg Nkj .t/ (“non-
collapsing”). Uniform bounds for the Sobolev constant have now been established
by Zhang [Zha] and Ye [Ye].

These statements make no reference to the vector fieldX and indeed do not require
the initial metric!0 to be invariant under ImX . Moreover, they are all invariant under
automorphisms and hence the analogous statements hold also for the metrics g Nkj .

We now describe (2.2), (2.3) in terms of potentials. Define Q' D Q'.t/ and' D '.t/

by

@ Q'
@t

D log
Q!n

!n
0

C Q' C f .!0/; Q'.0/ D Qc0;

@'

@t
D log

!n

!n
0

C ' C �X;! C f .!0/; '.0/ D c0;

The constant Qc0 is chosen to be the value (2.10) in [PSS] (see also [CT]), so that
k@t Q'kC 0 � C , and the constant c0 will be defined shortly. One can check that
Q! D !0 C i

2
@N@ Q' and ! D !0 C i

2
@N@' satisfy (2.2) and (2.3) respectively. We need

the following well-known properties of the Hamiltonian �X;! :

Lemma 1. (a) (See e.g. [FM] or [Zhu1].) For all !0 2 KX , we have
���X;!0

��
C 0 D���X;!0

��
C 0 .

(b) ([TZ1], p. 301) For !0 2 KX with !0 D !0 C i
2
@N@'0, we have �X;!0 D

�X;!0
CX.'0/.

For example, to see (a), we can apply Moser’s theorem and obtain a diffeo-
morphism ‰ W M ! M with ‰�.!0/ D !0 and ‰�.ImX/ D ImX . But then
d‰��X;!0 D d�X;!0

, and ‰��X;!0 D �X;!0
C c, for a constant c which must vanish
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by the normalization conditions. Thus �X;!0 ; �X;! have the same image in R, and (a)
is proved.

We can show now that along the modified Kähler–Ricci flow,

Z
M

jX j2e�X;!!n � C: (2.4)

Indeed, from the definition of the modified Futaki invariant and of �X;! ,

Z
M

jX j2e�X;!!n D �
Z

M

.Xf /e�X;!!n � FX .X/:

Hence, since FX .X/ is independent of choice of metric, we have

Z
M

jX j2e�X;!!n �
Z

M

jX jjrf je�X;!!n C C

� 1

2

Z
M

jX j2e�X;!!n C 1

2

Z
M

jrf j2e�X;!!n C C;

and the claim follows from Perelman’s estimates and Lemma 1. Define now c0 by

c0 WD 1

V

Z 1

0

e�t

Z
M

jruX;! j2e�X;!!n dt � 1

V

Z
M

uX;!0
e�X;!0!n

0 : (2.5)

To see that c0 is finite, observe that jruX;! j2 � 2.jrf j2 C jX j2/ � C C 2jX j2, and
hence by Lemma 1 and (2.4),

R
M

jruX;! j2e�X;!!n � C . We can now prove

Lemma 2. There exists a uniform constant C such that along the flow,

k P'kC 0 � C:

Proof. Define ˛.t/ D 1
V

R
M

P'e�X;!!n. From Lemma 1 and the fact that P' and uX;!

differ only by a time-dependent constant, we have d
dt
˛ D ˛� 1

V

R
M

jruX;! j2e�X;!!n.
Integrating this ODE (cf. the argument in [PSS]) shows that

0 � ˛.t/ D 1

V

Z 1

t

e�.s�t/

Z
M

jruX;! j2.s/e�X;!.s/!n.s/ ds � C: (2.6)

From (2.2) and (2.3) we obtain @t' D ˆ�
t @t Q'C�X;! Cm.t/, for some constantm.t/.

The lemma follows from the boundedness of k@t Q'kC 0 , (2.6), and Lemma 1. �
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3. Estimates for the modified Kähler–Ricci flow

In this section, we establish some key estimates for the modified Kähler–Ricci flow,
namely the analogue of Perelman’s estimates for the Ricci potential, the estimates for
the Laplacian of the Hamiltonian function �X;! , an L2=C 0 Poincaré inequality, and
a smoothing lemma.

Proposition 2. Along the flow, the quantities

kruX;!kC 0 ; k�uX;!kC 0 ; kXkC 0 ; and k��X;!kC 0

are uniformly bounded by a constant depending only on the initial data. Here, all
norms, covariant derivatives and Laplacians are taken with respect to the evolving
metric g Nkj .t/.

Proof. It is convenient to work with v WD � P', which differs from �uX;! D �.f C
�X;!/ only by a time-dependent constant, so that jrvj D jruX;! j, j�vj D j�uX;! j.
First, we need the evolution of v, which can be obtained by a straightforward calcu-
lation (cf. [CTZ]),

@v

@t
D .�CX/v C v;

@

@t
jrvj2 D .�CX/jrvj2 � jrrvj2 � jr xrvj2 C jrvj2:

@

@t
.�CX/v D .�CX/.�CX/v C .�CX/v C jr xrvj2: (3.1)

Boundedness of krvkC 0 : This is a straightforward modification of Perelman’s max-
imum principle argument for the bound of the gradient of the Ricci potential (see
[ST], Proposition 6). Since v is uniformly bounded along the flow by Lemma 2, we

may choose a constant B such that v C B � 0. Define H D jrvj2
vC2B

, and compute,
using (3.1),

.�CX � @t /H D H.H � 2B/
v C 2B

� 2Re
�
gj Nk@jH@ Nkv

�
v C 2B

C jrrvj2 C jr xrvj2
v C 2B

:

(3.2)

Fix T > 0. At a maximum point ofH.x; t/ for .x; t/ 2 M � .0; T 
, the middle term
on the right side of (3.2) vanishes and the left-hand side of (3.2) is nonpositive. It
follows that H is uniformly bounded from above and hence so is krvkC 0 .

Boundedness of kXkC 0 : Since uX;! D f C �X;! , the uniform bound on jX j D
jr�X;! j follows from the bound on jruX;! j D jrvj and Perelman’s bound on jrf j.
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Boundedness of k�vkC 0 and k��X;!kC 0 : First note that jXvj � jX jjrvj � C by
the preceding bounds. From (3.1) we have

.�CX � @t /..�CX/v/ D ��v �Xv � jr xrvj2

� �.�v/
�
1C �v

n

�
C C;

(3.3)

where we have used the elementary inequality j�vj2 � njr xrvj2. Fix an arbitrary
T > 0. At a minimum point of .�CX/v onM � .0; T 
 the left-hand side of (3.3) is
nonnegative and hence�v is bounded uniformly from below at this point. This gives
the lower bound of .�CX/v along the flow, depending only on the initial data.

To estimate k�vkC 0 , it suffices to prove a uniform upper bound for .�CX/v. As

in Perelman’s estimate of the scalar curvature (see [ST]), defineG D .�CX/vC2jrvj2
vC2B

,
where B is chosen as in the proof of the boundedness of krvkC 0 . Compute

.�CX � @t /G D �2Re
�rG � xrv
v C 2B

�
C jr xrvj2 C 2jrrvj2

v C 2B
� 2BG

.v C 2B/
:

Since 1=.v C 2B/, jXvj and jrvj are uniformly bounded, we have

.�CX � @t /G � �2Re
�rG � xrv
v C 2B

�
C C1jr xrvj2 � C2j�vj � C3;

for uniform constants C1, C2, C3 > 0 with C1 uniformly bounded from below away
from 0. By the maximum principle and a similar argument to the one above, we have
.�CX/v � C for some uniform constantC . This gives the estimate for�v. Notice
that �.v C �X;!/ D ��f , which is uniformly bounded by Perelman’s estimates. It
follows that ��X;! is uniformly bounded. �

Proposition 3. Define b D b.t/ D 1
V

R
M
uX;!e

�f !n. Then there exists a uniform
constant C so that

kuX;! � bknC1

C 0 � C kruX;!kL2 kruX;!kn
C 0 :

Proof. As in the proof of Lemma 2 of [PSSW1], this follows from a Poincaré-type
inequality on Kähler manifolds .M;!/ with ! in �c1.M/ (see Theorem 2.4.3 of
[F], Lemma 3.1 of [TZ2] or Lemma 2 of [PSSW1]) together with Perelman’s non-
collapsing result. �

The following is an analogue of the smoothing lemma from [PSSW1] (an adap-
tation of Bando’s smoothing lemma [B] – see also [T] and [CTZ] for related results).
It follows from (3.1) and the arguments of [PSSW1].
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Proposition 4. There exist ı,K depending only onn andCX D supt2Œ0;1/ kXkC 0.t/

so that, for any " with 0 < " � ı and any t0 � 0, if

k.uX;! � b/.t0/kC 0 � ";

then
kruX;!.t0 C 2/kC 0 C k.�CX/uX;!.t0 C 2/kC 0 � K":

4. Proof of Theorem 4

We begin by deriving the following analogue for the modified flow of an identity in
[PS1],

PYX D �2kxr xruk2
� C

Z
M

.Xu/jruj2e�!n

�
Z

M

.R Nkj � g Nkj � rjX Nk/rjur Nkue�!n

�
Z

M

.R � n � rjX
j /jruj2e�!n:

(4.1)

Here uX;! and �X;! have been denoted by just u and � for simplicity. To establish
the above identity, we use (3.1) to obtain

@tkruk2
� D

Z
M

.�CX/jruj2e�!n � krruk2
� � kr xruk2

�

C
Z

M

jruj2e�!n C
Z

M

jruj2.Xu/e�!n

�
Z

M

jruj2.R � n � rjX
j /e�!n:

(4.2)

The first term on the right-hand side of (4.2) actually vanishes since by integration by
parts

R
M
e�!n .�C X/� D 0 for any smooth function �. Next, we have a formula

of Bochner–Kodaira type, if Xj is a holomorphic vector field and u is a function
invariant under ImX ,

kr xruk2
� D kxr xruk2

� C
Z

M

R Nkj rjur Nku e�!n �
Z

M

rjX Nkrjur Nku e�!n: (4.3)

To establish this, we note that by integration by parts,

kr xruk2
� D kxr xruk2

� C
Z

M

R Nkj rjur Nku e�!n

C
Z

M

Xj r Npr Nkurqug
j Npgq Nke�!n

�
Z

M

X Nprj r Nkurqug
j Npgq Nke�!n:
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Rewrite the integrands of the last two terms in the last line asXj r Npr Nkurqug
j Npgq Nk D

r Nk.X Npr Npu/rqug
q Nk � .r NkX Np/r Npurqug

q Nk and as X Nprj r Nkurqug
j Npgq Nk D

r Nk.Xj rju/rqug
q Nk . But X Npr Npu�Xj rju D NXu�Xu D 0, and thus we are left

with the desired formula (4.3). Putting all these identities together gives (4.1).
Once the identity (4.1 ) is available, the arguments of [PSSW1] apply to give

the proof of Theorem 4, with suitable modifications. Write � for the orthogonal
projection with respect to the norm k � k� of T 1;0 onto holomorphic vector fields.
Then

kxr xruk2
� � �X .t/kxru � �.xru/k2

� D �X .t/
�kxruk2

� � k�.xru/k2
�

�
;

where �X .t/ is the eigenvalue introduced in §1. Making use of the relations
k�.xru/k2

�
D R

M
�.xru/j @ju e�!n D �FX .� xru/ we obtain the inequality

PYX .t/ � �2�X .t/ YX .t/ � 2�X .t/ FX .� xru/C
Z

M

jruj2.Xu/e�!n

�
Z

M

.R Nkj � g Nkj � rjX Nk/rjuruk e�!n

�
Z

M

.R � n � rjX
j /jruj2e�!n:

(4.4)

We return to the proof of Theorem 4. First, observe that kR Nkj �g Nkj �rjX NkkL2 D
kR � n � rjX

j kL2 . This is because one side equals kr xrukL2 and the other side
equals k�ukL2 , which are readily seen to agree by an integration by parts. Next, we
claim that the last three terms on the right-hand side of (4.4) can all be bounded by

C krukL2 k.u � b/.t � 2/k2
C 0 :

Indeed, since � is bounded, we can writeˇ̌ˇ̌Z
M

.R Nkj � g Nkj � rjX Nk/rjurkue�!n

ˇ̌ˇ̌
� CkrukC 0krukL2kR Nkj � g Nkj � rjX NkkL2

� C krukL2 k.u � b/.t � 2/k2
C 0 ;

where the last line follows from Proposition 4. Note that if k.u� b/.t � 2/kC 0 > ",
for " as in Proposition 4, then we can still obtain the bound

krukC 0kR � n � rjX
j kL2 � C k.u � b/.t � 2/k2

C 0 ;

using the uniform estimates of krukC 0 and k�ukC 0 . Similarly,ˇ̌ˇ̌Z
M

.R � n � rjX
j /jruj2e�!n

ˇ̌ˇ̌ � C krukL2 k.u � b/.t � 2/k2
C 0 ;
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while the estimate for the remaining term,
ˇ̌R

M
jruj2.Xu/e�!n

ˇ̌
is even easier, since

jXuj � jX j � jruj � C k.u � b/.t � 2/kC 0 .
Let 0 < 	 WD 1=.nC 1/ < 1. By Propositions 3 and 4,

k.u � b/.t � 2/k2
C 0 � C YX .t � 2/�k.u � b/.t � 4/k2.1��/

C 0 :

Note that the sum of the exponents on either side always match. Iterating,

k.u � b/.t � 2/k2
C 0 � C YX .t � 2/�YX .t � 4/2.1��/�k.u � b/.t � 6/k2.1��/2

C 0

� C YX .t � 2/ ı1
2 YX .t � 4/ ı2

2

: : : YX .t � 2N/ ıN
2 k.u � b/.t � 2.N C 1//k2.1��/N

C 0 ;

with
PN

j D1 ıj C 2.1 � 	/N D 2. Fix N with 2.1 � 	/N < 1 and set ı0 D 1. Since
the quantity k.u � b/.t � 2.N C 1//kC 0 is bounded by Lemma 2, the statement of
Theorem 4 follows.

5. Proof of Theorem 2

The variation of the modified Mabuchi energy along the modified Kähler–Ricci flow
is

P�X D � 1

V

Z
M

jruX;! j2 e�X;!!n D � 1

V
YX .t/:

Integrating in t , we see that condition (AX ) implies:
R 1

0
YX .t/dt < 1. On the

other hand, from (4.2) and the uniform bounds of � , XuX;! , R and rjX
j we obtain

PYX � CYX . These inequalities imply (as in Section §2 of [PS1]) that YX .t/ ! 0

as t ! 1. Next, by the uniform bound of kruX;!kC 0 and Proposition 3 we have
kuX;! �bkC 0 ! 0 as t ! 1. Then from Proposition 4 we see that k�uX;!kC 0 ! 0

as t ! 1. Since�uX;! D R�n�rjX
j , the first part of Theorem 2 is established.

TheLp integrability of kR�n� rjX
j kC 0 on Œ0;1/ is established in the same way

as part (ii) of Theorem 1 in [PSSW1].

6. Proof of Theorem 1

It is convenient to introduce the following fifth condition:
(o) For each k D 0; 1; 2; : : : , there exists a finite constant Ak so that

supt�0 k'kC k � Ak :

We shall prove (o) , (iii), (o) ) (iv) ) (ii) ) (iii) and (iv) ) (v) ) (i)) (iii).
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Proof of (o) , (iii)
This is the extension to the modified Kähler–Ricci flow of the fact that a C 0

estimate for the complex Monge–Ampère equation impliesC k estimates to all orders.
We note that in [TZ2], a different method is used to obtain higher order estimates,
involving a modification of the potential ' along the flow. We give here a direct proof
of the higher order estimates, emphasizing only new complications due to X 6D 0.

The first step is to show that C 0 estimates for ' imply second order estimates
for '. For ease of notation, we use Og Nkj to denote the original metric g0Nkj

, and y� for

the Laplacian with respect to this metric. As in the approach of Yau [Y1] and Aubin
[A], we apply the maximum principle to log.n C y�'/ � A', where A is a large
constant to be chosen later, but with the operator � � @t replaced by the operator
�t CX � @t . We use the formulas obtained in [PSS] for general flows and introduce
the endomorphism

h˛
ˇ D Og˛ N�g N�ˇ :

Then nC y�' D Tr h, and we have (see e.g. [PSS], eq. (2.27) and subsequent bounds)

.�CX � @t / log Tr h � 1

Tr h

�
y�.log

!n

!n
0

� P'/CXTr h
�

� C1 Tr h�1:

For the modified Kähler–Ricci flow, we have y�.log !n

!n
0

� P'/ D �Tr hC n � y�� �
y�f .!0/. The new term compared to the Kähler–Ricci flow is � y�� , which is not yet
known to be bounded. This is the reason why the term XTr h was introduced, since
X Tr h D X.y�'/ D y�� � y� O� C .yrjX

m/ hj
m � yrmX

m, where O� D �X;!0
. Thus

the term � y�� cancels out, and we obtain

.�CX � @t / log Tr h � �C2 � C3 Tr h�1:

Set A D C3 C 1. Since �' D n � Tr h�1, and P'; X' D � � O� are bounded, we
have

.�CX � @t /.log Tr h � A'/ � �C4 C Tr h�1:

The maximum principle applies now as usual to show that Tr h is uniformly bounded.
We now give the third order estimates. As in [Y1], set 'j Nkm D yrm@ Nk@j' and

S � gj Nrgs NkgmNt'j Nkm' Nrs Nt . Again, it is convenient to work instead with the connection
rhh�1,

S D gm N�g N�ˇg
` N̨ .rmh h

�1/ˇ `.r�h h
�1/�˛ D jrh h�1j2:

Applying [PSS] eq. (2.48), to the modified Kähler–Ricci flow gives

.� � @t /S D jxr.rh h�1/j2 C jr.rh h�1/j2 C jrh h�1j2

C gm N�r Nq yR Nqm
ˇ

`.r�h h
�1/ Ň

Ǹ C gm N� .rmh h
�1/ N� N̨ r Nq yR Nq�

�
˛

C (I) C (II) C (III) C (IV) C (V);
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where the terms (I)–(V) are due to the modifications arising from the holomorphic
vector field X , and given explicitly by

(I) D r N�Xmg N�ˇg
` N̨ .rmh h

�1/ˇ `.r�h h
�1/�˛;

(II) D �gm N�g N�ˇg
` N̨ rmr`X

ˇ .r�h h
�1/�˛;

(III) D gm N�g N�ˇ r N̨X`.rmh h
�1/ˇ `.r�h h

�1/�˛;

(IV) D �gm N�g N�ˇg
` N̨ .rmh h

�1/ˇ `r�r˛X
�;

(V) D �gm N�rˇX N�g` N̨ .rmh h
�1/ˇ `.r�h h

�1/�˛:

Since the first covariant derivatives of X are of order O.S
1
2 /, we have

j(I)j C j(III)j C j(V)j � C5 S jrX j:

The terms (II), (IV) involve the second covariant derivatives of Xm and thus

j(II)j C j(IV)j � C6 S C 1

2
jr.rh h�1/j2 C S jrX j C C7:

Putting this all together, we obtain the following estimate for the flow of S ,

.� � @t /S � 1

2
jr.rh h�1/j2 C jxr.rh h�1/j2 � C8 S jrX j � C9.1C S/: (6.1)

By the method of [Y1], we can control terms of order O.S/ using the evolution
equation for Tr h. However, we will need an additional argument to deal with the
quantity S jrX j which is of the order O.S3=2/. Since jX j is uniformly bounded
along the flow, we have

.� � @t /jX j2 D jrX j2 � jX j2 � @i@ Nj �X
iXj � 1

2
jrX j2 � C10: (6.2)

We define a constant K D 65 supM�Œ0;1/.jX j2 C 1/ and compute the evolution
of the quantity S=.K � jX j2/. Combining (6.1) and (6.2) we have

.� � @t /

�
S

K � jX j2
�

�
�jr.rh � h�1/j2 � jxr.rh � h�1/j2�

2.K � jX j2/ C S jrX j2
2.K � jX j2/2

C 2Re.gi Nj @iS @ Nj jX j2/
.K � jX j2/2 C 2S jrjX j2j2

.K � jX j2/3

� C8S jrX j
K � jX j2 � C11.1C S/:



Vol. 86 (2011) On the convergence of the modified Kähler–Ricci flow and solitons 107

We will use the good first and second terms on the right-hand side of this inequality
to deal with the bad third and fifth terms. We estimate the third term as follows:

j2gi Nj @iS @ Nj jX j2j
.K � jX j2/2 � S jrX j2

4.K � jX j2/2 C
�jr.rh � h�1/j2 C jxr.rh � h�1/j2�

2.K � jX j2/ :

For the fifth term, observe that

C8S jrX j
K � jX j2 � S jrX j2

4.K � jX j2/2 C C 2
8 S:

Combining all of the above, we obtain

.� � @t /

�
S

K � jX j2
�

� �C12.1C S/:

But from the computation for the second order estimate, we have

.� � @t /Tr h � 1

2
S � C13;

and so applying the maximum principle to the quantity
�
S=.K � jX j2/C 3C12 Tr h

�
it follows that S=.K � jX j2/ and hence S is bounded. (An alternative proof is to
show that .�� @t /jT j2 � �B1S �B2, where T k

j D .rjh h
�1/k

l
X l and B1, B2 are

constants. Combining this with the evolution of Tr h gives an upper bound of jT j
and hence jrX j. Thus S jrX j is of orderO.S/ and one can combine it with (6.1) to
bound S .)

In order to apply the standard parabolic estimates to obtain the higher order esti-
mates, we require a derivative bound of g Nkj in the t -direction (cf. §5.5 of [Ch], for
example). Given the estimates proved so far, it is sufficient to bound jRic.g/j. We
compute

.� � @t CX/jRic.g/j D 1

jRic.g/j
˚jrRic.g/j2 � jrjRicj j2 C jRic.g/j2

�R r NsNkj
RNsrR

j Nk C r NkXpgj NqR NkjR Nqp �R Nk`rjX
`Rj Nk�

� �C14.jRmj2 C 1/:

But from above, there exist constants C15, C16 with C15 > 0 such that

.� � @t CX/S � C15jRmj2 � C16:

We then apply the maximum principle to jRic.g/jC 1
C15

.C14C1/S to bound jRic.g/j.
We have now established uniform parabolic C 1 estimates for g Nkj . The higher

order estimates can be obtained in the usual way (see e.g. [L]).
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Proof of (o) ) (iv) The remaining implications are all straightforward adaptations
of arguments in [PSSW1]. In particular Lemma 3 follows from §5 of [PSSW1], and
Lemma 4 from the uniform boundedness of �X;! and the argument for Lemma 1 of
[PSSW2]:

Lemma 3. Let W.t/ be a non-negative C1 function of t 2 Œ0;1/ with W.t/ � K0

satisfying the difference-differential inequality

PW.t/ � �2�W.t/C �

NY
j D0

W.t � 2j /
�j
2 for t � K1 � 2N;

where � is a strictly positive constant, and �j � 0 satisfy 1
2

PN
j D0 �j D 1. Then

there exist constants C; � with � > 0 depending only on K0, K1, �, N , �j so that
W.t/ � C e��t .

Lemma 4. There exist constants c1; c2 > 0 depending only on the complex manifold
M and the holomorphic vector field X such that for all ! 2 KX ,

c1�.!/ � �X .!/ � c2�.!/:

Lemma 5. Let YX .t/ be given as in (1.3) for the modified Kähler–Ricci flow. Assume
that (a) FX � 0; (b) YX .t/ ! 0 as t ! 1; and (c) inf t�0�.t/ > 0. Then there
exists constants C; � with � > 0 so that YX .t/ � Ce��t .

Proof of Lemma 5. Theorem 4 and conditions (a)–(c), together with Lemma 4, imply
that YX .t/ satisfies a difference-differential inequality exactly of the type formulated
in Lemma 3. The desired inequality follows then from Lemma 3. �

Returning to the proof of (o) ) (iv), assume that (o) holds. Then there exists a
sequence tm ! 1 such that '.tm/ ! '.1/ in C1, for some '.1/ 2 PX .M;!0/.
Since �X is decreasing along the modified flow, it follows that for any t , �X .'.t// �
�X .'.1//, and hence �X is bounded below along the flow. This implies that the
limit metric g Nkj .1/must be a Kähler–Ricci soliton with respect toX (cf. the proof of
Theorem 2). By [TZ1], the condition .AX / is established. Next, we claim that Con-
dition .S/ is also satisfied. Otherwise, let '.tm/ be a subsequence with �.tm/ ! 0.
It contains a subsequence '.t`/ such that the corresponding metrics g Nkj .t`/ converge
in C1 to a Kähler–Ricci soliton g Nkj .1/ with respect to X . In [PS1] (see p.162),
it was shown that �.t`/ ! �.1/ if g Nkj .t`/ ! g Nkj .t1/ and the dimensions of the
holomorphic vector fields of the complex structures for g Nkj .t`/ and g Nkj .1/ are the
same. In the present case, the complex structures of g Nkj .t`/ and g Nkj .1/ are the
same, so we do have �.t`/ ! �.1/. Since �.1/ > 0 by definition, we obtain a
contradiction. Condition .S/ is established.
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The existence of a Kähler–Ricci soliton with respect to X implies that (a) in
Lemma 5 holds and condition .AX / gives (b) by Theorem 2. Since (c) in this Lemma
is the same as .S/, Lemma 5 applies, and (iv) is established.

Proof of (iv) ) (ii)Assume that (iv) is satisfied, and thus YX .t/ is rapidly decreasing.

Then Proposition 3 implies kuX;! �bkC 0 � C e� 1
2.nC1/

�t . But Proposition 4 implies

then that kR � n � rjX
j kC 0 � C 0 e� 1

2.nC1/
�t which gives (ii).

Proof of (ii) ) (iii) Assume (ii). Since @t log.!n=!n
0 / D gj Nk Pg Nkj D �.R � n �

rjX
j /, we obtain immediately

supt2Œ0;1/j log.
!n

!n
0

/j �
Z 1

0

kR � n � rjX
j kC 0 dt < C:

Next, from the modified Kähler–Ricci flow and the uniform bound for k P'kC 0 (Lem-
ma 2), it follows that k'kC 0 D k P' � log.!n

!n
0

/ � � C f .!0/kC 0 � C .

Proof of (iv) ) (v) Assume (iv). We have already seen that (iv) implies (ii), which
implies (iii), which is equivalent to (o). Thus all metrics g Nkj .t/ are uniformly equiva-
lent. The same arguments as in [PS1], show that kuX;!k.s/ ! 0 exponentially fast for
any Sobolev norm s. It follows easily from there that g Nkj .t/ converges exponentially
fast to a Kähler–Ricci soliton g Nkj .1/.

All the remaining implications in Theorem 1 are trivial, and the proof is complete.

7. Proof of Theorem 3

If the flow converges to a Kähler–Ricci soliton with respect to X then, by [TZ1],
Condition .AX / is satisfied. Furthermore, as part of the proof of (o) ) (iv), the
uniform boundedness of k'.t/kC k for each k implies that Condition .S/ is satisfied.
Thus it remains only to establish the sufficiency of .AX / and .S/ for the exponential
convergence of the flow. By Proposition 1 and Theorem 2, .AX / implies (a) and (b)
of Lemma 5. In addition, .S/ gives condition (c). Thus we obtain the exponential
decay of YX .t/, that is, Condition (iv) of Theorem 1 is satisfied. But Theorem 1
implies then the exponential convergence of the modified Kähler–Ricci flow to a
Kähler–Ricci soliton.
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