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The Lagrangian Conley conjecture
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Abstract. We prove a Lagrangian analogue of the Conley conjecture: given a 1-periodic Tonelli
Lagrangian with global flow on a closed configuration space, the associated Euler–Lagrange
system has infinitely many periodic solutions. More precisely, we show that there exist in-
finitely many contractible integer periodic solutions with a priori bounded mean action and
either infinitely many of them are 1-periodic or they have unbounded period.
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1. Introduction

An old problem in classical mechanics is the existence and the number of periodic
orbits of a mechanical system. As it is well known, there are two dual formulations
of classical mechanics, namely the Lagrangian one and the Hamiltonian one. If
a system is constrained on a manifold, say M , then it is described by a (possibly
time-dependent) Lagrangian defined on the tangent bundle of M or, dually, by a
Hamiltonian defined on the cotangent bundle of M . A classical assumption is that a
Lagrangian function L W R � TM ! R is Tonelli with global flow. This means that
L has fiberwise superlinear growth, positive definite fiberwise Hessian, and every
maximal integral curve of its associated Euler–Lagrange vector field has all of R as
its domain of definition. The Tonelli class is particularly important in Lagrangian
dynamics: in fact, whenever a Lagrangian function is fiberwise convex, its Legendre
transform defines a diffeomorphism between the tangent and cotangent bundles of the
configuration space if and only if the Lagrangian function belongs to the Tonelli class.
In other words, the Tonelli Lagrangians constitute the broadest family of fiberwise
convex Lagrangian functions for which the Lagrangian–Hamiltonian duality, given
by the Legendre transform, occurs. Furthermore, the Tonelli assumptions imply
existence and regularity results for action minimizing orbits joining two given points
on the configuration space. For a comprehensive reference on Tonelli Lagrangians,
we refer the reader to the forthcoming book by Fathi [Fa].

The problem of the existence of infinitely many periodic orbits, for Hamiltonian
systems on the cotangent bundle of closed manifolds, is a non-compact version of the
celebrated Conley conjecture [Co], which goes back to the eighties. In its original
form, the conjecture states that every Hamiltonian diffeomorphism on the standard
symplectic torus T2n has infinitely many periodic points. Under a non-degeneracy
assumption on the periodic orbits, the conjecture was soon confirmed by Conley
and Zehnder [CZ2], and then extended to aspherical closed symplectic manifolds in
1992 by Salamon and Zehnder [SZ]. The full conjecture was established in 2004
by Hingston [Hi] for the torus case, and in 2006 by Ginzburg [Gi] for the aspherical
closed case. Other related results are contained in [FS], [GG], [Gü], [HZ], [Sc], [Vi2].

In the Lagrangian formulation, the periodic orbits are extremal points of the La-
grangian action functional, and several sophisticated methods from Morse theory
may be applied in order to assert their existence. However, these methods only
work for classes of Lagrangians that are significantly smaller than the Tonelli one.
Along this line, in 2000 Long [Lo2] proved the existence of infinitely many peri-
odic orbits for Lagrangian systems associated to fiberwise quadratic Lagrangians on
the torus Tn. More precisely, he proved the result for C 3 Lagrangian functions
L W R=Z � TTn ! R of the form

L.t; q; v/ D hA.q/v; vi C V.t; q/; 8.t; q; v/ 2 R=Z � TTn;
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where A W Tn ! GL.n/ takes values in the space of positive definite symmetric
matrices, h�; �i is the standard flat Riemannian metric on Tn and V W R=Z�Tn ! R
is a C 3 function. Recently, Lu [Lu] extended Long’s proof in many directions, in
particular to the case of a general closed configuration space. Other related results
concerning autonomous Lagrangian systems are contained in [CT], [LL], [LW].

In 2007, Abbondandolo and Figalli [AF] showed how to apply some techniques
from critical point theory in the Tonelli setting. They proved that, on each closed con-
figuration space with finite fundamental group, every Lagrangian system associated
to a 1-periodic Tonelli Lagrangian with global flow admits an infinite sequence of
1-periodic solutions with diverging action. In this paper, inspired by their work and
by Long’s one, we address the problem of the existence of infinitely many periodic
solutions of a 1-periodic Tonelli Lagrangian system on a general closed configuration
space.

1.1. Main result. Our main result is the following.

Theorem 1.1. LetM be a smooth closed manifold, L W R=Z � TM ! R a smooth
1-periodic Tonelli Lagrangian with global flow and a 2 R a constant greater than

max
q2M

²Z 1

0

L.t; q; 0/ dt

³
: (1.1)

Assume that only finitely many contractible 1-periodic solutions of the Euler–
Lagrange system of L have action less than a. Then, for each prime p 2 N, the
Euler–Lagrange system of L admits infinitely many contractible periodic solutions
with period that is a power of p and mean action less than a.

Here it is worthwhile to point out that the infinitely many periodic orbits that we
find are geometrically distinct in the phase-space R=Z� TM of our system, and the
mean action of an orbit is defined as the usual Lagrangian action divided by the period
of the orbit.

Theorem 1.1 can be equivalently stated in the Hamiltonian formulation. In fact,
it is well known that the Legendre duality sets up a one-to-one correspondence²

L W R=Z � TM ! R
Tonelli

³
 !

²
H W R=Z � T�M ! R

Tonelli

³
;

where two correspondent functions L and H satisfy the Fenchel relations

H .t; q; p/ D max
®
p.v/ �L.t; q; v/ j v 2 TqM

¯
; 8.t; q; p/ 2 T�M;

L.t; q; v/ D max
®
p.v/ �H .t; q; p/ jp 2 T�

qM
¯
; 8.t; q; v/ 2 TM:

(1.2)

Here, the definition of Tonelli Hamiltonian is the cotangent bundle analogue of the one
of Tonelli Lagrangian: the Hamiltonian H W R=Z�T�M ! R is Tonelli when it has
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fiberwise superlinear growth and positive definite fiberwise Hessian. The Legendre
duality also sets up a one-to-one correspondence between the (contractible) integer-
periodic solutions of the Euler–Lagrange system of L and the (contractible) integer-
periodic orbits of the Hamilton system of the dual H . Therefore Theorem 1.1 can be
translated into the following.

Theorem 1.2 (Hamiltonian formulation). Let M be a smooth closed manifold,
H W R=Z � T�M ! R a smooth 1-periodic Tonelli Hamiltonian with global flow
and a 2 R a constant greater than

� min
q2M

²Z 1

0

min
p2T�

qM
¹H .t; q; p/º dt

³
:

Assume that only finitely many contractible 1-periodic solutions of the Hamilton
system of H have (Hamiltonian) action less than a. Then, for each prime p 2 N,
the Hamilton system of H admits infinitely many contractible periodic solutions with
period that is a power of p and (Hamiltonian) mean action less than a.

Let ˆt
H

be the Hamiltonian flow of H , i.e. if � W R ! T�M is a Hamiltonian
curve, thenˆt

H
.�.0// D �.t/ for each t 2 R. A Hamiltonian curve � is � -periodic,

for some integer � , if and only if its starting point �.0/ is a � -periodic point of the
Hamiltonian diffeomorphism ˆH D ˆ1H , i.e.

ˆH B : : : BˆH„ ƒ‚ …
� times

.�.0// D �.0/:

Therefore, Theorem 1.2 readily implies the Conley conjecture for Tonelli Hamiltonian
systems on the cotangent bundle of a closed manifold.

Corollary 1.3. Let M be a smooth closed manifold and H W R=Z � T�M ! R a
1-periodic Tonelli Hamiltonian with global flow ˆt

H
. Then the Hamiltonian diffeo-

morphism ˆ1
H

has infinitely many periodic points.

We shall prove Theorem 1.1 by a Morse theoretic argument, inspired by a work
of Long [Lo2]. The rough idea is the following: assuming by contradiction that
the Euler–Lagrange system of a Tonelli Lagrangian L admits only finitely many
integer periodic solutions as in the statement, then it is possible to find a solution
whose local homology persists under iteration, in contradiction with a homological
vanishing property (analog to the one proved by Bangert and Klingenberg [BK] for
the geodesics action functional).

Under the Tonelli assumptions we need to deal with several problems while car-
rying out the above scheme of the proof. These problems are mainly due to the fact
that a functional setting in which the Tonelli action functional is both regular (say
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C 1) and satisfies the Palais–Smale condition, the minimum requirements to perform
Morse theory, is not known. To deal with these lacks, we apply the machinery of
convex quadratic modifications introduced by Abbondandolo and Figalli [AF]: the
idea consists in modifying the involved Tonelli Lagrangian outside a sufficiently big
neighborhood of the zero section of TM , making it fiberwise quadratic there. If we
fix a period � 2 N and an action bound, a suitable a priori estimate on the � -periodic
orbits with bounded action allows to prove that these orbits must lie in the region
where the Lagrangian is not modified. Some work is needed in order to apply this
argument in our proof, since the mentioned a priori estimate holds only in a fixed
period � , while we look for orbits with arbitrarily high period.

Moreover, we have to deal with some regularity issues in applying the machinery
of critical point theory to the action functionals of the modified Lagrangians. In fact,
the natural ambient to perform Morse theory with these functionals is the W 1;2 loop
space, over which they are C 1 and satisfy the Palais–Smale condition. However,
all the arguments that involve the Morse lemma (such as the vanishing of the local
homology groups in certain degrees) are valid only for C 2 functionals. We will
show that these arguments are still valid, developing an analog of the classical broken
geodesic approximation of the loop space: we shall prove that the action sublevels
deformation retract onto finite dimensional submanifolds of the loop space, over
which the action functionals are C 2.

1.2. Organization of the paper. In Section 2 we set up the notation and we give
most of the preliminary definitions and results. In the subsequent three sections we
deal with Lagrangian functions that are convex quadratic-growth (the precise defini-
tion is given in Section 2.2). In Section 3 we introduce a discretization technique for
the action functional. In Section 4 we prove an abstract Morse-theoretic result, which
will be applied to the action functional. In Section 5, we prove a vanishing result for
elements of the relative homology groups of pairs of action sublevels under the itera-
tion map. The three sections 3, 4 and 5 can be read independently from one another,
with the only exception of Section 4.4, which requires Section 3. In Section 6 we
introduce the machinery of convex quadratic modifications of Tonelli Lagrangians,
and we apply it to build suitable local homology groups and to prove a homologi-
cal vanishing result for the Tonelli action. Finally, in Section 7 we prove Theorem 1.1.

Acknowledgements. I am indebted to Alberto Abbondandolo for many fruitful con-
versations. This work was largely written when I was a visitor at Stanford University.
I wish to thank Yakov Eliashberg for his kind hospitality.
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2. Preliminaries

Throughout the paper, M will be a smooth N -dimensional closed manifold, the
configuration space of a Lagrangian system, over which we will consider an arbitrary
Riemannian metric h�; �i� h � ; �i.

2.1. The free loop space. We recall that a free loop space of M is, loosely speak-
ing, a set of maps from the circle T W D R=Z to M . Common examples are the
spaces C.T IM/ or C1.T IM/. For our purposes, a suitable free loop space will be
W 1;2.T IM/, which is the space of absolutely continuous loops in M with square-
integrable weak derivative. It is well known that this space admits an infinite dimen-
sional Hilbert manifold structure, for the reader’s convenience we briefly sketch this
argument here (see [Kl, Chapter 1] for more details). First of all, we recall that the
inclusions

C1.T IM/ � W 1;2.T IM/ � C.T IM/

are dense homotopy equivalences. For each � 2 W 1;2.T IM/ we denote by
W 1;2.��TM/ the separable Hilbert space of W 1;2-sections of the pull-back vector
bundle ��TM . Its inner product, that we denote by hh � ; �ii� , is given by

hh�; �ii� W D
Z 1

0

�h�.t/; �.t/i�.t/ C hrt�;rt�i�.t/� dt; 8�; � 2 W 1;2.��TM/;

where rt denotes the covariant derivative with respect to the Levi-Civita connection
on the Riemannian manifold .M; h � ; �i�/. Now, let � > 0 be a constant smaller than
the injectivity radius of .M; h � ; �i�/, and U� W D

®
v 2 TqM j q 2M; jvjq < �

¯
. We

define a bijective map

exp� W W 1;2.��U�/! U� � W 1;2.T IM/

as
.exp� �/.t/ W D exp.�.t//; 8� 2 W 1;2.��U�/; t 2 T ;

whereW 1;2.��U�/ � W 1;2.��TM/ is the open set of sections that take values inside
U� . Then, the above mentioned differentiable structure on W 1;2.T IM/ is induced
by the atlas

®
exp�1

� W U� ! W 1;2.��U�/ j � 2 C1.T IM/
¯
. The tangent space of

W 1;2.T IM/ at a loop � is given byW 1;2.��TM/, and the above defined hh � ; �ii� is a
Hilbert–Riemannian metric on W 1;2.T IM/. By means of this metric, W 1;2.T IM/

turns out to be a complete Hilbert–Riemannian manifold.

Remark 2.1. Notice that, whenever a smooth loop � is contractible, by means of a
trivialization of ��TM we can identify W 1;2.��U�/ with an open neighborhood of
0 in the Hilbert space W 1;2.T IRN /.
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For each � 2 N, let T Œ�� WD R=�Z. Extending the definition given before,
we introduce the � -periodic free loop space W 1;2.T Œ��IM/, which is a complete
Hilbert–Riemannian manifold with respect to the metric hh � ; �ii� given by

hh�; �ii� WD 1

�

Z �

0

�h�.t/; �.t/i�.t/ C hrt�;rt�i�.t/� dt;

8� 2 W 1;2.T Œ��IM/; �; � 2 W 1;2.��TM/:

For each n 2 N, we define the nth-iteration map

 Œn� W W 1;2.T Œ��IM/ ,! W 1;2.T Œn��IM/

by  Œn�.�/ WD � Œn� for each � 2 W 1;2.T Œ��IM/, where � Œn� is given by the com-
position of � with the n-fold covering map of the circle T Œ��. Analogously, for each
� 2 W 1;2.T Œ��IM/, we define the nth-iteration map

‰Œn� W W 1;2.��TM/ ,! W 1;2.� Œn��TM/;

which is a linear isometric embedding. It is plain to verify that exp� Œn� B‰Œn� D
 Œn� B exp� and d Œn�.�/ D ‰Œn�, which implies that  Œn� is a smooth isometric
embedding.

2.2. Lagrangian settings. The elements of the tangent bundle TM will be denoted
by .q; v/, where q 2M and v 2 TqM . Let L W T�TM ! R be a smooth 1-periodic
Lagrangian. We will be interested in integer periodic solutions � W R ! M of the
Euler–Lagrange system of L, which can be written in local coordinates as

d

dt

@L

@vj
.t; �.t/; P�.t// � @L

@qj
.t; �.t/; P�.t// D 0; j D 1; : : : ; N: (2.1)

We denote by ˆtL W TM
'�!TM the associated Euler–Lagrange flow, i.e.

ˆtL.�.0/; P�.0// D .�.t/; P�.t//;
where � W Œ0; t �!M is a solution of (2.1).

In this paper we will consider two classes of 1-periodic Lagrangian functions. A
smooth Lagrangian L W T � TM ! R is called Tonelli when:

(T1) the fiberwise Hessian of L is positive definite, i.e.

NX
i;jD1

@2L

@vi @vj
.t; q; v/wiwj > 0;

for all .t; q; v/ 2 T � TM and w DPN
iD1wi @@qi

2 TqM with w ¤ 0;
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(T2) L is fiberwise superlinear, i.e.

lim
jvjq!1

L.t; q; v/

jvjq D1;

for all .t; q/ 2 T �M .

Moreover, we will always require that each Tonelli Lagrangian L further satisfies:

(T3) the Euler–Lagrange flow of L is global, i.e. ˆL W R � TM ! TM .

The second class of Lagrangians that we will be interested in consists of smooth
functions L W T � TM ! R satisfying:

(Q1) there is a positive constant `0 such that

NX
i;jD1

@2L

@vi @vj
.t; q; v/wiwj � `0jwj2q;

for all .t; q; v/ 2 T � TM and w DPN
iD1wi @@qi

2 TqM ;

(Q2) there is a positive constant `1 such thatˇ̌̌
ˇ @2L@vi @vj

.t; q; v/

ˇ̌̌
ˇ � `1;ˇ̌̌

ˇ @2L@qi @vj
.t; q; v/

ˇ̌̌
ˇ � `1.1C jvjq/;ˇ̌̌

ˇ @2L@qi @qj
.t; q; v/

ˇ̌̌
ˇ � `1.1C jvj2q/

for all .t; q; v/ 2 T � TM and i; j D 1; : : : ; N .

In the following we will informally refer to this latter class as the class of convex
quadratic-growth Lagrangians. Notice that, up to changing the constants `0 and `1,
the above conditions (Q1) and (Q2) are independent of the choice of the Riemann-
ian metric and of the system of local coordinates used to express them. Moreover,
assumption (Q1) implies that L is a Tonelli Lagrangian, hence this second class is
contained in the first.

For each � 2 N, we define the mean action functional AŒ�� W W 1;2.T Œ��IM/! R
by

AŒ��.�/ D 1

�

Z �

0

L.t; �.t/; P�.t// dt:

In the following we will simply call AŒ�� the mean action or just the action, and in
period 1 we will omit the superscript, i.e. A WD AŒ1�. Since for all n 2 N we have
AŒn��B Œn� D AŒ��, if we seeW 1;2.T Œ��IM/ as a submanifold ofW 1;2.T Œn��IM/ via
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the embedding  Œn�, then AŒ�� is the restriction of AŒn�� toW 1;2.T Œ��IM/. It is well
known that the � -periodic solutions of the Euler–Lagrange system (2.1) are precisely
the extremals of AŒ��. These extremals turn out to be smooth, as it is guaranteed by the
Tonelli assumptions. If the involved Lagrangian L is of convex quadratic-growth, the
associated action functional AŒ�� has good properties: the fact that L grows at most
quadratically guarantees that AŒ�� is C 1 and twice Gateaux-differentiable, while the
fact that L grows at least quadratically implies that AŒ�� satisfies the Palais–Smale
condition (see [Be] or [AS2, Propositions 2.2 and 2.5]). However, AŒ�� is C 2 if and
only if the restriction of L to each fiber of TM is a polynomial of degree at most 2
(see [AS2, Proposition 2.3]).

Remark 2.2. For simplicity, in this paper, all the Lagrangian functions are assumed
to be smooth, i.e. C1. This assumption can be easily weakened, but then one would
have to care about technical issues due to the fact that the solutions of the Euler–
Lagrange system would not be C1 anymore (they are C r whenever the Lagrangian
is C r ).

2.3. TheConley–Zehnder–Long index pair. Let L W T�TM ! R be a 1-periodic
Tonelli Lagrangian. We denote by @vL.t; q; v/ 2 T�

qM the fiberwise derivative of L

at .t; q; v/, which is given in local coordinates by

@vL.t; q; v/ D
NX
jD1

@L

@vj
.t; q; v/ dqj :

Under the Tonelli assumptions it is well known that the Legendre transform Leg W T �
TM ! T � T�M , given by

Leg.t; q; v/ D .t; q; @vL.t; q; v//; 8.t; q; v/ 2 T � TM;

is a diffeomorphism (see [Fa, Theorem 3.4.2]). This diffeomorphism allows to define
a Hamiltonian H W T � T�M ! R by

H .t;Leg.t; q; v// D @vL.t; q; v/v �L.t; q; v/; 8.t; q; v/ 2 T � TM:

The functions L and H are said to be Legendre-dual, and they fulfill the Fenchel
relations (1.2).

The cotangent bundle T�M , whose elements will be denoted by .q; p/, has a
canonical symplectic form ! given in local coordinates by

! D
NX
jD1

dqj ^ dpj :
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The (time-dependent) Hamiltonian vector field XH is defined as usual byXH ³! D
dH , and its flow ˆt

H
is called the Hamiltonian flow of H . It is well known that this

latter is conjugated to the Euler–Lagrange flow ˆt
L

by the Legendre transform. In
other words, a curve � W Œ0; �� ! M is a solution of the Euler–Lagrange system of
L if and only if the curve .�; 	/ W Œ0; �� ! T�M , where 	.t/ WD @vL.t; �.t/; P�.t//,
is an integral curve of the Hamiltonian vector field XH . In particular, there is a one-
to-one correspondence between the � -periodic Euler–Lagrange orbits of L and the
� -periodic Hamiltonian orbits of H .

Let TverT�M denote the vertical subbundle of TT�M , i.e.

Tver
.q;p/T

�M D ker.d��.q; p//; 8.q; p/ 2 T�M;

where �� W T�M ! M is the projection of the cotangent bundle onto the base
manifold. Consider a � -periodic solution � of the Euler–Lagrange system of L

and its Hamiltonian correspondent � D .�; @vL.�; �; P�//. If � is contractible, � is
contractible as well, and there exists a symplectic trivialization


 W T Œ�� �R2N
'�!��TT�M

that maps the vertical Lagrangian subspace VN WD ¹0º �RN � R2N to the vertical
sub-bundle ��TverT�M , more precisely


.T Œ�� � VN / D ��TverT�M; (2.2)

see [AS1, Lemma 1.2] for a proof. By means of this trivialization, the differential of
the Hamiltonian flow along � defines a path �� W Œ0; ��! Sp.2N / in the symplectic
group, given by

��.t/ WD 
.t; �/�1 B dˆtH .�.0// B 
.0; �/; 8t 2 Œ0; ��:
Notice that��.0/ is the identity matrix, hence�� has a well-defined Conley–Zehnder
index �.��/ 2 Z. We denote by �.��/ 2 N [ ¹0º the geometric multiplicity of 1 as
an eigenvalue of �� (in particular, we set �.��/ D 0 if 1 is not an eigenvalue of ��).

Remark 2.3. Here, we are using the generalized notion of Conley–Zehnder index
that is due to Long, see [Lo1]. In case �.��/ D 0, the index �.��/ coincides with the
usual Conley–Zehnder index, see [CZ], [SZ].

The pair .�.��/; �.��// does not depend on the chosen symplectic trivialization

, as long as this latter satisfies (2.2), see [AS1, Lemma 1.3]. Hence, we can de-
fine the Conley–Zehnder–Long index pair of the periodic orbit � as .�.�/; �.�// WD
.�.��/; �.��//. This pair satisfies the following iteration inequalities

n O�.�/ �N � �.� Œn�/;
�.� Œn�/C �.� Œn�/ � n O�.�/CN; 8n 2 N (2.3)
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where N D dim.M/ as before, and O�.�/ 2 R is mean Conley–Zehnder index of � ,
given by

O�.�/ D lim
n!1

�.� Œn�/

n
:

We refer the reader to [LL1, Theorem 1] or [LL2, Theorem 1.1] for more details on
these inequalities.

If the Lagrangian L also happens to be convex quadratic-growth, as we have
already remarked in the previous section, its action functional AŒ�� is C 1 and twice
Gateaux differentiable over the loop spaceW 1;2.T Œ��IM/. In this case, �.�/ is equal
to the Morse index of AŒ�� at � , while �.�/ is equal to the nullity of AŒ�� at � , i.e. to
the dimension of the null-space of the Gateaux–Hessian of AŒ�� at � , see [Vi1], [LA]
or [Ab] for a proof.

3. Discretizations for convex quadratic-growth Lagrangians

Throughout this section, L W T � TM ! R will be a 1-periodic convex quadratic-
growth Lagrangian, with associated mean action AŒ��, � 2 N. In order to simplify
the notation, we will work in period � D 1, but everything goes through in every
integer period.

The W 1;2 functional setting for the action functional A presents several draw-
backs. First of all, the regularity that we can expect for A is only C 1;1, at least if
we assume to deal with a general convex quadratic-growth Lagrangian. This pre-
vents the applicability of all those abstract results that require more smoothness, for
instance the Morse lemma from critical point theory. Moreover, the W 1;2 topology
is sometimes uncomfortable to work with. In fact, in several occasions it may be
desirable to deal with a topology that is as strong as the C 1 topology, or at least as the
W 1;1 topology. This would guarantee that the restriction of the action functional A

to a small neighborhood of a loop � only depends on the values that the Lagrangian
assumes on a small neighborhood of the support of the lifted loop .�; P�/ in TM . In
theW 1;1 functional setting, the action functional A is smooth, but unfortunately its
sublevels do not satisfy any compactness condition (such as the Palais–Smale condi-
tion), which makes that functional setting inadequate for Morse theory. In order to
overcome these difficulties, in this section we develop a discretization technique that
is a generalization to Lagrangian systems of the broken geodesics approximation of
the path space (see [Mi, Section 16] or [Kl, Section A.1] for the Riemannian case,
and [Ra] for the Finsler case).

3.1. Uniqueness of the action minimizers. Given an interval Œt0; t1� � R, we
say that an absolutely continuous curve � W Œt0; t1� ! M is an action minimizer
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with respect to the Lagrangian L when every other absolutely continuous curve
� W Œt0; t1�!M with the same endpoints of � satisfiesZ t1

t0

L.t; �.t/; P�.t// dt �
Z t1

t0

L.t; �.t/; P�.t// dt:

It is well known that the action minimizers are smooth solutions of the Euler–Lagrange
system (2.1). The existence of an action minimizer joining two given points of
M is a known result that holds even for Tonelli Lagrangians, and it is essentially
due to Tonelli (see e.g. [BGH] or [Fa, page 98] for a modern treatment). A more
ancient result, that goes back to Weierstrass, states that every sufficiently short action
minimizer is unique, meaning that it is the only curve between its given endpoints
that minimizes the action (see [Fa, page 106] or [Ma, page 175]). However, in
this paper, we shall need the following stronger result that holds only for convex
quadratic-growth Lagrangians.

Proposition 3.1. Let L W T � TM ! R be a convex quadratic-growth Lagrangian.
There exist �0 D �0.L/ > 0 and 	0 D 	0.L/ > 0 such that, for each real interval
Œt0; t1� � R with 0 < t1 � t0 � �0 and for all q0; q1 2 M with dist.q0; q1/ < 	0,
there is a unique action minimizer (with respect to L) �q0;q1

W Œt0; t1� ! M with
�q0;q1

.t0/ D q0 and �q0;q1
.t1/ D q1.

Proof. For each absolutely continuous curve � W Œt0; t1�!M , we denote by At0;t1.�/

its action (with respect to L), i.e.

At0;t1.�/ D
Z t1

t0

L.t; �.t/; P�.t//dt 2 R [ ¹C1º:

Up to summing a positive constant to L, we can assume that there exist two positive
constants ` < ` such that

` jvj2q � L.t; q; v/ � `.jvj2q C 1/; 8q 2M;v 2 TqM: (3.1)

Consider two points q0; q1 2M and two real numbers t0 < t1. We put

	 WD dist.q0; q1/; � WD t1 � t0:
Since W 1;2.Œt0; t1�IM/ is dense in the space of absolutely continuous maps from
Œt0; t1� to M and since the action minimizers are smooth, a curve �q0;q1

as in the
statement is an action minimizer if and only if it is a global minimum of At0;t1 over
the space

W t0;t1
q0;q1

D ®� 2 W 1;2.Œt0; t1�IM/ j �.t0/ D q0; �.t1/ D q1
¯
:
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Therefore, all we have to do in order to prove the statement is to show that, for 	 and
� sufficiently small, the functional At0;t1 j

W
t0;t1
q0;q1

admits a unique global minimum.

Consider an arbitrary real constant 
 > 1. By compactness, the manifold M
admits a finite atlas U D ®


˛ W U˛ ! RN j˛ D 1; : : : ; u¯ such that, for all ˛ 2
¹1; : : : ; uº, q; q0 2 U˛ and v 2 TqM , we have


�1 ˇ̌
˛.q/ � 
˛.q0/
ˇ̌ � dist.q; q0/ � 
 ˇ̌
˛.q/ � 
˛.q0/

ˇ̌
; (3.2)


�1 jd
˛.q/vj � jvjq � 
 jd
˛.q/vj ; (3.3)

where we denote by j � j the standard norm in RN and by j � jq the Riemannian norm in
TqM as usual. Moreover, we can further assume that the image 
˛.U˛/ of every chart
is a convex subset of RN (e.g. a ball). Let Leb.U/ denote the Lebesgue number1 of the
atlas U and consider the two pointsq0; q1 2M of the beginning with dist.q0; q1/ D 	.
By definition of Lebesgue number, the Riemannian closed ball

B.q0;Leb.U/=2/ D ¹q 2M j dist.q; q0/ � Leb.U/=2º
is contained in a coordinate open set U˛ for some ˛ 2 ¹1; : : : ; uº. Therefore, if we
require that 	 � Leb.U/=2, the points q0 and q1 lie in the same open set U˛ .

Let r W Œt0; t1�! U˛ be the segment from q0 to q1 given by

r.t/ D 
�1
˛

�
t1 � t
�


˛.q0/C t � t0
�


˛.q1/

�
; 8t 2 Œt0; t1�:

By (3.1), (3.2) and (3.3) we obtain the following upper bound for the action of the
curve r

At0;t1.r/ � `
�Z t1

t0

j Pr.t/j2r.t/dt C �
�
� `

�
� max
t2Œt0;t1�

˚j Pr.t/j2r.t/�C �
�

� `
 

2
j
˛.q1/ � 
˛.q0/j2

�
C �

!
� `

�

4

dist.q0; q1/2

�
C �

�

� `
4
�
	2

�
C �

�
D C

�
	2

�
C �

�
;

where the positive constant C D `
4 does not depend on q0; q1 and Œt0; t1�. This
estimate, in turn, gives as an upper bound for the action of the minima, i.e.

min
�2W

t0;t1
q0;q1

®
At0;t1.�/

¯ � C �	2
�
C �

�
;

1We recall that, for every open cover U of a compact metric space, there exists a positive number Leb.U/ > 0,
the Lebesgue number of U, such that every subset of the metric space of diameter less than Leb.U/ is contained
in some member of the cover U.
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therefore the action sublevel

Ut0;t1
q0;q1

D Ut0;t1
q0;q1

.	; �/ D
²
� 2 W t0;t1

q0;q1
jAt0;t1.�/ � C

�
	2

�
C �

�³
(3.4)

is not empty and it must contain a global minimum �q0;q1
of the action (the existence

of a minimum is a well-known fact that holds even for Tonelli Lagrangians, see
[Fa, page 98]). All we have to do in order to conclude is to show that, for 	 and �
sufficiently small, the sublevel U

t0;t1
q0;q1

D U
t0;t1
q0;q1

.	; �/ cannot contain other minima
of the action.

By the first inequality in (3.1) we haveZ t1

t0

j P�.t/j2�.t/dt � `�1At0;t1.�/; 8� 2 W t0;t1
q0;q1

;

and this, in turn, gives the following bound for all � 2 U
t0;t1
q0;q1

max
t2Œt0;t1�

dist.�.t0/; �.t//
2 �

�Z t1

t0

j P�.t/j�.t/dt
�2
� �

Z t1

t0

j P�.t/j2�.t/dt

� �`�1At0;t1.�/ � C`�1.	2 C �2/:

Therefore all the curves � 2 Uq0;q1
.	; �/ have image inside the coordinate open set

U˛ �M provided 	 and � are sufficiently small, more precisely for

	2 C �2 � `

4C
Leb.U/2: (3.5)

This allows us to restrict our attention to the open set U˛ . From now on we will
briefly identify U˛ with 
˛.U˛/ � RN , so that

q0 	 
˛.q0/ 2 RN ; q1 	 
˛.q1/ 2 RN :

Without loss of generality we can also assume that q0 	 
˛.q0/ D 0 2 RN . On the
set U˛ 	 
˛.U˛/ we will consider the standard flat norm j � j of RN , and the norms
k � kL1 , k � kL2 and k � kL1 will be computed using this norm. We will also consider
L as a convex quadratic-growth Lagrangian of the form

L W T � 
˛.U˛/ �RN ! R

by means of the identification

L.t; q; v/ 	 L.t; 
�1
˛ .q/; d
�1

˛ .
˛.q//v/:
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Now, consider the following close convex subset of W 1;2.Œt0; t1�IRN /

C t0;t1q0;q1
D C t0;t1q0;q1

.	; �/ D
²
� 2 W 1;2.Œt0; t1�IRN /

ˇ̌̌
ˇ

�.t0/ D q0 D 0; �.t1/ D q1; kP�k2L2 � 
C`�1
�
	2

�
C �

�³
: (3.6)

Since k�k2L1 � �kP�k2L2 , for 	 and � sufficiently small all the curves � 2 C
t0;t1
q0;q1

have
support inside the open set U˛ . Moreover, by (3.1), (3.3) and (3.4), we have

kP�k2
L2 � 


Z t1

t0

j P�.t/j2�.t/dt � 
`�1At0;t1.�/ � 
C`�1
�
	2

�
C �

�
; 8� 2 Ut0;t1

q0;q1
;

that implies U
t0;t1
q0;q1

� C
t0;t1
q0;q1

. Since we know that a minimum �q0;q1
of the action

exists and all the minima lie in the closed convex subset C
t0;t1
q0;q1

� W 1;2.Œt0; t1�IRN /,
in order to conclude that �q0;q1

is the unique minimum we only need to show that the
Hessian of the action is positive definite on C

t0;t1
q0;q1

provided 	 and � are sufficiently
small, i.e. we need to show that there exist 	0 > 0 and �0 > 0 such that, for all
	 2 .0; 	0/ and � 2 .0; �0�, we have

HessAt0;t1.�/Œ�; �� > 0; 8� 2 C t0;t1q0;q1
D C t0;t1q0;q1

.	; �/; � 2 W 1;2
0 .Œt0; t1�IRN /:

(3.7)
Notice that the above Hessian is well defined, since At0;t1 is C 1 and twice Gateaux
differentiable. In (3.7), we have denoted by W 1;2

0 .Œt0; t1�IRN / the tangent space of
C
t0;t1
q0;q1

at �, i.e.

W
1;2
0 .Œt0; t1�IRN / D

®
� 2 W 1;2.Œt0; t1�IRN / j �.t0/ D �.t1/ D 0

¯
:

Consider arbitrary � 2 C
t0;t1
q0;q1

and � 2 W 1;2
0 .Œt0; t1�IRN /. Then, we have

HessAt0;t1.�/Œ�; ��

D
Z t1

t0

�
h@2vvL.t; �; P�/ P�; P�i C 2h@2vqL.t; �; P�/�; P�i C h@2qqL.t; �; P�/�; �i

�
dt

�
Z t1

t0

`0 j P� j2 dt �
Z t1

t0

2`1.1C 
j P�j/ j� j j P� j dt„ ƒ‚ …
DW I1

�
Z t1

t0

`1.1C 
2j P�j2/ j� j2 dt„ ƒ‚ …
DW I2

;

where `0 and `1 are the positive constants that appear in (Q1) and (Q2) with respect
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to the atlas U. Now, the quantities I1 and I2 can be estimated from above as follows

I1 � 2`1
k�kL1

�
k P�kL1 C

			j P�j � j P� j			
L1

�
� 2`1


p
�k P�kL2

�p
�k P�kL2 C kP�kL2k P�kL2

�
D 2`1
k P�k2L2

�
� Cp�kP�kL2

�
;

I2 � `1
2
�
k�k2

L2 C k�k2L1kP�k2L2

�
� `1
2k P�k2L2

�
�2 C �kP�k2

L2

�
;

and, since by (3.6) we have

kP�k2
L2 � 
C`�1

�
	2

�
C �

�
;

we conclude

HessAt0;t1.�/Œ�; ��

� `0k P�k2L2 � I1 � I2
� kP�k2

L2

�
`0 � 2`1


�q

C`�1 C 1

�
.	C �/ � `1
2




C`�1 C 1�.	2 C �2/�„ ƒ‚ …

DW F.	; �/
:

Notice that the quantity F.	; �/ is independent of the specific choice of the points
q0; q1 and of the interval Œt0; t1�, but depends only on 	 D dist.q0; q1/ and � D t1�t0.
Moreover, there exist 	0 > 0 and �0 > 0 small enough so that for all 	 2 .0; 	0/ and
� 2 .0; �0� the quantity F.	; �/ is positive. This proves (3.7). �

Now, we want to remark that the short action minimizers �q0;q1
, given by Propo-

sition 3.1, depend smoothly on their endpoints q0 and q1. If 	0 is the constant given
by Proposition 3.1, we denote by ��0

the open neighborhood of the diagonal sub-
manifold of M �M given by

��0
D ¹.q0; q1/ 2M �M j dist.q0; q1/ < 	0º:

Proposition 3.2. With the notation of Proposition 3.1, for each real interval Œt0; t1� �
R with 0 < t1 � t0 � �0 the assignment

.q0; q1/ 7! �q0;q1
W Œt0; t1�!M (3.8)

defines a smooth map ��0
! C1.Œt0; t1�IM/.

Proof. Since the action minimizers are smooth, (3.8) defines a map

��0
! C1.Œt0; t1�IM/;
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and we just need to show that the dependence of �q0;q1
from .q0; q1/ is smooth. If

t1 � t0 2 .0; �0� and .q0; q1/ 2 ��0
, in the proof of Proposition 3.1 we have already

shown that the minimizer �q0;q1
W Œt0; t1�! M has image contained in a coordinate

neighborhood U˛ � M that we can identify with an open set of RN . The curve
�q0;q1

is a smooth solution of the Euler–Lagrange system of L, therefore

ˆtL B .ˆt0L/�1.q0; v0/ D .�q0;q1
.t/; P�q0;q1

.t//; 8t 2 Œt0; t1�;
where v0 D P�q0;q1

.t0/ and ˆt
L

is the Euler–Lagrange flow associated to L (see
Section 2.2). We define

Qt WD � BˆtL B .ˆt0L/�1 W U 0̨ �RN ! U˛; 8t 2 Œt0; t1�;
where U 0̨ � U˛ is a small neighborhood of q0, and � W RN � RN ! RN is the
projection onto the first N components, i.e. �.q; v/ D q for all .q; v/ 2 RN � RN .
We claim that

dQt1.q0; v0/.¹0º �RN / D RN : (3.9)

In fact, assume by contradiction that (3.9) does not hold. Then, there exists a nonzero
vector v 2 RN such that

d

ds

ˇ̌̌
sD0Q

t1.q0; v0 C sv/ D 0:

If we define the curve � W Œt0; t1�! RN by

�.t/ WD d

ds

ˇ̌̌
sD0Q

t .q0; v0 C sv/;

then �.t0/ D �.t1/ D 0, and � is a solution of the linearized Euler–Lagrange system

d

dt



@2vvL.t; �q0;q1

; P�q0;q1
/ P� C @2vqL.t; �q0;q1

; P�q0;q1
/�
�

� @2qvL.t; �q0;q1
; P�q0;q1

/ P� � @2qqL.t; �q0;q1
; P�q0;q1

/� D 0:
This implies that HessAt0;t1.�q0;q1

/Œ�; �� D 0, which contradicts the positive defini-
tiveness of HessAt0;t1.�q0;q1

/ (see (3.7) in the proof of Proposition 3.1). Therefore,
(3.9) must hold.

By the implicit function theorem we obtain a neighborhoodUq0;q1
� RN �RN of

.q0; q1/, a neighborhoodUv0
� RN of v0 and a smooth map V0 W Uq0;q1

! Uv0
such

that, for each .q0
0; q

0
1; v

0
0/ 2 Uq0;q1

� Uv0
, we have Qt1.q0

0; v
0
0/ D q0

1 if and only if
v0
0 D V0.q0

0; q
0
1/. Then, we can define a smooth map from Uq0;q1

to C1.Œt0; t1�IU˛/
given by

.q0
0; q

0
1/ 7! �q0

0
;q0

1
; (3.10)
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where for each t 2 Œt0; t1� we have

�q0
0
;q0

1
.t/ D Qt .q0

0; V0.q
0
0; q

0
1//:

In order to conclude we only have to show that the map in (3.10) coincides with the
one in (3.8) on Uq0;q1

provided this latter neighborhood is sufficiently small, i.e. we
have to show that �q0

0
;q0

1
is the unique action minimizer joining q0

0 and q0
1, for each

.q0
0; q

0
1/ in a sufficiently small neighborhood Uq0;q1

of .q0; q1/. This is easily seen
as follows. By construction, the curves �q0

0
;q0

1
are critical points of the action At0;t1

over the space W
t0;t1
q0

0
;q0

1

, being solutions of the Euler–Lagrange system of L. By the

arguments in the proof of Proposition 3.1, each of these curves �q0
0
;q0

1
is the unique

action minimizer joining its endpoints if and only if it lies in the convex set C
t0;t1
q0

0
;q0

1

defined in (3.6). We already know that �q0;q1
D �q0;q1

2 C
t0;t1
q0;q1

. Since the map
in (3.10) is smooth, for .q0

0; q
0
1/ close to .q0; q1/ we obtain that the curve �q0

0
;q0

1
is

C 1-close to �q0;q1
D �q0;q1

, and therefore �q0
0
;q0

1
2 C

t0;t1
q0

0
;q0

1

. �

3.2. The discrete action functional. Let �0 D �0.L/ and 	0 D 	0.L/ be the
positive constants given by Proposition 3.1, and let k 2 N be such that 1=k � �0.
We define the k-broken Euler–Lagrange loop space as the subspace ƒk D ƒk;L �
W 1;2.T IM/ consisting of those loops� W T !M such that dist.�. i

k
/; �. iC1

k
// < 	0

and � jŒi=k;.iC1/=k� is an action minimizer for each i 2 ¹0; : : : ; k � 1º. Notice that,
by propositions 3.1 and 3.2, the correspondence

� 7!
�
�.0/; �



1
k

�
; : : : ; �



k�1
k

��
defines a diffeomorphism between ƒk and an open subset of the k-fold product
M � � � � �M . Thus,ƒk is a finite dimensional submanifold of theW.T IM/, which
implies that the W 1;2 and W 1;1 topologies coincide on it.

We define the discrete action functional Ak as the restriction of A to ƒk , i.e.

Ak WD Ajƒk
:

Note that Ak is smooth, since A is smooth onW 1;1.T IM/ andƒk � W 1;1.T IM/.
Moreover, the next proposition implies that, for each action value c 2 R, there is
a sufficiently big discretization pass k 2 N such that Ak satisfies the Palais–Smale
condition in the c-sublevel.

Proposition 3.3. For each c 2 R there exists Nk D Nk.c/ 2 N such that, for each
k � Nk, the closed sublevel A�1

k
.�1; c� is compact.
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Proof. Consider the compact subset of ƒk defined by

Ck WD
®
� 2 ƒk j dist.�. i

k
/; �. iC1

k
// � 	0=2; 8i 2 ¹1; : : : ; k � 1º

¯
:

In order to prove the statement, we just need to show that

lim
k!1

min ¹Ak.�/ j � 2 @Ckº D C1:
Up to summing a positive constant to L, we can assume that there exists a constant
` > 0 such that L.t; q; v/ � ` jvj2q for every .t; q; v/ 2 T � TM . Then, consider an
arbitrary � 2 @Ck . For some i 2 ¹0; : : : ; k � 1º we have that

dist.�. i
k
/; �. iC1

k
// D 	0=2;

and therefore we obtain the desired estimate

Ak.�/ �
Z .iC1/=k

i=k

L.t; �.t/; P�.t// dt �
Z .iC1/=k

i=k

` j P�.t/j2�.t/ dt

� k `
�Z .iC1/=k

i=k

j P�.t/j�.t/ dt

�2
� k ` dist.�. i

k
/; �. iC1

k
//2

� k ` .	0=2/2: �
Each critical point � of the action functional A belongs to the k-broken Euler

Lagrange loop space ƒk , up to choosing a sufficiently big k, and in particular it is a
critical point of the discrete action Ak . It is easy to verify that the converse is also
true, namely that the critical points of the discrete action Ak are smooth solutions of
the Euler–Lagrange system of L. The next statement discusses the invariance of the
Morse index and nullity under discretization.

Proposition 3.4. Consider a contractible � W T ! M that is a smooth solution of
the Euler–Lagrange system of L. Then, for each sufficiently big k 2 N, the Morse
index and nullity pair of A and Ak at � are the same.

We will split the proof of this proposition in several lemmas, which will take the
remaining of this subsection. First of all, since the statement is of a local nature, let
us adopt suitable local coordinates in the loop space. Being � a smooth contractible
loop, we can consider the chart of W 1;2.T IM/ given by

exp�1
� W U� ! W 1;2.��TM/ ' W 1;2.T IRN /;

see Section 2.1 for the notation. Let U be a small neighborhood of the origin in RN

and let �� W T � U �RN ,! T � TM be the embedding defined by

�� .t; q; v/ D
�
t; exp�.t/.q/; d.exp�.t//.q/v C

d

dt
exp�.t/.q/

�
;

8.t; q; v/ 2 T � U �RN :
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The pulled-back Lagrangian L B �� W T � U �RN ! R is again convex quadratic-
growth, since conditions (Q1) and (Q2) are invariant with respect to coordinate trans-
formations of the form �� (up to changing the constants `0 and `1 in the definition).
Moreover, the pulled-back functional A B exp� is the Lagrangian action functional
associated to the convex quadratic-growth Lagrangian L B �� , i.e.

A B exp� .�/ D
Z 1

0

L B �� .t; �.t/; P�.t// dt:

From now on, we will simply write A and L for A B exp� and L B�� respectively, so
that � will be identified with the point 0 in the Hilbert spaceW 1;2.T IRN /. Moreover,
for each k 2 N such that � belongs toƒk , we identify (an open neighborhood of � in)
the k-broken Euler–Lagrange loop space ƒk with a finite dimensional submanifold
of W 1;2.T IRN / containing 0.

We introduce the quadratic Lagrangian L W T �RN �RN ! R given by

L.t; q; v/ D 1

2
ha.t/v; vi C hb.t/q; viC1

2
hc.t/q; qi ;
8.t; q; v/ 2 T �RN �RN ;

(3.11)

where, for each t 2 T , a.t/, b.t/ and c.t/ are the N �N matrices defined by

aij .t/ WD @2L

@vi @vj
.t; 0; 0/; bij .t/ WD @2L

@vi @qj
.t; 0; 0/; cij .t/ WD @2L

@qi @qj
.t; 0; 0/:

A straightforward computation shows that the Euler–Lagrange system associated to
L is given by the following linear system of ordinary differential equations for curves
� in RN

a R� C .b C Pa � bT / P� C . Pb � c/ � D 0: (3.12)

This is precisely the linearization of the Euler–Lagrange system of L along the peri-
odic solution � 	 0. The 1-periodic solutions � W T ! RN of (3.12) are precisely
the critical points of the action functional A W W 1;2.T IRN / ! R associated to L,
given as usual by

A.�/ D
Z 1

0

L.t; �.t/; P�.t// dt; 8� 2 W 1;2.T IRN /:

The following lemma characterizes the elements of the tangent space of the k-
broken Euler–Lagrange loop space ƒk at � 	 0.

Lemma 3.5. The tangent space T0ƒk is the space of continuous and piecewise
smooth loops � W T ! RN such that, for each h 2 ¹0; : : : ; k � 1º, the restriction
� jŒh=k;.hC1/=k� is a solution of the Euler–Lagrange system (3.12).
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Proof. By definition of tangent space, every � 2 T0ƒk is a continuous loop � W T !
RN given by

�.t/ D @

@s

ˇ̌̌
sD0†.s; t/; (3.13)

for some continuous † W .��; �/ � T ! RN such that, for all h 2 ¹0; : : : ; k � 1º,
the restriction †j.��;�/�Œh=k;.hC1/=k� is smooth, †.s; �/ 2 ƒk for all s 2 .��; �/ and
†.0; �/ 	 0. Namely † is a piecewise smooth variation of the constant loop 0 such
that the loops †s D †.s; �/ satisfy the Euler–Lagrange system of L in the intervals
Œh=k; .hC 1/=k� for all h 2 ¹0; : : : ; k � 1º, i.e.

@2vvL.t; †s;
P†s/ R†s C @2vqL.t; †s; P†s/ P†s

C @2vtL.t; †s; P†s/ � @qL.t; †s; P†s/ D 0
By differentiating the above equation with respect to s in s D 0, we obtain the
Euler–Lagrange system (3.12) for the loop � (as before, satisfied on the intervals
Œh=k; .hC 1/=k� for all h 2 ¹0; : : : ; k � 1º). Vice versa, a continuous loop � W T !
RN whose restrictions � jŒh=k;.hC1/=k� satisfy (3.12) is of the form (3.13) for some†
as above, and therefore it is an element of T0ƒk . �

The null-space of the Hessian of A at 0 can be characterized as follows.

Lemma 3.6. The null-space of HessA.0/ consists of those smooth loops� W T ! RN

that are solutions of the Euler–Lagrange system (3.12).

Proof. For every �; � 2 W 1;2.T IRN / we have

HessA.0/Œ�; �� D
Z 1

0


ha P�; P�i C hb �; P�i C hbT P�; �i C hc �; �i�dt D dA.�/�:

Therefore � is in the null-space of HessA.0/ if and only of it is a critical point of A,
that is if and only if it is a (smooth) solution of the Euler–Lagrange system (3.12). �

As a consequence of Lemmas 3.5 and 3.6, the null-space of HessA.0/ is contained
in T0ƒk , and therefore it is contained in the null-space of the Hessian of the discrete
action HessAk.0/. This inclusion is actually an equality, as shown by the following.

Lemma 3.7. HessA.0/ and HessAk.0/ have the same null-space, and in particular
A and Ak have the same nullity at 0.

Proof. We only need to show that any curve � 2 T0ƒk that is not everywhere smooth
cannot be in the null-space of HessAk.0/. In fact, since � is always smooth outside
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the points h
k

(for h 2 ¹0; : : : ; k � 1º), for each � 2 T0ƒk we have

HessAk.0/Œ�; �� D
k�1X
hD0

Z .hC1/=k

h=k

�
ha P�; P�i C hb �; P�i C hbT P�; �i C hc �; �i

�
dt

D
k�1X
hD0

Z .hC1/=k

h=k

h�a R� � b P� � Pa P� � Pb � C bT P� C c �„ ƒ‚ …
D0

; �i dt

C
k�1X
hD0
ha P� C b �; �i

ˇ̌̌..hC1/=k/�

.h=k/C

D
k�1X
hD0
ha.h

k
/Œ P�.h

k

�
/ � P�.h

k

C
/�; �.h

k
/i: (3.14)

By assumption, we have that P�.h
k

C
/ ¤ P�.h

k

�
/ for some h 2 ¹0; : : : ; k � 1º, and

therefore
a.h
k
/Œ P�.h

k

C
/ � P�.h

k

�
/� ¤ 0:

Here, we have used the fact that the matrix a.h
k
/ is invertible, since the Lagrangian

L satisfies (Q1) (see Section 2.2). Now, consider � 2 T0ƒk given by

�. l
k
/ D

´
a.h
k
/Œ P�.h

k

C
/ � P�.h

k

�
/�; l D h;

0; l 2 ¹0; : : : ; k � 1º; l ¤ h:
By (3.14), we have

HessAk.0/Œ�; �� D
ˇ̌̌
a.h
k
/Œ P�.h

k

C
/ � P�.h

k

�
/�
ˇ̌̌2 ¤ 0;

and therefore we conclude that � is not in the null-space of HessAk.0/. �

In order to conclude the proof of Proposition 3.4 we only need to prove the
invariance of the Morse index under discretization.

Lemma 3.8. For all k 2 N sufficiently big, the functionals A and Ak have the same
Morse index at 0.

Proof. For every � 2 W 1;2.T IRN / we have

HessA.0/Œ�; �� D
Z 1

0


ha P�; P�i C hb �; P�i C hbT P�; �i C hc �; �i� dt

D 2
Z 1

0

L.t; �.t/; P�.t// dt D 2A.�/:
(3.15)
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Let �.0/ be the Morse index of A at 0. By definition, there exists a �.0/-dimensional
vector subspace V � W 1;2.T IRN / over which HessA.0/ is negative definite, i.e.

HessA.0/Œ�; �� < 0; 8� 2 V n ¹0º: (3.16)

By density, for each k 2 N sufficiently big we can choose V to be composed of
k-piecewise affine curves. Namely we can choose V such that, for each � 2 V , we
have

�.hCt
k
/ D .1 � t / �.h

k
/C t �.hC1

k
/; 8t 2 Œ0; 1�; h 2 ¹0; : : : ; k � 1º: (3.17)

Now, let us define a linear mapK W V ! T0ƒk asK.�/ D Q� , where Q� is the unique
element in T0ƒk such that �.h

k
/ D Q�.h

k
/ for each h 2 ¹0; : : : ; k � 1º. Notice that

K is injective. In fact, if K.�/ D 0, we have �.h
k
/ D 0 for each h 2 ¹0; : : : ; k � 1º

and, by (3.17), we conclude � D 0. Hence zV D K.V / is a �.0/-dimensional vector
subspace of T0ƒ

k .
In order to conclude we just have to show that HessAk.0/ is negative definite

over the vector space zV . To this aim, consider an arbitrary Q� 2 zV n ¹0º and put
� D K�1. Q�/ 2 V n ¹0º. For each h 2 ¹0; : : : ; k � 1º the curve Q� jŒh=k;.hC1/=k� is
an action minimizer with respect to the Lagrangian L, and therefore A. Q�/ � A.�/.
By (3.15) and (3.16) we conclude

HessAk.0/Œ Q�; Q�� D 2A. Q�/ � 2A.�/ D HessA.0/Œ�; �� < 0: �

3.3. Homotopic approximation of the action sublevels. We want to show that the
sublevels of the action A deformation retract onto the corresponding sublevels of the
discrete action Ak , for all the sufficiently big k 2 N. To begin with, we need the
following.

Proposition 3.9. For each 	 > 0 and c 2 R there exists N� D N�.L; 	; c/ > 0 such
that, for each � 2 W 1;2.T IM/ with A.�/ < c and for each interval Œt0; t1� � R
with 0 < t1 � t0 � N�, we have dist .�.t0/; �.t1// < 	.

Proof. Up to summing a positive constant to the convex quadratic-growth Lagrangian
L, we can always assume that there exists ` > 0 such that

L.t; q; v/ � ` jvj2q ; 8.t; q; v/ 2 T � TM:

Then, let us consider an arbitrary � 2 W 1;2.T IM/ such that A.�/ < c. For each
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interval Œt0; t1� � R with 0 < t1 � t0 � 1 we have

dist .�.t0/; �.t1//
2 �

�Z t1

t0

j P�.t/j�.t/dt
�2
� .t1 � t0/

Z t1

t0

j P�.t/j2�.t/ dt

� .t1 � t0/
Z t1

t0

`�1L.t; �.t/; P�.t// dt � .t1 � t0/`�1A.�/

< .t1 � t0/`�1c:

Hence, for N� D N�.L; 	; c/ WD 	2 ` c�1, we obtain the claim. �

From now on, we will briefly denote the open sublevels of the action A and of
the discrete action Ak by

.A/c WD A�1.�1; c/; .Ak/c WD A�1
k .�1; c/; 8c 2 R:

Let 	0 D 	0.L/, �0 D �0.L/ and N� D N�.L; 	0; c/ be the positive constants given by
Propositions 3.1 and 3.9, and consider the integer

Nk D Nk.L; c/ WD
�

max

²
1

�0
;
1

N�
³

2 N:

We fix an integer k � Nk and we define a retraction r W .A/c ! .Ak/c in the following
way: for each � 2 .A/c , the image r.�/ is the unique k-broken Euler–Lagrange loop
such that r.�/. i

k
/ D �. i

k
/ for each i 2 ¹0; : : : ; k � 1º, see Figure 1 (a). Then, we

define a homotopyR W Œ0; 1�� .A/c ! .A/c as follows: for each i 2 ¹0; : : : ; k � 1º,
s 2 Œ i

k
; iC1
k
� and � 2 .A/c , the loopR.s; �/ is defined asR.s; �/jŒ0;i=k� D r.�/jŒ0;i=k�,

R.s; �/jŒs;1� D �jŒs;1� andR.s; �/jŒi=k;s� is the unique action minimizer (with respect to
the Lagrangian L) with endpoints �. i

k
/ and �.s/, see Figure 1 (b). By Proposition 3.9,

the homotopy R and the map r are well defined and we have A.R.s; �// � A.�/ for
every .s; �/ 2 Œ0; 1� � .A/c . Moreover R is a strong deformation retraction. In fact,
for each � 2 .A/c we have R.0; �/ D �, R.1; �/ D r.�/ and, if � already belongs to
.Ak/c , we further have R.s; �/ D � for every s 2 Œ0; 1�.

If c1 < c2 � c, the same homotopy R can be used to show that the pair
..A/c2

; .A/c1
/ deformation retracts strongly onto ..Ak/c2

; .Ak/c1
/. Furthermore, if

� 2 W 1;2.T IM/ is a critical point of A with A.�/ D c, up to increasing k we have
that � belongs to ƒk , and we can extend R to a strong deformation retraction of the
pair ..A/c [ ¹�º; .A/c/ onto ..Ak/c [ ¹�º; .Ak/c/ such that R.s; �/ D � for every
s 2 Œ0; 1�. Summing up, we have obtained the following.

Lemma 3.10. (i) For each c1 < c2 < 1 there exists Nk D Nk.L; c2/ 2 N and, for
every integer k � Nk, a strong deformation retraction of the pair



.A/c2

; .A/c1

�
onto


.Ak/c2
; .Ak/c1

�
.
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(ii) For each critical point � of A with A.�/ D c, there exists Nk D Nk.L; c/ 2
N and, for every integer k � Nk, a strong deformation retraction of the pair
..A/c[¹�º; .A/c/ onto ..Ak/c[¹�º; .Ak/c/.

�.0/�.0/

�. 1
5
/�. 1

5
/

�. 2
5
/�. 2

5
/

�. 3
5
/�. 3

5
/

�. 4
5
/�. 4

5
/

��

r.�/ R.s; �/

�.s/

(a) (b)

Figure 1. (a) Example of a loop � (solid line) and the corresponding r.�/ (dashed line), for the
case of the geodesics action functional on the flat R2, i.e. L.t; q; v/ D v2

1
C v2

2
, and k D 5.

(b) Homotoped loop R.s; �/ (solid line).

Let � be a critical point of A with critical value c D A.�/. For every integer
k � Nk.L; c/ we have that � belongs to the k-broken Euler–Lagrange loop space ƒk
and therefore it is a critical point of the discrete action Ak as well. We recall that the
local homology groups of A at � are defined as

C�.A; �/ D H� ..A/c [ ¹�º; .A/c/ ;
where H� denotes the singular homology functor with an arbitrary coefficient group
(the local homology groups of the discrete action functional Ak at � are defined
analogously). The above Lemma 3.10 (ii) has the following immediate consequence.

Corollary 3.11. For each integer k > Nk.L; c/ the inclusion

� W ..Ak/c [ ¹�º; .Ak/c/ ,! ..A/c [ ¹�º; .A/c/ (3.18)

induces the homology isomorphism �� W C�.Ak; �/
'�!C�.A; �/.

It is well known that the local homology groups of a C 2 functional at a critical
point are trivial in dimension that is smaller than the Morse index or bigger than the
sum of the Morse index and the nullity (see [Ch, Corollary 5.1]). By Lemma 3.10 (ii),
we recover this result for the C 1 action functional A W W 1;2.T IM/ ! R, at least
for contractible critical points.
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Corollary 3.12. Let � W T !M be a contractible loop that is a critical point of the
action functional A with Morse index �.�/ and nullity �.�/. Then, the local homology
groups C�.A; �/ are trivial if 
 is less than �.�/ or greater than �.�/C �.�/.
Proof. For each sufficiently big k 2 N, � is also a critical point of the discrete
action Ak . By Proposition 3.4, up to increasing k we have that A and Ak have the
same Morse index and nullity pair .�.�/; �.�// at � . By the above Corollary 3.11,
up to further increasing k we have C�.Ak; �/ ' C�.A; �/. Since Ak is smooth,
the local homology groups C�.Ak; �/ are trivial if 
 is less than �.�/ or greater than
�.�/C �.�/, and the claim follows. �

4. Local homology and embeddings of Hilbert spaces

In this section we will prove an abstract Morse-theoretic result that might be of
independent interest, and then we will discuss its application to the action functional
of a convex quadratic-growth Lagrangian. The result will be an essential ingredient
in the proof of the Lagrangian Conley conjecture.

Let us consider an open set U of a Hilbert space E and aC 2 functional F W U! R
that satisfies the Palais–Smale condition. Let E� be a Hilbert subspace of E such
that U� WD U \E� ¤ ¿ and rF .y/ 2 E� for all y 2 U�. This latter condition is
equivalently expressed via the isometric inclusion J W E� ,! E as

.rF / B J D J B r.F B J /: (4.1)

Let x 2 U be an isolated critical point of F that sits in the subspace E�, and let
us further assume that the Morse index �.F ;x/ and the nullity �.F ;x/ of F at x

are finite. We denote by H D H.x/ the bounded self-adjoint linear operator on E

associated to the Hessian of F at x, i.e.

HessF .x/Œv;w� D hHv;wiE ; 8v;w 2 E : (4.2)

We require that H is a Fredholm operator, so that the functional F satisfies the
hypotheses of the generalized Morse lemma (see [Ch, page 44]).

Throughout this section, for simplicity, all the homology groups are assumed to
have coefficients in a field F (in this way we will avoid the torsion terms that appear
in the Künneth formula). We recall that the local homology groups of the functional
F at x are defined as C�.F ;x/ D H� ..F /c [ ¹xº; .F /c/, where c D F .x/ and
.F /c WD F �1.�1; c/. If we denote by F� W U� ! R the restricted functional
F jU� , then x is a critical point of F� as well and the local homology groups C�.F�;x/
are defined analogously as H�..F�/c [ ¹xº; .F�/c/. The inclusion J restricts to a
continuous map of pairs

J W ..F�/c [ ¹xº; .F�/c/ ,! ..F /c [ ¹xº; .F /c/:
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In this way, it induces the homology homomorphism

J� W C�.F�;x/! C�.F ;x/:

The main result of this section is the following.

Theorem 4.1. If the Morse index and nullity pair of F and F� at x coincide, i.e.

.�.F ;x/; �.F ;x// D .�.F�;x/; �.F�;x//;

then J� is an isomorphism of local homology groups.

The proof of this theorem will be carried out in Section 4.3, after several prelimi-
naries. The reader might want to skip the remaining of Section 4 (beside Section 4.4)
on a first reading.

Remark 4.1. One might ask if Theorem 4.1 still holds without the assumption (4.1).
This is true in case x is a non-degenerate critical point: briefly, a relative cycle that
represents a generator of C	.F ;x/.F�;x/ also represents a generator of C	.F ;x/.F ;x/,
and all the other local homology groups C�.F�;x/ and C�.F ;x/, with
 ¤ �.F ;x/ D
�.F�;x/, are trivial. However, in the general case, assumption (4.1) is necessary, as
it is shown by the following simple example. Consider the functional F W R2 ! R
given by

F .x; y/ D .y � x2/.y � 2x2/; 8.x; y/ 2 R2:

The origin 0 is clearly an isolated critical point of F , and the corresponding Hessian
is given in matrix form by

HessF .0; 0/ D
�
0 0

0 2

�
: (4.3)

Now, let us consider the inclusion J W R ,! R2 given by J.x/ D .x; 0/, namely the
inclusion of the x-axis in R2. The Morse index of F at the origin is 0 and coincides
with the Morse index of the restricted functional F B J . Analogously, the nullity of
F and F B J at the origin are both equal to 1. However the gradient of F on the
x-axis is given by

rF .x; 0/ D .8x3;�3x2/; 8x 2 R;

hence condition (4.1) is not satisfied, i.e. .rF / B J ¤ J B r.F B J /. The local
homology groups of F and F BJ at the origin are not isomorphic (and consequently
J� is not an isomorphism). In fact, by examining the sublevel .F /0 (see Figure 2),
it is clear that the origin is a saddle for F and a minimum for F B J . Therefore we
have

C�.F ; 0/ D
´

F ; 
 D 1;
0; 
 ¤ 1; C�.F B J; 0/ D

´
F ; 
 D 0;
0; 
 ¤ 0:
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x

y

0

Figure 2. Behaviour of F .x; y/ D .y � x2/.y � 2x2/ around the critical point 0. The shaded
region corresponds to the sublevel .F /0 D F �1.�1; 0/.

Remark 4.2. Also the hypothesis of C 2 regularity of the involved functional is
essential in order to obtain the assertion of Theorem 4.1. In fact, let us modify the
functional F of the previous remark in the following way

F .x; y/ D .y � x2/.y � 2x2/C 3x6 arctan
� y
x4

�
; 8.x; y/ 2 R2:

This functional is C 1 and twice Gateaux differentiable, but it is not C 2 at the origin,
which is again a critical point of F . The Hessian of F at the origin is still given by
(4.3), but the gradient of F on the x-axis is now given by

rF .x; 0/ D .8x3; 0/; 8x 2 R;

hence condition (4.1) is satisfied, i.e. .rF /BJ D J Br.F BJ /, where J W R ,! R2

is given by J.x/ D .x; 0/. The Morse index and nullity pair of F at the origin is
.0; 1/ and coincides with the Morse index and nullity pair of F B J at 0. Moreover,
0 is a local minimum of F B J , which implies

C�.F B J; 0/ D
´

F ; 
 D 0;
0; 
 ¤ 0;

However, the origin 0 2 R2 is not a local minimum of the functional F . In fact,
a straightforward computation shows that 0 is a local maximum of the functional
F restricted to the parabola y D 3

2
x2, namely 0 2 R is a local maximum of the

functional

x 7! F


x; 3

2
x2
� D �1

4
x4 C 3x6 arctan

�
3

2x2

�
:

This readily implies that C0.F ; 0/ D 0 ¤ C0.F B J; 0/, which contradicts the
assertion of Theorem 4.1.
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4.1. The generalized Morse lemma revisited. In order to prove Theorem 4.1, we
need to give a more precise statement of the generalized Morse lemma. Everything
that we will claim already follows from the classical proof (see [Ch, page 44]). In
order to simplify the notation, from now on we will assume, without loss of generality,
that x D 0 2 E and hence U � E is an open neighborhood of 0. According to the
operatorH associated to the Hessian of F at the critical point 0, we have an orthogonal
splitting E D EC˚E�˚E0, where EC [resp. E�] is a closed subspace in whichH
is positive definite [resp. negative definite], while E0 is the finite-dimensional kernel
of H . We denote by P˙ W E ! E˙ the linear projector onto E˙ WD EC ˚ E�.
On E˙ n ¹0ºwe introduce the local flow‚H defined by‚H .s; �.0// D �.s/, where
� W .s0; s1/! E˙ n ¹0º (with s0 < 0 < s1) is a curve that satisfies

P�.s/ D � H�.s/

kH�.s/kE
; 8s 2 .s0; s1/: (4.4)

We also set ‚H .0; 0/ WD 0. Then, the generalized Morse lemma may be restated as
follows.

Lemma 4.2 (Generalized Morse lemma revisited). With the above assumptions on
F , there exists an open neighborhood V � U of 0, a homeomorphism onto its image


 W .V ; 0/! .U; 0/

and a C 1 map

 W .V \E0; 0/! .E˙; 0/;

such that the following assertions hold.

.i/ For each v 2 V , if we write v D v0 C v˙ according to the splitting E D
E0 ˚E˙, we have

F B 
.v/ D F


v0 C  .v0/�„ ƒ‚ …
DWF 0.v0/

C 1
2

˝
Hv˙; v˙˛

E„ ƒ‚ …
DWF ˙.v˙/

:

.ii/ The origin 0 is a critical point of both F 0 and F ˙.

.iii/ The map  is implicitly defined by

P˙ 
rF .v0 C  .v0//� D 0; 8v0 2 V \E0;

 .0/ D 0:

.iv/ The homeomorphism 
 is given by


�1.v/ D v0 C‚H .�.v �  .v0//; v˙ �  .v0//; 8v D v0 C v˙ 2 
.V/;
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where � is a continuous function defined in the following way: for each v D
v0 C v˙ that belongs to its domain, �.v/ is the only real number satisfying

j�.v/j < kv˙kE ;
F


vC  .v0/� � F



v0 C  .v0/� D F ˙.‚H .�.v/; v˙//:

4.2. Naturality of the Morse lemma. Let H� be the bounded self-adjoint linear
operator on E� � E associated to the Hessian of the restricted functional F� D F jE�

at 0. Then

H jE�
D H�: (4.5)

In fact, by condition (4.1), we have

H B J D d.rF /.0/ B J D d..rF / B J„ ƒ‚ …
J Br.F�/

/.0/ D J B d.r.F�//.0/ D J BH�:

In particular H� is a Fredholm operator on E�. If we denote by E� D E�0 ˚
E�C ˚ E�� the orthogonal splitting defined by the operator H�, equation (4.5)
readily implies that

E�0 � E0; E�C � EC; E�� � E�; (4.6)

and moreover, if we denote byP�̇ W E� ! E�˙ the orthogonal projector onto E�˙ D
E�C˚E��, this latter turns out to be the restriction of the projector P˙ W E ! E˙
to E�, i.e.

P˙jE�
D P�̇ : (4.7)

The hypotheses of the generalized Morse lemma are fulfilled by both the functional
F and its restriction F�. The following is the long list of the symbols involved in the
statement of Lemma 4.2, and we write in the subsequent line the corresponding list
of symbols involved in the statement referred to the restricted functional F�:

E˙; E0; P˙; V ; ‚H ; 
;  ; �; F 0; F ˙;
E�˙; E�0; P�̇ ; V�; ‚H� ; 
�;  �; ��; F 0� ; F�̇ :

We want to show that, under the hypotheses of Theorem 4.1, the decomposition
F ˙CF 0 of F , given by the generalized Morse lemma, restricts to the corresponding
decomposition F�̇ C F 0� of F�.

Lemma 4.3. (i) If �.F ; 0/ D �.F�; 0/, then E� D E��.

(ii) If �.F ; 0/ D �.F�; 0/, then E0 D E�0.
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Proof. The claims follow at once from (4.6), since

dim E�� D �.F�; 0/ D �.F ; 0/ D dim E�;
dim E�0 D �.F�; 0/ D �.F ; 0/ D dim E0: �

Proposition 4.4. If �.F ; 0/ D �.F�; 0/, the following equalities hold (on some
neighborhood of the critical point 0 where the involved maps are defined):

.i/  D  �,
.ii/ 
jE�

D 
�.

Proof. By Lemma 4.3 (ii), the domains of the maps and � are open neighborhoods
of 0 in E0 D E�0. Up to shrinking these neighborhoods, we can assume that
both  and  � have common domain V0 � E0. By Lemma 4.2 (iii) we have
 .0/ D  �.0/ D 0, and all we have to do in order to conclude the proof of (i) is to
show that, for each v0 2 V0 n ¹0º, the maps  �.v0/ and  .v0/ are implicitly defined
by the same equation, that is

P˙ 
rF .v0 C  .v0//� D 0 D P˙ 
rF .v0 C  �.v0//
�
:

This is easily verified since, by (4.1) and (4.7), we have

P˙.rF .v0 C  �.v0/// D P�̇ .rF�.v0 C  �.v0/// D 0:

For (ii), up to shrinking the domains of 
 and 
�, we can assume that they are
maps of the form 
 W V ! U and 
� W V� ! U�, where V� D V \E�. Being 
 and

� homeomorphisms onto their images, we can equivalently prove that 
�1 D 
�1�
on the open set 
�.V�/ � U�. To begin with, notice that (4.5) readily implies that
the flow ‚H� is the restriction of the flow ‚H to E�˙ n ¹0º, i.e.

‚H .�; v˙/ D ‚H�.�; v˙/; 8v˙ 2 E�˙ n ¹0º:
By Lemma 4.2 (iv) and since  D  �, for each v D v0 C v˙ 2 
�.V�/ we have


�1.v/ D v0 C‚H .�.v �  .v0//; v˙ �  .v0//;

�1� .v/ D v0 C‚H .��.v �  .v0//; v˙ �  .v0//:

Hence, in order to conclude the proof of (ii) we just need to show that, for each v in the
domain of ��, we have �.v/ D ��.v/. This is easily verified since, by Lemma 4.2 (iv),
�.v/ and ��.v/ are implicitly defined by the same equation

1

2

˝
H ‚H .�.v/; v

˙/;‚H .�.v/; v˙/
˛
E
D F



vC  .v0/� � F



v0 C  .v0/�

D 1

2

˝
H ‚H .��.v/; v˙/;‚H .��.v/; v˙/

˛
E
:

�

Corollary 4.5. If �.F ; 0/ D �.F�; 0/ then F ˙jE�
D F�̇ and F 0 D F 0� .
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4.3. Local homology. Before going to the proof ofTheorem 4.1, we need to establish
another naturality property, this time for the isomorphism between the local homology
of F at 0 and the homology of the corresponding Gromoll–Meyer pairs. For the
reader’s convenience, let us briefly recall the needed definition applied to our setting.
We denote by ˆF the anti-gradient flow of F , i.e.

@ˆF

@t
.t;y/ D �rF .ˆF .t;y//; ˆF .0; �/ D idE :

A pair of topological spaces .W ;W�/ is called a Gromoll–Meyer pair for F at the
critical point 0 when

(GM1) W � E is a closed neighborhood of 0 that does not contain other critical
points of F ;

(GM2) if F .0/ D c, there exists � > 0 such that Œc � �; c/ does not contain critical
values of F , and W \ .F /c�� D ¿;

(GM3) if t1 < t2 are such that ˆF .t1;y/; ˆF .t2;y/ 2 W for some y 2 E , then
ˆF .t;y/ 2 W for all t 2 Œt1; t2�;

(GM4) W� D ¹y 2 W jˆF ..0;1/ � ¹yº/ � E nWº is a piecewise submanifold
of E transversal to the flow ˆF .

It is always possible to build a Gromoll–Meyer pair .W ;W�/ for F at 0, and we
have H�.W ;W�/ ' C�.F ; 0/, see [Ch, page 48].

Lemma 4.6. Let .W ;W�/ be a Gromoll–Meyer pair for F at 0. Then, the following
holds.

.i/ The pair .W�;W��/ WD .W \ E�;W� \ E�/ D .J�1.W/; J�1.W�// is a
Gromoll–Meyer pair for F� D F jE�

at 0.

.ii/ Consider the restrictions of J W E� ,! E given by

J W ..F�/c [ ¹xº; .F�/c/ ,! ..F /c [ ¹xº; .F /c/;
J W .W�;W��/ ,! .W ;W�/:

These restrictions induce the homology homomorphisms

J� W C�.F�; 0/! C�.F ; 0/ and J� W H�.W�;W��/! H�.W ;W�/:

Then, there exist homology isomorphisms �.W�;W��/ and �.W ;W�/ such that the
following diagram commutes.

C�.F�; 0/
J� ��

	.W�;W��/ '

��

C�.F ; 0/

	.W;W�/'

��
H�.W�;W��/

J� �� H�.W ;W�/
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Proof. Part (i) just requires the straightforward verification that the pair .W�;W��/
satisfies conditions (GM1),…,(GM4). Part (ii) requires to examine the isomorphism
between the homology of a Gromoll–Meyer pair and a corresponding local homology
group (we refer the reader to [Ch, page 48] for more details on what we claim). The
point, here, is to show that this isomorphism is given by the composition of homology
isomorphisms induced by maps, so that the assertion follows from the functoriality
of singular homology.

Notice that, by the assumption (4.1), the anti-gradient flow ˆF of F restricts on
E� to the anti-gradient flow ˆF� of the restricted functional F�. We introduce the
sets Y and Y� given by

Y WD ˆF .Œ0;1/ �W/ ;

Y� WD ˆF� .Œ0;1/ �W�/ D ˆF .Œ0;1/ �W�/ D Y \E�;

and we consider the following diagram.

C�.F�; 0/
J� �� C�.F ; 0/

H� .Y� \ .F�/c [ ¹0º;Y� \ .F�/c/ ��

'

��

'

��

H� .Y \ .F /c [ ¹0º;Y \ .F /c/

'

��

'

��
H� .Y�;Y� \ .F�/c/ �� H� .Y;Y \ .F /c/

H�.W�;W��/
J� ��

'

��

H�.W ;W�/

'

��

In this diagram, all the arrows are homology homomorphisms induced by inclusions.
Moreover, all the vertical arrows are isomorphisms (this fact is proved by anti-gradient
flow deformations and excisions), and we define the isomorphisms �.W�;W��/ and
�.W ;W�/ as the composition of the whole left vertical line and right vertical line
respectively. By the functoriality of singular homology, this diagram is commutative,
and the claim of part (ii) follows. �

After these preliminaries, let us go back to the proof of Theorem 4.1. First of all,
if we assume �.F ; 0/ D �.F�; 0/, Corollary 4.5 implies that F 0 D F 0� . Hence the
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inclusion J restricts to the identity map on the pair

..F 0� /c [ ¹0º; .F 0� /c/ D ..F 0/c [ ¹0º; .F 0/c/;

and therefore

C�.F 0� ; 0/ D C�.F 0; 0/: (4.8)

For the Morse functionals F�̇ and F ˙ we have the following result.

Lemma 4.7. If .�.F ; 0/; �.F ; 0// D .�.F�; 0/; �.F�; 0// then the inclusion J , re-
stricted as a map

J W ..F�̇ /c [ ¹0º; .F�̇ /c/ ,! ..F ˙/c [ ¹0º; .F ˙/c/; (4.9)

induces the homology isomorphism J� W C�.F�̇ ; 0/
'�!C�.F ˙; 0/.

Proof. The fact that J restricts to a map of the form (4.9) is guaranteed by Corol-
lary 4.5. Moreover, Lemma 4.3 (i) guarantees that E�� D E�. Hence J further
restricts to a homeomorphism

QJ W .E� \ .F�̇ /c [ ¹0º;E� \ .F�̇ /c/
'�!.E� \ .F ˙/c [ ¹0º;E� \ .F ˙/c/;

and we obtain the following commutative diagram of inclusions.

..F�̇ /c [ ¹0º; .F�̇ /c/
� � J �� ..F ˙/c [ ¹0º; .F ˙/c/

.E� \ .F�̇ /c [ ¹0º;E� \ .F�̇ /c/
QJ

' ��
��

k� �

��

.E� \ .F ˙/c [ ¹0º;E� \ .F ˙/c/
��

k �

��

It is well known that k� and k are homotopy equivalences. Therefore J� D k� B QJ� B
.k��/�1 is a homology isomorphism. �

Proof of Theorem 4.1. The homeomorphisms
 and
� obtained by the Morse lemma
induce local homology isomorphisms 
� and 
�� such that the following diagram
commutes.

C�.F�; 0/
J� �� C�.F ; 0/

C�.F 0� C F�̇ ; 0/
J� ��

��� '

��

C�.F 0 C F ˙; 0/

��'

��
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Hence, we only need to prove that the lower horizontal homomorphism J� is an
isomorphism. We consider Gromoll–Meyer pairs .W˙;W�̇ / and .W0;W0�/ for F ˙
and F 0 respectively at 0, so that the cross product of these pairs, which is

.W ;W�/ WD .W˙ �W0; .W�̇ �W0/ [ .W˙ �W0�//;

is a Gromoll–Meyer pair for F 0 C F ˙ at 0. Then, by Lemma 4.6, we obtain
Gromoll–Meyer pairs for the functionals F�̇ , F 0� and F 0� CF�̇ at 0 respectively as

.W�̇ ;W�̇�/ WD .W˙ \E�;W�̇ \E�/ D .J�1.W˙/; J�1.W�̇ //;
.W0� ;W0��/ WD .W0 \E�;W0� \E�/ D .J�1.W0/; J�1.W0�//;
.W�;W��/ WD .W \E�;W� \E�/ D .J�1.W/; J�1.W�//

and, together with the Künneth formula, we obtain the following commutative dia-
gram.

C�.F 0� C F�̇ ; 0/
J� ��

	.W�;W��/ '

��

C�.F 0 C F ˙; 0/

	.W;W�/'

��
H�.W�;W��/

J� ��

KRunneth '
��

H�.W ;W�/

KRunneth'
��

H�.W�̇ ;W�̇�/
˝

H�.W0� ;W0��/

J� ˝J� ��
H�.W˙;W�̇ /

˝
H�.W0;W0�/

H�.F�̇ ; 0/
˝

H�.F 0� ; 0/

J� ˝J�

' ��

	
.W˙

� ;W˙
��/

˝ 	
.W0

� ;W0
��/ '

��

H�.F ˙; 0/
˝

H�.F 0; 0/

	
.W˙;W˙

� /
˝ 	

.W0;W0
�/'

��

The commutativity of the upper and lower squares follows from Lemma 4.6, while
the commutativity of the central square follows from the naturality of the Künneth
formula (see for instance [Ha, page 275]). By (4.8) and Lemma 4.7, the lower
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horizontal homomorphism J�˝ J� is an isomorphism, and so must be all the others
horizontal homomorphisms. �

4.4. Application to the Lagrangian action functional. We conclude this section
showing that the abstract Theorem 4.1 applies when J is the iteration map and F is
the mean action functional associated to a convex quadratic-growth Lagrangian. To
be more precise, the action functional does not fulfill the hypotheses of Theorem 4.1,
since it is not C 2 in general (the C 2-regularity is needed by the generalized Morse
lemma). However, we can still obtain the assertions of Theorem 4.1 by means of the
discretization technique developed in Section 3.

Let L W T �TM ! R be a convex quadratic-growth Lagrangian with action AŒ��

and let � W T Œ�� ! M be a contractible � -periodic solution of the Euler–Lagrange
system of L (namely, a contractible critical point of AŒ��) with AŒ��.�/ D c. In order
to simplify the notation, let us assume that � D 1.

Proposition 4.8. Let n 2 N be such that .�.�/; �.�// D .�.� Œn�/; �.� Œn�//. Then the
iteration map  Œn�, restricted as a map of pairs of the form

 Œn� W ..A/c [ ¹�º; .A/c/ ,! ..AŒn�/c [ ¹�º; .AŒn�/c/;

induces the homology isomorphism  Œn�� W C�.A; �/
'�!C�.AŒn�; � Œn�/.

Proof. By Corollary 3.11, for all k 2 N sufficiently big, the inclusion

� W ..Ak/c [ ¹�º; .Ak/c/ ,! ..A/c [ ¹�º; .A/c/

induces an isomorphism in homology. Now, let ƒŒn�
k

be the n-periodic analogue

of the k-broken Euler–Lagrange loop space ƒk (see Section 3.2). Namely, ƒŒn�
k

is the subspace of W 1;2.T Œn�IM/ consisting of those loops � W T Œn� ! M such
that dist.�. i

k
/; �. iC1

k
// < 	0 and �jŒi=k;.iC1/=k� is an action minimizer for each

i 2 ¹0; : : : ; nk � 1º (here, 	0 is the constant given by Proposition 3.1). We denote
by A

Œn�

k
the restriction of AŒn� to ƒŒn�

k
. Notice that the iteration map restricts as a

continuous map of pairs of the form

 Œn� W ..Ak/c [ ¹�º; .Ak/c/ ,! ..A
Œn�

k
/c [ ¹�º; .AŒn�

k
/c/: (4.10)

Moreover, as before, the inclusion

�Œn� W ..AŒn�

k
/c [ ¹�º; .AŒn�

k
/c/ ,! ..AŒn�/c [ ¹�º; .AŒn�/c/
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induces an isomorphism in homology, and the following diagram commutes.

C�.A; �/
 

Œn�
� �� C�.AŒn�; �/

C�.Ak; �/
 

Œn�
� ��

	� '

��

C�.AŒn�

k
; �/

	
Œn�
�'

��

By Proposition 3.4, up to choosing a sufficiently big discretization pass k 2 N, the
Morse index and nullity of the critical points of the action functional do not change
under discretization. Therefore, all we have to do in order to conclude the proof of the
proposition is to establish the analogous claim for the restricted iteration map (4.10).

Applying the localization argument of Section 3.2 around � , we can assume that
our convex quadratic-growth Lagrangian function has the form L W T�U�RN ! R,
where U is an open neighborhood of the origin in RN , and the corresponding action
and mean action have the form A W W 1;2.T IU/ ! R and AŒn� W W 1;2.T Œn�IU/ !
R. In this way we identify � with the point 0 2 W 1;2.T IU/. Notice that the claim
that we are proving is precisely the assertion of the abstract Theorem 4.1 when F is
the discrete mean action A

Œn�

k
and J is the iteration map  Œn�. All we have to do in

order to conclude is to verify that Theorem 4.1 applies in our situation.
First of all, we recall that an open neighborhood U� � ƒk of � 	 0 can be

identified with an open set of RNk by the diffeomorphism

� 7!
�
�.0/; �. 1

k
/; : : : ; �.k�1

k
/
�
; 8� 2 U�:

Analogously, we can identify an open neighborhood U � ƒŒn�
k

of � Œn� 	 0 with an
open set of RNnk by the diffeomorphism

� 7!
�
�.0/; �. 1

nk
/; : : : ; �.nk�1

nk
/
�
; 8� 2 U:

With these identifications, the iteration map Œn� is the restriction of an injective linear
map RNk ,! RNnk , that we still denote by  Œn�, given by

 Œn�.w/ D .w; : : : ; w„ ƒ‚ …
n times

/; 8w 2 RNk :

This map is an isometry with respect to the standard inner product hh � ; �ii on RNk and
the inner product hh � ; �iiŒn� on RNnk obtained multiplying by n�1 the standard one,
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i.e.

hhw; zii D
k�1X
jD0

˝
wj ; zj

˛
;

8w D .w0; : : : ; wk�1/;
z D .z0; : : : ; zk�1/ 2 RNk;

hhw0; z0iiŒn� D 1

n

nk�1X
jD0

˝
w0
j ; z

0
j

˛
;
8w0 D .w0

0; : : : ; w
0
nk�1/;

z0 D .z0
0; : : : ; z

0
nk�1/ 2 RNnk;

where h � ; �i denotes the standard inner product of RN .
Now, in order to conclude, the last hypothesis of Theorem 4.1 that must be verified

is the condition expressed in (4.1), that in our setting becomes

rA
Œn�

k
.�Œn�/ D  Œn� B rAk.�/; 8� 2 U�; (4.11)

where the gradients of the action functionals Ak and A
Œn�

k
are computed with respect

to the above inner products on RNk and RNnk .
For each � 2 U� and � 2 T�ƒk , we have

dAk.�/ � D
k�1X
hD0

Z .hC1/=k

h=k


h@vL.t; �; P�/; P�i C h@qL.t; �; P�/; �i�dt
D
k�1X
hD0

D
@vL.

h
k
; �.h

k
/; P�.h

k

�
// � @vL.hk ; �.hk /; P�.hk

C
//; �.h

k
/
E
:

This computation, together with Lemma 3.5, shows that rAk.�/ W T ! RN is the
element of T�ƒk given by

rAk.�/.
h
k
/ D @vL.hk ; �.hk /; P�.hk

�
//�@vL.hk ; �.hk /; P�.hk

C
//; 8h 2 ¹0; : : : ; k � 1º:

Analogously, for each � 2 T� Œn�ƒ
Œn�

k
we have

dA
Œn�

k
.�Œn�/ � D 1

n

n�1X
lD0

k�1X
hD0

D
@vL.

h
k
; �.h

k
/; P�.h

k

�
//

� @vL.hk ; �.hk /; P�.hk
C
//; �.h

k
C l/

E
;

and, from this computation, equation (4.11) readily follows. �
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5. Homological vanishing under iteration

In this section we prove that the elements of the homotopy and homology groups of
pairs of sublevels of the action functional (associated to a convex quadratic-growth
Lagrangian) are killed by the nth-iteration map, for n that is a sufficiently big power
of any given positive integer. This result was proved in the particular case of the
geodesics action functional by Bangert and Klingenberg [BK, Theorem 2], and then
extended by Long [Lo2, Section 5] to more general Lagrangian systems. Long’s
proof relies on an ad hoc homology theory, which he calls Finite Energy Homology,
in order to deal with technical issues concerning the regularity of the involved singular
simplices. Here, we provide a proof that makes use of the standard singular homology
theory.

Consider a convex quadratic-growth Lagrangian L W T � TM ! R with as-
sociated action AŒ��, � 2 N. As usual, let us put � D 1 in order to simplify
the notation. We denote by W 1;2

contr.T IM/ � W 1;2.T IM/ and, more generally, by
W
1;2

contr.T
Œn�IM/ � W 1;2.T Œn�IM/, the connected component of contractible loops.

Notice that the iteration map restricts to a map

 Œn� W W 1;2
contr.T IM/ ,! W

1;2
contr.T

Œn�IM/:

From now on we will implicitly consider the action functionals A and AŒn� restricted to
W
1;2

contr.T IM/ andW 1;2
contr.T

Œn�IM/ respectively. In particular, all the action sublevels
will be contained in this latter sets.

Theorem 5.1 (Homological vanishing). Let c1 < c2 � 1, where the sublevel
.A/c1

is not empty, and let Œ
� 2 H�..A/c2
; .A/c1

/. Then, for any integer p � 2,
there exists Nn D Nn.L; Œ
�; p/ 2 N that is a power of p such that  Œ Nn�� Œ
� D 0 in
H�..AŒ Nn�/c2

; .AŒ Nn�/c1
/.

Since  Œn� B  Œm� D  Œnm� for each n;m 2 N, the assertion of this theorem can
be rephrased as follows: for each n 2 N that is a sufficiently big power of the given
p 2 N, we have  Œn�� Œ
� D 0 in H�..AŒn�/c2

; .AŒn�/c1
/.

The proof of Theorem 5.1 is based on a homotopic technique that is essentially
due to Bangert (see [Ba, Section 3] or [BK, Theorem 1]). We recall that a homotopy
F W Œ0; 1� � .X;U / ! .Y;W / is said relative U when F.t; x/ D F.0; x/ for all
.t; x/ 2 Œ0; 1��U . For each q 2 N, we denote by�q the standard q-simplex in Rq .

Lemma 5.2. Let c1 < c2 � 1 and � W .�q; @�q/! ..A/c2
; .A/c1

/ be a singular
simplex, i.e. Œ�� 2 �q..A/c2

; .A/c1
/. Then, there exists Nn D Nn.L; �/ 2 N and, for

every integer n � Nn, a homotopy

B Œn�
 W Œ0; 1� � .�q; @�q/! ..AŒn�/c2
; .AŒn�/c1

/ relative @�q;
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which we call Bangert homotopy, such that B Œn�
 .0; �/ D � Œn� WD  Œn� B � and
B
Œn�

 .1;�q/ � .AŒn�/c1

. In particular,  Œn�� Œ�� D 0 in �q..AŒn�/c2
; .AŒn�/c1

/.

Proof. First of all, let us introduce some notation. For each path ˛ W Œx0; x1�! M ,
we denote by x̨ W Œx0; x1�!M the inverse path

x̨.x/ D ˛.x0 C x1 � x/; 8x 2 Œx0; x1�:

If we consider a second path ˇ W Œx0
0; x

0
1� ! M with ˛.x1/ D ˇ.x0

0/, we denote by
˛ � ˇ W Œx0; x1 C x0

1 � x0
0�!M the concatenation of ˛ and ˇ, namely

˛ � ˇ.x/ D
´
˛.x/; x 2 Œx0; x1�;
ˇ.x � x1 C x0

0/; x 2 Œx1; x1 C x0
1 � x0

0�:

Now, consider a continuous map � W Œx0; x1� ! W 1;2.T IM/, where Œx0; x1� �
R. For each n 2 N, we define � Œn� WD  Œn� B � W Œx0; x1� ! W 1;2.T Œn�IM/.
Now, we want to build another continuous map � hni W Œx0; x1�! W 1;2.T Œn�IM/ as
explained in the following. To begin with, let us denote by ev W W 1;2.T IM/! M

the evaluation map, given by

ev.�/ D �.0/; 8� 2 W 1;2.T IM/:

This map is smooth, which implies that the initial point curve evB� W Œx0; x1�!M is
(uniformly) continuous. In particular, there exists a constant 	 D 	.�/ > 0 such that,
for each x; x0 2 Œx0; x1� with jx � x0j � 	, we have that dist.ev B �.x/; ev B �.x0// is
less than the injectivity radius ofM . Here, we have denoted by “dist” the Riemannian
distance on M (with respect to its fixed Riemannian metric). Now, for each x; x0 2
Œx0; x1�with 0 � x0�x � 	, we define the horizontal geodesic �x

0

x W Œx; x0�!M as
the shortest geodesic that connects the points ev B�.x/ and ev B�.x0/. Notice that, by
Proposition 3.2, this geodesic depends smoothly on its endpoints. Then, let J 2 N
be such that x0CJ	 � x1 � x0C .J C1/	. For each x 2 Œx0; x1�we further choose
j 2 N such that x0C j	 � x � x0C .j C 1/	, and we define the horizontal broken
geodesics �xx0

W Œx0; x�!M and �x1
x W Œx; x1�!M by

�xx0
WD �x0C�

x0
� �x0C2�

x0C� � � � � � �xx0Cj�;

�x1
x WD �x0C.jC1/�

x � �x0C.jC2/�
x0C.jC1/� � � � � � �x1

x0CJ�:

We define a preliminary map Q� hni W Œx0; x1�! W 1;2.T Œn�IM/ in the following way.
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For each j 2 ¹1; : : : ; n � 2º and y 2 Œ0; x1�x0

n
� we put

Q� hni.x0 C y/ WD � Œn�1�.x0/ � �x0Cny
x0

� �.x0 C ny/ � �x0Cny
x0

;

Q� hni �x0 C j
n
.x1 � x0/C y

�
WD � Œn�j�1�.x0/ � �x0Cny

x0
� �.x0 C ny/

� �x1

x0Cny � � Œj �.x1/ � �x1
x0
;

Q� hni 
x0 C n�1
n
.x1 � x0/C y

� WD �.x0 C ny/ � �x1

x0Cny � � Œn�1�.x1/ � �x1

x0Cny :

For each x 2 Œx0; x1�, we reparametrize the loop Q� hni.x/ as follows: in the above
formulas, each fixed part �.x0/ and �.x1/ spends the original time 1, while the moving
parts �.x0 C ny/ and the pieces of horizontal broken geodesics share the remaining
time 1 proportionally to their original parametrizations. We define � hni W Œx0; x1�!
W 1;2.T Œn�IM/ as the obtained continuous path in the loop space (see the example
in Figure 3 (a)).

For each x 2 Œx0; x1�, we define the pulling loop y�.x/ W T ! M as the loop
obtained erasing from the formula of Q� hni.x/ the fixed parts �.x0/ and �.x1/ and
reparametrizing on Œ0; 1� (see the example in Figure 3 (b)). Notice that y� is inde-
pendent of the integer n 2 N and, for each x 2 N, the action A.y�.x// is finite and
depends continuously on x. In particular we obtain a finite constant

C.�/ WD max
x2Œx0;x1�

˚
A.y�.x//� D max

x2Œx0;x1�

²Z 1

0

L

�
t; y�.x/.t/; d

dt
y�.x/.t/

�
dt

³
<1;

and, for each n 2 N, the estimate

AŒn�.� hni.x// � 1

n

h
.n � 1/max ¹A.�.x0//;A.�.x1//º CA.y�.x//

i
� max ¹A.�.x0//;A.�.x1//º C C.�/

n
:

(5.1)

Now, let L � Rq be the straight line passing through the origin and the barycenter
of the standard q-simplex �q � Rq . According to the orthogonal decomposition
Rq D L?˚L, we can write the elements of�q as z D .y; x/ 2 L?˚L. For each
s 2 Œ0; 1� we denote by s�q the rescaled q-simplex, given by ¹sz j z 2 �qº. Varying
s from 1 to 0 we obtain a deformation retraction of �q onto the origin of Rq . For
each .y; x/ 2 s�q , we denote by Œx0.y; s/; x1.y; s/� � L the maximum interval
such that .y; x0/ belongs to s�q for all x0 2 Œx0.y; s/; x1.y; s/� (see Figure 4).

Consider the q-singular simplex � of the statement. For each n 2 N, we define
the homotopy B Œn�
 W Œ0; 1� ��q ! W 1;2.T Œn�IM/ by

B Œn�
 .s; z/ WD
´
.�.y; �/jŒx0.y;s/;x1.y;s/�/

hni.x/; z D .y; x/ 2 s�q;
� Œn�.z/; z 62 s�q;
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(a)

(b)

� h4i.0/

� h4i.1
4
C y/

� h4i.1/

� h4i.y/

� Œ4�.0/

� Œ3�.0/

� Œ2�.0/

�.4y/

�.4y/

�.4y/

�.4y/

�.4y/

�.1/

� Œ4�.1/

y�.y/

y�. j
4
C y/

y�.3
4
C y/

0 � y < 1=4

0 � y < 1=4

0 � y < 1=4

0 � y < 1=4

0 � y < 1=4, j 2 ¹1; 2º

Figure 3. (a) Description of � h4i W Œ0; 1�! W 1;2.T Œ4�IM/, obtained from a map � W Œ0; 1�!
W 1;2.T IM/. Here, for simplicity, we are assuming that the diameter of �.Œx0; x1�/ is less than
the injectivity radius of M , so that the horizontal geodesics are not broken. The arrows show
the direction in which the loop �.4y/ is pulled as y grows. (b) Description of the map of pulling
loops y� W Œ0; 1�! W 1;2.T IM/.
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s�q � �q

LL?

y x0.y; s/

x1.y; s/

Figure 4

for each .s; z/ 2 Œ0; 1� ��q . This homotopy B Œn�
 is relative @�q , for

B Œn�
 .s; z/ D � Œn�.z/; 8.s; z/ 2 Œ0; 1� � @�q;

and clearly B Œn�
 .0; �/ D � Œn�. Take � > 0 such that

max
z2�q

A.�.z// � c2 � �; max
z2@�q

A.�.z// � c1 � �:

For each s 2 Œ0; 1�, n 2 N and z D .y; x/ 2 s�q , by the estimate in (5.1) we have

AŒn�.BŒn�
� .s; z// � max ¹A.�.x0.y; s///;A.�.x1.y; s///º C C.�.y; �/jŒx0.y;s/;x1.y;s/�/

n
;

while, for each z 2 �q n s�q , we have

AŒn�.B Œn�
 .s; z// D A.�.z//:

In particular, there exists a finite constant

C.�/ WD max
®
C.�.y; �/jŒx0.y;s/;x1.y;s/�/ j s 2 Œ0; 1�; .y; x/ 2 s�q

¯
such that, for each n 2 N and .s; z/ 2 Œ0; 1� ��q , we have

AŒn�.B Œn�
 .s; z// � max
w2�q

¹A.�.w/º C C.�/

n
� c2 � � C C.�/

n
;

AŒn�.B Œn�
 .1; z// � max
w2@�q

¹A.�.w/º C C.�/

n
� c1 � � C C.�/

n
:

These estimates prove that, for n sufficiently big, the homotopy B Œn�
 satisfies the
properties stated in the lemma. �
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Remark 5.1. In Section 6.2 we will need the following observation. Assume that the
singular simplex � of Lemma 5.2 has W 1;1-bounded image, i.e. there exists a real
xR0 such that

sup
z2�q

ess sup
t2T

²ˇ̌̌
ˇ d

dt
�.z/.t/

ˇ̌̌
ˇ

.z/.t/

³
� xR0:

Then the Bangert homotopiesB Œn�
 haveW 1;1-bounded image as well, and this bound
is uniform in n � Nn.L; �/. In other words, there exists a real xR � xR0 such that, for
every integer n � Nn.L; �/, we have

sup
.s;z/2Œ0;1���q

ess sup
t2T Œn�

²ˇ̌̌
ˇ d

dt
B Œn�
 .s; z/.t/

ˇ̌̌
ˇ
B

Œn�
� .s;z/.t/

³
� xR:

Proof of Theorem 5.1. We denote by†.
/ the set of singular simplices in
 together
with all their faces, and by K � N the set of nonnegative integer powers of p, i.e.
K D ¹pn jn 2 N [ ¹0ºº. The idea of the proof is to apply Lemma 5.2 successively to
all the elements of†.
/. More precisely, for each singular simplex � W �q ! .A/c2

that belongs to †.
/, we will find Nn D Nn.L; �; p/ 2 K and a homotopy

P Œ Nn�
 W Œ0; 1� ��q ! .AŒ Nn�/c2
;

such that

(i) P Œ Nn�
 .0; �/ D � Œ Nn�,
(ii) P Œ Nn�
 .1;�q/ � .AŒ Nn�/c1

,

(iii) if �.�q/ � .A/c1
, then P Œ Nn�
 .s; �/ D � Œ Nn� for each s 2 Œ0; 1�,

(iv) P Œ Nn�
BFi
D P

Œ Nn�

 .�; Fi .�// for each i D 0; : : : ; q, where Fi W �q�1 ! �q is the

standard affine map onto the i th face of �q .

For each n 2 K greater than Nn, we define a homotopy P Œn�
 W Œ0; 1� ��q ! .AŒn�/c2

by P Œn�
 D  Œn= Nn� BP Œ Nn�
 . This homotopy satisfies the analogous properties (i),…,(iv)
in period n. Notice that property (iv) implicitly requires that Nn.L; �; p/ � Nn.L; � B
Fi ; p/ for each i D 0; : : : ; q.

Now, assume that such homotopies exist and put

Nn D Nn.L; Œ
�; p/ WD max ¹ Nn.L; �; p/ j � 2 †.
/º 2 K:

Then, we have a family of homotopies fP Œ Nn�
 j � 2 †.
/g satisfying the above prop-
erties. Therefore, a classical result in algebraic topology (basically, a variation of
the homotopic invariance of singular homology, see [BK, Lemma 1]) implies that
 
Œ Nn�� Œ
� D 0 in H�..AŒ Nn�/c2

; .AŒ Nn�/c1
/.

In order to conclude the proof, we only need to build the above homotopies. We do
it inductively on the degree of the relative cycle
. If
 is a 0-relative cycle, then†.
/
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is simply a finite set of contractible loops that is contained in .A/c2
. Let � 2 †.
/ be

one of these loops. If � 2 .A/c1
we simply set Nn D Nn.L; �; p/ WD 1 andP Œ Nn�� .s/ WD �

for each s 2 Œ0; 1�. If � 62 .A/c1
, since we are assuming that .A/c1

is non-empty,
we can find a continuous path � W .Œ0; 1�; ¹0; 1º/! .W

1;2
contr.T IM/; .A/c2

/ such that
�.0/ D � and �.1/ 2 .A/c1

. By Lemma 5.2, for every integer n � Nn.L; �/ there
exists a Bangert homotopy

B
Œn�

 W Œ0; 1� � .Œ0; 1�; ¹0; 1º/! .W

1;2
contr.T

Œn�IM/; .AŒn�/c2
/ relative ¹0; 1º

such that B Œn�
 .0; �/ D � Œn� and B Œn�
 .1; Œ0; 1�/ � .AŒn�/c2
. Then, we set

Nn D Nn.L; �; p/ WD minfn 2 K jn � Nn.L; �/g
and we define the map P Œ Nn�� W Œ0; 1�! .AŒ Nn�/c2

as P Œ Nn�� WD B Œ Nn�� .1; �/, see Figure 5.

B
Œ Nn�


Œ Nn� P

Œ Nn�
�

� � Œ Nn�

� 
Œ Nn�.1/

Figure 5

In case 
 is a q-relative cycle, with q � 1, we can apply the inductive hypothesis:
for every nonnegative integer j < q and for each j -singular simplex � 2 †.
/
we obtain Nn.L; �; p/ 2 K and, for every n 2 K greater or equal than Nn.L; �; p/,
a homotopy P Œn�� satisfying the above properties (i),…,(iv). Now, consider a q-
singular simplex � 2 †.
/. If �.�q/ � .A/c1

we simply set Nn D Nn.L; �; p/ WD 1
and P Œ Nn�
 .s; �/ WD � for each s 2 Œ0; 1�. Hence, let us assume that �.�q/ 6� .A/c1

.
We denote by Nn0 D Nn0.L; �; p/ the maximum of the Nn.L; �; p/’s for all the proper
faces � of � . For each n 2 K greater or equal than Nn0, every proper face � of �
has an associated homotopy P Œn�� W Œ0; 1���q�1 ! .AŒn�/c2

. For technical reasons,

let us assume that P Œn�� .s; �/ D P
Œn�
� .1

2
; �/ for each s 2 Œ1

2
; 1�. Patching together the

homotopies of the proper faces of � , we obtain

P Œn�
 W .Œ0; 12 � � @�q/ [ .¹0º ��q/! .AŒn�/c2
; 8n 2 K; n � Nn0;

such that P Œn�
 .0; �/ D � Œn� and P Œn�
 .�; Fi .�// D P
Œn�

BFi

for each i D 0; : : : ; q. By

retracting Œ0; 1
2
���q onto .Œ0; 1

2
�� @�q/[ .¹0º ��q/ we can extend the homotopy
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P
Œn�

 to the whole Œ0; 1

2
� ��q , obtaining

P Œn�
 W Œ0; 12 � ��q ! .AŒn�/c2
; 8n 2 K; n � Nn0: (5.2)

Notice that P Œ Nn
0�


 .1
2
; �/ is a singular simplex of the form

P Œ Nn0�

 .1

2
; �/ W .�q; @�q/! ..AŒ Nn0�/c2

; .AŒ Nn0�/c1
/:

Let us briefly denote this singular simplex by Q� . By Lemma 5.2, there exists Nn00 2 K
greater or equal than Nn.L; Q�/ and a Bangert homotopy

B
Œ Nn00�

Q
 W Œ0; 1� � .�q; @�q/! ..AŒ Nn0 Nn00�/c2
; .AŒ Nn0 Nn00�/c1

/ relative @�q;

such that B Œ Nn
00�

Q
 .0; �/ D Q� Œ Nn00� D P
Œ Nn0 Nn00�

 .1

2
; �/ and B Œ Nn

00�

Q
 .1;�q/ � .AŒ Nn0 Nn00�/c1
. Fi-

nally, we set Nn D Nn.L; �; p/ WD Nn0 Nn00 and we build the homotopyP Œ Nn�
 W Œ0; 1���q !
.AŒ Nn�/c2

extending the one in (5.2) byP Œ Nn�
 .s; �/ WD B Œ Nn00�

Q
 .2s�1; �/ for each s 2 Œ1
2
; 1�.

�

6. Convex quadratic modifications

Throughout this section, L W T � TM ! R will be a Tonelli Lagrangian with asso-
ciated action AŒ��, � 2 N. We want to show how several techniques from the W 1;2

Morse Theory of the action functional still apply in the Tonelli case. This will require
some work, since the Tonelli action functional AŒ�� is not even continuous on the
W 1;2 loop space.

First of all, notice that the Tonelli assumptions and the compactness of M imply
that L is uniformly fiberwise superlinear (namely, the limit in (T2) is uniform in
.t; q/ 2 T �M ). In fact, if H is the Hamiltonian that is Legendre dual to L (see
Section 2.3) and k > 0, for each .t; q; v/ 2 T � TM we have

L.t; q; v/ � max
jpjq	k

¹p.v/ �H .t; q; p/º � max
jpjq	k

¹p.v/º � max
jpjq	k

¹H .t; q; p/º
� k jvjq �max

®
H .t 0; q0; p0/ j .t 0; q0; p0/ 2 T � T�M; jp0jq0 � k¯:

In particular, if we put C.L/ WD max
®
H .t; q; p/ j .t; q; p/ 2 T � T�M; jpjq � 1

¯
,

we get
L.t; q; v/ � jvjq � C.L/; 8.t; q; v/ 2 T � TM:

Following Abbondandolo and Figalli [AF, Section 5], for each realR > 0we say that
a convex quadratic-growth Lagrangian LR W T � TM ! R is a convex quadratic
R-modification (or simply an R-modification) of the Tonelli Lagrangian L when:
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(M1) LR.t; q; v/ D L.t; q; v/ for each .t; q; v/ 2 T � TM with jvjq � R,

(M2) LR.t; q; v/ � jvjq � C.L/ for each .t; q; v/ 2 T � TM .

It is always possible to build a convex quadratic modification of a given Tonelli
Lagrangian (see [AF, page 637]). For eachR > 0, we will denote by LR an arbitrary
R-modification of the Tonelli Lagrangian L with associated action

A
Œ��
R W W 1;2.T Œ��IM/! R

for each � 2 N, i.e.

A
Œ��
R .�/ D

1

�

Z �

0

LR.t; �.t/; P�.t// dt; 8� 2 W 1;2.T Œ��IM/:

As before, we will simply write AR for A
Œ1�
R . Notice that, if � W T Œ�� !M is a smooth

� -periodic solution of the Euler–Lagrange system of L and R > maxfj P�.t/j�.t/ j t 2
T Œ��g, then � is a critical point of A

Œ��
R . Moreover, the Hessian of A

Œ��
R at � depends

only on L, since L and LR coincide along the lifted curve .�; P�/ W T Œ�� ! TM . In
particular, the Morse index and nullity pair .�.�/; �.�// of A

Œ��
R at � is independent of

the chosen R, and in fact coincides with the Conley–Zehnder–Long index pair of � .
One of the important features of convex quadratic modifications is given by the fol-

lowing a priori estimate, that is due toAbbondandolo and Figalli (see [AF, Lemma 5.2]
for a proof).

Lemma 6.1. For each Qa > 0 and Q� 2 N, there exists zR D zR. Qa; Q�/ > 0 such
that, for any R-modification LR of L with R > zR and for any � 2 ¹1; : : : ; Q�º,
the following holds: if � is a critical point of A

Œ��
R such that A

Œ��
R .�/ � Qa, then

maxfj P�.t/j�.t/ j t 2 T Œ��g � zR. In particular, � is a � -periodic solution of the

Euler–Lagrange system of L, and AŒ��.�/ D A
Œ��
R .�/.

6.1. Convex quadratic modifications and local homology. Let � be a contractible
integer periodic solution of the Euler–Lagrange system associated to the Tonelli La-
grangian L. In order to simplify the notation, we assume that the period of � is 1, so
that it is a map of the form � W T !M . We fix a real constant U > 0 such that

U > max
t2T

®j P�.t/j�.t/¯; (6.1)

and we consider aU -modification LU of L. Notice that, by (6.1), � is a critical point
of AU with AU .�/ D A.�/.

Now, for each k 2 N sufficiently big, we consider the k-broken Euler–Lagrange
loop spaceƒk D ƒk;LU

associated to LU (see Section 3.2), and we denote by AU;k

its discrete action, i.e. AU;k D AU jƒk
. We recall that ƒk is a finite dimensional
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submanifold of W 1;2.T IM/ and, in particular, its topology coincides with the one
induced as a subspace ofW 1;1.T IM/. Therefore, we can define an open set Uk �
ƒk by

Uk WD
n
� 2 ƒk

ˇ̌̌
max
t2T
fj P�.t/j�.t/g < U

o
:

Notice that, for k 2 N sufficiently big, � belongs to Uk . Moreover, the action AU

coincides with the Tonelli action A on the open set Uk . This allows us to define the
discrete Tonelli action Ak W Uk ! R by

Ak WD AjUk
D AU jUk

D AU;kjUk
:

Since AU;k is smooth, we readily obtain that the discrete Tonelli action Ak is smooth
as well. Moreover, the germ of Ak at � turns out to be independent of the chosen U
and of the chosen U -modification LU of L, as stated by the following.

Lemma 6.2. Consider a real constant R � U , an R-modification LR of L with
associated discrete action AR;k and a sufficiently big k 2 N so that both AR;k and
AU;k are defined. Then, there exists Vk � Uk that is an open subset of both ƒk;LU

and ƒk;LR
and that contains � . In particular AkjVk

D AU;kjVk
D AR;kjVk

.

Proof. The Lagrangian functions LU and LR coincide on a neighborhood of the
support of the lifted curve .�; P�/ W T ! TM . Therefore thek-broken Euler–Lagrange
loops of LU and LR that are close to � are the same, and the claim follows. �

Now, let c D Ak.�/ D A.�/. By Corollary 3.11 and the excision property, for
each k � Nk.LU ; c/, the inclusion

�k W ..Ak/c [ ¹�º; .Ak/c/ ,! ..AU /c [ ¹�º; .AU /c/

induces the local homology isomorphism

�k� W C�.Ak; �/
'�!C�.AU ; �/: (6.2)

For each R-modification LR of L, with R > U , the action AR coincides with Ak

on Uk . Hence, we also have an inclusion

jk W ..Ak/c [ ¹�º; .Ak/c/ ,! ..AR/c [ ¹�º; .AR/c/:

A priori, this inclusion might not induce an isomorphism in homology. However, we
have the following statement.

Lemma 6.3. The inclusion jk induces the homology isomorphism

jk� W C�.Ak; �/
'�!C�.AR; �/:
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Proof. Notice that, for each h 2 N, we have Uk � Uhk . Since hk � k � Nk.LU ; c/,
by Corollary 3.11 and the excision property, the inclusion

�hk W ..Ahk/c [ ¹�º; .Ahk/c/ ,! ..AU /c [ ¹�º; .AU /c/

induces the homology isomorphism �hk� W C�.Ahk; �/
'�!C�.AU ; �/, analogously

to �k in (6.2). We define an inclusion �h that factorizes �k as in the following diagram.

..Ak/c [ ¹�º; .Ak/c/
� � 	k ��

� �

�h

��

..AU /c [ ¹�º; .AU /c/

..Ahk/c [ ¹�º; .Ahk/c/

� �

	hk

�������������������������������

This inclusion induces the homology isomorphism

�h� D .�hk�/�1 B �k� W C�.Ak; �/
'�!C�.Ahk; �/:

Now, let us consider the R-modification LR of L. By Lemma 6.2, for each h 2 N,
we know that there exists an open neighborhood Vhk � Uhk of � that is also an open
subset of ƒhk;LR

, and in particular AhkjVhk
D AR;hkjVhk

D ARjVhk
. Applying

once more Corollary 3.11 and the excision property, we obtain that the inclusion

j 0
hk W ..AhkjVhk

/c [ ¹�º; .AhkjVhk
/c/ ,! ..AR/c [ ¹�º; .AR/c/:

induces an isomorphism in homology. Finally, consider the following diagram of
inclusions.

..Ak/c [ ¹�º; .Ak/c/
� 	

jk

����������������������������������� �

�h .�/

��

..Ahk/c [ ¹�º; .Ahk/c/
� � jhk �� ..AR/c [ ¹�º; .AR/c/

..AhkjVhk
/c [ ¹�º; .AhkjVhk

/c/

� �

j 0
hk

.�/

���������������������������������� �

excision
inclusion

.�/

��
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We already know that the inclusions marked with .
/ induce isomorphisms in ho-
mology. Therefore, jhk and jk also induce isomorphisms in homology. �

Remark 6.1. As a consequence of the above lemma, we immediately obtain that the
local homology groups C�.AR; �/ do not depend (up to isomorphism) on the chosen
real constant R � U and on the chosen R-modification LR.

6.2. Convex quadratic modifications and homological vanishing. All the argu-
ments of the previous section can be carried out word by word in an arbitrary period
n 2 N. Briefly, we introduce the open set

U
Œn�

k
WD
n
� 2 ƒŒn�

k

ˇ̌̌
max
t2T Œn�

fj P�.t/j�.t/g < U
o

and we define the discrete mean Tonelli action as

A
Œn�

k
WD AŒn�j

U
Œn�

k

W UŒn�

k
! R:

Then lemmas 6.2 and 6.3 go through. Notice that the image of Uk under the nth-
iteration map  Œn� is contained in U

Œn�

k
. Now, consider1 � c2 > c1 D c D A.�/,

and let us assume that � is not a local minimum of A. For each R � U , we have the
following diagram of inclusions.

..Ak/c1
[ ¹�º; .Ak/c1

/
� �  Œn�

��
� �

�

��

..A
Œn�

k
/c1
[ f� Œn�g; .AŒn�

k
/c1
/

� �

�Œn�

��

..AR/c2
; .AR/c1

/
� �  Œn�

�� ..AŒn�
R /c2

; .A
Œn�
R /c1

/

This latter, in turn, induces the following commutative diagram in homology.

C�.Ak; �/
 

Œn�
� ��

��

��

C�.AŒn�

k
; � Œn�/

�
Œn�
�

��
H�..AR/c2

; .AR/c1
/

 
Œn�
� �� H�..AŒn�

R /c2
; .A

Œn�
R /c1

/

Since � is not a local minimum of the action functional A, the sublevel .AR/c1
is

not empty. Hence, the homological vanishing (Theorem 5.1) guarantees that for each
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Œ
� 2 C�.Ak; �/ and p 2 N, there is Nn D Nn.LR; Œ
�; p/ 2 N that is a power
of p such that  Œ Nn�� B 	�Œ
� D 0. Here, we want to remark that we can choose Nn
independent of R.

Proposition 6.4. With the above assumptions, consider Œ
� 2 C�.Ak; �/ andp 2 N.
Then, there exist xR D xR.L; Œ
�; p/ > 0 and Nn D Nn.L; Œ
�; p/ 2 N that is a power of
p such that, for every realR � xR, we have Œ Nn�� B	�Œ
� D 0 in H�..AŒ Nn�

R /c2
; .A

Œ Nn�
R /c1

/.

Equivalently, we have that  Œ Nn�� Œ
� 2 ker 	Œ Nn�� .

Proof. We denote by †.
/ the set of singular simplices in 
 together with all
their faces, and by K � N the set of nonnegative integer powers of p, i.e. K D
¹pn jn 2 N [ ¹0ºº. Notice that, for each q-singular simplex � 2 †.
/ we have
�.�q/ � Uk , and in particular

sup
z2�q

ess sup
t2T

²ˇ̌̌
ˇ d

dt
�.z/.t/

ˇ̌̌
ˇ

.z/.t/

³
� U: (6.3)

Hence, we can proceed along the line of the proof of the homological vanishing
(Theorem 5.1): for each q-singular simplex � 2 †.
/ we get Nn D Nn.L; �; p/ 2 K
and, for every n 2 K greater or equal than Nn, a homotopy

P Œn�
 W Œ0; 1� ��q ! W
1;2

contr.T
Œn�IM/;

such that

(i) P Œn�
 .0; �/ D � Œn�,
(ii) AŒn�.P

Œn�

 .s; z// < c2 for each .s; z/ 2 Œ0; 1� ��q ,

(iii) AŒn�.P
Œn�

 .1; z// < c1 for each z 2 �q ,

(iv) if A.�.z// < c1 for each z 2 �q , then P Œn�
 .s; �/ D � Œn� for each s 2 Œ0; 1�,
(v) P Œn�
BFi

D P
Œn�

 .�; Fi .�// for each i D 0; : : : ; q, where Fi W �q�1 ! �q is the

standard affine map onto the i th face of �q .

Notice that, by (6.3) and remark 5.1, there exists a real constant xR.L; �; p/ > 0 such
that

sup
.s;z/2Œ0;1���q

ess sup
t2T Œn�

²ˇ̌̌
ˇ d

dt
P Œn�
 .s; z/.t/

ˇ̌̌
ˇ
P

Œn�
� .s;z/.t/

³
� xR.L; �; p/:

Now, we define

Nn D Nn.L; Œ
�; p/ WD max ¹ Nn.L; �; p/ j � 2 †.
/º;
xR D xR.L; Œ
�; p/ WD max

® xR.L; �; p/ j � 2 †.
/¯;
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and we consider an R-modification LR of R, with R � xR. Then, the family of
homotopies fP Œ Nn�
 j � 2 †.
/gwhich we have built satisfies the following properties:
for each q-singular simplex � 2 †.
/, the homotopy P Œ Nn�
 has the form

P Œ Nn�
 W Œ0; 1� ��q ! .A
Œ Nn�
R /c2

;

and moreover

(i) P Œ Nn�
 .0; �/ D � Œ Nn�,
(ii) P Œ Nn�
 .1;�q/ � .AŒ Nn�

R /c1
,

(iii) if �.�q/ � .AR/c1
, then P Œ Nn�
 .s; �/ D � Œ Nn� for each s 2 Œ0; 1�,

(iv) P Œ Nn�
BFi
D P Œ Nn�
 .�; Fi .�// for each i D 0; : : : ; q.

As in the proof of Theorem 5.1, by [BK, Lemma 1] we conclude that Œ Nn�� B	�Œ
� D 0
in H�..AŒ Nn�

R /c2
; .A

Œ Nn�
R /c1

/. �

7. Proof of Theorem 1.1

We are now ready to prove Theorem 1.1. Throughout the proof, we will adopt the
same notation of the previous section. In particular, we will implicitly assume that the
mean action functionals A

Œn�
R of theR-modifications of L, for each n 2 N andR > 0,

will be defined on the connected component of contractible loopsW 1;2
contr.T

Œn�IM/ �
W 1;2.T Œn�IM/. Moreover, all the homology groups that will appear from now on
are assumed to have coefficients in the field Z2.

Let us fix a prime p 2 N. We will denote by K � N the set of non-negative
integer powers of p, i.e. K D ¹pn jn 2 N [ ¹0ºº. We will proceed by contradiction,
assuming that the only contractible periodic solutions of the Euler–Lagrange system of
L with period in K and mean action less than a (the constant chosen in the statement)
are

�1; : : : ; �r :

Without loss of generality, we can assume that all these orbits have period 1 D p0.
This can be easily seen in the following way. If pn is the maximum of their basic
periods (and, in particular, they are allpn-periodic) we can build a Tonelli Lagrangian
zL W T � TM ! R by time-rescaling of L as

zL.t; q; v/ WD L.pnt; q; p�nv/; 8.t; q; v/ 2 T � TM:

For each j 2 N, a curve Q� W R!M is a j -periodic solution of the Euler–Lagrange
system of zL if and only if the reparametrized curve � W R ! M , given by �.t/ WD
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Q�.p�nt / for each t 2 R, is a pnj -periodic solution of the Euler–Lagrange system of
L. Moreover, Q� and � have the same mean action (with respect to the Lagrangians
zL and L respectively).

We recall thatN is the dimension of the closed manifoldM . For eachR > 0 and
n 2 N, the homology of the sublevel .AŒn�

R /a is non-trivial in degree N , i.e.

HN ..A
Œn�
R /a/ ¤ 0; 8R > 0; n 2 N: (7.1)

This is easily seen as follows. First of all, notice that the quantity in (1.1) is finite
(due to the compactness ofM ) and may be interpreted in the following way: for each
integer n 2 N, if we denote by �Œn� W M ,! W

1;2
contr.T

Œn�IM/ the embedding that maps
a point to the constant loop at that point, the quantity in (1.1) is equal to the maximum
of the functional AŒn� B �Œn� W M ! R. By our choice of the constant a, we have

A
Œn�
R B �Œn�.q/ D AŒn� B �Œn�.q/ < a; 8q 2M;

therefore �Œn� can be seen as a map of the form �Œn� W M ,! .A
Œn�
R /a. We denote

by ev W W 1;2.T IM/ ! M the evaluation map, defined by ev.�/ D �.0/ for each
� 2 W 1;2.T IM/. Since M is an N -dimensional closed manifold and we consider
homology groups with Z2 coefficients, we have that HN .M/ is non trivial. Therefore,
the following commutative diagram readily implies that �Œn�� is a monomorphism, and
the claim follows.

HN ..A
Œn�
R /a/

ev�

������������

0 ¤ HN .M/

	
Œn�
�

		����������� idM�

' �� HN .M/

Now, we want to show that there exists � 2 ¹�1; : : : ; �rº having mean Conley–
Zehnder index O�.�/ equal to zero (see Section 2.3). In fact, assume by contradiction
that O�.�v/ > 0 for each v 2 ¹1; : : : ; rº. By the first iteration inequality in (2.3), there
exists n 2 K such that

�.� Œn�v / > N; 8v 2 ¹1; : : : ; rº: (7.2)

By Lemma 6.1, if we choose a real constant R > zR.a; n/, we know that the only
critical points of A

Œn�
R in the open sublevel .AŒn�

R /a are � Œn�1 ; : : : ; �
Œn�
r . By (7.2) and

Corollary 3.12, the local homology of A
Œn�
R at the � Œn�v ’s vanishes in degree N , i.e.

CN .A
Œn�
R ; �

Œn�
v / D 0; 8v 2 ¹1; : : : ; rº:
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Then, by the Morse inequality

dim HN ..A
Œn�
R /a/ �

rX
vD1

dim CN .A
Œn�
R ; �

Œn�
v /;

we readily obtain that HN ..A
Œn�
R /a/ D 0, which contradicts (7.1).

Hence we can assume that �1; : : : ; �s , with 1 � s � r , are periodic solutions
with mean Conley–Zehnder index equal to zero, while �sC1; : : : ; �r (if s < r) are
the ones with strictly positive mean Conley–Zehnder index. By the second iteration
inequality in (2.3), we have

�.� Œn�v /C �.� Œn�v / � N; 8n 2 K; v 2 ¹1; : : : ; sº:

In particular �.� Œn�v /; �.�
Œn�
v / 2 ¹0; : : : ; N º for each n 2 K and v 2 ¹1; : : : ; sº, and

therefore we can find an infinite subset K0 � K such that

.�.� Œn�v /; �.� Œn�v // D .�.� Œm�v /; �.� Œm�v //; 8n;m 2 K0; v 2 ¹1; : : : ; sº:
For each n;m 2 K0 with n < m and for each real R > maxfj P�v.t/j�v.t/ j t 2
T ; v 2 ¹1; : : : ; sºg, Corollary 4.8 guarantees that the iteration map  Œm=n� induces
the homology isomorphism

 Œm=n�� W C�.AŒn�
R ; �

Œn�
v /

'�!C�.AŒm�
R ; � Œm�v /; 8v 2 ¹1; : : : ; sº: (7.3)

If s < r , by the first iteration inequality in (2.3), there exists n 2 K0 big enough so
that the periodic solutions �sC1; : : : ; �r with strictly positive mean Conley–Zehnder
index satisfy

�.� Œn�v / � n O�.�v/ �N > N; 8v 2 ¹s C 1; : : : rº:
By Corollary 3.12, for each real R > maxfj P�v.t/j�v.t/ j t 2 T ; v 2 ¹s C 1; : : : ; rºg,
we have CN .A

Œn�
R ; �

Œn�
v / D 0 for each v 2 ¹s C 1; : : : ; rº. If s D r we just set n WD 1.

If we further take R > zR.a; n/, where zR.a; n/ is the constant given by Lemma 6.1,
the Morse inequality

0 ¤ dim HN ..A
Œn�
R /a/ �

rX
vD1

dim CN .A
Œn�
R ; �

Œn�
v / D

sX
vD1

dim CN .A
Œn�
R ; �

Œn�
v /

implies that there is a � 2 ¹�1; : : : ; �sº such that

CN .A
Œn�
R ; �

Œn�/ ¤ 0:
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At this point, let us assume without loss of generality that 1 2 K0 (this can be achieved
by time-rescaling, as we discussed at the beginning of the proof). Then, by (7.3), we
have

 Œn�� W C�.AR; �/
'�!C�.AŒn�

R ; �
Œn�/ ¤ 0; 8n 2 K0: (7.4)

Now, we apply our discretization technique as in Section 6.1: we choose U > 0 as
in (6.1) and we get the discrete mean Tonelli action functional A

Œn�

k
W UŒn�

k
! R, for

some k 2 N sufficiently big and for every n 2 N. For each R � U , the homology
isomorphism induced by the iteration map in (7.4) fits into the following commutative
diagram.

C�.Ak; �/
 

Œn�
� ��

'

��

C�.AŒn�

k
; � Œn�/

'

��
C�.AR; �/

 
Œn�
�

' �� C�.AŒn�
R ; �

Œn�/

In this diagram, the vertical arrows are isomorphisms induced by inclusions (see
Lemma 6.3). Therefore, the iteration map induces a homology isomorphism

 Œn�� W C�.Ak; �/
'�!C�.AŒn�

k
; � Œn�/ ¤ 0; 8n 2 K0:

Let c1 D A.�/ and let � > 0 be small enough so that c2 WD c1C � < a and there
are no �v 2 ¹�1; : : : ; �rº with A.�v/ 2 .c1; c2/. By Lemma 6.1, for every n 2 K0
and R > zR.a; n/, the action functional A

Œn�
R does not have any critical point with

critical value in .c1; c2/. This implies that the inclusion

..A
Œn�
R /c1

[ ¹�º; .AŒn�
R /c1

/ ,! ..A
Œn�
R /c2

; .A
Œn�
R /c1

/

induces a monomorphism in homology (see [Ch, Theorem 4.2]), and therefore the
inclusion

	Œn� W ..AŒn�

k
/c1
[ ¹�º; .AŒn�

k
/c1
/ ,! ..A

Œn�
R /c2

; .A
Œn�
R /c1

/;

induces a monomorphism in homology as well. Summing up, for each R > zR.a; n/
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and n 2 K0, we have obtained the following commutative diagram.

0 ¤ CN .Ak; �/
 

Œn�
�

' ��
� �

�
Œ1�
�

��

CN .A
Œn�

k
; � Œn�/

� �

�
Œn�
�

��
HN ..AR/c2

; .AR/c1
/

 
Œn�
� �� HN ..A

Œn�
R /c2

; .A
Œn�
R /c1

/

This diagram contradicts the homological vanishing (Proposition 6.4). In fact, since
the local homology group CN .Ak; �/ is nontrivial and N > 0, � is not a local
minimum of Ak . For each nonzero Œ
� 2 CN .Ak; �/, there exist xR D xR.L; Œ
�; p/ 2
R and Nn D Nn.L; Œ
�; p/ 2 K such that, for each real R � xR and for each n 2 K
greater or equal than Nn, we have

 Œn�� B 	Œ1�� Œ
� D  Œn= Nn�� B  Œ Nn�� B 	Œ1�� Œ
�„ ƒ‚ …
D0

D 0;

therefore  Œn�� Œ
� 2 ker 	Œn�� .
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