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The asymptotic rank of metric spaces
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Abstract. In this article we define and study a notion of asymptotic rank for metric spaces
and show in our main theorem that for a large class of spaces, the asymptotic rank is charac-
terized by the growth of the higher isoperimetric filling functions. For a proper, cocompact,
simply connected geodesic metric space of non-positive curvature in the sense of Alexandrov
the asymptotic rank equals its Euclidean rank.
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1. Introduction

For a proper cocompact CAT.0/-space or a simply connected non-positively curved
Riemannian manifold X , the Euclidean rank is defined as the maximal n 2 N for
which Euclidean n-space Rn isometrically embeds into X . In this article we study
the following generalization of the Euclidean rank. Let .X; d/ be an arbitrary metric
space. A metric space .Z; dZ/ is said to be an asymptotic subset of X if there exist
a sequence of subsets Zj � X and rj ! 1 such that .Zj ; r�1

j d/ converges in the
Gromov–Hausdorff sense to .Z; dZ/.

Definition 1.1. The asymptotic rank of X , denoted by asrk.X/, is the supremum
over n 2 N for which there exists an asymptotic subset Z of X and a biLipschitz
embedding ' W K ! Z with K � Rn compact and Ln.K/ > 0.

Here Ln denotes the Lebesgue measure on Rn. One may equivalently use asymp-
totic cones instead of asymptotic subsets. It is not difficult to show that the asymptotic
rank is a quasi-isometry invariant, see Corollary 3.3. In Section 3 it will furthermore
be shown that asrk.X/ is the supremum over n 2 N for which there exists an n-
dimensional normed space whose unit ball is an asymptotic subset of X . If X is a

�Partially supported by NSF grant DMS 0707009.



248 S. Wenger CMH

Hadamard space, that is a complete metric space which is CAT.0/, then asrk.X/ is
the maximal geometric dimension of an asymptotic cone of X . If X is moreover
proper and cocompact then asrk.X/ coincides with its Euclidean rank. This follows
from work of Kleiner [18]. We refer to Section 3 below for details. For a general
metric space X we have the following properties:

(i) asrk.X/ � supfTopdim.C / W C � Z cpt, Z an asymptotic subset of Xg;

(ii) asrk.X// � supfn 2 N W 9 W Rn ! X quasi-isometricg:
In the above, Topdim.C / denotes the topological dimension of C . Clearly, if X is
a geodesic metric space then asrk.X/ D 0 if and only if X is bounded. Moreover,
if X is a geodesic Gromov hyperbolic metric space then asrk.X/ � 1 because every
asymptotic subset of X is isometric to a subset of a real tree. On the other hand, not
all geodesic spaces with asymptotic rank 1 are Gromov hyperbolic as the countable
wedge sum of circlesS1j of length j shows. However, a geodesic metric spaceX with
asrk.X/ D 1 which has a quadratic isoperimetric inequality for curves is Gromov
hyperbolic, see Corollary 1.3.

The main results of the present article characterize the asymptotic rank in terms
of the growth of higher isoperimetric filling functions FVkC1 for a class of metric
spaces including all Hadamard spaces. In the generality of (complete) metric spaces
X , a suitable notion of k-chains and k-cycles is provided by the theory of integral
currents, developed by Ambrosio and Kirchheim in [3]. Definitions will be given in
Section 2. For k � 0, the space of integral k-currents in X is denoted by Ik.X/.
Given an element T 2 Ik.X/, its mass is denoted by M.T /, its boundary (defined
if k � 1) is an element of Ik�1.X/ and denoted by @T . We recall that X is said to
admit an isoperimetric inequality of Euclidean type for Ik.X/ if there exists D > 0

such that
Fillvol.T / � DM.T /

kC1
k (1)

for every T 2 Ik.X/ with @T D 0, where Fillvol.T / is the least mass of an S 2
IkC1.X/with @S D T . Similarly,X is said to admit a cone type inequality for Ik.X/
if there exists C > 0 such that

Fillvol.T / � C diam.spt T /M.T / (2)

for every T 2 Ik.X/with @T D 0 and with bounded support spt T . Important classes
of spaces admitting cone type inequalities (in every dimension) include: Hadamard
spaces, more generally, geodesic metric spaces with a convex metric, and metric
spaces admitting a convex bicombing [27]; furthermore, Riemannian manifolds with-
out focal points. See Section 8 for more general classes and for details.

It was shown in [13] and [27] that metric spacesX which admit cone type inequal-
ities for Im.X/, m D 1; : : : ; k, admit isoperimetric inequalities of Euclidean type.
The converse is true for k D 1 for spaces .X; d/ in which, for some Q > 0, any two
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points x, x0 in X can be joined by a curve of length at mostQd.x; x0/. For k � 2, it
is not clear what the precise relationship between admitting isoperimetric inequalities
of Euclidean type and admitting cone type inequalities for Im.X/, m D 1; : : : ; k, is.
Note that, for example, (1) is stronger than (2) if T has sufficiently small mass and
large diameter.

We turn to the main results of the present paper. For k 2 N define the filling
volume function FVkC1 on X by

FVkC1.r/ WD supfFillvol.T / W T 2 Ik.X/ with @T D 0 and M.T / � rg: (3)

Note that X admits an isoperimetric inequality of Euclidean type for Ik.X/ if and

only if FVkC1.r/ � Dr
kC1

k for all r � 0 and for some constant D. Our main result
can now be stated as follows.

Theorem 1.2. Let X be a complete metric space such that, for some Q > 0, any
two points x; x0 in X can be joined by a curve of length at most Qd.x; x0/. Let
k 2 N and suppose X admits cone type inequalities for Im.X/ for m D 1; : : : ; k. If
k � asrk.X/ then

lim sup
r!1

FVkC1.r/
r

kC1
k

D 0: (4)

In other words, X admits a sub-Euclidean isoperimetric inequality for Ik.X/.

Theorem 1.2 seems to be new even for cocompact Hadamard manifolds. For
symmetric spaces of non-compact type a stronger result is known however: They
admit linear isoperimetric inequalities above the rank, thus FVkC1.r/ � Dr for all
r � 0 for some constant D. First applications of our theorem to the asymptotic
geometry of non-positively curved spaces are given in [20], see also [19]. A simple
consequence of the above theorem is:

Corollary 1.3. Let X be a geodesic metric space which admits a Euclidean isoperi-
metric inequality for I1.X/, that is, has a quadratic isoperimetric inequality for
curves. Then X is Gromov hyperbolic if and only if asrk.X/ � 1.

While one implication is clear, the other one follows from the theorem above and
the well-known fact, see e.g. [5], that geodesic metric spaces with a subquadratic
isoperimetric inequality for curves are Gromov hyperbolic.

Our next theorem gives a lower bound for the growth of the filling functions below
the asymptotic rank.

Theorem 1.4. LetX be a complete metric space such that, for someQ > 0, any two
points x; x0 in X can be joined by a curve of length at most Qd.x; x0/. Let k 2 N
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and suppose X admits isoperimetric inequalities of Euclidean type for Im.X/ with
some constantsDm, m D 1; : : : ; k � 1. If k < asrk.X/ then

FVkC1.r/ � FVkC1.X;L1.X/; r/ � "kr
kC1

k

for all r > 0 large enough. Here "k > 0 is a suitable constant only depending on
Dm, m D 1; : : : ; k � 1.

Here FVkC1.X;L1.X/; r/ is defined analogously to FVkC1.r/ but the filling
volume in X is replaced by the filling volume in L1.X/, see Section 2.2. The proof
of Theorem 1.4 will in fact show that not only the filling volume but also the filling
radius function is bounded from below. As regards the constants "k in the theorem,
it can be shown that a geodesic metric space X with asrk.X/ > 1 satisfies

lim sup
r!1

FV2.X;L1.X/; r/
r2

� 1

4�
: (5)

In [30] it is moreover proved that a geodesic metric space X which admits a (coarse)
quadratic isoperimetric inequality for curves and for which (5) fails is Gromov hy-
perbolic and thus all its asymptotic subsets are isometric to subsets of real a tree. As
a consequence of Theorems 1.2 and 1.4 we have:

Corollary 1.5. The higher isoperimetric filling functions FVk detect the asymptotic
rank of complete metric spaces which admit cone type inequalities and for which,
for some Q > 0, any two points can be joined by a curve of length at most Q times
their distance. In particular, they detect the Euclidean rank of cocompact Hadamard
spaces.

Related results have been obtained for symmetric spaces of non-compact type
([6], [24], [16]) and for proper cocompact Hadamard spaces ([29]) for the higher
divergence invariants divk of Brady and Farb.

As mentioned above, symmetric spaces X of non-compact type admit linear
isoperimetric inequalities for Ik.X/ for all k � asrk.X/. It is an open problem,
see [14], whether this holds for more general spaces such as for example for all
cocompact Hadamard manifolds. In [25] Papasoglu shows that for a simplicial com-
plex X with H1.X/ D H2.X/ D 0 and for which every extremal 2-cycle for FV3
has genus at most some fixed g 2 N, the following holds: If X admits a quadratic
isoperimetric inequality for curves and a sub-Euclidean isoperimetric inequality for
2-cycles then for every " > 0 there exists D" such that

FV3.r/ � D"r
1C"

for every r � 1. In the notation of [15], this says that X admits an isoperimetric
inequality of infinite (i.e. arbitrary large) rank for I2.X/. It seems to be unknown
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at present, whether in R3, endowed with a non-positively curved metric, extremal
2-cycles have a uniform bound on their genus.

Our next theorem shows that, under suitable conditions, an isoperimetric inequal-
ity of infinite rank for m-cycles is passed on to .mC 1/-cycles. More precisely:

Theorem 1.6. LetX be a complete metric space, k; k0 2 N with k0 � k, and suppose
that X admits a cone type inequality for Im.X/ for eachm D k0; : : : ; k. If X admits
an isoperimetric inequality of infinite rank for Ik0.X/ thenX admits an isoperimetric
inequality of infinite rank for Ik.X/.

For example, if X is geodesic and Gromov hyperbolic it can be shown that there
exists a geodesic thickeningX% ofX which admits cone type inequalities for Im.X%/
for allm � 1. In particular,X% is Gromov hyperbolic and admits a linear isoperimet-
ric inequality for I1.X%/. Thus, by the theorem above, X% admits an isoperimetric
inequality of infinite rank for Ik.X%/ for every k � 1. The following problem seems
to be unsolved:

Problem. Let Y be geodesic and Gromov hyperbolic, k � 2, and suppose Y admits
cone type inequalities for Im.Y / for m D 1; : : : ; k. Is it true that Y admits a linear
isoperimetric inequality for Ik.Y /?

This is known to be true under suitable conditions on the geometry on small scales,
see [22]. The problem seems to be open however even in the case of Hadamard spaces
that are Gromov hyperbolic but not proper and not cocompact.

One of the main ingredients in the proof of Theorem 1.2 is a ‘thick-thin’ decom-
position for integral currents which was proved in [31], see also Section 4. This
theorem can furthermore be used to establish polynomial isoperimetric inequalities
on the large scale for certain classes of metric spaces, including all simply connected
homogeneous nilpotent Lie groups endowed with a left-invariant Riemannian metric.
We will do this at the end of this paper, in Sections 7 and 8.

Acknowledgments. I would like to thank Bruce Kleiner, Urs Lang and Tim Riley
for several discussions on topics related to this paper. I would moreover like to thank
the referee for some useful comments.

2. Preliminaries

In this section we recall some definitions and facts that are used throughout the paper.

2.1. Lipschitz maps and metric derivatives. Let .X; dX / and .Y; dY / be metric
spaces. A map ' W X ! Y is said to be Lipschitz continuous if there exists C > 0
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such that

dY .'.x/; '.x
0// � CdX .x; x

0/ for all x; x0 2 X .

If there exists C > 0 such that

C�1dX .x; x0/ � dY .'.x/; '.x
0// � CdX .x; x

0/ for all x; x0 2 X

then ' is said to be biLipschitz continuous. Given a Lipschitz map ' W U ! X ,
where U � Rk is open, and given v 2 Rk , the metric directional derivative of ' at
z 2 U in direction v is defined by

md 'z.v/ WD lim
r&0

d.'.z C rv/; '.z//

r

if this limit exists. This notion of differentiability was first introduced and studied
by Kirchheim in [17], who in particular proved the following theorem. A similar
statement was proved by Korevaar–Schoen in [21] around the same time.

Theorem 2.1. Let .X; d/ be a metric space and ' W U ! X a Lipschitz map, where
U � Rn is open. Then for almost every z 2 U the metric directional derivative
md 'z.v/ exists for every v 2 Rn. Furthermore, there are compact sets Ki � U ,
i 2 N, such that Ln.U n [Ki / D 0 and such that the following property holds: For
every i and every " > 0 there exists r.i; "/ > 0 such that

jd.'.z C v/; '.z C w// � md 'z.v � w/j � "jv � wj (6)

for all z 2 Ki and all v;w 2 Rn satisfying jvj; jwj � r.i; "/ and z C w 2 Ki .

Here j � j denotes the Euclidean norm. If md 'z.v/ exists for all v 2 Rn and
satisfies (6) then md 'z is called metric derivative of ' at the point z. Clearly, the
metric derivative is a seminorm, and a norm if ' is biLipschitz. It is not difficult
to prove that if U � Rn is merely Borel measurable then md 'z can be defined at
almost every Lebesgue density point z 2 U by a simple approximation argument.
The following is then an easy consequence of the above theorem and the remarks
above.

Corollary 2.2. Let Z be a metric space and ' W K ! Z biLipschitz with K � Rn

Borel measurable and such that Ln.K/ > 0. Then there exists a norm k�k on Rn with
the following property: For every " > 0 and for every finite set S � Rn there exist
r > 0 and a map  W S ! Z such that  W .S; rk � k/ ! Z is .1C "/-biLipschitz.

This corollary will be used repeatedly in our paper.
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2.2. Integral currents in metric spaces. The theory of normal and integral currents
in metric spaces was developed by Ambrosio and Kirchheim in [3] and provides a
suitable framework for studying filling problems in the generality we wish to work in.
In Euclidean space Ambrosio–Kirchheim’s theory agrees with the classical theory of
Federer–Fleming normal and integral currents [11].

Let .X; d/ be a complete metric space and k � 0 and let Dk.X/ be the set of
.k C 1/-tuples .f; �1; : : : ; �k/ of Lipschitz functions on X with f bounded. The
Lipschitz constant of a Lipschitz function f on X will be denoted by Lip.f /.

Definition 2.3. A k-dimensional metric current T on X is a multi-linear functional
on Dk.X/ satisfying the following properties:

(i) If �ji converges point-wise to �i as j ! 1 and if supi;j Lip.�ji / < 1 then

T .f; �
j
1 ; : : : ; �

j

k
/ ! T .f; �1; : : : ; �k/:

(ii) If fx 2 X W f .x/ 6D 0g is contained in the union
Sk
iD1Bi of Borel sets Bi and

if �i is constant on Bi then

T .f; �1; : : : ; �k/ D 0:

(iii) There exists a finite Borel measure � on X such that

jT .f; �1; : : : ; �k/j �
kY
iD1

Lip.�i /
Z
X

jf jd� (7)

for all .f; �1; : : : ; �k/ 2 Dk.X/.

The space of k-dimensional metric currents on X is denoted by Mk.X/ and the
minimal Borel measure � satisfying (7) is called mass of T and written as kT k. We
also call mass of T the number kT k.X/ which we denote by M.T /. The support of
T is, by definition, the closed set spt T of points x 2 X such that kT k.B.x; r// > 0
for all r > 0. Note that currents have by definition finite mass. Recently, a variant
of Ambrosio–Kirchheim’s theory that does not rely on the finite mass axiom (iii) has
been developed by Lang in [23].

Every function � 2 L1.K;R/withK � Rk Borel measurable induces an element
of Mk.R

k/ by

ŒŒ� ��.f; �1; : : : ; �k/ WD
Z
K

�f det

�
@�i

@xj

�
dLk

for all .f; �1; : : : ; �k/ 2 Dk.Rk/. The restriction of T 2 Mk.X/ to a Borel set
A � X is given by

.T A/.f; �1; : : : ; �k/ WD T .f�A; �1; : : : ; �k/:
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This expression is well-defined since T can be extended to a functional on tuples for
which the first argument lies in L1.X; kT k/.

If k � 1 and T 2 Mk.X/ then the boundary of T is the functional

@T .f; �1; : : : ; �k�1/ WD T .1; f; �1; : : : ; �k�1/:

It is clear that @T satisfies conditions (i) and (ii) in the above definition. If @T also
satisfies (iii) then T is called a normal current. By convention, elements of M0.X/

are also called normal currents.
The push-forward of T 2 Mk.X/ under a Lipschitz map ' from X to another

complete metric space Y is given by

'#T .g; �1; : : : ; �k/ WD T .g B '; �1 B '; : : : ; �k B '/
for .g; �1; : : : ; �k/ 2 Dk.Y /. This defines a k-dimensional current on Y . It follows
directly from the definitions that @.'#T / D '#.@T /.

We will mainly be concerned with integral currents. We recall that an Hk-
measurable set A � X is said to be countably Hk-rectifiable if there exist countably
many Lipschitz maps 'i W Bi ! X from subsets Bi � Rk such that

Hk
�
An

[
'i .Bi /

�
D 0:

An element T 2 M0.X/ is called integer rectifiable if there exist finitely many
points x1; : : : ; xn 2 X and �1; : : : ; �n 2 Znf0g such that

T .f / D
nX
iD1

�if .xi /

for all bounded Lipschitz functions f . A current T 2 Mk.X/ with k � 1 is said to
be integer rectifiable if the following properties hold:

(i) kT k is concentrated on a countably Hk-rectifiable set and vanishes on Hk-
negligible Borel sets.

(ii) For any Lipschitz map ' W X ! Rk and any open set U � X there exists
� 2 L1.Rk;Z/ such that '#.T U / D ŒŒ� ��.

Integer rectifiable normal currents are called integral currents. The corresponding
space is denoted by Ik.X/. In case X D RN is Euclidean space, Ik.X/ agrees with
the space of k-dimensional Federer–Fleming integral currents in RN . If A � Rk

is a Borel set of finite measure and finite perimeter then ŒŒ�A�� 2 Ik.Rk/. Here, �A
denotes the characteristic function. IfT 2 Ik.X/ and if' W X ! Y is a Lipschitz map
into another complete metric space then '#T 2 Ik.Y /. Moreover, every Lipschitz
chain in a complete metric space X can be viewed as an integral current in X .
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2.3. Generalized filling volume and filling radius functions. Let X; Y be com-
plete metric spaces and suppose X isometrically embeds into Y . Then the filling
volume of T 2 Ik.X/ in Y is defined as

FillvolY .T / WD inffM.S/ W S 2 IkC1.Y /; @S D T g
where we agree on inf ; D 1. In case Y D X we have FillvolY .T / D Fillvol.T /.
Furthermore, for r � 0, we set

FVkC1.X; Y; r/ WD supfFillvolY .T / W T 2 Ik.X/; @T D 0;M.T / � rg:
Clearly, FVkC1.X;X; r/ D FVkC1.r/ and furthermore

FillvolY .T / � Fillvol.T / and FVkC1.X; Y; r/ � FVkC1.r/:

The left hand sides of both inequalities are smallest for Y WD L1.X/. Here,L1.X/
is the Banach space of bounded functions on X with the supremum norm

kf k1 WD sup
x2X

jf .x/j:

Similarly, the filling radius of T 2 Ik.X/ in Y is defined as

FillradY .T / WD inff% � 0 W 9S 2 IkC1.Y / with @S D T , spt S � B.spt T; %/g
and furthermore

FRkC1.X; Y; r/ WD supfFillradY .T / W T 2 Ik.X/; @T D 0;M.T / � rg:
The same obvious inequalities as for the filling volume hold for the filling radius,
namely

FillradY .T / � Fillrad.T / and FRkC1.X; Y; r/ � FRkC1.r/;

and the left-hand sides of both inequalities are smallest for Y WD L1.X/.

3. Basic properties of the asymptotic rank of a metric space

The following fact gives a somewhat more geometric definition of the asymptotic
rank.

Proposition 3.1. LetX be a metric space. Then asrk.X/ is the supremum over n 2 N
for which there exists an n-dim. normed space V, subsets Sj � X and a sequence
rj ! 1 such that .Sj ; r�1

j d/ ! B.0; 1/ � V in the Gromov–Hausdorff sense,
where B.0; 1/ denotes the closed unit ball in V . Here, by convention, the supremum
over an empty set is 0.
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Proof. This is an easy consequence of Corollary 2.2. �

The properties of asrk.X/ listed at the beginning of the article are a direct conse-
quence of the definition and of Proposition 3.1.

We next show that the asymptotic rank is a quasi-isometry invariant. Let X D
.X; d/ and X 0 D .X 0; d 0/ be metric spaces and recall that a map ' W X ! X 0 is said
to be a quasi-isometric embedding if there exist L � 1 and Q � 0 such that

L�1d.x; y/ �Q � d 0.'.x/; '.y// � Ld.x; y/CQ

for all x; y 2 X . If, in addition, for every x0 2 X 0 there exists x 2 X such that
d 0.x0; '.x// � Q then ' is called a quasi-isometry and X and X 0 are called quasi-
isometric. It can easily be shown that if ' W X ! X 0 is a quasi-isometry then there
exists a quasi-isometry '0 W X 0 ! X . We now have the following proposition.

Proposition 3.2. Let X and X 0 be metric spaces and Z an asymptotic subset of X .
If there is a quasi-isometric embedding ' W X ! X 0 and if Z is compact then there
exists an asymptotic subset Z0 of X 0 which is biLipschitz homeomorphic to Z.

From this we immediately obtain the quasi-isometry invariance of the asymptotic
rank:

Corollary 3.3. IfX andX 0 are metric spaces such that there exists a quasi-isometric
embedding ' W X ! X 0 then asrk.X/ � asrk.X 0/. In particular, if X and X 0 are
quasi-isometric then asrk.X/ D asrk.X 0/.

Proof of Proposition 3.2. Let Zj � X and rj be such that rj ! 1 and that
.Zj ; r

�1
j d/ converges in the Gromov–Hausdorff sense to .Z; dZ/. There exists a

metric space Y D .Y; dY / and isometric embeddings  j W .Zj ; r�1
j d/ ,! Y and

 W Z ,! Y such that

"j WD dH . j .Zj /;  .Z// ! 0;

where dH denotes the Hausdorff distance in Y . Choose a countable dense subset
fzigi2N � Z and for every i 2 N a sequence zji 2 Zj with dY . j .z

j
i /;  .zi // �

2"j . After possibly passing to a diagonal subsequence we may assume that for all
m; n 2 N the limit

%.zm; zn/ WD lim
j!1

1

rj
d 0.'.zjm/; '.zjn//

exists. Note that

L�1dZ.zm; zn/ � %.zm; zn/ � LdZ.zm; zn/



Vol. 86 (2011) The asymptotic rank of metric spaces 257

for all m; n 2 N. It follows from this and the triangle inequality that % defines a
metric on fzi W i 2 Ng which can be extended to a metric on Z satisfying

L�1dZ.z; z0/ � %.z; z0/ � LdZ.z; z
0/ (8)

for all z; z0 2 Z. Note that, in particular, fzigi2N is dense in Z also with respect to
the metric %.

Finally, set Z0
j WD f'.zji / W i 2 Ng � X 0. We show that .Z0

j ; r
�1
j d 0/ converges

in the Gromov–Hausdorff sense to .Z; %/. For this it clearly suffices to show that for
every " > 0 there exists j0 such thatˇ̌

%.zm; zn/ � r�1
j d 0.'.zjm/; '.zjn//

ˇ̌ � " (9)

for all m; n 2 N and all j � j0. Let "0 > 0 be small enough, to be determined later,
and choose i0 such that fzi W i � i0g is "0-dense in Z with respect to the metric dZ .
Let j0 be such that "j � "0 and r�1

j � "0 for all j � j0 and such that the left-hand
side of (9) is smaller than "0 whenever m; n � i0 and j � j0. Given m; n 2 N
choose Nm; Nn � i0 such that dZ.zm; z Nm/ � "0 and dZ.zn; z Nn/ � "0. We compute for
j � j0

j%.zm; zn/ � r�1
j d 0.'.zjm/; '.zjn//j

� j%.zm; zn/ � %.z Nm; z Nn/j C j%.z Nm; z Nn/ � r�1
j d 0.'.zjNm/; '.z

j
Nn//j

C r�1
j jd 0.'.zjNm/; '.z

j
Nn// � d 0.'.zjm/; '.zjn//j

� 2L"0 C "0 C r�1
j L

�
d.zjm; z

j
Nm/C d.zjn ; z

j
Nn/
�C 2r�1

j Q

� 2L"0 C "0 C L.2"0 C 8"j /C 2r�1
j Q

� .12LC 1C 2Q/"0:

Taking "0 WD "=.12L C 1 C 2Q/ this establishes (9) and therefore shows that
.Z0
j ; r

�1
j d 0/ converges in the Gromov–Hausdorff sense to .Z; %/. Since the iden-

tity map .Z; dZ/ ! .Z; %/ is L-biLipschitz by (8), this completes the proof of the
proposition. �

The main reason for using the terminology ‘asymptotic rank’ is its relationship
to the Euclidean rank in the case of proper cocompact Hadamard spaces. For an ac-
count on the theory of non-positively curved metric spaces and in particular Hadamard
spaces, see e.g. [4], [8], [9]. The following result is a direct consequence of Proposi-
tion 3.1 above and of Theorems A, C and D of Kleiner [18].

Theorem 3.4. Let X be a metric space. If X is a Hadamard space then asrk.X/
is the maximal geometric dimension of an asymptotic cone of X . If X is a proper
cocompact length space with a convex metric then

asrk.X/ D supfn 2 N W 9V n-dim. normed space and  W V ! X isometricg:
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In particular, if X is a proper cocompact Hadamard space then asrk.X/ equals its
Euclidean rank.

For the definition of geometric dimension see [18]. Here a geodesic metric space
X is said to have a convex metric if for every pair of constant-speed geodesic segments
c1; c2 W Œ0; 1� ! X the function t 7! d.c1.t/; c2.t// is convex.

4. A decomposition theorem for integral currents

A crucial ingredient in the proof of Theorem 1.2 will be Theorem 4.2 below, which
gives a kind of ‘thick-thin’ decomposition for integral currents. This theorem was
proved in [31] and can in fact be used to furthermore establish polynomial isoperi-
metric inequalities and Theorem 1.6, see Section 7. We start with the following
definition.

Definition 4.1. Let k � 2 and ˛ > 1. A complete metric space X is said to admit an
isoperimetric inequality of rank ˛ for Ik�1.X/ if there is a constantD > 0 such that

FVk.r/ � DIk;˛.r/ (10)

for all r � 0, where Ik;˛ is the function given by

Ik;˛.r/ WD
´
r

k
k�1 ; 0 � r � 1;

r
˛

˛�1 ; 1 < r < 1:

In [15], 6.32, the polynomial bound r
˛

˛�1 was termed an isoperimetric inequal-
ity of rank greater than ˛. Here we will use the shorter terminology of rank ˛.
Isoperimetric inequalities of rank k for Ik�1.X/ are exactly those of Euclidean type.

Now, set ƒ WD f.k; ˛/ 2 N � .1;1/ W k � 2g [ f.1; 0/g, let � 2 .0;1/ and
define auxiliary functions by

F1;0;� .r/ D �r and G1;0.r/ D r;

and for .k; ˛/ 2 ƒnf.1; 0/g by

Fk;˛;� .r/ WD
´
� � rk; 0 � r � 1;

� � r˛; 1 < r < 1;

and

Gk;˛.r/ WD
´
r

1
k ; 0 � r � 1;

r
1
˛ ; 1 < r < 1:

The thick-thin decomposition theorem alluded to above can now be stated as
follows.
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Theorem 4.2. Let X be a complete metric space, .k; ˛/ 2 ƒ, and suppose in case
k � 2 that X admits an isoperimetric inequality of rank ˛ for Ik�1.X/. Then for
every 	 2 .0; 1/ there exists � 2 .0; 1/ with the following property. Abbreviate
F WD Fk;˛;� and G WD Gk;˛ and let ı 2 .0; 1/. For every T 2 Ik.X/ there exist
R 2 Ik.X/ and Tj 2 Ik.X/, j 2 N, such that

T D RC
1X
jD1

Tj

and for which the following properties hold:

(i) @R D @T and @Tj D 0 for all j 2 N;

(ii) For all x 2 sptRn spt @T and all 0 � r � minf5ıG.M.R//; dist.x; spt @T /g

kRk.B.x; r// � 1

2
5�.kC˛/F.r/I

(iii) M.Tj / � .1 C 	/
�M.T / for all j 2 N, where 
 WD ı if k D 1 or 
 WD
maxfık; ı˛g otherwise;

(iv) diam.spt Tj / � 4G
�
��1 2

1��5
kC˛M.Tj /

	
;

(v) M.R/C 1��
1C�

P1
iD1M.Ti / � M.T /.

If k D 1, all statements of the theorem hold for 	 D 0 as well. For the proof
of Theorem 1.2 we will only need the case ˛ D k. The general case will be used
to prove new polynomial isoperimetric inequalities in Section 7. For the proof of
Theorem 4.2 we refer to [31].

We will furthermore need the following proposition from [31], see also [3].

Proposition 4.3. Let X be a complete metric space, k � 2, ˛ > 1, and suppose
that X admits an isoperimetric inequality of rank ˛ for Ik�1.X/ with a constant
Dk�1 2 Œ1;1/. Then for every T 2 Ik�1.X/ with @T D 0 and every " > 0 there
exists an S 2 Ik.X/ with @S D T , satisfying

M.S/ � min
˚
.1C "/Fillvol.T /;Dk�1Ik;˛.M.T //



(11)

andwith the followingproperty: For everyx 2 spt S andevery0 � r � dist.x; spt T /
we have

kSk.B.x; r// � Fk;˛;�.r/

where

� WD min

²
1

.3Dk�1/k�1˛k1
;

1

.3Dk�1/˛�1˛˛1

³

with ˛1 WD maxfk; ˛g.
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A direct consequence of the proposition is the following estimate on the filling
radius.

Corollary 4.4. Let X be a complete metric space, k � 2, ˛ > 1, and suppose
that X admits an isoperimetric inequality of rank ˛ for Ik�1.X/. Then for every
T 2 Ik�1.X/ with @T D 0 we have

FillradX .T / � Gk;˛.�
�1FillvolX .T // �

´
�0M.T /

1
k�1 ; M.T / � 1;

�0M.T /
1

˛�1 ; M.T / > 1;

where

�0 WD max

²�
Dk�1
�

� 1
k

;

�
Dk�1
�

� 1
˛
³
:

We end this section with the following useful fact.

Lemma 4.5. Let X be a complete metric space, .k; ˛/ 2 ƒ, and 0 < "; ı � 1. Set
F WD Fk;˛;" and G WD Gk;˛ and let R 2 Ik.X/ be such that @R D 0 and

kRk.B.x; r// � F.r/

for all x 2 sptR and all r 2 Œ0; ıG.M.R//�. Then there exist constants m 2 N and
E > 0 depending only on k, ˛, ı, " and a decomposition R D R1 C � � � C Rm with
Ri 2 Ik.X/, @Ri D 0, and

(i) kRik.B.x; r// � F.r/ for all x 2 sptRi and all r 2 Œ0; ıG.M.R//�,

(ii) M.R/ D M.R1/C � � � C M.Rm/,

(iii) diam.sptRi / � EG.M.Ri //.

It follows from (i) that, in particular,

M.Ri / � "minfık; ı˛g M.R/:

Proof. Set ˛0 WD ˛ if k � 2 or ˛0 WD 1 if k D 1. Fix x 2 sptR arbitrary and observe
that

kRk�B�x; t C 2�1ıG.M.R//
	�
B
�
x; t � 2�1ıG.M.R//

		 D 0

for some t 2 �5
2
ıG.M.R//; 3

"
maxfı1�k; ı1�˛0gG.M.R//

�
. ThusR1 WD R B.x; t/

satisfies R1 2 Ik.X/, @R1 D 0 and

kR1k.B.x0; r// � F.r/ (12)

for all x0 2 sptR1 and all 0 � r � ıG.M.R//. In particular, we have

M.R1/ � "minfık; ı˛0gM.R/ (13)
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and thus
diam.sptR1/ � EG.M.R1//

for a constant E depending only on k; ˛; ı; ". Proceeding in the same way with
R�R1 one eventually obtains a decompositionR D R1C� � �CRm with the desired
properties. The bound on m clearly follows from (13). �

5. Sub-Euclidean isoperimetric inequalities

In this section we prove the main result of this paper, Theorem 1.2. We begin with
the following simple lemma.

Lemma 5.1. Let k � 2, ˛ > 1 and 0 < 	; ı � 1. If L > 0 and 0 � ti < ıL are
such that

	

1X
iD1

ti � L

then 1X
iD1

Ik;˛.ti / � 2.1C ı	/

	
max

˚
.2ı/

1
k�1 ; .2ı/

1
˛�1



Ik;˛.L/:

Proof. Pick finitely many integer numbers 0 DW m0 < m1 < m2 < � � � < mj0
with

the property that
ıL < tmi�1C1 C � � � C tmi

< 2ıL

for each i D 1; : : : ; j0 and
1X

nDmj0
C1
tn � ıL:

Then j0 � 1
�ı

and hence

1X
iD1

Ik;˛.ti / �
j0X
iD1

Ik;˛.tmi�1C1 C � � � C tmi
/C Ik;˛

� 1X
nDmj0

C1
tn

�

� 1

	ı
Ik;˛.2ıL/C Ik;˛.ıL/

� 2.1C ı	/

	
max

˚
.2ı/

1
k�1 ; .2ı/

1
˛�1



Ik;˛.L/: �

Lemma 5.2. LetX be a complete metric space, k � 1, ˛ > 1, and supposeX admits
an isoperimetric inequality of rank ˛ for Ik.X/. In case k � 2 suppose furthermore
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that X also admits an isoperimetric inequality of rank k for Ik�1.X/. Let " > 0

and T 2 Ik.X/ with @T D 0. If Fillvol.T / � "IkC1;˛.M.T // then there exists
T 0 2 Ik.X/ with @T 0 D 0 and satisfying the following properties:

(i) Fillvol.T 0/ � "
2
IkC1;˛.M.T 0//,

(ii) M.T 0/ � AM.T /,

(iii) diam.spt T 0/ � BM.T 0/ 1
k ,

(iv) kT 0k.B.x; r// � Crk for all r 2 Œ0; 5ıM.T 0/ 1
k �.

Here, A;B;C; ı > 0 are constants depending only on k; ˛; " and the constants of the
isoperimetric inequalities.

Proof. Set 	 WD 1=3 and

ı WD min

²
3

8
;

"

64Dk
;

�
"

64Dk

�˛�1
k
³
;

where Dk is the constant for the isoperimetric inequality for Ik.X/. Let T D R CP1
jD1 Tj be a decomposition as in Theorem 4.2. It then follows from Lemma 5.1

that

Fillvol.T / � Fillvol.R/CDk

1X
iD1

IkC1;˛.M.Tj //

� Fillvol.R/C "

2
IkC1;˛.M.T //

and thus
Fillvol.R/ � "

2
IkC1;˛.M.T // � "

2
IkC1;˛.M.R//: (14)

This together with the isoperimetric inequality for Ik.X/ yields

M.R/ � min

²�
"

2Dk

� k
kC1

;

�
"

2Dk

�˛�1
˛
³
M.T /:

Let R D R1 C � � � CRm be a decomposition of R as in Lemma 4.5. By (14) and the
special properties of the decomposition there exists an i such that T 0 WD Ri satisfies

Fillvol.T 0/ � "

2
IkC1;˛.M.T 0//:

It is clear from Lemma 4.5 that T 0 satisfies all the desired properties. �

We are now ready for the proof of the sub-Euclidean isoperimetric inequality.
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Proof of Theorem 1.2. We argue by contradiction and suppose therefore that

lim sup
r!1

FVkC1.r/
r

kC1
k

� 2"0 > 0

for some "0 > 0. In particular, there is a sequence Tm 2 Ik.X/ with @Tm D 0 and
such that M.Tm/ ! 1 and

Fillvol.Tm/ � "0M.Tm/
kC1

k (15)

for every m 2 N. By Theorem 1.2 of [27], X admits an isoperimetric inequality of
Euclidean type for Ik.X/ and, if k � 2 also one for Ik�1.X/. Therefore we may
assume by Lemma 5.2 that

diam.spt Tm/ � BM.Tm/
1
k (16)

and
kTmk.B.x; r// � Crk (17)

for all x 2 spt Tm and all r 2 Œ0; 5ıM.Tm/
1=k�, whereB;C; ı are constants indepen-

dent ofm. We set rm WD M.Tm/
1
k and note that rm ! 1. We chooseSm 2 IkC1.X/

with @Sm D Tm and

M.Sm/ � DkŒM.Tm/�
kC1

k

and with the volume growth property of Proposition 4.3. We define a sequence
of metric spaces Xm WD .X; 1

rm
dX / where dX denotes the metric on X . Setting

Zm WD spt Sm � Xm it follows directly from Proposition 4.3 and (16) and (17) that
the sequence .Zm; 1rmdX / is uniformly compact. Therefore, by Gromov’s compact-
ness theorem [12] there exists (after passage to a subsequence) a compact metric
space .Z; dZ/ and isometric embeddings 'm W .Zm; 1rmdX / ,! .Z; dZ/ and such
that 'm.Zm/ is a Cauchy sequence with respect to the Hausdorff distance. Denote
by S 0

m the current Sm viewed as an element of IkC1.Xm/. Since M.'m#S
0
m/ � Dk

and M.@.'m#S
0
m// D 1 we may assume by the compactness and closure theorems

for currents that 'm#S
0
m weakly converges to some S 2 IkC1.Z/. We first show that

@S 6D 0. For this we choose xm 2 spt S 0
m arbitrarily and define an auxiliary metric

space Y as the disjoint union
F1
mD1Xm and endow it with the metric dY in such a

way that dY jXm�Xm
D 1

rm
dX as well as

dY .y; y
0/ D 1

rm
dX .y; xm/C 3C 1

rm0

dX .y
0; xm0/

whenever y 2 Xm and y0 2 Xm0 with m0 6D m. It is clear that Y admits a local cone
type inequality for Il.Y /, l D 1; : : : ; k, in the sense of [28] and that any two points
in Y at distance less than 2 can be joined by a curve of length at most Q times their
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distance. Denote by T 0
m the current Tm viewed as an element of Ik.Y / and note that

M.T 0
m/ D 1. Now T 0

m cannot weakly converge to 0 since otherwise, by Theorem 1.4
in [28], we have Fillvol.T 0

m/ ! 0 and, in particular, there exist ySm 2 IkC1.Y / with
@ ySm D T 0

m for all m 2 N and such that M. ySm/ ! 0. Of course, it is not restrictive
to assume that spt ySm � Xm. Denote by zSm the current ySm viewed as a current in
X . Then zSm satisfies @ zSm D Tm and

M. zSm/
rkC1
m

D M. ySm/ ! 0;

which contradicts (15). Thus, T 0
m does not weakly converge to 0 and therefore there

exist " > 0 and Lipschitz maps f; �1; : : : ; �k 2 Lip.Y / with f bounded such that

T 0
m.f; �1; : : : ; �k/ � " for all m 2 N.

Note that [Zm � Y is bounded so that the functions �i are bounded on [Zm.
We define Lipschitz functions fm and �mi on 'm.Zm/ by fm.z/ WD f .'�1

m .z// and
�mi .z/ WD �i .'

�1
m .z// for z 2 'm.Zm/. Here, we view '�1

m as a map from '.Zm/

to Y D F1
lD1Xl with image in Xm � Y . By McShane’s extension theorem there

exist extensions Ofm; O�mi W Z ! R of fm and �mi with the same Lipschitz constants

as f and �i . By Arzelà–Ascoli theorem we may assume that Ofm and O�mi converge

uniformly to Lipschitz maps Of , O�i on Z. Finally, we abbreviate T 00
m WD 'm#T

0
m and

use Proposition 5.1 in [3] to estimate

@S. Of; O�1; : : : ; O�k/ D lim
m!1T 00

m.
Of; O�1; : : : ; O�k/

D lim
m!1

h
T 00
m.

Ofm; O�m1 ; : : : ; O�mk /C T 00
m.

Of � Ofm; O�1; : : : ; O�k/
C T 00

m.
Ofm; O�1; : : : ; O�k/ � T 00

m.
Ofm; O�m1 ; : : : ; O�mk /

i

� " � lim sup
m!1

h kY
iD1

Lip. O�i /
Z
Z

j Of � Ofmj dkT 00
mk
i

� lim sup
m!1

h
Lip. Ofm/

kX
iD1

Z
Z

j O�i � O�mi j dkT 00
mk
i

D ":

This shows that indeed @S 6D 0 and hence also S 6D 0. Now, since the Hausdorff
limit Z0 WD limH 'm.Zm/ � Z is an asymptotic subset of X and since spt S � Z0
and S 6D 0, Theorem 4.5 in [3] shows that there exists a biLipschitz map 
 W K �
RkC1 ! Z0 where K is compact and of strictly positive Lebesgue measure. This
is in contradiction with the hypothesis that k � asrkX and hence this completes the
proof. �
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The arguments in the proof above can easily be used to establish the following
result.

Theorem 5.3. Let k 2 N and let X be a complete metric space which admits an
isoperimetric inequality of Euclidean type for Ik.X/ and, in case that k � 2, also
one for Ik�1.X/. If k � asrk.X/ then

lim sup
r!1

FVkC1.X;L1.X/; r/
r

kC1
k

D 0:

Note that in contrast to the main theorem we do not assume here that X admits
cone type inequalities.

6. Lower bounds on the filling radius

In this section we prove the following theorem.

Theorem 6.1. Let X be a complete metric space such that, for some D0 > 0, any
two points x; x0 in X can be joined by a curve of length at most D0d.x; x0/. Let
k 2 N and supposeX admits isoperimetric inequalities of Euclidean type for Im.X/
with some constantsDm, m D 1; : : : ; k � 1. If k < asrk.X/ then

FRkC1.r/ � FRkC1.X;L1.X/; r/ � "kr
1
k

for all r > 0 large enough and for some "k > 0 depending only on Dm, m D
1; : : : ; k � 1.

Note that Theorem 1.4 is a consequence of the above since, by Corollary 4.4, we
have

FillradL1.X/.T / � C ŒFillvolL1.X/.T /�
1

kC1

for some constant C and all T 2 Ik.X/ with @T D 0.

Proof. Let Z be an asymptotic subset of X and ' W K � RkC1 ! Z a biLipschitz
map with K compact and such that LkC1.K/ > 0. Let k � k be a norm on RkC1
as in Corollary 2.2 and set V WD .RkC1; k � k/. Let fv1; : : : ; vkC1g � V and
fv�
1 ; : : : ; v

�
kC1g � V � be bases satisfying

kvik D 1 D kv�
i k and v�

i .vj / D ıij for all i , j .

Let Q denote the cube Q WD ˚PkC1
iD1 	ivi W 0 � 	i � 1



. For n D 1; : : : ; k C 1

denote by A.n/ the set of increasing functions

˛ W f1; : : : ; ng ! f1; : : : ; k C 1g;
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and by L˛ the subspace generated by fv˛.1/; : : : ; v˛.n/g whenever ˛ 2 A.n/. It is
clear that

1 � �m�
L˛
.v˛.1/ ^ � � � ^ v˛.n// � n

n
2 ;

where �m�
L˛

denotes the Gromov mass�-volume on L˛ and v˛.1/ ^ � � � ^ v˛.n/ is the
parallelepiped spanned by these vectors. Recall that for a compact set K � W in an
l-dimensional normed space the associated integer rectifiable current ŒŒK�� 2 �l.W /

satisfies kŒŒK��k.A/ D �m�
W .A/, see e.g. [30], Proposition 2.7. Fix m 2 N large

enough (as chosen below) and let Qn denote the n-skeleton of the cubical subdivision
of Q given by

Q0 WD Q \
°
2�m

kC1X
iD1

ıivi W ıi 2 Z
±

if n D 0 and

Qn WD f� D z C 2�m.L˛ \Q/ W z 2 Q0; ˛ 2 A.n/; � � Qg
if n 2 f1; : : : ; k C 1g. We furthermore set @Qn WD f� 2 Qn W � � @Qg. Let
s > 0 and " > 0 be arbitrary. By Corollary 2.2 there exists an r > 0 and a .1C "/-
biLipschitz map O W .@Q0; rk � k/ ! Z: The definition of asymptotic subset and the
fact that @Q0 is a finite set imply the existence of s0 � maxfs; 2mC2g and a .1C 2"/-
biLipschitz map W .@Q0; s

0k�k/ ! X . We write V 0 WD .RkC1; s0k�k/ and note that
by McShane’s extension theorem, there exists a .1C 2"/.kC 1/-Lipschitz extension
� W L1.X/ ! V 0 of the map  �1 W  .@Q0/ ! V 0. In the following, we regard
Q;Qn, and @Qn as subsets of V 0. We associate with @Qn the additive subgroup

Gn D ˚
T 2 In.V 0/ W T D P

ci ŒŒ�i ��; ci 2 Z; �i 2 @Qn


 � In.V 0/:

We now construct homomorphisms ƒn W Gn ! In.X/ and n W Gn ! InC1.V 0/ for
n D 0; 1; : : : ; k, with the property that for all T 2 Gn

(i) @ Bƒn D ƒn�1 B @ whenever n � 1,

(ii) M.ƒn.T // � C 0
nM.T /,

(iii) @n.T / D T � �#ƒn.T / � n�1.@T / whenever n � 1,

(iv) M.n.T // � 2�mD0
ns

0M.T /,

(v) spt.�#ƒn.T // � B.spt T; 2�mEns0/,
(vi) spt.n.T // � B.spt T; 2�mE 0

ns
0/.

Here, C 0
n, D0

n, En, E 0
n are constants depending only on D0; : : : ;Dn. For n D 0

we simply set ƒ0.ŒŒx��/ WD  #ŒŒx�� for each x 2 @Q0 and extend ƒ0 to G0 as
a homomorphism. Set furthermore 0 WD 0 and note that for n D 0 the above
properties are satisfied with C 0

0 WD 1;D0
0 WD 0;E0 WD 0;E 0

0 WD 0. Suppose now that
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ƒn�1 and n�1 have been defined for some n 2 f1; : : : ; kg and that they have the
properties listed above. In order to define ƒn let � 2 @Qn and note that

.2�ms0/n � M.ŒŒ���/ � n
n
2 .2�ms0/n:

If n D 1 there exists a Lipschitz curve of length at most .1C2"/D02
�ms0 connecting

the points  .@�/. This gives rise to an S 2 I1.X/ with @S D ƒ0.@ŒŒ���/ which
satisfies

M.S/ � .1C 2"/D02
�ms0 � .1C 2"/D0M.ŒŒ���/

and
spt.�#S/ � B.�; .1C 2"/2.k C 1/D02

�ms0/:

We define ƒ1 .ŒŒ���/ WD S . Clearly, ƒ1 satisfy properties (i) and (ii) with C 0
1 WD

.1C 2"/D0 and (v) with E1 WD .1C 2"/2.k C 1/D0. If n � 2 then

@ƒn�1 .@ŒŒ���/ D ƒn�2
�
@2ŒŒ���

	 D 0

and thus the isoperimetric inequality for In�1.X/ and Corollary 4.4 imply the exis-
tence of an S 2 In.X/ with @S D ƒn�1.@ŒŒ���/ and

M.S/ � Dn�1
�
M.ƒn�1 .@ŒŒ���//

� n
n�1 � C 0

n.2
�ms0/n � C 0

nM.ŒŒ���/;

where C 0
n WD Dn�1

�
2n.n � 1/n�1

2 C 0
n�1

� n
n�1 , and

spt.�#S/ � B
�
�;
�
En�1 C �0.1C 2"/.k C 1/.n � 1/ 1

2 .2nC 0
n/

1
n�1

�
2�ms0�:

We set ƒn.ŒŒ���/ WD S and extend ƒn to Gn linearly and note that properties
(i), (ii) and (v) are satisfied (after the obvious choice of En). This completes the
construction of ƒn. In order to define n, n � 1, let again � 2 @Qn be arbitrary.
Setting

T 0 WD ŒŒ��� � �#ƒn .ŒŒ���/ � n�1 .@ŒŒ���/

one easily checks that

@T 0 D @ŒŒ��� � �# .@ƒn .ŒŒ���// � @n�1 .@ŒŒ���/ D 0 and M.T 0/ � D00M.ŒŒ���/;

whereD00 WD ˚
1C Œ.1C 2"/.k C 1/�n C 0

nC2n.n�1/n�1
2 D0

n�1


. Using the isoperi-

metric inequality for In.V 0/ and Corollary 4.4 we find anS 2 InC1.V 0/with @S D T 0
and

M.S/ � zDnŒM.T 0/�
nC1

n � 2�m zDn.D00/
nC1

n n
nC1

n s0M.ŒŒ���/

and
spt.�#S/ � B

�
�;
�
En CE 0

n�1 C Q�0.D00/
1
n

p
n
�
2�ms0�;
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where zDn is the isoperimetric constant for In.V 0/ and Q�0 is the constant from Corol-
lary 4.4 for V 0. We define n .ŒŒ���/ WD S and extend it linearly to Gn. Clearly, n
satisfies the properties (iii), (iv) and (vi) with suitable choices of D0

n and E 0
n. This

concludes the construction of the homomorphisms ƒn and n for n D 0; 1; : : : ; k

with the desired properties.
Let now ŒŒQ�� 2 IkC1.V 0/ be the integral current associated withQ endowed with

the orientation v1 ^ � � � ^ vkC1 and set T WD ƒk .@ŒŒQ��/. By property (ii) we have

M.T / � 2.k C 1/C 0
kk

k
2 .s0/k :

Given an S 2 IkC1.L1.X// with @S D T we compute

@ .�#S C k.@ŒŒQ��// D �#.@S/C @.k.@ŒŒQ��//

D �#ƒk.@ŒŒQ��//C @.k.@ŒŒQ��//

D @ŒŒQ��;

where the last equality follows from property (iii). We therefore obtain

M.�#S/ � M.ŒŒQ��/ � M.k.@ŒŒQ��// � �
1 � 21�m.k C 1/k

k
2D0

k

�
.s0/kC1

and since S was arbitrary we conclude

FillvolL1.X/.T / � 1 � 21�m.k C 1/k
k
2D0

k

Œ.1C 2"/.k C 1/�kC1 .s
0/kC1:

From this and the isoperimetric inequality for Ik.X/ it follows that

 
1 � 21�m.k C 1/k

k
2D0

k

DkŒ.1C 2"/.k C 1/�kC1

! k
kC1

� .s0/k � M.T / � 2.k C 1/k
k
2C 0

k.s
0/k :

Furthermore, by the choice of fv1; : : : ; vkC1g, we have

Fillrad.@ŒŒQ��/ � As0

for some constant A > 0 only depending on k. We conclude that

FillradL1.X/.T / � A �E 0
k
2�m

.1C 2"/.k C 1/
s0:

Choose now m 2 N sufficiently large to conclude the proof of the theorem. �
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7. Polynomial isoperimetric inequalities and the proof of Theorem 1.6

In this section we show how the decomposition theorem, Theorem 4.2, can be used
to establish polynomial isoperimetric inequalities with exponent different from the
Euclidean one. This will allow to prove Theorem 1.6.

The following definition generalizes the notion of cone type inequalities.

Definition 7.1. Let k 2 N and 
; % > 0. A complete metric space X is said to admit
a diameter-volume inequality of type .
; %/ for Ik.X/ if there existsC 2 .0;1/ such
that for every T 2 Ik.X/ with @T D 0 and bounded support

Fillvol.T / � C diam.spt T /M.T / (18)

if diam.spt T / � 1 and

Fillvol.T / � C Œdiam.spt T /��M.T /% (19)

otherwise.

Diameter-volume inequalities of type .1; 1/ are exactly cone type inequalities.
On the other hand, easy examples of spaces admitting diameter-volume inequalities
of type .
; 1/ are simply connected homogeneous nilpotent Lie groups of class 
,
endowed with a left-invariant Riemannian metric, and more generally, metric spaces
all of whose subsets B with R WD diamB < 1 can be contracted along curves of
length at most AmaxfR;R�g and which satisfy a weak form of the fellow traveller
property (similar to that of asynchronous combings in geometric group theory). For
precise statements in this direction see Section 8.

Theorem 7.2. Let X be a complete metric space, k 2 N, 
; % > 0, and suppose X
admits a diameter-volume inequality of type .
; %/ for Ik.X/. If k D 1 set ˛0 WD 1.
If k � 2 then suppose that X admits an isoperimetric inequality of rank ˛k�1 for
Ik�1.X/ for some ˛k�1 > 1. If 
 C %˛k�1 > ˛k�1 then X admits an isoperimetric
inequality of rank

˛k WD 1C ˛k�1

 C %˛k�1 � ˛k�1

for Ik.X/ with a constant which depends only on k; 
; %; ˛k�1 and the constants
from the isoperimetric inequality for Ik�1.X/ and the diameter-volume inequality
for Ik.X/.

The definition of isoperimetric inequality of rank ˛ was given in Section 4. The
statement of the theorem can be reformulated as follows: IfX admits an isoperimetric
inequality for Ik�1.X/ with exponent � > 1 then

FVkC1.r/ � Dr%C�� �
�
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for all r � 1 and for a suitable constant D. Theorems 3.4.C and 4.2.A in [13] and
Theorem 1.2 in [27] are special cases of the above theorem with 
 D 1 and ˛k�1 D k.
Note also, that Theorem 1.6 stated in the introduction is a direct consequence of
Theorem 7.2. For simply connected homogeneous nilpotent Lie groups, Theorem 7.2
yields:

Corollary 7.3. Let X be a simply connected homogeneous nilpotent Lie group of
class 
, endowed with a left-invariant Riemannian metric. Then for every k � 1

there exists a constantD such that

FVkC1.r/ � Dr
1C �k

1C�C���C�k�1

for all r � 1.

For jet space Carnot groups, which are particular examples of simply connected
homogeneous nilpotent Lie groups,Young has recently obtained in [32] better bounds
for FVkC1.

Proof of Theorem 7.2. Set ı WD 	 WD 1=5 and set furthermore ˛ WD 0 in case k D 1

and ˛ WD ˛k�1 otherwise. Abbreviate F WD Fk;˛;� and G WD Gk;˛ , where � is the
constant of Theorem 4.2. Let T 2 Ik.X/ with @T D 0 and let a R, Tj be given
as in Theorem 4.2. Throughout this proof, the numbers (i) through (v) will refer to
the properties listed in Theorem 4.2. Furthermore all the constants El that appear
will depend only on k, ˛, � unless stated otherwise. Set T0 WD R. After possibly
applying Lemma 4.5 we may assume that

diam.spt Tj / � E1G.M.Tj //

for all j � 0 and for a constant E1. Suppose first that M.T / � 1. Then, by (v), we
have M.Tj / � 3=2 for all j � 0, so that

diam.spt Tj / � E2M.Tj /
1
k

for some constant E2. It follows from the diameter-volume inequality that for each
j � 0 there exists an Sj 2 IkC1.X/ with @Sj D Tj and

M.Sj / � E3M.Tj /
kC1

k

for someE3 depending only on k; ˛; � andCk; 
; %. This is clear if diam.spt Tj / � 1.
If, on the other hand, diam.spt Tj / > 1, then we have M.Tj / > E�k

2 and from this
the inequality readily follows. Finally, we have

1X
jD0

M.Sj / � E3

1X
jD0

M.Tj /
kC1

k � E3

h 1X
jD0

M.Tj /
ikC1

k � E3

�
3

2

kC1
k

M.T /
kC1

k :
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Therefore,
Pn
jD0 Sj is a Cauchy sequence with respect to mass and therefore con-

verges to some S 2 IkC1.X/, which clearly satisfies @S D T and

M.S/ �
1X
jD0

M.Sj / � E3

�
3

2

kC1
k

M.T /
kC1

k :

This proves the theorem if M.T / � 1. In case M.T / > 1 define J WD fj � 0 W
diam.spt Tj / > 1g. If j 2 J then, by the diameter-volume inequality, there exists an
Sj 2 IkC1.X/ with @Sj D Tj and

M.Sj / � CkM.Tj /
�
˛ C%:

On the other hand, if j 62 J then, again by the diameter-volume inequality, there
exists an Sj 2 IkC1.X/ with @Sj D Tj and

M.Sj / � Ck diam.spt Tj /M.Tj / � CkM.Tj /:

Since 
 C %˛ > ˛ and M.T / > 1 we have

1X
jD0

M.Sj / � Ck
X
j2J

M.Tj /
�
˛ C% C Ck

X
j 62J

M.Tj /

� Ck

hX
j2J

M.Tj /
i �

˛ C% C 3

2
CkM.T /

� 2Ck

�
3

2

 �
˛ C%

M.T /
�
˛ C%:

It now follows exactly as above that
Pn
jD0 Sj converges in mass to someS 2 IkC1.X/

which has the desired properties. This concludes the proof. �

8. Appendix: Metric spaces admitting cone type and diameter-volume
inequalities

Let .X; d/ be a metric space, B � X with diamB < 1, and h;H > 0. Suppose
there exists a Lipschitz map ' W Œ0; 1� � B ! X with the following properties:

(i) There exists x0 2 X such that '.0; x/ D x0 and '.1; x/ D x for all x 2 B .

(ii) The lengths of the curves t 7! '.t; x/, x 2 B , are bounded above by h.

(iii) For every x 2 B there exists a relatively open neighborhood Ux � B of x
and a continuous family %x0 , x0 2 U , of reparametrizations of Œ0; 1� such that
%x.t/ D t and

d.'.t; x/; '.%x0.t/; x0// � Hd.x; x0/ for all x0 2 Ux and all t 2 Œ0; 1�.
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Here, a map 
 W Œ0; 1� ! Œ0; 1� is said to be a reparametrization of Œ0; 1� if it is
continuous, non-decreasing and satisfies 
.0/ D 0 and 
.1/ D 1. We call ' as above
a Lipschitz contraction of B with parameters .h;H/.

Definition 8.1. Let X be a metric space and h;H W Œ0;1/ ! Œ0;1/ continuous
functions. If every subsetB � X withR WD diamB < 1 has a Lipschitz contraction
with parameters .h.R/;H.R// then X is said to admit generalized combings with
length function h and distortion function H .

Simple examples of spaces admitting generalized combings are given as follows:
Normed spaces, CAT.0/-spaces and, more generally, geodesic metric spaces with
convex metric (see Section 3 for the definition) admit generalized combings with
length function h.R/ WD R and distortion function H.R/ D 1. Simply connected
homogeneous nilpotent Lie groups of class c, endowed with a left-invariant Rieman-
nian metric, admit generalized combings with length function

h.R/ WD AmaxfR;Rcg

and distortion function H.R/ � L for constants A;L, see [26]. We now prove the
following proposition.

Proposition 8.2. LetX be a complete metric space, T 2 Ik.X/ a cycle with bounded
support and h;H > 0. Suppose there exists a Lipschitz contraction ' of B WD spt T
with parameters .h;H/. Then there exists S 2 IkC1.X/ with @S D T and such that

M.S/ � Œk.k C 1/�
k
2 hH kM.T /:

Before turning to the proof we mention the following immediate consequence of
the proposition. Given 
 � 1, � � 0 and A;L > 0 define

h�.r/ WD
´
Ar 0 � r � 1

Ar� 1 < r < 1 and H�.r/ WD
´
L 0 � r � 1

Lr � 1 < r < 1:

We have:

Corollary 8.3. LetX be a complete metric space. IfX admits generalized combings
with length function h� and distortion functionH� thenX admits a diameter-volume
inequality of type .
 C k�; 1/ for Ik.X/ for every k � 1. In particular, if 
 D 1 and
� D 0 then X admits a cone type inequality for Ik.X/.

For the definition of volume-diameter inequalities see Section 7.
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Proof of Proposition 8.2. By Theorem 4.5 of [3] it is enough to consider the case
T D  #ŒŒ� �� for a biLipschitz map  W K � Rk ! X and � 2 L1.K;Z/. Set
B WD spt T and let ' be a Lipschitz contraction of B . Set S WD '#.Œ0; 1� � T /,
where the product Œ0; 1�� T of an interval with T is defined as in [27], and note that
S 2 IkC1.X/ and @S D T . Let f and �1; : : : ; �kC1 be Lipschitz functions on X
with f bounded and such that Lip.�i / � 1 for all i . We define Q'.t; z/ WD '.t;  .z//

for t 2 Œ0; 1� and z 2 K and � WD .�1; : : : ; �kC1/. Let .t; z/ 2 Œ0; 1� � K be
such that � B Q' is differentiable at .t; z/ with non-degenerate differential, which we
denote by Q,  is metrically differentiable at z in the sense of [17] and the curve
�z.t/ WD Q'.t; z/ is metrically differentiable at t . We may assume without loss of
generality that � B Q'.t; z/ D 0. Denote by P the orthogonal projection of RkC1 onto
the orthogonal complement of Q.R � f0g/. We claim that

kP.Q.0; v//k �
p
k C 1H md z.v/

for all v 2 Rk . In order to see this fix v 2 Rknf0g and choose, for each r > 0

sufficiently small, some tr with t D % .zCrv/.tr/, where %x0 denotes the family of
reparametrizations of Œ0; 1� around  .z/. It is easy to see that jtr � t j � Cr for some
constant C and all r > 0 sufficiently small. It then follows that

kP.Q.0; v//k D lim
r&0

1

r
kP.� B '.t;  .z C rv//

� � B '.tr ;  .z///C P.� B '.tr ;  .z///k
� Lip.�/ lim sup

r&0

1

r
d.'.t;  .z C rv//; '.tr ;  .z///

�
p
k C 1H md z.v/:

This proves the claim and furthermore yields

jdetQj � .k C 1/
k
2H kJ1.md.�z/t /Jk.md z/:

We use this, the area formula in [17] and Lemma 9.2 and Theorem 9.5 in [3] to
conclude

jS.f; �1; : : : ; �kC1/j
�
Z
Œ0;1��K

j�.z/f . Q'.t; z// det.D.t;z/.� B Q'//jdLkC1.t; z/

� .k C 1/
k
2H k

Z
Œ0;1��K

j�.z/f .'.t;  .z///jJ1.md.�z/t /Jk.md z/dLkC1.t; z/

� Œk.k C 1/�
k
2H k

Z
Œ0;1��X

jf .'.t; x//jJ1.md.� �1.x//t /d.L
1 � kT k/.t; x/
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and thus
kSk � Œk.k C 1/�

k
2H k'#Œg.t; x/d.L

1 � kT k/�
with g.t; x/ WD J1.md.� �1.x//t /. This completes the proof. �

We finally mention that diameter-volume inequalities can also be established for
spaces with nice local geometry on which asynchronously combable groups with
polynomial length functions act properly and cocompactly by isometries. See for
example Chapter 10 of [10] or Part II of [7].
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