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Modular elliptic directions with complex multiplication (with an
application to Gross’s elliptic curves)
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Abstract. Let Af be the abelian variety attached by Shimura to a normalized newform f 2
S2.�1.N // and assume thatAf has elliptic quotients. The paper deals with the determination of
the one dimensional subspaces (elliptic directions) inS2.�1.N // corresponding to the pullbacks
of the regular differentials of all elliptic quotients ofAf . For modular elliptic curves over number
fields without complex multiplication (CM), the directions were studied by the authors in [8].
The main goal of the present paper is to characterize the directions corresponding to elliptic
curves with CM. Then we apply the results obtained to the case N D p2, for primes p > 3 and
p � 3 mod 4. For this case we prove that if f has CM, then all optimal elliptic quotients of
Af are also optimal in the sense that its endomorphism ring is the maximal order of Q.

p�p/.
Moreover, if f has trivial Nebentypus then all optimal quotients are Gross’s elliptic curve A.p/
and its Galois conjugates. Among all modular parametrizations J0.p

2/ ! A.p/, we describe
a canonical one and discuss some of its properties.
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1. Introduction

Let Qalg be a fixed algebraic closure of Q. An elliptic curve C defined over Qalg

is said to be modular if there is a non-constant homomorphism � W J1.N / ! C ,
where J1.N / denotes the jacobian of the modular curve X1.N /. Every modular
elliptic curve over Qalg is a quotient of some modular abelian variety Af attached
by Shimura to a normalized newform f . From now on, we shall always consider
parametrizations � W J1.N / ! C which factorize through such abelian varietiesAf ,
called in this paper modular abelian varieties of elliptic type.

A modular parametrization� W J1.N / ! C defined over a number fieldL � Qalg

induces an injection �� W �1.C=L/ ,! �1.J1.N /=L/. In what follows, we shall

�The first author is partially supported by DGICYT Grant BFM MTM2009-13060-C02-02, and the second
author by DGICYT Grant BFM MTM2009-13060-C02-01.
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identify �1.J1.N /=L/ with the subspace of cusp forms in S2.�1.N // whose q-
expansion lies in LŒŒq��, via h dq=q 7! h where q D exp.2�iz/.

The determination of the normalized cusp forms inS2.�1.N // associated with the
pullbacks ��.�1.C // was discussed by the authors in [8] for elliptic curves without
complex multiplication. In this paper, we shall deal with the complex multiplication
case that needs techniques ad hoc. The present case is substantially richer since it
requires the intervention of class field theory as well as the main theorem of complex
multiplication.

Shimura shows in [16] that all elliptic curves with complex multiplication (CM)
are modular. Due to Ribet [12], we know that Af has an elliptic quotient with CM
by an imaginary quadratic field K � Qalg if and only if f D f ˝ �, where � is the
quadratic Dirichlet character attached to K. In this case, there is a primitive Hecke
character  W I.m/ ! Qalg of conductor an ideal m of K such that the q-expansion
of the CM normalized newform f is given by

f D
X

.a;m/D1
 .a/qN.a/ D

1X
nD1

anq
n:

Here, I.m/ denotes the multiplicative group of fractional ideals of K relatively
prime to m, and the first summation is over integral ideals. The level of f is
N D N.m/ j�K j, the norm of m times the absolute value of the discriminant of
K. We consider the number fields Ef D Q.fang/ and E D Q.f .a/g/, generated
by the images of  . One has E D Ef � K, and we shall denote by ˆ the set of its
K-embeddings E ,! Qalg. The number field E is a CM field. Through the paper,
for all CM fields we shall denote by bar the canonical complex conjugation.

For future use, we recall that an abelian variety Y is called an optimal quotient
of an abelian variety X over a field k if there is a surjective morphism � W X ! Y

defined over k whose kernel is an abelian variety. In this case, every endomorphism
of X which leaves stable ker � induces an endomorphism of Y . The property of
being an optimal quotient is transitive. Hereafter, every Af is taken to be an optimal
quotient of J1.N /.

The plan of the paper is as follows. In Section 2, we study the decomposition
of Af over the quadratic field K for f with CM as before. This is an intermediate
step necessary to determine the elliptic directions we are interested in. We shall prove

Theorem 1.1. Let f 2 S2.�1.N // be a newform with CM and keep the above
notations. There is an abelian variety .A; �/ of CM type ˆ defined over K, with
� W E ,! End0K.A/, satisfying the following properties:

(i) A is an optimal quotient of Af over K and the pullback of �1.A/ corresponds
with the subspace generated by f�f W 	 2 ˆg;

(ii) �. .a//�.�f / D � .a/�f , for all a 2 I.m/ and 	 2 ˆ;
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(iii) � is an isomorphism;

(iv) if p is a prime ideal ofK with p − N , then the lifting of the Frobenius endomor-
phism acting on the reduction of A mod p is �. .p// or �. . Np// depending on
K ª Ef or K � Ef , respectively.

We remark that the above abelian variety A is simple over K, and that A is Af
over K when K ª Ef , while Af is isogenous over K to A � NA when K � Ef . To
encode both cases of part (iv) in Theorem 1.1, we shall denote by  0 the primitive
Hecke character mod xm defined as

 0.a/ D
´
 .a/ if K ª Ef ;

 . Na/ if K � Ef .

As it will be shown, one has m D xm in the first case.
Then we study the splitting field of A; that is, the smallest number field where

all endomorphisms of A are defined. We make use of class field theory to build a
certain abelian extension L=K attached to the Hecke character  0; the field L is a
cyclic extension of the Hilbert class field ofK and it is contained in the ray class field
mod xm. To simplify notation, the Artin automorphism

�
L=K

a

�
in Gal.L=K/ will be

often denoted by the same symbol representing the ideal a. In particular, one has

pˇ � ˇN.p/ .mod P/

for all ˇ 2 OL, where P is an unramified prime ideal of L over a prime ideal p ofK.
The extension L=K is characterized by the property that a viewed in Gal.L=K/ is
trivial if and only if  0.a/ 2 K�. The main result of Section 3 is the following

Theorem 1.2. Let A be as above. Then the following holds:

(i) There is an elliptic curve C defined over L with complex multiplication by the
ring of integers OK and such that A is isogenous over L to C dimA.

(ii) The field L is the smallest number field satisfying End0Qalg.A/ D End0L.A/.

(iii) There is a one-cocycle
 W I. xm/ ! L� satisfying
.a/ D  0.a/ for all a 2 I. xm/
with .L=K

a
/ D id in Gal.L=K/. The class of 
 in H 1.I. xm/; L�/ is uniquely

determined by this condition.

In view of (iii), the cohomology class of 
 depends intrinsically onA, and we shall
denote it by ŒA� 2 H 1.I. xm/; L�/. Section 4 is devoted to determining the elliptic
directions in �1.A/ in terms of ŒA�. To this end, for each one-cocycle 
 2 ŒA� and
	 2 ˆ, we introduce the sums

g� .
/ WD
X

a2Gal.L=K/

a�1

.a/

� 0.a/
2 �E � L;
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and also its ˆ-trace
trˆ.
/ WD

X
�2ˆ

g� .
/ 2 L:

Theorem 1.3. With the above notations, the following holds.

(1) If
P
n�1 �nqn 2 S2.�1.N // corresponds to an elliptic direction attached to a

modular parametrization � 2 HomL.A; C /, then �1 ¤ 0.

(2) The following statements are equivalent:

(i) the normalized cusp form

h D q C
X
n�2

�nq
n 2 S2.�1.N //

gives an elliptic direction attached to some � 2 HomL.A; C /;

(ii) there is a one-cocycle 
 2 ŒA� with trˆ.
/ D ŒL W K� and such that

h D 1

ŒL W K�
X
�2ˆ

g� .
/ � �f:

The q-expansion of this elliptic direction is then given by

h D

8̂̂̂<̂
ˆ̂:

X
.a;m/D1

a�1


.a/ qN.a/ if K ª Ef ;

X
.a;m/D1

N.a/


. Na/ q
N.a/ if K � Ef .

Moreover, all other elliptic directions are �.a/�.h/, for a 2 E�, and the equality
�. 0.a//�h D a�1


.a/a
�1
h holds for every a 2 I. xm/.

We shall say that a one-cocycle 
 2 ŒA� is modular if one has trˆ.
/ D ŒL W K�.
According to Theorem 1.3, these are precisely the one-cocycles that provide the
elliptic directions. In Section 3, we also describe how to obtain all modular one-
cocycles in ŒA� explicitly way by means of aK-linear projector, and close the section
by raising some open questions.

In the last three sections, we deal with the particular case concerning the level
N D p2 where p > 3 is a prime with p � 3 mod 4. The relevance of this case
is in connection with the elliptic curves A.p/ studied by Gross in [9] and [10]. For
convenience of the reader, we recall here its definition. Let K D Q.

p�p/ and
let OK be its ring of integers. Let H denote the Hilbert class field of K, and let
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H0 D Q.j.OK// be its maximal real subfield. The elliptic curve A.p/ is defined
over H0 and given by the Weierstrass equation

y2 D x3 C mp

24 � 3 x � np2

25 � 33 ;

where m and n are the real numbers satisfying

m3 D j.OK/; n2 D j.OK/ � 1728
�p ; sgn n D

�
2

p

�
:

The elliptic curve A.p/ admits a global minimal model over H0 with discriminant
�p3 and whose invariants are c4 D �mp and c6 D np2.

Given any intermediate modular subgroup � between �1.p2/ and �0.p2/ and a
normalized newform f 2 S2.�/, we denote by A.�/

f
its associated optimal quotient

of Jac.X�/, where X� denotes the modular curve over Q attached to � . According

to this terminology, we have A.�1.p
2//

f
D Af . In Section 5, we prove:

Theorem 1.4. With the above notations, the following holds.

(i) For every positive divisor d of .p � 1/=2 there is a unique abelian variety Af
of CM elliptic type in J1.p2/ such that the Nebentypus of f has order d ; one
has K 6� Ef , dimAf D ŒH W K�'.d/, where ' is the Euler function, and the
splitting field of Af is the intermediate field between H and H � Q.e2�i=p/ of
degree d .

(ii) Let f be a CM normalized newform in S2.�1.p2// and let � satisfy

�1.p
2/ � � � �" WD

²�
a b

c d

�
2 �0.p2/ W ".d/ D 1

³
;

where " is the Nebentypus of f . Then all optimal elliptic quotients ofA.�/
f

have

complex multiplication by OK . Moreover, if f belongs to S2.�0.p2//, then all
optimal quotients ofA.�/

f
are defined overH and are precisely the elliptic curve

A.p/ and its Galois conjugates.

Among all modular parametrizations J0.p2/ ! A.p/ one stands out. In Sec-
tion 6, we discuss this canonical parametrization and give some of its arithmetical
properties.

Theorem 1.5. Set p D p�pOK . Let ı W I.p/ ! H be the unique map defined by

the conditions ı.a/12 D �.OK/=�.a/ and
�NH=K.ı.a//

p

� D 1. Let ! denote a Néron
differential of A.p/, and let  be any Hecke character attached to A.p/. Then:
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(i) There is anoptimal quotient� W J0.p2/ ! A.p/ such that��.!/Dc g.q/ dq=q
where the elliptic direction is given by

g.q/ D
X

.a;p/D1
ı.a/qN.a/ 2 S2.�0.p2//;

and c 2 Z is a unit in ZŒ 1
2p
�.

(ii) The complex lattice
˚
2� i

R
�
g.z/dz W � 2 H1.X0.p2/;Z/

�
is

1

c
� i .pC1/=4 �

h
vuuut� � .2�/.2hC1�p/=4 � p

p
.1�3h/=2 �

Y
1�m<p

�.m/D1

�

�
m

p

�
� OK

where h is the class number of K, the h-th root is taken to be real, � is the
Gamma function, and � D Q

a2Gal.H=K/
ı.a/
 .a/

is a positive unit ofH0.

Finally, in Section 7 we discuss how to compute the modular elliptic directions
for Af when f 2 S2.�1.p2// has CM and its Nebentypus is nontrivial.

2. The abelian variety A

We shall adhere to the notations in the Introduction and prove Theorem 1.1. Let
 W I.m/ ! Qalg be the fixed primitive Hecke character, and let

f D
X

.a;m/D1
 .a/qN.a/ D

1X
nD1

anq
n

be its associated CM newform in S2.�1.N //. The optimal quotient Af of J1.N / is
defined over Q by Af D J1.N /=If .J1.N //, where If .J1.N / is the annihilator of
f in the Hecke algebra acting on J1.N /. In particular, the pullback of �1.Af =Qalg/

is hf�f gi where 	 runs over Gal.Qalg=Q/. Recall that Ef D Q.fang/ and E D
Q.f .a/g/. We fix an isomorphism

� W Ef ,! End0Q.Af /;

in such a way that �.an/ corresponds to the Hecke operator Tn acting on Af . The
Nebentypus of f is the mod N Dirichlet character ".d/ D �.d/ ..d//=d , where
� is the quadratic character attached to K. We recall that �.".d// is the diamond
operator hd i acting on Af . One has

dimAf D ŒEf W Q� D
´
ŒE W K� if K ª Ef ;

2 ŒE W K� if K � Ef .
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Notice that E D K �Ef . Now, we proceed to construct the abelian variety A overK
of dimension ŒE W K� with the properties required in Theorem 1.1. According to
Shimura’s Proposition 8 in [17], there exists u 2 End0K.Af / such that

u�.�f / D
p
�K � �f

for all 	 in Gal.Qalg=Q/. Here, the choice of the square root
p
�K fixes u up to a

sign. For the case K ª Ef , we let A D Af and extend � to E,

� W E ,! End0K.Af /;

via �.
p
�K/ D u. For the second case, we proceed as follows. Since now K � Ef ,

there is ˛ 2 Ef such that �.˛/ 2 End0Q.Af / acts as

�.˛/�.�f / D �
p
�K � �f

for all 	 in Gal.Qalg=Q/. Then consider the involution w WD �.˛/u�1 2 End0K.Af /.
Let A be the optimal quotient of J1.N / defined by Af =B , where B D .1 � w/Af .
Clearly, the abelian variety A is defined over K, and �1.A=K/ is identified with
h�f i�2ˆ. Since B is stable by �.E/, the isomorphism � W E ,! End0Q.Af / induces
in a natural way an embedding still denoted by the same letter

� W E ,! End0K.A/

such that �.�/�.�f / D �� � �f for all � in E and all K-embeddings 	 in ˆ. From
the equality xw D �w, it follows that xB D .1C w/Af . Note that xB is K-isogenous
to A.

A case-by-case argument, employing that End0K.X/ ,! End0Q.ResK=Q.X// for
any abelian variety X=K , shows that the abelian variety A is K-simple in both cases.
Therefore, it follows that � is an isomorphism. In both cases, A is an abelian variety
of CM type ˆ and satisfies (i), (ii), and (iii) of Theorem 1.1.

To conclude the proof, it remains to check the property (iv) relative to the Frobenius
liftings. To this end, let p be a prime such that p − N and denote by Frobp and Verp
the Frobenius and the Verschiebung acting on the reduction of Af modulo p, which
satisfy Frobp � Verp D p. By the Eichler–Shimura congruence, we know that

�Tp D Frobp C Verp � �hpi;

where �Tp and �hpi denote the reductions of the Hecke operator Tp and the diamond
operator hpi acting on Af mod p. Let us consider the two cases separately.

Case K ª Ef : first, assume that pOK D pxp splits in K. Since

�.ap/ D �. .p//C �. . Np//; �. .p// � �. . Np// D p hpi;
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and �Tp D A�.ap/, it follows that the lifting of Frobp is either �. .p//or �. .xp//. Since a
certain power of  .p/ belongs to p, one concludes that the lifting of Frobp D Frobp
is �. .p//. A similar argument works when pOK D p is inert in K, taking into
account that Frobp D Frob2p D �p �hpi D C�. ..p//.

Case K � Ef : since �.E/ leaves the abelian subvariety B stable, applying the
same arguments as before, it follows that �. .p// is the lifting of Frobp acting on the
reduction of B mod p. Since A is K-isogenous to xB , the statement (iv) holds in this
case as well. This completes the proof of Theorem 1.1.

The following lemma will be used in the next sections.

Lemma 2.1. If K 6� Ef , then m D xm.

Proof. SinceK 6� Ef , there is 	 in Gal.Qalg=K/ such that �f D Nf . First, we prove
that the Hecke characters � and  c given by � .a/ D � . .a// and  c.a/ D  . Na/
coincide on I.m xm/. Indeed, since �" D "�1 the assertion is immediate for prime
ideals p j p when p is inert. For the case that p splits completely in K, from the
equalities �ap D Sap and �".p/ D "�1.p/, that is,

� .p/C � . Np/ D  c.p/C  c. Np/ and � .p/ � � . Np/ D  c.p/ �  c. Np/;
it follows that � .p/ is either  c.p/ or  c. Np/. Again, we obtain that � .p/ and
 c.p/ are equal because a certain power of them lie in p. Both Hecke characters
being primitive of conductor m and xm respectively, we must have m D xm. �

3. Splitting field of A

We first introduce an abelian extension L=K that will play a key role in the splitting
of the abelian variety A over Qalg. Let  0 be the primitive Hecke character mod xm,

 0 W I. xm/ ! Qalg;

given by  0.a/ D  .a/ if K ª Ef or  0.a/ D  . Na/ otherwise. We consider the
character  W .OK= xm/� ! Qalg defined by

.a/ D  0..a//
a

; for all a 2 OK with .a; xm/ D 1:

One easily checks that  is well defined. Recall that the existence of a Hecke character
mod xm is equivalent to the condition that the composition O�

K ,! OK ! OK= xm is
a group monomorphism (see [16]) and thus ker \ O�

K D f1g. By class field theory,
to the congruence subgroup

P�. xm/ D f.a/ 2 I. xm/ W a mod xm 2 ker./g
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there corresponds an abelian extension L=K. It is easy to check that, for a 2 I. xm/,
one has a 2 P�. xm/ if and only if  0.a/ 2 K. Let K xm denote the ray class field of
K mod xm. Since the map a 7! aOK provides an isomorphism between ker  and
P�. xm/=P1. xm/, by using the exact sequence

1 ! O�
K ! .OK= xm/� ! I. xm/=P1. xm/ ! I.OK/=P.OK/ ! 1;

one readily shows that L D K
ker �
xm and Gal.L=H/ is isomorphic to the cyclic group

im./=O�
K . Recall that hereH denotes the Hilbert class field ofK and, as usual, for

any integral ideal n we denote byP.n/ the subgroup of I.n/ formed by principal ideals
and the subscript 1 is for the subgroup of principal ideals with a generator congruent
to one mod n. An alternate route to define the extensionL=K is as follows. For every
	 2 ˆ, the character

�� W Gal.K xm=K/ ! Qalg�
; �� .a/ D

� 0.a/
 0.a/

is well defined via the Artin isomorphism Gal.K xm=K/ ' I. xm/=P1. xm/. Due to the
fact that

T
�2ˆ ker �� D P�. xm/=P1. xm/, it follows that

L D K
T

�2ˆ ker��

xm :

Notice that L=Q is not necessarily a normal extension; in fact, this is so if and only
if L D NL.

Proposition 3.1. There is an elliptic curve C defined over L such that:

(i) EndL.C / ' OK;

(ii) its Grössencharacter  C coincides with  0 B NL=K;

(iii) C is isogenous over L to all its Gal.L=K/-conjugates;

(iv) the abelian variety A is isogenous over L to the power C ŒE WK�.

Proof. The extreme cases L D H and L D K xm are proved by Gross in [9] and
by de Shalit in [6], respectively. For the general case, one can follow the same
arguments. Let C1 be any elliptic curve over L such that EndL.C / ' OK . Let n
be its conductor. Once we fix an isomorphism � W K ! End0L.C1/, we can consider
the Grössencharacter  C1

W IL.n/ ! K� attached to the pair .C1; �/. For a prime
ideal P of L relatively prime to n, we know that �. C1

.P// is the lifting of the
P-Frobenius acting on the reduction of C1 mod P. Recall also that if P 2 P1;L.n/
then  C1

.P/ D NL=K.ˇ/, where P D .ˇ/ with ˇ � 1 .mod P/.
By class field theory, the composition 0BNL=K takes values inK� and the equality

 0BNL=K.P/ D NL=K.ˇ/ holds for every P D .ˇ/withˇ � 1 .mod xmOL/. Hence
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the quotient . 0 B NL=K/= C1
defines a character ı W IL.n xmOL/=P1;L.n xmOL/ !

O�
K of finite order. The twist C WD C1 ˝ ı satisfies (i) and (ii). Now, (iii) follows

from the fact that  C D  aC for all a 2 Gal.L=K/ due to (ii).
Now we check (iv). By Faltings’s criterion (for instance, see §2, Corollary 2,

of [3]), it suffices to prove that for every prime P of L not dividing N nor the
conductor of C , the reductions of the abelian varieties A and C dimA modulo P are
isogenous over the residue field OL=P. We write pf D NL=K P, where with no
risk of confusion now f is the residue degree of P over K. On the one hand,
the characteristic polynomial of the endomorphism FrobP acting on the l-adic Tate
module of the reduction of A=L modulo P, for a prime l ¤ p, is the characteristic
polynomial of the complex representation of �. 0.pf //:

PA;P.x/ D
Y
�2ˆ

.x � � 0.pf //.x � � 0.pf //:

On the other hand, the corresponding Frobenius characteristic polynomial for C at P
is

PC;P.x/ D .x �  C .P//.x �  C .P/ / D .x �  0.pf //.x �  0.pf //:

Since  0.pf / belongs to K, we obtain PA;P.x/ D PC;P.x/
dimA. Thus, A is isoge-

nous over L to C dimA. �

Proposition 3.2. The field L is the smallest number field satisfying End0Qalg.A/ D
End0L.A/.

Proof. SinceA is isogenous overL to the ŒE W K�-th power of the elliptic curveC , we
have End0Qalg.A/ D End0L.A/. That L is the smallest number field with this property

can be deduced from the following fact. For every ' 2 End0L.A/, one has the explicit
version of the Skolem–Noether theorem:

p' D �. 0.p// � ' � �. 0.p//�1;

for all p 2 I. xm/ not dividing N . To check this equality, it is enough to verify that it
holds reduced modulo a prime ideal P of L over p. The smallest field of definition
for all endomorphisms of A is the fixed field LG , where

G D f� 2 Gal.L=K/ W 	� D � for all � 2 End0L.A/g:

By the Čebotarev density theorem, every � in Gal.L=K/ can be written as � D .L=K
p
/

for some prime ideal p relatively prime to N . We have that � 2 G if and only if
�. 0.p// is in the center of End0L.A/; that is, when  0.p/ 2 K and this fact implies
that p splits completely in L, so that � D id. �
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LetC be an elliptic curve defined overL as in Proposition 3.1. The main theorem
of complex multiplication (Theorem 5.4 in [15]) implies the existence of a system of
isogenies f�a W C ! aC g over L, .a; xm/ D 1, satisfying the following properties:

(i) �ab D a�b �a;

(ii) if C has good reduction at a prime ideal P j p, then �p is the lifting of the
Frobenius map between the reductions of C and pC mod P.

Attached to the system of isogenies f�ag, a one-cocycle can be defined as follows
(see also [7]). For a non-zero regular differential ! in�1.C=L/, let 
! W I. xm/ ! L�
be the map given by

��
a.

a!/ D 
!.a/!;

where a! denotes the differential in aC corresponding to! by conjugation. It follows
that 
! is a one-cocycle, and for all u 2 L� one has


u!.a/ D 
!.a/
au=u:

Clearly, the class of 
! in H 1.I. xm/; L�/ does not depend on the particular choice
of !. Note that if a 2 P�. xm/, then we have 
!.a/ D  0.a/. The class 
! in
H 1.I. xm/; L�/ can be characterized from  0 as follows:

Proposition 3.3. Let 
 W I. xm/ ! L� be any one-cocycle satisfying 
.a/ D  0.a/
for all a 2 I. xm/ with .L=K

a
/ D id in Gal.L=K/. Then Œ
� D Œ
! �.

Proof. Assume that 
 2 H 1.I. xm/; L�/ satisfies 
.a/ D  0.a/ for all a 2 P�. xm/.
The quotient 
=
! defines a one-cocycle in H 1.Gal.L=K/;L�/. By Hilbert’s 90
theorem, we know that there is u 2 L� such that 
.a/=
!.a/ D au=u for all
a 2 I. xm/. Thus, we have Œ
� D Œ
! �. �

This completes the proof of Theorem 1.2 in the Introduction. From now on, we
shall denote by ŒA� in H 1.I. xm/; L�/ the cohomology class of 
! .

4. Modular one-cocycles and elliptic directions

In this section we keep the notations as above and tackle the problem of determining
the elliptic directions in�1.A/. The goal is to prove Theorem 1.3 that will be deduced
from the next three Propositions after the following

Lemma 4.1. Let � 2 HomL.A; C / be a non-constant modular parametrization, and
let ! 2 �1.C=L/ be any non-zero regular differential. Denote by

h D
X
n�1

�nq
n 2 S2.�1.N //
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the cusp form associated with the pullback ��.!/. Then:

(i) �1 2 L�;

(ii) for all a 2 I. xm/ relatively prime to N , one has �. 0.a//�h D a�1

!.a/

a�1
h;

(iii) we have the identity h D 1
ŒLWK�

P
a2Gal.L=K/

P
�2ˆ

a�1

!.a/

� 0.a/
a�1
h;

(iv) f 0.ai /g is a K-basis of E if and only if fa�1
i hg is an L-basis of �1.A=L/.

Proof. (i) Since � and ! are defined over L, the cusp form h associated with ��.!/
has q-expansion

P
n�1 �nqn with coefficients in L. Since the abelian variety A is

simple overK, we have thatA is aK-factor of the Weil restriction ResL=K.C /. Thus,
the set fah W a 2 Gal.L=K/g generates �1.A=L/. This implies �1 ¤ 0.

(ii) It is enough to consider the case when a D p is a prime ideal not dividing N .
Then the claim follows from the commutativity of the diagram

A
�. 0.a// ��

a�1
�

��

A

�

��
a�1
C

a�1
�a �� C

due to the fact that �. 0.p// and p�1
�p are liftings of the corresponding p-Frobenius

morphisms at a prime ideal P j p of L.
(iii) Write h D P

	2ˆ c		f , with c	 2 Qalg. By applying (ii), for all 	 2 ˆ and
a 2 Gal.L=K/, one has

a�1

!.a/

� 0.a/
a�1

h D 1
� 0.a/

�X
	2ˆ

c	
	 0.a/ 	f

	
D
X
	2ˆ

c	.�	 � ���1/.a/ 	f:

Thus, it holdsX
a

X
�

a�1

!.a/

� 0.a/
a�1

h D
X
�;	

X
a

c	.�	 � ���1/.a/ 	f

D ŒL W K�
X
	

c	
	f D ŒL W K� h:

(iv) If f 0.a1/; : : : ;  0.ar/g is a K-basis of E, then for every a 2 I. xm/ we can
write  0.a/ D Pr

iD1 ˛i 0.ai / with ˛i 2 K. Thus, we obtain

a�1


!.a/
a�1

h D �. 0.a//�.h/ D
rX
iD1

˛i �. 
0.ai //�h D

rX
iD1

˛i
a�1

i 
!.ai /
a�1

i h:
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Since fah W a 2 Gal.L=K/g generates �1.A=L/ and dim.A/ D ŒE W K�, it follows

that fa�1
1 h; : : : ; a�1

r hg is a L-basis of �1.A=L/.

Conversely, assume that fa�1
1 h; : : : ; a�1

r hg is a L-basis of �1.A=L/. By using

part (ii), if
Pr
iD1 ˛i 0.ai / D 0 for some˛i 2 K, then

Pr
iD1 ˛i a�1

i 
!.ai /
a�1

i h D 0.
This implies that all ˛i D 0. Since dim.A/ D ŒE W K� D r , the proof is done. �

Due to part (i) in the above Lemma 4.1, there is a unique ! 2 �1.C=L/ such that
the pullback ��.!/ gives a normalized cusp form, say

h D q C
X
n�2

�nq
n:

This particular 
! will be called modular with respect to � or, simply, �-modular.
For every 1-cocycle 
 2 ŒA�, we consider the following sums. Let 	 2 ˆ, and set

g� .
/ WD
X

a2Gal.L=K/

a�1

.a/

� 0.a/
:

Notice that g� .
/ is well defined and g� .
/ 2 �E � L.

Remark 4.1. The sum g� .
/ can be interpreted as a sort of Gauss sum, in the sense
that we have

g� .
/ D
X

a2Gal.L=K/

��1
� .a/ua

where ua D a�1

.a/= 0.a/. If C admits a global minimal Weierstrass equation

overL, then the one-cocycle
 attached to a Néron differential satisfies the capitulation
property 
.a/OL D aOL (see Remark 10.3 in [7]). Then uea is an unit in O�

L where
e is the order of a in Gal.L=K/.

We shall denote the ˆ-trace of g� .
/ by

trˆ.
/ D
X
�2ˆ

g� .
/ 2 L:

Remark 4.2. Recall that we have defined 
 2 ŒA� to be modular if trˆ.
/ D ŒL W K�
in the Introduction. As it will be shown, both terms (modular and �-modular) turn
out to be equivalent.

For every � 2 L� and 
 2 ŒA�, let 
� denote the twisted one-cocycle in ŒA� given
by 
� .a/ D 
.a/�=a� . Writing 
 D 
! with some ! 2 �1.C=L/, then 
� D 
 1

� !
.

We shall need the following lemma.
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Lemma 4.2. For all a 2 I. xm/ and 	 2 ˆ, one has

(i) g� .
a�1

.a/

/ � a�1


.a/ D g� .
/ � � 0.a/;

(ii) trˆ.
a�1

.a/

/ D a�1
trˆ.
/.

Proof. It follows straightforward from the definitions and by using the cocycle rela-
tions for 
. �

Proposition 4.3. Assume that 
 2 ŒA� is modular with respect to � 2 HomL.A; C /.
Then trˆ.
/ D ŒL W K� and

h D 1

ŒL W K�
X
�2ˆ

g� .
/ � �f

is the normalized elliptic direction in ��.�1.C=L//.

Proof. Since 
 is �-modular, there is a non-zero regular differential ! 2 �1.C=L/

such that ��.!/ is a normalized cusp form h D q C P
n�2 �nqn and 
 D 
! . By

comparing the first Fourier coefficient in the equality at Lemma 4.1 (iii), we have that
trˆ.
/ D ŒL W K�. For every 	 2 ˆ, set

F� D
X

b2Gal.L=K/

b�1

.b/

� 0.b/
b�1

h:

Also by Lemma 4.1 (iii), we know that
P
�2ˆ F� D ŒL W K� h. From the equality

�. 0.a//�. b�1
h/ D .b�a/�1


.a/ .b�a/�1
h, one obtains

�. 0.a//�.F� /D
X

b2Gal.L=K/

b�1

.b/

� 0.b/
.b�a/�1


.a/ .b�a/�1

h

D
X

b2Gal.L=K/

.b�a/�1

.b � a/

� 0.b/
.b�a/�1

h D � 0.a/ F� :

Hence F� and �f differ by a scalar multiple. Since the q-expansion of F� begins as
g� .
/ qC� � � ; it follows thatF� D g� .
/��f , and thenh D 1

ŒLWK�
P
�2ˆ g� .
/ � �f .

�

Now, we shall prove that the modular one-cocycles 
 in ŒA� with respect to
some modular parametrization � are precisely those that satisfy the trace condi-
tion trˆ.
/ D ŒL W K�. To this end, for a given one-cocycle 
 2 ŒA� (not necessarily
modular), let us consider the K-linear map pr W L ! L,

pr.u/ WD
X

a2Gal.L=K/

�X
�2ˆ

1
� 0.a/

	
a�1


.a/a
�1

u D
´
u � trˆ.
u/ if u ¤ 0;

0 otherwise.
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Consider the eigenspace M D fu 2 L W pr.u/ D ŒL W K� � ug. Notice that 
u is
modular if and only if u 2 Mnf0g. In particular, we know that dimK.M/ > 0 and
it does not depend on the particular choice of 
 2 ŒA� used to define the K-linear
map pr.

Proposition 4.4. One has

(i) pr2 D ŒL W K� pr;

(ii) dimK.M/ D ŒE W K�;
(iii) if 
 is modular, then M D hfa�1


.a/giK where a runs over Gal.L=K/.

Proof. The first claim comes from the computation:

pr2.u/ D
X

a

�X
�

1
� 0.a/

	
a�1


.a/
a�1hX

b

�X


1
 0.b/

	
b�1


.b/b
�1

u
i

D
X

a

X
b

�X
�

1
� 0.a/

	�X


1
 0.b/

	
.ab/�1


.ab/.ab/�1

u

D
X

a

X
b

�X
�

1
� 0.a/

	�X


1
 0.a�1b/

	
b�1


.b/b
�1

u

D
X

b

X
a

�X
�;

.���
�1
 /.a/

	b�1

.b/

 0.b/
b�1

u

D ŒL W K� pr.u/:

Let us prove (ii) and (iii) simultaneously. Since dimK.M/ is independent of the
one-cocycle 
 chosen in ŒA�, we can (and do) assume that 
 is modular. Set

h D 1

ŒL W K�
X
�2ˆ

g� .
/ � �f D 1C
X
n>1

�n q
n:

Let W D hfa�1

.a/giK where a runs over Gal.L=K/. We need to show that

W D M and dimK.W / D ŒE W K�. Choose a1; : : : ; ar 2 I. xm/ such that
f 0.a1/; : : : ;  0.ar/g is aK-basis ofE. We claim that fa�1

1 
.a1/; : : : ;
a�1

r 
.ar/g is a
K-basis ofW . Indeed, if

Pr
iD1 ˛i a�1

i 
.ai / D 0 for some˛i inK, then consider˛ WDPr
iD1 ˛i 0.ai / 2 E. It is easy to check that �.˛/�.h/ D P

n�1 � 0
n q

n with � 0
1 D 0.

This forces ˛ D 0, since otherwise we get a contradiction from Lemma 4.1 (i) applied



332 J. González and J.-C. Lario CMH

to �.˛/�.h/. Therefore, all˛i D 0which implies that a�1
1 
.a1/; : : : ;

a�1
r 
.ar/ are lin-

early independent. Now, for every ideal a 2 I. xm/, one has  0.a/ D Pr
iD1 ˛i 0.ai /

for some ˛i 2 K. By taking q-expansions in the equality

a�1


.a/a
�1

h D
rX
iD1

˛i
a�1

i 
.ai /
a�1

i h;

we obtain a�1

.a/ D Pr

iD1 ˛i a�1
i 
.ai /. So far, we have dimK.W / D ŒE W K� and

the inclusion W � M follows from Lemma 4.2 (ii).
To easy notation, set ui D a�1

i 
.ai / for 1 � i � r and let us show that they
generate M. For any nonzero u 2 M, consider the normalized cusp form

hu D 1

ŒL W K�
X
�2ˆ

g� .
u/ � �f:

Since fhu1
; : : : ; hun

g is a L-basis of �1.A=L/ by Lemma 4.1 (iv), there are �i 2 L

such that hu D Pr
iD1 �i hui

. Notice that
Pr
iD1 �i D 1. By applying �. 0.a//� to

hu, and then conjugate by a, we obtain


u.a/hu D
rX
iD1

a�i 
ui
.a/ hui

:

Therefore, we have

�i D a�i

ui

.a/


u.a/
D a�i

au
aui

ui

u

for all a and 1 � i � r . That is, ˇi WD �i u=ui 2 K. Then u D Pr
iD1 ˇi ui sincePr

iD1 �i D 1. The statement (iii) follows. �

Proposition 4.5. Let 
0 2 ŒA� such that trˆ.
0/ D ŒL W K�. Then 
0 is modular with
respect to some � 0 2 HomL.A; C /.

Proof. We shall prove that there is � 0 2 HomL.A; C / and !0 2 �1.C=L/ such that
� 0�.!0/ corresponds to the normalized cusp form

h0 D 1

ŒL W K�
X
�2ˆ

X
a2Gal.L=K/

a�1

0.a/

� 0.a/
� �f:

Consider any non-constant� 2 HomL.A; C / and take! 2 �1.C=L/ such that��.!/
corresponds to the normalized cusp form

h D 1

ŒL W K�
X
�2ˆ

g� .
/ � �f;
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where 
 D 
! . Let L D ker.pr/ ˚ M be the decomposition corresponding to the
projector pr attached to 
. Now, there is � 2 M such that 
0 D 
� and

h0 D 1

ŒL W K�
X
�2ˆ

g� .
� / � �f

with � D P
a2Gal.L=K/ ra

a�1

.a/ for some ra 2 K due to Proposition 4.4 (iii). We

claim that � X
a2Gal.L=K/

ra
a�1


.a/
	
h0 D �

� X
a2Gal.L=K/

ra 
0.a/

	�
h: (1)

Letting ‰ D �
�P

a2Gal.L=K/ ra 
0.a/

� 2 End0K.A/, then it follows

h0 D ‰�
�
��
�
1

�
!

��
D .� B‰/�

�
1

�
!

�
;

which implies that 
0 is modular. To check (1), we use Lemma 4.2 (i):

� h0 D 1

ŒL W K�
X
�

X
b

b�1

.b/b

�1
�

� 0.b/
�f

D 1

ŒL W K�
X
�

X
b

X
a

b�1

.b/ra

.ab/�1

.a/

� 0.b/
�f

D 1

ŒL W K�
X
�

X
a

rag� .
a�1

.a/

/a
�1


.a/ �f

D 1

ŒL W K�
X
�

X
a

ra
� 0.a/g� .
/ �f

D 1

ŒL W K�‰
��X

�

g� .
/
�f
	

D ‰�.h/: �

The transitivity of the action of �.E�/ on the set of elliptic directions follows
from the equality (1). To finish the proof of Theorem 1.3, it remains to determine the
q-expansions of the normalized elliptic directions. For it, first we need a technical
lemma.

Lemma 4.6. Let ` W I.m/ ! L� be a map such that `.a/ D  .a/ for all a D
id in Gal. NL=K/. Let � W Gal. NL=K/ ! Gal.L=K/ be a map such that `.ab/ D
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`.a/.a/`.b/ for all a 2 I.m/. Then the identity

1

ŒL W K�
X
�2ˆ

ˇ�
� .c/ D `.c/ (2)

holds for all c 2 I.m/ if and only if

ˇ� D
X

a2Gal. NL=K/

`.a/
� .a/

and
X
�2ˆ

ˇ� D ŒL W K�: (3)

Proof. Assume (3). For every c 2 I.m/, we have

X
�2ˆ

� X
a2Gal. NL=K/

`.a/
� .a/

�
� .c/ D

X
�2ˆ

� X
a2Gal. NL=K/

`.ac/
� .ac/

	
� .c/

D `.c/
X
�2ˆ

� X
a2Gal. NL=K/

.c/`.a/
� .a/

�

D `.c/
.c/� X

a2Gal. NL=K/
`.a/

�X
�2ˆ

1
� .a/

��

D `.c/
.c/�X

�2ˆ
ˇ�

	
D `.c/ ŒL W K�:

Now, suppose (2). Fix � 2 ˆ. Note that for 	 2 ˆ, the characters �� and �	 are
equal if and only if 	 D �. For every a 2 Gal. NL=K/, one has

`.a/
	 .a/

D 1

ŒL W K�
�
ˇ	 C

X
�2ˆnf	g

ˇ�

� .a/
	 .a/

�

D 1

ŒL W K�
�
ˇ	 C

X
�2ˆnf	g

ˇ� .���
�1
	 /.a/

	
:

Summing over all a, then

X
a2Gal. NL=K/

`.a/
	 0.a/

D ˇ	 C 1

ŒL W K�
� X
�2ˆnf	g

ˇ�
X

a2Gal. NL=K/
.���

�1
	 /.a/

	
D ˇ	 :

The condition
P
�2ˆ ˇ� D ŒL W K� is obtained by replacing a with O in (2). �
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Proposition 4.7. Assume that 
 2 ŒA� satisfies trˆ.
/ D ŒL W K�. Consider the
normalized cusp form

h D 1

ŒL W K�
X
�2ˆ

g� .
/ � �f:

Then:

(i) one has

h D

8̂̂̂<̂
ˆ̂:

X
.a;m/D1

a�1


.a/ qN.a/ if K ª Ef ;

X
.a;m/D1

N.a/


. Na/ q
N.a/ if K � Ef ;

(ii) for all c 2 I. xm/, we have �. 0.c//�.h/ D c�1

.c/c

�1
h.

Proof. For all a 2 I.m/, set

`.a/ D

8̂<̂
:

a�1

.a/ if K ª Ef ;

N.a/


. Na/ if K � Ef .

It is clear that `.ab/ is `.a/a
�1
`.b/ or `.a/ Na`.b/ depending on whether K ª Ef or

not, respectively. Since for the case K � Ef one has

`.a�1/
� .a�1/

D
Na�1
.1=`.a//

� .a�1/
D

Na�1
.N.a/=`.a//

N.a/=� .a/
D

Na�1

. Na/

� 0. Na/ ;

for all 	 2 ˆ, then in both cases it follows that g� .
/ D P
a2Gal. NL=K/ `.a/=� .a/.

By using Lemma 4.6, a case-by-case computation shows that for all a 2 I.m/ and
c 2 I. xm/ one has

1

ŒL W K�
X
�2ˆ

g� .
/
� .a/� 0.c/ D c�1


.c/c
�1

`.a/: (4)

Plugging c D 1 in (4) it follows part (i). Part (ii) follows from part (i) and (4). �

Now, Theorem 1.3 in the Introduction follows from Propositions 4.3, 4.5 and 4.7.
Note that due to Proposition 4.4, all one-cocycles in ŒA� are modular if and only if
ŒE W K� D ŒL W K�; i.e., whenA isK-isogenous to ResL=K.C /. In general, in order to
determine a modular one-cocycle in ŒA� a strategy emerges from the previous results.
Indeed, first one can build a one-cocycle 
 2 ŒA� by solving and combining norm
equations. If trˆ.
/ ¤ 0, then 
trˆ.
/ is modular since its ˆ-trace equals ŒL W K�.
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Alternatively, if trˆ.
/ D 0 or in any circumstance, the nullspace of the K-linear
map pr �ŒL W K� Id provides all u 2 L such that 
u is modular.

We also remark that for the case K � Ef , there are elliptic quotients of Af that
do not factor through neither A nor NA. These quotients can be obtained using the
above results plus the Weil involution acting on Af .

We conclude this section with three open questions: one concerning about the
isomorphism � W E ! End0K.A/ and the others about the elliptic optimal quotients of
A. All the results of the paper hold when we replace J1.N / with Jac.X�/, where �
is an intermediate congruence subgroup between �1.N / and �0.N / such that f in
S2.�/ and X� is the modular curve attached to this subgroup. Although the optimal
quotientA ofA.�/

f
does depend on � , it is known that �.Tp/ 2 EndQ.A

.�/

f
/ and, thus,

�.Tp/ belongs to EndK.A/ for all � .

Question 4.8. Is �. .a// 2 EndK.A/ for all integral ideals a and all �?

We ask ourselves whether the j -invariants of optimal modular parametrizations
of CM elliptic curves are not far from being also optimal in the sense of having CM
by the maximal order of K. Of course, if �.OK/ � EndK.A/ all optimal elliptic
quotients have multiplication by OK . If �..a// 2 EndK.A/ for all integral ideals
a 2 I. xm/, then the j -invariants of all optimal elliptic quotients are in the Hilbert
class field H . From Cremona’s tables (N < 130000), we have checked that all
optimal elliptic quotients over Q with CM of J0.N / have complex multiplication
by OK . Also, the same experimental result has been obtained in all examples over
Qalg collected by the authors.

Question 4.9. Assume that � 2 HomL.A; C / is optimal. Does C have complex
multiplication by OK?

And the last question is related to the above Remark 4.1.

Question 4.10. Is it true that the existence of an optimal elliptic quotient ofA having
global minimal model overL is equivalent to the existence of a modular one-cocycle

 2 ŒA� with values 
.a/ in the ring of integers OL for all integral ideals a 2 I. xm/?

In the next sections, we apply the above results and focus our attention on Gross’s
elliptic curvesA.p/. We also give a positive answer to the second question mentioned
above for the particular case of level N D p2.

5. CM elliptic optimal quotients of J1.p2/

In the sequel p is a prime > 3 and such that p � 3 mod 4. The discriminant
of K D Q.

p�p/ is �p. Set p D p�pOK . Let X denote the set of Hecke
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characters mod p and let Y be the set of Dirichlet characters  W .OK=p/� ! C� such
that .�1/ D �1.

To every Hecke character  2 X, we attach its eta-character  in Y defined as
in Section 3 by .a/ D  ..a//=a, and it can be easily seen that this map X ! Y

is surjective. The Nebentypus " W .Z=pZ/� ! C� of the newform f 2 S2.�1.p2//
associated with  is given by ".n/ D �.n/.n/, where � is the quadratic Dirichlet
character associated with K. In this case, we have that ord " D .ord /=2.

By the results in Section 3, we know that the elliptic optimal quotients of the
abelian variety Af are defined over a number field L, which is a cyclic extension
of H of degree ord " contained in Kp.

Proposition 5.1. The ray class field Kp satisfies ŒKp W H� D .p � 1/=2 and we
have Kp D H � Q.�p/, where �p D e2�i=p .

Proof. From the exact sequence

1 �! .OK=p/
�=OK� �! I.p/=P1.p/ �! I.OK/=P.OK/ �! 1;

we know that the Galois group Gal.Kp=H/ is isomorphic to .OK=p/
�=OK�

and, thus, one has ŒKp W H� D .p � 1/=2. Consider the morphism ˆp W I.p/ !
Gal.H � Q.�p/=K/ given by the Artin symbol. We claim that p̂ has kernel P1.p/,
which implies that Kp � H � Q.�p/. Indeed, for any ideal a 2 I.p/, we have that
ˆp.a/ acts trivially on H if and only if a 2 P.p/, that is a D aO. Moreover,

p̂.aO/ acts trivially on Q.�p/ if and only if the Artin symbol
�Q.�p/=Q

N.a/

�
is the iden-

tity; i.e., N.a/ � 1 .mod p/ which is equivalent to a 2 P1.p/ since N.a/ � a2

.mod p/. Finally, for any subfield F of Q.�p/ which contains K we have that
H \ F D K since either F D K or F=K is ramified at p. Hence, one has the
equality ŒH � Q.�p/ W H� D .p � 1/=2 D ŒKp W H� and the statement follows. �

We shall need the following lemma.

Lemma 5.2. Let  2 X and denote by  and f its eta-character and newform,
respectively. Then the following holds:

(i) For every ideal a 2 I.p/, one has

TrE=K . .a// D
8<:a

X
�2ˆ

�.a/ if a D aOK ,

0 if a 62 P.p/.

(ii) Let 0 and f 0 denote the eta-character and newform associated with  0 2 X.
Then f 0 D �f for some 	 2 Gal.Qalg=K/ if and only if ker 0 D ker .
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Proof. First, let us prove (i). When a D aOK , the claim on the trace is clear since
� ..a// D a�.a/. Suppose that a 62 P.p/, and let n be the order of a in I.p/=P./.
Notice that n > 1 and  .a/ 62 K. For every 	 2 ˆ, we have � .a/ D  .a/�� for
some �� 2 �n, where �n denotes the group of n-th roots of unity. Thus, we haveX

�2ˆ
� .a/ D  .a/

X
�2ˆ

�� 2 K:

Therefore, either TrE=K . .a// D 0 or  .a/ 2 K.�n/. Let us see that the last
possibility does not occur. For it, assume that  .a/ 2 K.�n/ which implies that
the extension K. .a//=K is normal. Since n is the minimum positive integer such
that  .a/n 2 K, it follows that either �n � K or  .a/2n 2 Kn (see Proposition 2
in [14]). Since  .a/ 62 K, we must have that  .a2n/ D bn D  ..bOK/

n/ for
some b 2 K and, hence, a2 D bOK . The class number of K being odd, we get a
contradiction.

Let us prove (ii). If f 0 D �f for some 	 2 Gal.Qalg=K/ then the statement is
clear since 0 D �. Now, suppose that ker 0 D ker . We claim that

f�f W 	 2 ˆg \ f�f 0 W 	 2 ˆ0g ¤ ¿;

where ˆ0 is the corresponding set of K-embeddings Q. 0/ ,! C. Let us consider
the normalized cusp forms

h D 1

jˆj
X
�2ˆ

�f D q C � � �;

h0 D 1

jˆ0j
X
�2ˆ0

�f 0 D q C � � �

in S2.�1.p2//new. Since K ª Q.im / and ker 0 D ker , there is � 2 ˆ such that
.a/ D 0.a/ for all a 2 OK coprime with p. By applying (i), we obtain the equality

h D
X

a2P.p/

TrE=K. .a//

jˆj qN.a/ D
X

a2P.p/

TrE=K. 0.a//
jˆ0j qN.a/ D h0:

Therefore, the Qalg-vector spaces generated by f�f W 	 2 ˆg and f�f 0 W 	 2 ˆ0g
have a common non-zero cusp form, which implies that f 0 D �f for some 	 2
Gal.Qalg=Q/ (cf. Proposition 3.2 in [1]). Since h 2 hf W � 2 Gal.Qalg=K/i \
hf 0 W � 2 Gal.Qalg=K/i, it follows that 	 2 Gal.Qalg=K/. �

Proposition 5.3. For every positive divisor d of .p � 1/=2 there is a unique abelian
varietyAf of CM elliptic type of level p2 such that the Nebentypus of f has order d ;
this abelian variety satisfies that K 6� Ef and dimAf D ŒH W K�'.d/, where ' is
the Euler function.
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Proof. Let d be a divisor of .p � 1/=2 and take  2 X such that its eta-character
has order 2 d . Let us denote by f the newform attached to  , whose Nebentypus
" has order d . First, let us show that K 6� Ef . Indeed, let  c 2 X defined by
 c.a/ D  . Na/. The eta-character and the normalized newform attached to  c are
clearly N and Nf , respectively. Since ker N D ker , Lemma 5.2 (ii) ensures that
Nf 2 f�f W 	 2 ˆg, which implies K 6� Ef . The same argument can be applied to

another newform f 0 obtained from  0 2 X whose associated character 0 has order
2d to show that f 0 belongs to f�f W 	 2 ˆg, which proves that Af is unique when
the order of " has been fixed.

Since K 6� Ef , the equality dimAf D ŒEf W Q� D ŒE W K� holds. Now, we
have that ŒE W K� D jf�f W 	 2 ˆgj D jf� W 	 2 ˆgj. Again using part (ii) of
Lemma 5.2, we obtain

ŒE W K� D jf	 2 ˆ W  D �gj � jf� W 	 2 ˆgj D jf	 2 ˆ W  D �gj � '.d/:
Since the condition � D  is equivalent to  =� being a character of Gal.H=K/,
it follows dimAf D ŒH W K�'.d/. �

Remark 5.1. Note that the number of abelian varieties Af of CM elliptic type of
level p2 is the number of divisors of .p � 1/=2. Also for every number field L
intermediate between H and H � Q.�p/ there is a unique abelian variety Af of CM
elliptic type and level p2 for which L is its splitting field as defined in Section 3.

Next, in order to show that the CM elliptic optimal quotients of Af in J1.p2/
have endomorphism ring isomorphic to OK , we shall need to use some auxiliary
congruence subgroups of SL2.Z/ of level p2. To this end, fix a newform f in
S2.�1.p

2// attached to a Hecke character  2 X. Let " denote the Nebentypus
of f . Let us consider the following congruence subgroups of level p2:

�p D
²�
a b

c d

�
2 �0.p2/ W a � d � 1 .mod p/

³
;

and �" as in the introduction; i.e.,

�" D
²�
a b

c d

�
2 �0.p2/ W ".d/ D 1

³
:

It is clear that �1.p2/ � �p � �" and f 2 S2.�"/. For any intermediate congruence
subgroup � of level p2 satisfying �1.p2/ � � � �"; let X� be the modular curve
over Q attached to � . We shall denote by A.�/

f
the optimal quotient of the jacobian

of X� attached to f by Shimura. More precisely, let If be the annihilator of f in
the Hecke algebra acting on Jac.X�/. Then

A
.�/

f
D Jac.X�/=If .Jac.X�// :
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Proposition 5.4. Let f and � be as above. Then all elliptic optimal quotients of
A
.�/

f
have complex multiplication by OK .

Proof. Fix an elliptic direction in �1.Af / and let C� be an elliptic optimal quotient
attached to this direction. By Proposition 5.3 and Theorem 1.2, we know thatK 6� Ef

and thus all endomorphisms of A.�/
f

are defined over its splitting field, say L, that
satisfies L � Kp. Let c� denote the conductor of the order O� ' EndL.C�/ in OK .
We want to show that c� D 1, and split the proof in three steps.

Step 1: c� j 2 for all � . Since End.C�/ D EndL.C�/, one has that L contains the
ring class field of O� , say K� . Notice that K� � L � Kp. But p − c� , since
otherwise p must divide ŒL W H� (cf. Proposition 7.24 in [4]) and this degree is a
divisor of .p � 1/=2. Hence,K� is an unramified extension of the Hilbert class field
and, therefore, it must coincide with H . Again by Proposition 7.24 in [4], we obtain
that c� j 2.

Step 2: c� does not depend on � . We consider the natural projection � W X� ! X�"
.

The degree of � is odd since it divides Œ�1.p2/ W �0.p2/=f˙1g� D p.p � 1/=2 and
p � 3 mod 4.

Let ��;�"
W Jac.X�/ ! A�;�"

be the optimal quotient over Q for which there is
an isogeny � W A�;�"

! Jac.X�"
/ defined over Q rending the following diagram

Jac.X�/
�� ��

��;�" �����������
Jac.X�"

/

A�;�"

	

�����������

commutative. Since every element of the group H1.X�"
;Z/=��.H1.X� ;Z// has

order dividing deg� , the cardinality of this group is odd. From the group isomorphism
ker � ' H1.X�"

;Z/=��.H1.X� ;Z//, it follows that deg � is odd. Since A.�/
f

is an

optimal quotient of A�;�"
, there is an isogeny �f W A.�/

f
! A

.�"/

f
whose degree

divides deg �. Hence, for every optimal elliptic quotient �� W A.�/
f

! C� there is an

optimal elliptic quotient �" W A.�"/

f
! C�"

and an isogeny � W C� ! C�"
rending

the diagram

A
.�/

f

	f ��

��

��

A
.�"/

f

�"

��
C�

� �� C�"

commutative. It is clear that deg� is odd since it divides deg �f . So c�"
and c� can

only differ by an odd factor, which implies that c� is independent of the group � .
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Step 3: c� D 1 for all � . Now, it suffices to prove c� D 1 for a particular subgroup� .
We consider � D �p . Following Shimura in [17], we know that the matrix�

1 1=p

0 1

�
lies in the normalizer of �p in SL2.R/ and provides an automorphism u of X�p

of
order p. Set

G D
X

1�i<p

�.i/D1

.u�/i 2 End Jac.X�p
/:

We claim that G leaves stable the subvariety If .Jac.X�p
//, which is equiva-

lent to saying that G leaves stable the vector space generated by the set of eigen-
forms in S2.�p/ which are not Galois conjugates of f . In fact, the action of G
on all eigenforms of S2.�p/ can be described as follows. It is well-known that if
we denote by New� the set of normalized newforms in S2.�/, then the set of nor-
malized eigenforms in S2.�p/ is the disjoint union of New�p

, �1, and �2, where
�1 D New�1.p/ \ S2.�p/, �2 D Bp.New�1.p// \ S2.�p/, and Bp is the operator
acting as Bp.h.q// D h.qp/. With �p D e2�i=p and from the equalityX

1�i<p

�.i/D1

�ip D �1C p�p
2

;

it can be easily checked that every eigenform h.q/ D P
n�1 bnqn 2 S2.�p/ satisfies:

G�.h/ D

8̂<̂
:

�1C p�p
2

hC p � p�p
2

bp Bp.h/ if h 2 New�p
[�1,

p � 1
2

h if h 2 �2.

The claim follows from the fact that all h 2 New�p
have level p2 and Nebentypus

whose conductor divides p and, thus, bp D 0 (see Subsection 1.8 in [5]).
Since G leaves stable the subvariety If .Jac.X�p

//, then G induces an endomor-

phism ofA.�p/

f
, which we still denote byG. Due to the fact thatG acts on�1.A.�p/

f
/

as the multiplication by .�1Cp�p/=2, it follows thatG leaves stable all subvarieties
of A.�p/. Thus, .�1C p�p/=2 2 O�p

and the statement follows. �

As for Gross’s elliptic curves, we obtain the following result, which concludes the
proof of Theorem 1.4.

Corollary 5.5. Let f be a CM normalized newform with trivial Nebentypus. The
elliptic curve A.p/ and its Galois conjugates are the optimal quotients of A.�/

f
over

the Hilbert class fieldH , for all subgroups � with �1.p2/ � � � �0.p
2/.
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Proof. By Theorem 20.1 in [9], we know that A.p/ is a quotient of J0.p2/ defined
over H , attached to a newform f with trivial Nebentypus. Notice that the corre-
sponding field L coincides with the Hilbert class field H . Since we have K 6� Ef ,

by Theorems 1.1 and 1.2, every elliptic optimal quotientC� ofA.�/
f

is defined overH

and the abelian variety A.�/
f

is simple overK. Since dimA
.�/

f
D ŒH W K�, it follows

that A.�/
f

is K-isogenous to the Weil restriction ResH=K C� . In [9], Gross shows

that A.�/
f

is K-isogenous to ResH=K A.p/. Therefore, on the one hand, there is

	 2 Gal.H=K/ such that A.p/ and �C� are Qalg-isomorphic. On the other hand,
by Theorem 5.4, A.p/ and �C� are H -isogenous. Hence, A.p/ is H -isomorphic to
�C� and the claim follows. �

6. Canonical CM elliptic direction for A.p/

When the class number of K is greater than one, there are infinitely many elliptic
directions in S2.�0.p2// attached to different parametrizations J0.p2/ ! A.p/.
Here, we shall emphasize one of them (we call it canonical) in terms of a particular
one-cocycle that can be constructed by means of the Dedekind eta-function.

Let OH be the ring of integers of the Hilbert class fieldH . For all a 2 K coprime
with p, we denote by .a

p
/ the Jacobi symbol .m

p
/, where m is an integer such that

a � m .mod p/. One has .a/ D .a
p
/. By [10], we know that there is a unique map

ı W I.p/ ! H with the following two requirements:

(i) ı.a/12 D �.O/=�.a/,

(ii)
�

NH=K.ı.a//

p

	
D 1,

for all a 2 I.p/. Moreover, this map also satisfies the following conditions:

(iii) ı.a/OH D aOH ,

(iv) ı.a � b/ D ı.a/ � a�1
ı.b/ for all a;b 2 I.p/,

(v) ı. Na/ D ı.a/ for all a 2 I.p/.
By taking into account conditions (ii) and (iv), and since ŒH W K� is odd, we also
obtain:

(vi) for all a 2 P.p/, one has ı. Na/ 2 K and
�
ı.a/

p

� D 1.

For every a 2 I.p/, we set


.a/ WD aı.a/ D N.a/

ı. Na/ : (5)

The map 
 W I.p/ ! H also satisfies conditions (ii), (iii), (v), and (vi). But now
conditions (i) and (iv) are replaced with
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(i0) 
.a/12 D N.a/12 �. Na/
�.OK/

,

and the one-cocycle condition:

(iv0) 
.a � b/ D 
.a/ � a
.b/, for all a, b 2 I.p/.
Conditions (vi) and (iv0) imply that the one-cocycle 
 belongs to ŒAf � for all Af of
CM elliptic type and level p2.

Remark 6.1. Notice that the above one-cycle 
 can be effectively computed by
using the Dedekind eta-function on ideals (as Rodríguez-Villegas does in [13]), and
it coincides with what Hajir denotes � in Definition 2.3 in [11].

Let f denote the normalized newform in S2.�0.p2// attached to a Hecke char-
acter  whose eta-character has order 2. By Section 3, the splitting field L of Af
is H . Let S2.Af / be the C-vector space generated by the Galois conjugates of the
newform f attached to  and let ! denote a Néron differential of Gross’s elliptic
curve A.p/.

Proposition 6.1. Letf be as above. There is an optimal quotient� W J0.p2/ ! A.p/

such that ��.!/ D c g.q/ dq=q, where

g.q/ D
X

.a;p/D1
ı.a/qN.a/ 2 S2.Af /;

and c 2 Z is a unit in ZŒ 1
2p
�.

Proof. By Lemma 5.3, we have ŒE W K� D ŒL W K� and, thus, all one-cocycles in
ŒAf � are modular. Therefore, by Theorem 1.3 we have that

g.q/ D
X

.a;p/D1
a�1


.a/qN.a/ D
X

.a;p/D1
ı.a/qN.a/

is a normalized cusp form in S2.Af / for which there is an optimal elliptic quotient
C
 given by the lattice

ƒg D ˚
2� i

R
�
g.z/dz W � 2 H1.X0.p2/;Z/

�
:

Since ı. Na/ D ı.a/ for all a 2 I.p/, it follows thatg.q/ 2 H0ŒŒq��. Thus, g.q/ dq=q 2
�1.X0.p

2//=H0
. Hence, the natural morphism� W X0.p2/ ! C
 is defined overH0.

Notice that necessarily one has ƒg D � � OK , for some � 2 C�. Indeed, OK is the
only ideal a such that j.a/ D j.a/ since ŒH W K� is odd. Thus, we have j.ƒg/ D
j.OK/. SinceAf is Q-isogenous to ResH0=Q.C
/ and to ResH0=Q.A.p//, it follows
that C
 andA.p/ areH0-isogenous and, therefore,H0-isomorphic. Therefore, there
exists c 2 H�

0 such that ��.!/ D c g.q/ dq=q. It is clear that �.ƒg/ D �p3c12.
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The Manin ideal attached to � is cOH0
(we refer to Section 4 in [8] for more

details on the Manin ideal). By Propositions 4.1 and 4.2 in [8], we know that cOH0

is an integral ideal and it can only be divided by primes lying over 2 or p. Now,
we want to prove that c 2 Z. Since ��.!=c/ D g dq=q, the one-cocycle attached
to !=c is 
. This means that for every a 2 I.p/ there is an isogeny of degree N.a/,

� W a�1

C
 ! C
;

such that��.!=c/ D a�1

.a/�a�1

.!=c/. Taking into account thatj.a/ D a�1
j.OK/,

we obtain that the lattice corresponding to a�1
C
 is 1

ı.a/
��a. Finally, we have that

a�1

�.�OK/ D �

�
1

ı.a/
�a

�
D ı.a/12�.�a/ D �.OK/

�.a/
�.�a/ D �.�OK/:

Therefore, �.ƒ/ 2 K \ H0 D Q and c12 2 Q. Since Q.c/ � H is unramified
outside p and there is not a real quadratic field of discriminant p, it follows that
c3 2 Q. Finally, since H does not contain the 3rd roots of unity (recall p > 3), one
obtains c 2 Q. �

Remark 6.2. Since c 2 K�, the one-cocycle attached to ! is also 
. In this sense,
we say that the normalized cusp form g is the canonical cusp form attached to A.p/.

For when the class number ofK is 1 (that is, p D 7, 11, 19, 43, 67, 163), one has
that � is defined over Q and c coincides with the (classical) Manin constant. Then
c D ˙1 in these cases since Manin’s conjecture has been checked for all elliptic
curves over Q with conductor � 130000 in Cremona’s tables. We have computed c
for the remaining primes p � 100 (that is, p D 23, 31, 47, 59, 71, 79, 83) and we
have also obtained that c D ˙1. It seems reasonable to expect c D ˙1 for all A.p/.

Remark 6.3. In general, as already mentioned, there are infinitely many normalized
cusp forms g0 2 S2.Af /whose directions are pullbacks of�1.A.p// under modular
parametrizations � 0 W Af ! A.p/. For each one of them, there is a one-cocycle 
0
(cohomologous to 
) such that

g0 D
X

a

a�1


0.a/qN.a/ 2 S2.Af /;

and a constant c0 2 H0 with � 0�.!/ D c0g0. The concern on whether the constant c
is ˙1 is already in [9], see Question 23.2.2 on p. 81, but without fixing � 0. However,
c0 ¤ ˙1 unless � 0 D � (canonical) as in Theorem 6.1, although the Manin ideal
attached to any � 0 ¤ � might still be OK as well.
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We end this section giving an expression for the transcendental� 2 C� attached
to the latticeƒ of A.p/, which generalizes the one given by Gross in [9] for whenK
has class number one. Keeping the above notations, we set

� WD
Y

b2Gal.H=K/

.b;p/D1

ı.b/

 .b/
:

It is clear that � is well defined, independent of the Galois conjugate of  , and
� 2 O�

H . Let h denote the class number of K, and consider

fOK ;b1; : : : ;b.h�1/=2; : : : ; Nb1; : : : ; Nb.h�1/=2g
a set of representatives of Gal.H=K/ with .bi ;p/ D 1. Then we can rewrite

� D
.h�1/=2Y
iD1

ı.bi / ı. Nbi /
N.bi /

: (6)

Indeed, since ı.b/= .b/ is independent of the class of b in Gal.H=K/, it suffices to
prove that  .b/ �  . Nb/ D N.b/. But this is a consequence of�

N.b/

p

�
D
�

N.b/

p

�h
D
�
ˇ

p

�� Ň
p

�
D
�
ˇ

p

�2
D 1;

where ˇ 2 K is a generator of bh. Observe that � is a positive unit in O�
H0

.

Proposition 6.2. Let ƒ D � � OK be the lattice attached to A.p/. Then

� D ˙ i .pC1/=4
h
vuuut� � .2�/.2hC1�p/=4 � p

p
.1�3h/=2 �

Y
1�m<p

�.m/D1

�

�
m

p

�
;

where the h-th root is taken to be real.

Proof. By the Chowla–Selberg formula [2], we know that

Y
a2Gal.H=K/

N.a/�6�.�a/ D
�
2�

p

�6h� p�1Y
mD1

�

�
m

p

��.m/�6
;

where h1; �ai D 1
N.a/a. Since 
 is the one-cocycle attached to !, we have that

�.�a/ D N.a/12�.a/ D N.a/12�

�
�

ı.a/
a

�
�12

ı.a/12
D �p3N.a/12

ı.a/12
�12: (7)
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Combining (6), (7), and Gauss’s identity

n�1Y
iD1

�

�
i

n

�
D .2�/.n�1/=2n�1=2;

the statement follows by taking into account that � lies in R or i R according to
p � �1 .mod 8/ or not (cf. [9]). �

As a result, we obtain the following fact, which concludes the proof of Theo-
rem 1.5.

Corollary 6.3. With the above notations, one has˚
2� i

R
�
g.z/dz W � 2 H1.X0.p2/;Z/

� D 1
c

�� � OK :

7. CM elliptic directions for non-trivial Nebentypus

In this section, we shall consider arbitrary Hecke characters mod p. Let  in X and
let  be its eta-character. Let f denote the normalized newform attached to  . In
order to find the elliptic directions in S2.Af /, one needs to determine the modular
one-cocycles 
u in ŒAf �. Then the normalized cusp forms

gu D
X

.a;p/D1
a�1


u.a/ q
N.a/

are the elliptic directions in S2.Af /. Recall that in the particular case 2 D 1, all
one-cocycles are modular. In general, as explained above, to find the modular one-
cocycles amounts to an eigenvector problem. In our particular setting, the following
lemma will be useful since it will allow to handle certain linear systems by means of
a quotient polynomial ring.

Lemma 7.1. Let M=F be a cyclic field extension of degree k. Fix a genera-
tor � of Gal.M=F /, and let �k be the group of k-th roots of unity. Let E D
EndF ŒGal.M=F /�.M/ be the F -algebra of Gal.M=F /-equivariant F -linear endomor-
phisms ofM . One has

(i) the map ‚ W F ŒX�=.Xk � 1/ ! E given by

‚.

kX
iD1

ai X
i /.u/ D

kX
iD1

ai
 i

u; for all u 2 M;

is well defined and an isomorphism of F -algebras.
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(ii) For every p.X/ 2 F ŒX�=.Xk � 1/, let Z D f� 2 �k W p.�/ D 0g. Then the
endomorphism G D ‚.p.X// diagonalizes and its characteristic polynomial
is

.�1/k
kY
iD1

�
X � p.�ik/

�
;

where �k D e2�i=k . We have dimF kerG D jZj, and

kerG D ‚

 
Xk � 1Q
�2Z.X � �/

!
.M/: (8)

Proof. It is obvious that ‚ is well defined and a morphism of F -algebras. Choose
˛ 2 M such that f i

˛g1�i�k is a F -basis of M . The morphism ‚ is injective
because ‚.q.X// D 0 implies that ‚.q.X//.˛/ D 0 and, then, q.X/ D 0. For
a given G 2 E , we have that G.˛/ D Pk

iD1 ai 
i
˛ for some ai 2 F and, thus,

G.u/ D Pk
iD1 ai 

i
u for all u 2 M . Therefore,‚ is surjective and part (i) is proved.

We consider the F -algebra monomorphism ‰ W E ! EndF F ŒX�=.Xk � 1/ de-
fined by ‰.G/ D yG, where

yG.q.X// D ‚�1.G/ � q.X/; for all q.X/ 2 F ŒX�=.Xk � 1/: (9)

Now it suffices to prove part (ii) for yG. Note that for any field extension F0=F , the
relation (9) allows us to consider yG as aF0-linear endomorphism ofF0ŒX�=.Xk�1/.

Let G D ‚.p.X//. The set of eigenvalues of yG is fp.�i
k
/ W 1 � i � kg. Indeed,

if ˇ 2 F0 is an eigenvalue of eigenvector q.X/ 2 F0ŒX�=.Xk � 1/, then there exists
� 2 �k such that q.�/ ¤ 0 and, thus, ˇ D p.�/. Conversely, if ˇ D p.�/ for some
� 2 �k then q.X/ D Q

� 02�knf�g.X��0/ is an eigenvector with eigenvalue ˇ. Notice

that all eigenvalues of yG are in F0 D F.�k/.
Now, let ˇ D p.�/ for some � 2 �k and we will prove that

dimF0
ker. yG � ˇ id/ D jf� 2 �k W p.�/ D ˇgj;

which implies part (ii) except for the equality (8). Note that by a translation of yG, we
can (and do) assume ˇ D 0. Then one has

ker yGD fq.X/ 2 F0ŒX�=.Xk � 1/ W q.�/ D 0 for all � 2 �knZg
D fq.X/ 2 F0ŒX�=.Xk � 1/ W q.X/ D

Y
�2�knZ

.X � �/ r.X/; deg r < jZjg:

It follows that dimF0
ker yG D jZj and ker yG D ker.‰ B‚/.Q�2Z.X � �//. Finally,

the equality (8) is a consequence of the fact that q.X/ D Q
�2Z.X � �/ 2 F ŒX� is

coprime with r.X/ D .Xk�1/=p.X/ and q.X/�r.X/ is zero inF ŒX�=.Xk�1/. �
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Now, we focus our attention on the Hecke character  2 X. For the sake
of simplicity, let us assume that its eta-character satisfies ord./ D p � 1. Since
ker  is trivial, the corresponding field L is the ray class field of K mod p; that
is, L D H � Q.�p/ (cf. Propsition 5.1). The cyclic group Gal.L=H/ has order
k WD .p � 1/=2. Also, let E D EndHŒGal.L=H/�.L/ be the H -algebra of Gal.L=H/-
equivariant endomorphisms. After fixing a generator � of Gal.L=H/, consider ‚ as
in Lemma 7.1. Finally, let 
 W I.p/ ! L� be the one-cocycle in Section 6. To find the
elliptic directions inS2.Af / turns out to be equivalent to find the twisted one-cocycles

u.a/ D 
.a/ u=au which are modular. Note that now 
 is not modular in ŒAf �.

Proposition 7.2. For all u 2 L�, the following conditions are equivalent:

(i) the one-cocycle 
u.a/ D 
.a/ uau is modular;

(ii) u D ‚
�
Xk�1
ˆk.X/

	
.v/, for some v 62 ker‚

�
Xk�1
ˆk.X/

	
.

In particular, for u D ‚
�
Xk�1
ˆk.X/

	
.�p/ the one-cocycle 
u is modular. Here, ˆk.X/

denotes the k-th cyclotomic polynomial.

Proof. The values u 2 L� for which 
u is modular are the eigenvectors of the K-
linear map

pr.u/ D
X

a2Gal.L=K/

a�1


.a/
�X
�2ˆ

1
� .a/

	
a�1

u (10)

with eigenvalue equal to ŒL W K�. Also, by Proposition 4.4, we know that pr=ŒL W K�
is a projector, pr diagonalizes, and its characteristic polynomial is

.ŒL W K� �X/ŒE WK�X ŒLWK��ŒE WK� D �
.ŒL W K� �X/'.k/Xk�'.k/�ŒH WK�

:

By part (i) of Lemma 5.2, we can rewrite

pr.u/ D
X

a2Gal.L=H/

a�1


.a/
�X
�2ˆ

1
� .a/

	
a�1

u:

Let g 2 Z be a primitive root of .Z=pZ/� such that .g/ D �, where � D e
� i
k .

Since the set of principal ideals faj D g2jOK W 1 � j � kg is a set of representatives
of Gal.L=H/ and 
.g2jOK/ D g2j , we have

G.u/ WD pr.u/

ŒH W K� D 1

ŒH W K�
kX

jD1

�X
�2ˆ

���2j	a�1
j u D

kX
jD1

TrQ.�/=Q.�
�2j /a

�1
j u:

Hence, G belongs to E and its characteristic polynomial has roots 0 and k with
multiplicities k � '.k/ and '.k/, respectively.
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Now, we fix the generator � D g�2OK of Gal.L=H/ and apply Lemma 7.1 to
the endomorphism G � k Id 2 E . It follows that the set

Z D ˚
�0 2 �k W Pk

jD1 TrQ.�/=Q.�
�2j /.�0/2j � k D 0

�
has cardinality jZj D '.k/. Letting �k D �2, we claim that

Z D f�j
k

W 1 � j < k; gcd.j; k/ D 1g:
Since Gal.Q.�/=Q/ acts transitively on Z and jZj D '.k/, it suffices to prove that
�k 2 Z. Indeed, one checks:

kX
jD1

� X
i2.Z=kZ/�

�
�j i
k

	
�
j

k
D

kX
jD1

� X
i2.Z=kZ/�

�
.1�i/ j
k

	
D

kX
jD1

� X
i2.Z=kZ/�

�
i j

k

	
D k:

Then, from Lemma 7.1, we obtain

fu 2 L W pr.u/ D ŒL W K�ug D
n
u D ‚

�
Xk�1
ˆk.X/

	
.v/ W v 2 L

o
:

Note that the image of ‚
�
Xk�1
ˆk.X/

	
is independent of the choice of the generator � in

Gal.L=H/. It can be easily checked that‚..Xk�1/=ˆk.X// vanishes onH , which
implies that ‚..Xk � 1/=ˆk.X//.�p/ is non-zero since the class of the polynomial
.Xk � 1/=ˆk.X/ in LŒX�=.Xk � 1/ is non-zero. �

Example. Take p D 7, so that K D Q.
p�7/ has class number one. Let  

in X with eta-character satisfying .3/ D e2�i=6. Its corresponding newform f DP
 ..a//qN.a/ 2 S2.�1.49// has Nebentypus " of order 3; note that  ..a// D

a.a/ for all a 2 OK . The one-cocyle 
 satisfies 
..a// D a with the unique
choice of sign for a such that the symbol .a=

p�7/ D 1. This one-cocycle is not
modular for  (in fact, it is modular for the Hecke character in X with eta-character
of order 2 in which case the (unique) elliptic direction coincides with the rational
newform in S2.�0.49// giving rise to the elliptic curve 49A1 in Cremona’s notation.)
Thus, we need to twist 
 by a coboundary in order to get a modular one-cocycle.
According to Proposition 7.2, we can take, for instance, u D ‚.X � 1/.�7/ D
�27 � �7 and the cuspidal form gu D P

a�1

u.a/q

N.a/ D P

..a//.a

2/u=u qN.a/ 2
S2.�1.49// is an elliptic direction of Af . A computer calculation shows the lattice
ƒ for the corresponding elliptic optimal quotient from Jac.X�"

/ satisfies: c4.ƒ/ D
c4.A.7//u

4, and c6.ƒ/ D c6.A.7//u
6.
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