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Conformal structure of minimal surfaces with finite topology

Jacob Bernstein�and Christine Breiner

Abstract. In this paper we show that a complete, embedded minimal surface in R3, with finite
topology and one end, is conformal to a once-punctured compact Riemann surface. Moreover,
using this conformal structure and the embeddedness of the surface, we examine the Weierstrass
data and conclude that every such surface has Weierstrass data asymptotic to that of the helicoid.
More precisely, if g is the stereographic projection of the Gauss map, then in a neighborhood
of the puncture, g.p/ D exp.i˛z.p/ C F.p//, where ˛ 2 R, z D x3 C ix�

3
is a holomorphic

coordinate defined in this neighborhood and F.p/ is holomorphic in the neighborhood and
extends over the puncture with a zero there. As a consequence, the end is asymptotic to a
helicoid. This completes the understanding of the conformal and geometric structure of the
ends of complete, embedded minimal surfaces in R3 with finite topology.
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1. Introduction

We apply the techniques of [1] to study complete, embedded minimal surfaces in
R3 with finite topology and one end. We refer to the space of such surfaces as
E.1/. Notice that we do not a priori assume the surfaces are properly embedded.
This is because Colding and Minicozzi have shown, in Corollary 0.13 of [8], that
every complete, embedded minimal surface with finite topology is, in fact, properly
embedded. This fact will be used implicitly throughout. Surfaces in E.1/ that have
genus zero have been completely classified by Meeks and Rosenberg in [23] and
consist of planes and helicoids; thus we restrict attention to the subset E.1; C/ � E.1/

of surfaces that have positive genus. This space is non-trivial; the embedded genus one
helicoid, H , constructed in [16] by Hoffman, Weber, and Wolf provides an example
which, moreover, has the property of being asymptotically helicoidal (see also [26]
for a nice overview of their construction).

The construction and study of H has a rich history. Using the Weierstrass repre-
sentation, Hoffman, Karcher, and Wei in [14] first constructed an immersed genus-one
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helicoid. See Figure 1 for an image of this surface. Computer graphics suggested
it was embedded, but a rigorous construction of an embedded genus-one helicoid
followed only after Hoffman and Wei proposed a new construction in [18]. They
considered the limit of a family of screw-motion invariant minimal surfaces with
periodic handles and a helicoidal end. Weber, Hoffman, and Wolf confirmed the ex-
istence of such a family of surfaces in [17] and ultimately proved their embeddedness
in [16], giving H . Hoffman, Weber, and Wolf conjecture that H is not only the same
surface as the one produced in [14], but is actually the unique element in the class
of “symmetric” genus-one helicoids, that is, surfaces in E.1/ with genus one and
containing two coordinate axes. Recently, Hoffman and White, in [19], used varia-
tional methods to give a different construction of a symmetric, embedded genus-one
helicoid; whether their construction is H is unknown.

Figure 1. A genus-one helicoid (courtesy of Matthias Weber).

Building on [19], in [20], Hoffman and White prove rigidity results for properly
immersed minimal surfaces with genus one and one end that, moreover, admit the
same symmetries as H . In particular, they show such surfaces are conformal to a
punctured torus and are asymptotic to a helicoid. In this paper, we prove that any
† 2 E.1; C/ is conformal to a once-punctured, compact Riemann surface and its
Weierstrass data – see (1.1) – has helicoid-like behavior at the puncture:

Theorem 1.1. Any † 2 E.1/ is conformally a punctured, compact Riemann surface.
Moreover, if the surface is not flat, then, after a rotation of R3, the height differential,
dh, extends meromorphically over the puncture with a double pole, as does the
meromorphic one form dg

g
.

The proof of this result draws heavily on the fundamental work of Colding and
Minicozzi on the geometric structure of embedded minimal surfaces in R3 [4], [5], [6],
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[7], [9]. Assuming only mild conditions on the boundaries, they give a description of
the geometric structure of essentially all embedded minimal surfaces with finite genus.
From this structure, they deduce a number of important consequences. These include:
the one-sided curvature estimate for embedded minimal disks [7] – an effective version
of the strong half-space theorem of Hoffman and Meeks [13]; a compactness result
for a sequence of embedded minimal disks in [7] that requires no a priori bounds on
the curvature or area; and the settling of the Calabi–Yau conjecture for embedded
minimal surfaces of finite topology [8], i.e., a complete, embedded minimal surface
in R3 of finite topology is properly embedded.

Colding and Minicozzi’s work is also an essential ingredient in understanding
minimal surfaces with infinite total curvature, i.e., complete surfaces with one end.
Prior to their work, the study of these surfaces required very strong assumptions on
the conformal structure and behavior of the Gauss map at the end. For examples we
refer to Hoffman and McCuan [15] and Hauswirth, Perez and Romon [12]. The latter
authors consider E � R3, a complete embedded minimal annulus with one compact
boundary component and one end with infinite total curvature. They assume, in
addition, that E is conformal to a punctured disk, the Weierstrass data .g; dh/ has the
property that dg=g and dh extend across the puncture, and the flux over the boundary
of E has zero vertical component. Assuming all of this, they then deduce more precise
information about the asymptotic geometry of E. Notice in a suitable neighborhood
of the puncture of a non-flat element of E.1/, Theorem 1.1 immediately implies that
these conditions are satisfied.

By using Colding and Minicozzi’s work, in particular the compactness result of
[7], Meeks and Rosenberg were able to remove such strong assumptions for disks.
Indeed, in [23], they show that the helicoid is the unique non-flat complete, embedded
minimal disk. They go on to discuss how the techniques of their proof might allow one
to show something similar to Theorem 1.1 for surfaces in E.1; C/ and the implications
this has for the possible conformal structure of complete embedded minimal surfaces
in R3. They do this without going into the details or addressing the difficulties, but
indicate how such a statement may be proved using the ideas and techniques of their
proof. In [1], we more directly use the geometric structure given by Colding and
Minicozzi for embedded minimal disks to prove the uniqueness of the helicoid. In
this paper, we generalize our argument to surfaces in E.1; C/, thus determining the
asymptotic structure of all elements of E.1/.

Recall the Weierstrass representation takes a triple .M; g; dh/ where M is a Rie-
mann surface, g is a meromorphic function and dh is a meromorphic one form (which
has a zero everywhere g has a pole or zero) that satisfy certain natural compatibility
conditions, and gives a minimal immersion of M into R3:

F WD Re
Z �

1

2
.g�1 � g/;

i

2
.g�1 C g/; 1

�
dh: (1.1)
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Moreover, the immersion F is such that Re dh D F�dx3 and g is the stereographic
projection of the Gauss map of the image of F. Any immersed minimal surface in
R3 admits such a representation. For the helicoid with z 2 C one has:

g WD ei˛zI dh WD dzI ˛ 2 RC: (1.2)

Notice that on the helicoid both dg
g

and dh have double poles at infinity; moreover,
dg
g

� i˛dh is identically zero. For † 2 E.1/, Theorem 1.1, the Weierstrass represen-
tation, and embeddedness immediately imply that near the puncture the Weierstrass
data is asymptotic to that of a helicoid. This is an immediate consequence of Theo-
rem 1.1 above and Theorem 2 of [12], though we present our own proof in Section 4.3
(where we also prove Theorem 1.1). Indeed, we have:

Corollary 1.2. For † as in Theorem 1.1, there exists an ˛ 2 R so that dg
g

� i˛dh

holomorphically extends over the puncture. Equivalently, after possibly translating
parallel to the x3-axis, in an appropriately chosen neighborhood of the puncture,
� � †, g.p/ D exp.i˛z.p/ C F.p// where F W � ! C extends holomorphically
over the puncture with a zero there and z D x3 C ix�

3 is a holomorphic coordinate
on � . Here x�

3 is the harmonic conjugate of x3.

Theorem 1 of [12] implies that for Weierstrass data .�; g; dh/ as in Corollary 1.2,
that also satisfy a certain flux condition, theWeierstrass representation gives a minimal
surface that is C 0-asymptotic to a (vertical) helicoid H . That is, for any � > 0, there
exists R� > 0, so that �nBR�

.0/ has Hausdorff distance to HnBR�
.0/ less than �.

For elements of E.1/, as the Weierstrass data is defined on a surface with only one end,
this flux condition is automatically satisfied by Stokes’ theorem. Thus, Theorem 1.1
allows one to immediately apply Theorem 1 of [12] and obtain:

Corollary 1.3. If † 2 E.1/ is non-flat then † is C 0-asymptotic to some helicoid.

Theorem 1.1 and its corollaries complete the classification of the conformal type
and asymptotic geometry of complete embedded minimal surfaces in R3 with finite
topology. Indeed, let E.k/ be the space of complete, embedded minimal surfaces
with finite topology and k ends. Meeks and Rosenberg, in Corollary 1.1 of [22],
completely classify the conformal type of these surfaces when k � 2. Indeed, they
show such a surface is conformal to a compact Riemann surface with k punctures.
However, they can only describe the asymptotic geometry at k�2 of the ends. Collin,
in Theorem 1 of [10], overcomes this obstacle by proving that all such surfaces have
finite total curvature. This, together with classic results of Huber [21] and Osserman
[24], recovers not only the conformal type of surfaces in E.k/ for k � 2, but also gives
a description of their asymptotic geometry. Thus, he completes the classification for
embedded minimal surfaces of finite topology and two or more ends. Combined with
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Theorem 1.1, we then have the following classification result for any minimal surface
of finite topology that is complete and embedded in R3:

Corollary 1.4. Let † 2 E.k/, k � 1. Then † is conformal to a punctured compact
Riemann surface. Moreover, if k � 2, then † has finite total curvature and each end
of † is asymptotic to either a plane or a catenoid. If k D 1, then either † is a plane
or it has infinite total curvature and its end is asymptotic to a helicoid.

Let us now recall the argument of [1], where we provide an alternative proof to
the uniqueness of the helicoid. There it is shown that any complete, non-flat, properly
embedded minimal disk can be decomposed into two regions: one a region of strict
spiraling, i.e., the union of two strictly spiraling multi-valued graphs over the x3 D 0

plane (after a rotation of R3), and the other a neighborhood of the region where the
graphs are joined and where the normal has small vertical component. By strictly
spiraling, we mean that each sheet of the graph meets any (appropriately centered)
cylinder with axis parallel to the x3-axis in a curve along which x3 strictly increases
(or decreases). This follows from existence results for multi-valued minimal graphs
in embedded disks found in [5] and an approximation result for such minimal graphs
from [3]. The strict spiraling is then used to see that r†x3 ¤ 0 everywhere on the
surface; thus, the Gauss map is not vertical and the holomorphic map z D x3 C ix�

3

is a holomorphic coordinate. By looking at the log of the stereographic projection of
the Gauss map, the strict spiraling is used to show that z is actually a proper map and
thus, conformally, the surface is the plane. Finally, this gives strong rigidity for the
Weierstrass data, implying the surface is a helicoid.

For † 2 E.1; C/, as there is finite genus and only one end, the topology of † lies
in a ball in R3, and so, by the maximum principle, all components of the intersection
of † with a ball disjoint from the genus are disks. Hence, outside of a large ball, one
may use the local results of [4], [5], [6], [7] about embedded minimal disks. In [1],
the trivial topology of † allows one to deduce global geometric structure immediately
from these local results. For † 2 E.1; C/, the presence of non-zero genus compli-
cates matters. Nevertheless, the global structure will follow from the far reaching
description of embedded minimal surfaces given by Colding and Minicozzi in [9]. In
particular, as † has one end, globally it looks like a helicoid (see Appendix D). Fol-
lowing [1], we first prove a sharper description of the global structure (in Section 3.2);
indeed, one may generalize the decomposition of [1] to † 2 E.1; C/ as:

Theorem 1.5. There exist �0 > 0 and a decomposition (see Figure 2) of † into
disjoint subsets RA, RS , and RG such that:

(1) RG is compact, connected, has connected boundary and †nRG has genus 0;

(2) after a rotation of R3, RS can be written as the union of two (oppositely
oriented) strictly spiraling multi-valued graphs †1 and †2;



358 J. Bernstein and C. Breiner CMH

(3) in RA, jr†x3j � �0.

  Region 
containing

  Region 
containing

  Region 
containing

RA

RA

RS

RS

RG

Figure 2. A cross-sectional sketch of the three regions in the decomposition of † as outlined in
Theorem 1.5.

Remark1.6. We say †i (i D 1; 2) is a multi-valued graph if it can be decomposed into
N -valued �-sheets (see Definition 2.2) with varying center. That is, †i D S1

j D�1 †i
j

where each †i
j D yi

j C�ui
j

is an N -valued �-sheet. Strict spiraling is then equivalent

to .ui
j /� ¤ 0 for all j . A priori, the axes of the multi-valued graphs vary, a fact

that introduces additional book-keeping. For the sake of clarity, we assume that each
†i is an 1-valued �-sheet – i.e., †i is the graph, �ui , of a single function ui with
ui

�
¤ 0.

To prove this decomposition, we first find the region of strict spiraling, RS . The
strict spiraling controls the asymptotic behavior of level sets of x3 which, as x3 is
harmonic on †, gives information about x3 in all of †. More precisely:

Proposition 1.7. There exists � � †, an annulus, so that †n� is compact and such
that r†x3 ¤ 0 in � . Further, for all c 2 R, � \ fx3 D cg consists of either one
smooth, properly embedded curve or two smooth, properly embedded curves each
with one endpoint on @� along with a finite number of smooth curves with both
endpoints on @� . Moreover, if c is a regular value of x3 then � \fx3 D cg is a subset
of the unbounded component of † \ fx3 D cg.
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The decomposition allows us to argue as in [1], though the non-trivial topology
again adds some technical difficulties. By Stokes’Theorem, x�

3 (the harmonic conju-
gate of x3) exists on � and thus there is a well defined holomorphic map z W � ! C
given by z D x3 C ix�

3 . Proposition 1.7 implies that z is a holomorphic coordinate
on � . We claim that z is actually a proper map and so � is conformally a punc-
tured disk. Following [1], this can be shown by studying the Gauss map. On � , the
stereographic projection of the Gauss map, g, is a holomorphic map that avoids the
origin. Moreover, the minimality of † and the strict spiraling in RS imply that the
winding number of g around the inner boundary of � is zero. Hence, by monodromy
there exists a holomorphic map f W � ! C with g D ef . Then, as in [1], the strict
spiraling in RS imposes strong control on f which is sufficient to show that z is
proper. Further, once we establish � is conformally a punctured disk, the properties
of the level sets of f imply that it extends meromorphically over the puncture with a
simple pole. This gives Theorem 1.1.

2. Structural properties of †

In the next five subsections, we develop the tools needed to prove the decomposition
of Theorem 1.5 and Proposition 1.7. Many of these are extensions of those developed
for the simply connected case, which can be found in Section 2 of [1].

2.1. Preliminaries. We first introduce some notation. Unless otherwise specified,
throughout the paper let † 2 E.1; C/, i.e., † is a complete, embedded minimal
surface with finite and positive genus, k, and one end. Here we say that a surface has
genus k if it is homeomorphic to a compact, oriented genus k surface with at most
a finite number of punctures. As † has one end and is complete in R3, there exists
an R > 0 so that one of the components x† of † \ BR is a compact surface with
connected boundary and genus k; we refer to x† as the genus of †. Thus, †nx† has
genus 0 and is a neighborhood of the end of †. By homothetically rescaling, we may
assume that the genus, x†, lies in B1 and supx† jAj2 � 1. Here jAj2 denotes the norm
squared of the second fundamental form of † and Br.y/ represents the Euclidean
ball of radius r , centered at y, whereas Br.y/ denotes the intrinsic ball in † of radius
r centered at y. Throughout the paper, when we say far from (or near) the genus, we
mean extrinsically with respect to this scale. That is, a subset of R3 is far from the
genus if the Euclidean distance to B1 is large.

Denote by … W R3 ! R2 the projection ….x1; x2; x3/ D .x1; x2/. Let

Cı.y/ D ˚
x W .x3 � y3/2 � ı2

�
.x1 � y1/2 C .x2 � y2/2

�� � R3 (2.1)

be the complement of a cone and set Cı D Cı.0/. Given a real-valued function, u,
defined on a domain � � RC � R, define the map ˆu W � ! R3 by ˆu.�; �/ D
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.� cos �; � sin �; u.�; �// so that the image is a multi-valued graph. A natural domain
is the polar rectangle

S�1;�2
r1;r2

D f.�; �/ j r1 � � � r2; �1 � � � �2g : (2.2)

Indeed, for u defined on S
�1;�2
r1;r2

, ˆu.S
�1;�2
r1;r2

/ is a multi-valued graph over the annulus
Dr2

nDr1
. Thus, �u WD ˆu.�/ is the graph of u, and �u is embedded if and only if

w ¤ 0, where the separation w of u is defined as w.�; �/ D u.�; � C 2�/ � u.�; �/.
We say a multi-valued graph, �u, strictly spirals if, for u W � ! R3, u� ¤ 0. Note
at times we fail to distinguish between u and its graph �u – the meaning will be clear
from context.

Recall that u satisfies the minimal surface equation if

div

 
rup

1 C jruj2

!
D 0: (2.3)

The graphs of interest to us will satisfy the following flatness condition:

jruj C �jHess uj C 4�
jrwj
jwj C �2 jHess w j

jwj � � <
1

2�
: (2.4)

As multi-valued minimal graphs are fundamental to the description of the asymptotic
behavior, we introduce some notation for them.

Definition 2.1. A multi-valued minimal graph †0 is a weak N -valued (�-)sheet
(centered at y on the scale s), if †0 D �u C y and u, defined on S

��N ;�N
s;1 , satisfies

(2.3), has jruj � �, and †0 � C�.y/.

We will often need more control on the sheets as well as a normalization at 1:

Definition 2.2. A multi-valued minimal graph †0 is an (strong) N -valued (�-)sheet
(centered at y on the scale s), if †0 D �u C y is a weak N -valued �-sheet centered
at y on scale s, and in addition u satisfies (2.4) and lim�!1 ru.�; 0/ D 0.

Using Simons’inequality, Corollary 2.3 of [2] shows that on the one-valued middle
sheet of a 2-valued graph satisfying .2.4/, the hessian of u has faster than linear decay.
This implies a Bers like result on asymptotic tangent planes – i.e., the normalization
at 1 in the definition of �-sheet is well defined. Indeed, for �u a 2-valued �-sheet,
one has gradient decay,

jruj.�; 0/ � C���5=12: (2.5)

Note that Colding and Minicozzi show, using standard elliptic theory, that for suffi-
ciently large N and small ı a weak N -valued ı-sheet contains a 4-valued � sheet as
a sub-graph. For the details, we refer the reader to Proposition 2.3 of [1].
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Finally, as in the papers of Colding and Minicozzi, we are interested in points with
large curvature relative to nearby points, as around these points multi-valued graphs
form (see [5]). The precise definition we use is the following:

Definition 2.3. The pair .y; s/, y 2 †, s > 0, is a (C ) blow-up pair on scale s if

sup
Bs.y/\†

jAj2 � 4jAj2.y/ D 4C 2s�2: (2.6)

Remark 2.4. The constant C will be specified in some of the theorems but it should
always be thought of as being very large.

2.2. Existence of multi-valued graphs. To obtain the decomposition of Theo-
rem 1.5 we will need two propositions regarding the large scale geometric structure
of elements of E.1; C/. These generalize results for disks from [4] and [5] on the
existence and extendability of multi-valued graphs in embedded minimal disks. It
should be noted that many of the proofs of [4], [5] did not require that the surface
be a disk but only that the boundary be connected, a fact used in [9] to extend the
description of embedded minimal disks of [4], [5] to finite genus surfaces. The first
result we will need gives the existence of an N -valued graph starting near the genus
and extending as a graph all the way out; i.e., the initial graph is a subset of a graph
over an unbounded annulus. The second result is similar but applies for a blow-up
pair far from the genus. Namely, for such a pair a multi-valued graph forms on the
scale of the pair and extends as a graph all the way out. It may be helpful to compare
with the analogous results for disks, i.e. Theorem 0.3 of [4] and Theorem 0.4 of [5].

Note that local versions of the propositions stated below are used by Colding
and Minicozzi in [9], specifically in the proof of their compactness result for finite
genus surfaces (i.e. Theorem 0.9 of [9]). However, they are not explicitly stated in
[9]. Thus, for the sake of completeness, we include a proof of both propositions,
assuming Theorem 0.9 of [9], in Appendix D. Both propositions require a rotation of
R3. However, because both propositions come from the global geometric structure
of †, the rotations are the same.

Proposition 2.5. Given � > 0 and N 2 ZC there exists an R > 1 so that the
following holds. After a rotation of R3 there exists †g � †, a weak N -valued
�-sheet centered at 0 and on scale R.

Proposition 2.6. Given � > 0 sufficiently small and N 2 ZC there exist C1 > 0 and
R > 1 so that the following holds. After a rotation of R3, if .y; s/ is a C1 blow-up
pair in † and jyj � R then there exists †g � †, a weak N -valued �-sheet centered
at y and on scale s.
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2.3. Global structure of †. For an element † 2 E.1; 0/ (i.e. a minimal disk),
the existence of a weak �-sheet (i.e. the existence of a blow-up pair) allowed one
to immediately appeal to the one-sided curvature estimates of [7] (see Appendix C).
This allowed one to deduce important information about the global structure of †.
In particular, one had a type of “regularity” for the set of blow-up pairs; that is, all
the blow-up pairs of † were forced to lie within a wide cone. A related property was
that if .0; 1/ is a blow-up pair in † then blow-up pairs far from 0 have scale a small
fraction of the distance to 0.

We will need a similar results for † 2 E.1; C/; however, because the one-sided
curvature estimate is very sensitive to the topology, the non-trivial genus will introduce
some technical difficulties. We discuss how to overcome these in Appendix C. As
a consequence, we have the following lemma, which asserts that there is a cone
(centered at the origin) so that for blow-up pairs far from the genus, the pair must
lie within the cone, i.e., we recover the “regularity” of the set of blow-up pairs. We
point out that this result is particularly useful when combined with Corollary C.3 and
Proposition 2.6, as the three imply that for small ı0 and a blow-up pair .y; s/ far from
the genus, one may apply the one-sided curvature estimate in Cı0.y/ exactly as was
done in the case for disks.

Lemma 2.7. There exists a ı > 0 and R > 1 so that if .y; s/ is a blow-up pair in †

and jyj � R then y … Cı.0/.

Proof. Fix � D 1=2, and let ı0 be the value given by Corollary C.2. By Proposi-
tion 2.5, † contains a weak 2-valued ı0-sheet centered at 0 and with scale R0 > 1.
Thus, as x† � B1 � BR0

, we may apply Corollary C.2 to deduce that in the set
Cı0

nB2R0
every component of † is a graph with gradient bounded by 1=2. In partic-

ular, there are no blow-up pairs in this set. Thus, we may take R D 2R0 and ı D ı0.
�

The second global result for disks also generalizes. Indeed, we claim that the
further a blow-up pair is from the genus, the smaller the ratio between the scale and the
distance to the genus. This is an immediate consequence of the control on curvature
around blow-up pairs as given by Proposition B.1 (an extension of Lemma 2.26 of
[8] to †). Indeed, for blow-up pairs far from the genus, the scale is small relative to
distance to the genus:

Corollary 2.8. Given ˛, C1 > 0 there exists an R such that if .y; s/ is a C1 blow-up
pair of † with jyj � R then s < ˛jyj.

Proof. Recall that we have normalized † so that supB1\† jAj2 � 1. Now suppose
the result did not hold. Then there exists a sequence .yj ; sj / of C1 blow-up pairs with
jyj j � j and sj � ˛jyj j. Set K1 D 2=˛. By Proposition B.1 there exists K2 such that
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supBK1sj
.yj /\† jAj2 � K2s�2

j . Since B1 � BK1sj
.yj /, supB1\† jAj2 � K2s�2

j .

But sj � ˛jyj j � j̨ ; thus for j sufficiently large one obtains a contradiction. �

2.4. Blow-up sheets. In order to get the strict spiraling in the decomposition of
Theorem 1.5, we need to check that the multi-valued graphs that make up most of
† can be consistently normalized. To that end, we note that, for blow-up pairs far
enough from the genus, one obtains a nearby �-sheet (i.e., we have a normalized
multi-valued graph). This is essentially Theorem 2.5 in [1].

Theorem 2.9. Given � > 0, N 2 ZC, there exist C1; C2 > 0 and R > 0 such that
the following holds true. Suppose that .y; s/ is a C1 blow-up pair of † with jyj > R.
Then there exists (after a rotation of R3) an N -valued �-sheet †1 D yC�u1

centered
at y on scale s. Moreover, the separation over @Ds.….y// of †1 is bounded below
by C2s.

The proof of the theorem is exactly the same as the proof of Theorem 2.5 in [1] with
one modification. Where the proof of [1] uses Theorem 0.2 of [5] to produce a weak
N0-valued sheet (N0 is determined in the proof), one must now use Proposition 2.6.
Thus, in the above hypothesis, the blow-up pair must satisfy the additional criteria of
jyj > R so that one may appeal to Proposition 2.6.

Following Colding and Minicozzi, we need to next understand the structure of †

between the sheets of this initial multi-valued graph, †1. We claim that in between
this sheet, † consists of exactly one other �-sheet. To make this more precise, suppose
u is defined on S

��N �3�;�N C3�
1=2;1 and �u is embedded. We define E to be the region

over D1nD1 between the top and bottom sheets of the concentric sub-graph of u.
That is:

E D f.� cos �; � sin �; t/ W 1 � � � 1; �2� � � < 0;

u.�; � � �N / < t < u.�; � C .N C 2/�g: (2.7)

When † is a disk, Colding and Minicozzi in Theorem I.0.10 of [7] show that †\En†1

consists of a single graphical piece. Thus, using †1 and the one-sided curvature
estimate of [7], the gradient of this second graphical component is controlled. As
before, when there are enough sheets in this second multi-valued graph and the
gradient is controlled, standard elliptic theory establishes (2.4) on a sub-graph and
hence one obtains two �-sheets spiraling together. We refer the reader to Theorem 2.6
of [1] for the details. In the more general setting of this paper, as long as the part
of † between the sheets of †1 makes up a second minimal graph and we can apply
the one-sided curvature estimates, the proof of Theorem 2.6 of [1] applies. Thus, we
must verify both the existence of this second multi-valued graph and that we are able
to apply the one-sided curvature estimate to it. By patching together two results of
Colding and Minicozzi from [7] the first issue is easily handled. The global structure
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of †, in particular Lemma 2.7, implies that as long as the blow-up pair is far from
the genus there is no problem handling the second issue either:

Theorem 2.10. Given � > 0 sufficiently small there exist C1; C2 > 0 and R > 1 so
that the following holds. Suppose .y; s/ is a C1 blow-up pair, with jyj > R. Then
there exist two 4-valued �-sheets †i D y C �ui

(i D 1; 2) on the scale s centered
at y which spiral together (i.e. u1.s; 0/ < u2.s; 0/ < u1.s; 2�/). Moreover, the
separation over @Ds.….y// of †i is bounded below by C2s.

Remark 2.11. We refer to †1; †2 as (�-)blow-up sheets associated with .y; s/.

Proof. Let ı > 0 and R > 1 be given by Lemma 2.7. Using this ı and �=2, pick
ı0 < �=2 as in Corollary C.3 (and increase R if needed). Theorem 2.9 gives one
zN -valued ı0-sheet, †1, forming near .y; s/ for appropriately chosen C1 (and possibly

after again increasing R). Here we choose the zN > 4 as in Theorem 2.6 of [1] –
this allows one to establish (2.4) on a sub-graph of the second graph. Indeed, once
we establish that E, the region between the sheets of †1, is a weak . zN � 4/-valued
�=2-sheet the argument of Theorem 2.6 of [1] carries over unchanged.

We now show that † \ En†1 consists of exactly one multi-valued graph. The-
orem I.0.10 of [7] implies that near the blow-up pair the part of † between †1 is a
zN � 4 sheeted graph †in

2 ; i.e. if R0 is chosen so that B4R0
.y/ is disjoint from the

genus then BR0
.y/ \ E \ †n†1 D †in

2 . To ensure †in
2 is non-empty, we increase

R so that jyj � 8s (which we may do by Corollary 2.8). On the other hand, Ap-
pendix D of [7] guarantees that, outside of a very large ball centered at the genus, the
part of † between †1 is a zN � 4 sheeted graph, †out

2 . That is, for R1 � jyj large,
E \†n.BR1

[†1/ D †out
2 . By our choice of ı0; R, we can now apply the one-sided

curvature estimate in E, and so all the components of En†1 are graphs with gradient
bounded by �=2. Thus, it suffices to show that †in

2 and †out
2 are subsets of the same

component. If this was not the case, then, as †in
2 is a graph and † is complete, †in

2

must extend inside E beyond BR1
. But this contradicts Appendix D of [7] by giving

two components of †n†1 in E \ †nBR1
. �

2.5. Existence of blow-up pairs. While the properties of �-sheets will give the
strictly spiraling region of †, RS , to understand the region where these sheets fit
together (i.e. what will become RA), we need a handle on the distribution of the
blow-up pairs of †. Notice that the global structural results discussed above, i.e.
Lemma 2.7 and Corollary 2.8, give weak information of this sort.

In the case of trivial topology – i.e. Theorem 2.8 of [1] – non-flatness gives
one blow-up pair .y0; s0/, which in turn yields associated blow-up sheets. Then by
Corollary III.3.5 of [6] coupled with the one-sided curvature estimate, the blow-up
sheets give the existence of nearby blow-up pairs .y˙1; s˙1/ above and below .y0; s0/
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(see also Lemma 2.5 of [8]). Iterating, one determines a sequence of blow-up pairs
that are then used to construct the decomposition. The extension of the argument
to surfaces in E.1; C/ is much the same, though again there are various technical
difficulties complicating matters. Essentially, the proof will rely on three things.
First, the result of [6] is local; it depends on the topology being trivial in a large ball
relative to the scale of the blow-up pair. Second, by Lemma 2.7 and Corollary C.3, for
blow-up pairs sufficiently far from the genus, we can apply the one-sided curvature
estimate. Thus, we conclude that points of large curvature near a blow-up pair must
lie within a cone with vertex the point of the blow-up pair. As a consequence, blow-up
pairs can be constructed that are truly above (or below) a given blow-up pair. Third,
Corollary 2.8 implies that the scale of blow-up pairs far from the genus is small
relative to this distance.

Thus, it will suffice to find two blow-up pairs far from the genus in †, one above
and one below the genus. We first verify this is possible:

Lemma 2.12. Given � > 0 sufficiently small and h > 1, C1 > 0, there exist pairs
.y˙; s˙/ such that .y˙; s˙/ are C1 blow-up pairs of † and x3.yC/ > h > �h >

x3.y�/.

Proof. Fix a ı0 > 0 small, it will be specified in what follows. Proposition 2.5 of this
paper andAppendix D of [7] together guarantee the existence of two zN -valued graphs
spiraling together over an unbounded annulus (with inner radius xR) and lying in Cı0

.
Moreover, by construction, one of these is a weak ı0-sheet. By using Corollary C.2,
and replacing xR by 2 xR we can control the gradient on both zN -valued graphs. As
before, for large enough zN and sufficiently small ı0, we get (2.4) on a sub-graph of
both graphs. Because Proposition 2.5 already provides the necessary rotation, we get
two N -valued �-sheets around the genus, †1; †2, on some scale zR and in C� . We
may make � as small as we like by shrinking ı0.

Theorem III.3.1 of [6] is the analogue to Corollary III.3.5 of [6] for minimal
surfaces with connected boundary. Thus, for any r0 � maxf1; zRg, Theorem III.3.1
implies there is large curvature above and below the genus at points x˙. Precisely,
there exist x˙ 2 †nB4r0

such that jx˙j2jAj2.x˙/ � 4C 2
1 . Hence, by a standard

blow-up argument (see Lemma 5.1 of [5]), one gets the desired C1 blow-up pairs
.y˙; s˙/ above and below the genus and with jy˙j � �r0 where here � is small and
depends only on C1. Lemma 2.7 implies, after increasing r0 if needed, that the y˙
do not lie in Cı.0/ and thus by increasing r0 further (by an amount depending only
on � , ı and h) one has x3.yC/ > h > �h > x3.y�/. �

Thus, we may iteratively construct the desired sequence of blow-up pairs. This
sequence will be used to construct the region RA in the next section.
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Proposition 2.13. Given � > 0 sufficiently small, there exist constants C1; Cin > 0

and a sequence . Qyi ; Qsi / (i 2 Znf0g) of C1 blow-up pairs of † such that the sheets
associated to . Qyi ; Qsi / are �-sheets on scale Qsi centered at Qyi and x3. Qyi / < x3. QyiC1/.
Moreover, for i � 1, QyiC1 2 BCin Qsi

. Qyi / while for i � �1, Qyi�1 2 BCin Qsi
. Qyi /.

Proof. Without loss of generality, we work above the genus (i.e. for x3 > 1 and
i � 1), as the argument below the genus is identical. Let ı; R > 0 be given by
Lemma 2.7. Thus, if .y; s/ is a blow-up pair in † so that jyj � R then y … Cı .
Moreover, using � and ı, let ı0 be given by Corollary C.3 and increase, if needed, R

as indicated by the corollary. We are free to shrink ı0, so assume that ı0 � �. Use
Theorem 2.10 with ı0 to choose C1; C2 and increase R, if needed, as indicated by
the theorem. Thus, for any .y; s/ a C1 blow-up pair with jyj � R, we have ı0-sheets
(which, as ı0 � � are also �-sheets) associated to .y; s/. Moreover, this and the
choice of R imply that Corollary C.3 applies in Cı0

.y/nB2s.y/.
Corollary III.3.5 of [6] and a standard blow-up argument give constants Cout >

Cin > 0 such that, for a C1 blow-up pair .y; s/, as long as the component of BCouts.y/\
† containing y is a disk and there are blow-up sheets associated to .y; s/, then we
can find blow-up pairs .y˙; s˙/ above and below .y; s/ (in a weak sense) and inside
BCins.y/. If, in addition, we can apply Corollary C.3 centered at y, then we can
ensure x3.yC/ > x3.y/ > x3.y�/. Corollary 2.8 and Proposition A.1 together give
a value h1 � R, depending on Cout, so for jyj � h1 the component of BCouts.y/ \ †

containing y is a disk.
It now suffices to find an initial blow-up pair . Qy1; Qs1/ with x3. Qy1/ � h1, as re-

peated application of the argument of the above paragraph gives the sequence . Qyi ; Qsi /.
Lemma 2.12, with h1 replacing h, gives the existence of the desired initial blow-up
pair. �

3. Structural decomposition of †

We prove Theorem 1.5 and Proposition 1.7 in Subsection 3.2.

3.1. Constructing RS . The decomposition of † now proceeds as in Section 4 of
[1], with Proposition 3.1 giving strict spiraling far enough out in the �-sheets of †.
After specifying a region of strict spiraling, RS , the remainder of † will be split into
the connected component containing the genus, RG , and the region containing the
points of large curvature, RA.

In the interest of clarity we restate two results from [1] that we will need to prove
our decomposition. The first result gives the strict spiraling of �-sheets.

Proposition 3.1 (Proposition 3.3 in [1]). There exists an �0 so that the following
holds. Suppose �u is a 3-valued �-sheet on scale 1 with � < �0 and w.1; �/ D
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u.1; � C 2�/ � u.1; �/ � C2 > 0. Then there exists C3 D C3.C2/ � 2, so that on
S

��;�
C3;1 we have

u� .�; �/ � C2

8�
���: (3.1)

The second result is a technical lemma that will guarantee that any sheets ly-
ing between sheets associated to consecutive blow-up pairs are eventually (for large
enough radius) �-sheets. Results along these lines can by found in Section 5 of [2] and
Section II.3 of [6] . Importantly, the proof of such a statement relies only on standard
elliptic theory and the ability to apply the one-sided curvature estimate in Cı1

.y/ for
an appropriately chosen ı1, where y 2 † is the point of a blow-up pair. Lemma 2.7
and Corollary C.3 ensure, as long as we work far enough from the genus, that this
last condition is satisfied. In order to avoid technicalities, we restrict attention only
to pairs . Qyi ; Qsi / from Proposition 2.13.

Lemma 3.2. There exists �0 > 0 such that for given N > 4 and �0 > � > 0

there exists R2 D R2.�; N / > 1 so that if, using �, . Qyi ; Qsi / is a blow-up pair from
Proposition 2.13 with two associated 4-valued �-sheets †j , j D 1; 2, then there exist
two N -valued �-sheets on scale R2 Qsi , z†j � †. Moreover, z†j may be chosen so that
its 4-valued middle sheet contains †j n ˚.x1 � x1. Qyi //

2 C .x2 � x2. Qyi //
2 � R2

2 Qs2
i

�
.

This is essentially Lemma 4.2 of [1], though the statement there is technically
simpler. As before, the only obstruction to generalizing the proof from [1] is the
possibility that we cannot apply the one-sided curvature estimates in Cı. Qyi / for some
small ı. However, our choice of Qyi ensures this is not a problem.

We now wish to argue as in Lemma 4.3 of [1] (where we determine the regions RA

and RS for disks). To do so we must ensure that we may use the chord-arc bounds of
[8] near the pairs . Qyi ; Qsi /. By choosing a subsequence of blow-up pairs .yi ; si / that
satisfy this additional criteria, we obtain the following:

Lemma 3.3. There exist constants C1, R0, R1 and a sequence .yi ; si / (i ¤ 0) of
C1 blow-up pairs of † so that x3.yi / < x3.yiC1/, and for i � 1, yiC1 2 BR1si

.yi /

while for i � �1, yi�1 2 BR1si
.yi /. Moreover, setting zRA D zRC

A [ zR�
A , where zRȦ

is the component of
S

˙i>0 †\BR1si
.yi / containing y˙1, then †n� zRA [BR0

�
has

exactly two unbounded components †1 and †2, each of which are strictly spiraling
multi-valued graphs. We define the set zRS D †1 [ †2.

Proof. Fix � < �0 where �0 is smaller than the constants given by Proposition 3.1
and Lemma 3.2. Using this �, let . Qyi ; Qsi / be the sequence constructed in Lemma 2.13.
Let us now determine how to choose the sequence .yi ; si /.

On .yi ; si /, we will need a uniform bound, N , on the number of sheets between
the blow-up sheets associated to the pairs .yi ; si / and .yiC1; siC1/. This is equivalent
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to a uniform area bound which in turn follows from the uniform curvature bounds
of Proposition B.1 of the appendix, once we can establish the appropriate chord-arc
bounds. The proof of this is straightforward and can be found in Lemma 4.1 of [1].
Recall from [8] that the (strong) chord-arc bounds for minimal disks give a uniform
constant ˇ > 1, so for any r , if the component of B2.rC1/ˇsi

.yi / \ † containing
yi is a disk, then Brsi

.yi / \ † is a subset of B.rC1/ˇsi
.yi /. To correctly apply the

argument of Lemma 4.1 in [1], one must be sufficiently far from the genus; i.e. for a
fixed constant Cbnd, the component of BCbndsi

.yi / \ † containing yi must be a disk.
Note that Cbnd depends only on ˇ and Cin (where Cin is as in Proposition 2.13). To
that end, pick h2 � 0 by using Corollary 2.8 with ˛�1 � max fCbnd; 2ˇ.R1 C 1/g
where R1 is to be chosen later. We then pick the sequence .yi ; si / from . Qyi ; Qsi / by
requiring jx3.yi /j � h2 (and then relabeling). Notice that our method of choosing
the .yi ; si / ensures that N is independent of our ultimate choice of R1.

We now determine R1 (see Figure 3). By choice of .yi ; si /, we can apply
Lemma 3.2, so there exists an R2 such that all of the (at most) N sheets between
the blow-up sheets associated to .y1; s1/ and .y2; s2/ are �-sheets on scale R2s1 cen-
tered on the line ` which goes through y1 and is parallel to the x3-axis. Label these

`

R2s1

s2

y2

s1 y1

Cins1

R2C3s1

R1s1

Figure 3. An illustration of the proof of Lemma 3.3.

pairs of �-sheets †k
j , k D 1; 2 and 1 � j � N . Integrating (2.4), and using N

and C2 we get zC2, so zC2s1 is a lower bound on the separation of each †k
j over the

circle @DR2s1
.….y1// � fx3 D 0g. Theorem 3.1 gives a C3, depending on zC2, such
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that outside of a cylinder centered at ` of radius R2C3s1, all the †k
j strictly spiral.

Choose R1, depending only on Cin, N , �, C3, ˇ and R2, so that the component of
BR1s1

.y1/ \ † containing y1 also contains the point y2 and the intersection of this
cylinder with each †k

j . This R1 exists by the chord-arc bounds which we have by
the choice of .yi ; si /. As there was nothing special about the blow-up pair .y1; s1/ in
this argument and our conclusions are invariant under a rescaling, we can apply the
same argument to each .yi ; si / and thus construct zRA.

Finally, by properness, there exists a finite number, M , of �-sheets between the
blow-up sheets associated to .y˙1; s˙1/. Pick R0 large enough so that outside of the
ball of radius R0 the M sheets between the blow-up sheets associated to .y1; s1/ and
.y�1; s�1/ strictly spiral. Such an R0 exists by Proposition 2.5, Theorem 3.2, and the
above argument. By the above construction, the †i are strictly spiraling multi-valued
graphs as described in Remark 1.6. �

Notice that † is not necessarily contained in zRA [ zRS [BR0
. In the next section,

we will adjust these subsets in order to obtain the decomposition.

3.2. Decomposing †. The strict spiraling, the fact that away from the genus convex
sets meet † in disks (see Lemma A.1) and the proof of Rado’s theorem (see [24],
[25]) will give r†x3 ¤ 0 in RA. Then a Harnack inequality will allow us to bound
jr†x3j from below on RA. We first use the strict spiraling on zRS and an appropriate
initial choice for RG to determine the behavior of the level sets of x3.

Proof of Proposition 1.7. By the properness of † there exists an R0
0 � R0, where

R0 is from Lemma 3.3, so that the component of BR0

0
\ † containing x† contains

BR0
\ †. We take RG to be this component and define � D †nRG ; note that @RG

is connected by Proposition A.1. By increasing R0
0, if needed, we may assume that

fjx3j � 2g\@RG � zRS . Notice this implies that � \fjx3j � 2g � zRS D †1 [†2

and so rx3 ¤ 0 in this set. Moreover, the strict spiraling on †1 [†2 guarantees that
� \ fx3 D cg, for jcj � 2, consists of exactly two unbounded, smooth curves with
boundary on @� .

For fjx3j � 2g we now show that every level set fx3 D cg \ † consists of one
smooth properly embedded curve. We use that x3 is harmonic on †, the strict spiraling
in zRS and the proof of Rado’s theorem. The key fact is that a non-constant harmonic
function h on a closed disk has an interior critical point, p, if and only if the connected
component of the level set fh D h.p/g containing p meets the boundary of the disk
in at least 4 points. For jx3j > 1, as the genus lies in B1, the intersection of † with
wide, short cylinders with axis the x3-axis are disks by the maximum principle and
Proposition A.1. Moreover, every level set of x3 can only have two ends by the strict
spiraling. The proof of Rado’s theorem then immediately gives the non-vanishing of
the gradient for jx3j > 1 and so r†x3 ¤ 0 in jx3j > 1. In particular, fx3 D cg\† is
a smooth curve for jcj > 1. The final statement of the proposition is then clear. �
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In order to show Theorem 1.5, we need only construct RA and RS from the zRA

and zRS of Lemma 3.3 and verify the lower bound on jr†x3j.
Proof of Theorem 1.5. We first verify that jr†x3j is bounded below on zRA. Suppose
that .y; s/ is a blow-up pair in the sequence constructed in Lemma 3.3 and for con-
venience rescale so that s D 1. By our choice of blow-up pairs, we know that every
component of B2ˇR1

.y/ \ † is a disk (where R1; ˇ are from Lemma 3.3). Thus, the
component of BR1

.y/ \ † containing y is contained in BˇR1
.y/ � B2ˇR1

.y/ \ †.
Proposition B.1 implies that curvature is bounded in B2ˇR1

.y/ \ † by some
K D K.R1/. The function v D �2 log jr†x3j � 0 is smooth by Proposition 1.7 and
because, by construction, B2ˇR1

.y/ \ fjx3j � 1g D ;. Standard computations give
	†v D jAj2. Then, since jr†x3j D 1 somewhere in the component of BR1

.y/ \ †

containing y, we can apply a Harnack inequality (see Theorems 9.20 and 9.22 in [11])
to obtain an upper bound for v on BˇR1

.y/ that depends only on K. Consequently,
there is a lower bound �1 on jr†x3j in the component of † \ BR1

.y/ containing y.
Since this bound is scaling invariant, the same bound holds around any blow-up pair
from Lemma 3.3.

Recall, RG is given by †n� where � is from Proposition 1.7. Suppose � is a
component of †n.RG [ zRA/. By the construction of Lemma 3.3, � is either bounded
or a subset of zRS . We need consider only bounded �. Notice @� � @.RG [ zRA/ �
@RG [ @ zRA. As @RG is compact, and, by construction, r†x3 ¤ 0 on it, there exists
some �2 > 0 such that jr†x3j � �2 > 0 on @RG . Let �0 D minf�1; �2g. Since v

is subharmonic, jr†x3j � �0 on �. Thus, define RA to be the union of all these �

with zRAnRG . Set RS D †n .RA [ RG/ � zRS . �

4. Conformal structure of the end

In Section 4.3 we prove Theorem 1.1 and Corollary 1.2 by analysis similar to that
in Section 5 of [1]. We first show that � D †nRG is conformally a punctured disk
and, indeed, the map z D x3 C ix�

3 W � ! C is a proper, holomorphic coordinate.
We then study the level sets. Recall we let x�

3 denote the harmonic conjugate of x3.
In order to show that z is a proper, holomorphic coordinate, one must check three
things: that z is well defined, that it is injective and that it is proper – i.e., if p ! 1
in � then z.p/ ! 1. The first two statements are straightforward, whereas the latter
is far more subtle.

Proposition 4.1. z W � ! C is a holomorphic coordinate.

Proof. We first check x�
3 is well defined on � . As † is minimal, �dx3, the conjugate

differential to dx3, exists on † and is closed and harmonic. We wish to show it is
exact on � . To do so, it suffices to show that for every embedded closed curve 
 in
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� , we have
R

�
�dx3 D 0. By Proposition A.1, †n
 has two components, only one

of which is bounded. The bounded component, together with 
, is a manifold with
(connected) boundary, and on this manifold �dx3 is a closed form. Hence, the result
follows immediately from Stokes’ theorem.

We next check that z is injective on � . First notice that, by Proposition 1.7, for any
regular value c of x3, fx3 D cg has exactly one unbounded curve and x�

3 is strictly
monotone along this curve. Now suppose p; q 2 � , p ¤ q and x3.p/ D x3.q/ is
a critical value of x3. Note that p and q are regular points of x3 – as they lie on
� – and so in a neighborhood of each point z is injective. Clearly, there are points
p0; q0 2 � arbitrarily near p, q so that x3.p0/ D x3.q0/ D c0 is a regular value of x3.
Proposition 1.7 implies the unbounded component, � , of fx3 D c0g \ † contains p0
and q0. The fact that z is injective near p and the monotonicity of x�

3 on � together
give positive lower bound on jx�

3 .p0/ � x�
3 .q0/j independent of p0; q0. By continuity,

this implies a positive lower bound on jx�
3 .p/ � x�

3 .q/j and so z.p/ ¤ z.q/. �

4.1. The winding number of the Gauss map. In order to show that z is proper we
use the Gauss map of †, or, more accurately, we use g, its stereographic projection.
In particular, the logarithm of g, in � , allows one to prove that z is proper by complex
analytic methods. We will make this argument in Section 4.2. However, before we
do so we must check such a logarithm is well-defined. Notice as � is an annulus it
is not a priori clear that there exists f W � ! C such that g D ef on � . For such an
f to exist we must show that the (topological) winding number of g as a map from
the annulus � to the annulus S2n f˙.0; 0; 1/g is zero. Because g is meromorphic in
† and has no poles or zeros in � , this is equivalent to proving that g has an equal
number of poles and zeros.

Proposition 4.2. Counting multiplicity, g has an equal number of poles and zeros.

Proof. The zeros and poles of g occur only at the critical points of x3. In particular,
by Proposition 1.7, there exist h and R so that all the zeros and poles lie in the cylinder

Ch;R D ˚jx3j � h; x2
1 C x2

2 � R2
� \ †: (4.1)

Moreover, for R and h large, � D @Ch;R is the union of four smooth curves, two
at the top and bottom, �t and �b , and two disjoint helix like curves �1; �2 � RS .
Hence, for c 2 .�h; h/, fx3 D cg meets @Ch;R in exactly two points. Additionally,
as �1 and �2 are compact, there is a constant ˛ > 0 such that j d

dt
x3.�i .t//j > ˛,

i D 1; 2.
Let us first suppose that g has only simple zeros and poles and these occur at

distinct values of x3; thus, the Weierstrass representation implies that the critical
points of x3 are non-degenerate. We now investigate the level sets fx3 D cg. By the
strict spiraling of �i (i D 1; 2), at the regular values these level sets consist of an
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interval with end points in �i (i D 1; 2) and the union of a finite number of closed
curves. Moreover, by the minimality of Ch;R, the non-smooth components of the
level sets at critical values will consist of either two closed curves meeting in a single
point or the interval and a closed curve meeting in a single point. As a consequence
of this

˚jx3j � h; x2
1 C x2

2 � R2
� nCh;R has exactly two connected components �1

and �2. Orient Ch;R by demanding that the normal point into �1. Notice it is
well defined to say if a closed curve appearing in fx3 D cg \ Ch;R surrounds �1

or �2.
The restrictions imposed on g and minimality of Ch;R imply that at any critical

level, as one goes downward, either a single closed curve is “created” or is “destroyed”.
(See Figure 4.) Moreover, when such a curve is created it makes sense to say whether
it surrounds �1 or �2 and this is preserved as one goes downward. Now suppose a
closed curve is created and that it surrounds �1; then it is not hard to see that at the
critical point the normal must point upwards. Similarly, if a closed curve surrounding
�1 is destroyed then the normal at the critical point is downward pointing. For closed
curves surrounding �2 the opposite is true; e.g. when a closed curve is created, then
at the critical point the normal points downward. Thus, since the level sets at h and
�h are intervals, one sees that the normal points up as much as it points down. That
is, g has as many zeros as poles.

(a)

(b)

(c)

(d)

�2
�2

�2

�2

�1

�1

�1

�1

Figure 4. Level curve examples in Proposition 4.2. (a) Initial orientation chosen at height
x3 D h. (b) A curve pinching off from �1. (c) Two curves pinching from one. (d) A curve
pinching off from �2.

We now drop the restrictions on the poles and zeros of g. Beyond these assump-
tions the argument above used only that Ch;R was minimal and that the boundary
curves �i (i D 1; 2) meet the level curves of x3 in precisely one point. It is not hard
to check that these last two conditions are preserved by small rotations around lines
in the x1-x2 plane. We claim that such rotations also ensure that the Gauss map of
the new surface must have simple poles or zeros and these are on distinct level sets.
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To that end we let C �
h;R

be the rotation of Ch;R by � degrees around a fixed line ` in
the x1-x2 plane and through the origin.

The strict spiraling of �1; �2 implies there exists an �0 > 0, depending on ˛

and R and a constant K > 0, depending on R, so that for all 0 < � < �0, if
c 2 .�hCK�; h�K�/ then fx3 D cg\C �

h;R
meets @C �

h;R
in two points. Moreover,

by a suitable choice of ` the critical points will be on distinct level sets. Denote by
g� the stereographic projection of the Gauss map of C �

h;R
. We now use the fact that

g is meromorphic on † (and thus the zeros and poles of g are isolated) and that g�

is obtained from g by a Möbius transform. Indeed, these two facts imply that (after
shrinking �0) for � 2 .0; �0/, g� has only simple zeros and poles on C �

h;R
and by

our choice of ` these are on distinct levels of x3. To see this we note that there are
˛.�/; ˇ.�/ 2 C (and also depending on `) satisfying j˛.�/j2 C jˇ.�/j2 D 1 so that

g� D ˛.�/g � Ň.�/

ˇ.�/g C N̨ .�/
; (4.2)

where we have also j˛.�/j ¤ 0; 1 and ˛.�/ ! 1 as � ! 0. Thus, for � sufficiently
small all zeros of g� are distinct from, but near, zeros of g. This implies that, at the
zeros of g� , dg� does not vanish.

By further shrinking �0 one can ensure that all of the critical values occur in the
range .�hCK�; h�K�/. Thus, the level sets in C �

h;R
of x3 for c 2 .�hCK�; h�K�/

consist of an interval with endpoints in @C �
h;R

, one in each �i for i D 1; 2, and the
union of a finite number of closed curves. Our original argument then immediately
implies that g� has as many zeros as poles. Notice this is equivalent to the vanishing
of the winding number of the map g� restricted to @C �

h;R
(which is topologically S1)

as a map into Cn f0g. For � sufficiently small, g� never has a zero or pole on @C �
h;R

and as long as this is true, the winding number is independent of �. Thus, g has,
counting multiplicity, the same number of poles and zeros. �

Corollary 4.3. A holomorphic function f W � ! C exists such that ef D g on � .

4.2. The conformal structure of the end. The strict spiraling in RS is used in [1]
to show that the logarithm of g, i.e. f D f1 C if2, is, away from a neighborhood of
RA, a proper conformal diffeomorphism onto the union of two disjoint closed half-
spaces. Since every level set of x3 has an end in each of these sets, the properness
of z was then a consequence of Schwarz reflection and the Liouville theorem. The
proof only used properties of the end of the surface and so holds also in E.1; C/:

Proposition 4.4. There exists a �0 > 0 such that f is a proper conformal diffeomor-
phism from �˙ onto fz W ˙Re z � 2�0g � C, where

�˙ D fx 2 � W ˙f1.x/ � 2�0g � �: (4.3)
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Proposition 5.1 in [1] asserts and proves the identical statement for minimal disks.
The proof relies on showing there exists �0 such that for every regular value � � 2�0,
f �1

1 .�/ consists of exactly one curve on †, which lies on every sheet of one of the
components of RS (note in [1] log g is denoted by h). We rely on the fact that jr†x3j
is a function of jf1j. Recall, r†x3 is the projection of e3 D rR3x3 onto T †, and so
jr†x3j can be expressed terms of the x3-coordinate of the unit normal to T †. Thus,
by computing the inverse stereographic projection, one obtains

jr†x3j D 2
jgj

1 C jgj2 � 2e�jf1j: (4.4)

By Theorem 1.5, as jr†x3j � �0 > 0 on RA [ @RG , there exists �0 > 0 such that
jf1.z/j � �0 on RA [ @RG . The proof in [1] only requires that f �1

1 .�/ lies in RS ;
thus, since f �1

1 .2�0/ \ @� D ;, using f �1
1 .�/ \ � , the proof carries over without

change. The interested reader should consult Proposition 5.1 in [1] for the details.

4.3. The proofs of Theorem 1.1 and Corollary 1.2. In Proposition 5.2 of [1], we
show that for † 2 E.1; 0/, f Bz�1 W C ! C is linear. The result follows from standard
complex analysis, exploiting both Schwarz reflection and Liouville’s theorem. For
† 2 E.1; C/, there are a few necessary, but simple, modifications.

Proof of Theorem 1.1. We first show that x�
3 ! ˙1 along each level set of x3;

that is z W � ! C is a proper holomorphic coordinate. This follows easily once we
establish that each level set of x3 has one end in �C and the other in ��, where
these sets are as defined in (4.3). This follows from the radial gradient decay on level
sets of x3 forced by the one-sided curvature estimate. Indeed, Corollary C.3 and the
structural decomposition of † imply that for any � > 0 small, there is a point y� 2 †

and a ı� > 0 so that within suitable subsets of Cı�
.y�/, † must be a graph with

gradient bounded by �. Recall (2.5) says that, for any ı�-sheet, there is sub-linear
gradient decay on the sheet and so it must eventually lie within Cı�

.y�/. Thus, by
Corollary C.3 for some large R� > 0 every point of † \ Cı�

.y�/nBR�
.y�/ lies on

some multi-valued graph that has gradient bounded by �. Notice any level set of x3

has its ends in this set and so jr†x3j � C� in a neighborhood of the ends.
Thus, x3.@�C/ D .�1; 1/ and so z.@�C/ splits C into two components with

only one, V , meeting z.�C/ D U . If U is a proper subset of V then, by conformally
straightening the boundary of V and precomposing with f �1j�C, we can apply
Schwarz reflection to get a map from C into a proper subset of C. The Liouville
theorem then implies that z is constant. This gives a contradiction and so U D V ,
i.e., x�

3 ! ˙1 along each level set of x3. Thus, z.�/ contains C with a closed
disk removed; in particular, � is conformally a punctured disk. Since f �1

1 .�0/ \
� is a single smooth curve, f has a simple pole at the puncture. Similarly, by
Proposition 1.7, z has a simple pole at the puncture. In � , the height differential
dh D dz and dg

g
D df , proving the theorem. �
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Embeddedness and the Weierstrass representation (1.1) then give Corollary 1.2:

Proof of Corollary 1.2. Theorem 1.1 gives that, in � , f .p/ D ˛z.p/ C ˇ C F.p/

where ˛; ˇ 2 C and F W � ! C is holomorphic and has holomorphic extension
to the puncture (and has a zero there). By translating † parallel to the x3-axis and
re-basing x�

3 we may assume ˇ D 0. By Proposition 1.7, fx3 D 0g \ � � RS can
be written as the union of two smooth proper curves, �˙, each with one end in @� ,
and parametrized such that x�

3 .�˙.t// D t for ˙t > T .
Note that, since � 0̇ .t/ is perpendicular to both e3 and to the normal n to † at

�˙.t/, the projection of n onto the fx3 D 0g plane is also perpendicular to � 0̇ .t/.
This projection is, up to the correct identification of fx3 D 0g with C, parallel to
g.�˙.t//. Since arg.g.�˙.t/// D .Re˛/t C Im F.�˙.t//, we see that arg.� 0̇ .t// D
˙�=2 C .Re ˛/t C o.1=t/. Consider, for a moment, the curve �C.t/. If Re ˛ ¤ 0,
arg.� 0C.t// ! 1 as t ! 1. Thus, �C hits the x1-axis infinitely many times. As
† is properly embedded, this set of intersections tends to 1. Note that the same
can be said for ��, but the choice of parametrization means it spirals in the opposite
direction. Thus, the two curves must intersect which contradicts embeddedness.
Therefore, Re ˛ D 0. �

Appendix

A. Topological structure of †

An elementary but crucial consequence of the maximum principle is that each com-
ponent of the intersection of a minimal disk with a closed ball is a disk. Similarly,
each component of the intersection of a genus k surface with a ball has genus at most
k (see Appendix C of [7] and Section I of [6]). We note that for † with one end and
finite genus we obtain a bit more:

Proposition A.1. Suppose † 2 E.1/ and x† � † \ B1 is smooth and connected,
with the same genus as †. Then, †nx† is an annulus. Moreover, for any convex set
C with non-empty interior, if C \ B1 D ;; then each component of C \ † is a disk.
Alternatively, if B1 � C then all components of C \ † not containing x† are disks.

Proof. That †0 D †nx† is an annulus is a purely topological consequence of † having
one end. Indeed, as the Euler characteristic satisfies �.†/ D �.†0/ C �.x†/ and †

has one end, one computes that 2g.†0/ C e.†0/ C e.x†/ D 3, where g.X/ and e.X/

respectively represent the genus and number of punctures of X . On the other hand,
as † has one end, e.†0/ D 1 C e.x†/ proving the claim.

If C and B1 are disjoint then, as they are convex, there exists a plane P so that P

meets † transversely and so that P separates B1 and C . Since †nx† is an annulus and
P \ x† D ;, the convex hull property implies that P \ † consists only of unbounded
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smooth proper curves. Thus, exactly one of the components of †nP is not a disk.
As C is disjoint from this component we have the desired result.

If C is convex and contains B1, denote by � the component of C \ † containing
x†. Suppose �1 is a different component of † \ C . Let � be a component of @�1.
As †nx† is an annulus, we have that � is separating, in particular, one component,
�2 of †n� is pre-compact. Clearly, �2 either contains x† or is a disk. By the convex
hull property, one has that �2 � C and so �2 is a component of † \ C . Thus, by the
strong maximum principle �1 D �2 and so �1 is a disk. �

B. Geometry near a blow-up pair

The existence of a blow-up pair .y; s/ in a minimal surface †, by definition, implies
uniform bounds on the geometry in the ball Bs.y/. Colding and Minicozzi’s work
shows further that there are uniform bounds on the geometry in any ball on the scale
of s. This is most easily proved using their lamination results. Indeed, we have the
following uniform bound on the curvature, which is an extension of Lemma 2.26 of
[8] to surfaces of finite genus:

Proposition B.1. Given K1; g we get a constant K2 such that if

(1) † � R3 is an embedded minimal surface with genus.†/ D g,

(2) † � BK2s.y/ and @† � @BK2s.y/,

(3) .y; s/ is a blow-up pair,

then we get the curvature bound

sup
BK1s.y/\†

jAj2 � K2s�2: (B.1)

The proof is nearly identical to that of Lemma 2.26 of [8]. That proof is by
contradiction, using Colding and Minicozzi’s compactness result for minimal disks,
i.e. Theorem 0.1 of [7]. One proves Proposition B.1 by the same argument, but uses
instead a more general compactness result, i.e. Theorem 0.6 of [9].

C. One-sided curvature in †

In several places we make use of the one-sided curvature estimate of [7]. Recall that
this result gives a curvature estimate for a minimal disk that is close to and on one side
of a plane. As a sequence of rescaled catenoids shows, it is crucial that the surface
be a disk, something that makes application to surfaces in E.1; C/ somewhat subtle.
Nevertheless, Proposition A.1 allows the use of the one-sided curvature estimate far
from the genus. Recall the statement of the estimate:
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Theorem C.1 (Theorem 0.2 of [7]). There exists � > 0 so that if † � B2r0
\

fx3 > 0g � R3 is an embedded minimal disk with @† � @B2r0
, then for all compo-

nents †0 of † \ Br0
which intersect B�r0

we have

sup
†0

jA†j2 � r�2
0 : (C.1)

A particularly important consequence of Theorem C.1 is Corollary I.1.9 of [7],
which roughly states that if an embedded minimal disk has a two-valued graph in
the complement of a cone (and away from a ball), then all components of † in the
complement of a larger cone (and larger ball) are multi-valued graphs. Essentially,
the two-valued graph takes the place of the plane in Theorem C.1. This fact was used
extensively in [1]. Thus, we give two variants of it that hold for elements of E.1; C/

and indicate how they follow from [7].

Corollary C.2. There exists a c > 1 such that for a given � > 0 there exists ı0 > 0

such that if Ccı0
.y/nBs does not meet x† and contains a weak 2-valued ı0-sheet

centered at y and on scale s, then each component of † \ .Cı0
.y/nB2s.y// is a

multi-valued graphs with gradient bounded by �.

Proof. The result follows immediately from the proof of Corollary I.1.9 of [7] (as
long as one notes that the proof of Corollary I.1.9 depends only on each component of
† \ .Ccı0

.y/nBs.y// meeting any convex set in a disk (and so Theorem C.1 applies)
for c a universal constant. Proposition A.1 and the hypothesis ensure this. �

We will also use the following specialization of the above:

Corollary C.3. Given �; ı > 0 there exist ı0 > 0 and R > 1 such that, if there exists
a weak 2-valued ı0-sheet centered at y on scale s where y … Cı [ BR, then all the
components of † \ .Cı0

.y/nB2s.y// are multi-valued graphs with gradient � �.

Proof. The result follows immediately from Corollary C.2 as long as we can ensure
that x† � B1.0/, is disjoint from Ccı0

.y/nBs.y/. Suppose x 2 Ccı0
.y/ and think of

x and y as vectors. By choosing ı0 sufficiently small, depending on ı, we have that
jhx � y; yij < .1 � �/jyjjx � yj (that is the angle between x � y and y is bounded
away from 0B); note 1 > � > 0 depends only on ı. But then jxj2 D jx � y C yj2 �
jx � yj2 C 2hx � y; yi C jyj2 � � jyj2. Hence, picking R2 > 1

�
suffices. �

D. Colding–Minicozzi lamination theory

We note that Theorem 1.5 is a sharpening, for † 2 E.1/, of a much more general
description of the shapes of minimal surfaces given by Colding and Minicozzi in [9].



378 J. Bernstein and C. Breiner CMH

More precisely, in that paper they show, for a large class of embedded minimal surfaces
in R3, how the geometric structure of a surface is determined by its topological
properties. In particular, as † has finite topology and one end, their work shows
that it roughly looks like a helicoid. That is, away from a compact set containing
the genus, † is made up of two infinite-valued graphs that spiral together and are
glued along an axis. Using this description, they show compactness results that
generalize their lamination theory of [7]. As in the case for disks, the derivation of
this global description of finite genus surfaces uses local versions of propositions as
in Section 2.2. However, Colding and Minicozzi do not explicitly state these results
and so, for the sake of completeness, we will state a modified form of a compactness
result from [9] and use it to give simple proofs of Propositions 2.5 and 2.6.

While the lamination theory of [9] will be the launching point for proving the two
propositions, we need only outline one small portion of the theory to get our result. In
particular, we need only consider the structure of the limit lamination of homothetic
dilations for † 2 E.1/. In this case, the lamination has the same structure as for a
sequence of embedded minimal disks, which is modeled on rescalings of the helicoid.

Theorem D.1. Let † 2 E.1/ be non-flat, and let 
i ! 0. Set †i D 
i†. There
exists a subsequence †j , a foliation L D fx3 D tgt2R of R3 by parallel planes, and
a closed nonempty set � in the union of the leaves of L such that after a rotation of
R3:

(1) For each 1 > ˛ > 0, †j n� converges in the C ˛-topology to the foliation Ln� .

(2) supBr .x/\†j
jAj2 ! 1 as j ! 1 for all r > 0 and x 2 � . (The curvatures

blow up along � .)

(3) Away from � , each †j consists of exactly two multi-valued graphs spiraling
together.

(4) � is a single line orthogonal to the leaves of the foliation.

Remark D.2. For the theorem in its entirety, see Theorem 0.9 of [9].

We now use the nature of this convergence to deduce gradient bounds outside
a cone. This, together with further application of the compactness theorem, gives
Propositions 2.5 and 2.6.

Lemma D.3. For any � > 0, ı > 0 there exists an R > 1 such that every component
of .CınBR/ \ † is a graph over fx3 D 0g with gradient less than �.

Proof. We proceed by contradiction. Suppose there exists a sequence fRig with
Ri ! 1 and points pi 2 .CınBRi

/ \ † such that the component of B� jpi j.pi / \ †

containing pi , �i , is not a graph over fx3 D 0g with gradient less than �. Here �
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depends on ı and will be specified later. Now, consider the sequence of rescalings
1

jpi j†, which by possibly passing to a subsequence converges to L (away from �).

Passing to another subsequence, 1
jpi jpi converges to a point p1 2 Cı \ B1. Let

z�i D 1
jpi j�i . Proposition III.0.2 of [9] guarantees that if B� .p1/ \ � D ; then the

z�i converge to z�1 � fx3 D x3.p1/g as graphs. As � is the sole singular set, we may
choose � small, depending only on ı, to ensure this. Thus, for large j , z�j is a graph
over fx3 D 0g with gradient bounded by �, giving the desired contradiction. �

We now show Propositions 2.5 and 2.6:

Proof of Proposition 2.5. Let Qı D � and Q� � Qı=.4�N /. Choose R from Lemma D.3,
using this Qı; Q�. Thus, every component of † \ CQınBR has gradient bounded by Q�.

Since jw.�; �/j � R 2�

0
ju� j � 2� Q��, we see that there are N sheets in C� . �

Proof of of Proposition 2.6. Note that as long as jyj is sufficiently large, Theorem
0.6 of [5] gives an � < 1=2 (as well as a constant C1) so that since the component
of B 1

2 jyj.y/ \ † containing y is a disk, there exists a N -valued graph †0 over the
annulus, A D D�jyjnDs=2.y/ � P with gradient bounded by �=2. Here P is in
principle an arbitrary plane in R3.

We claim that Lemma D.3 implies a subset, †0
0, of †0 is a N -valued graph over

the annulus A0 D D�jyj=2nDs.….y// � fx3 D 0g with gradient bounded by �,
which further implies †0

0 can be extended as desired. To that end we note that for
ı > 1=.4�/, if y … Cı then A (and thus, by possibly increasing ı, †0) meets Cı .
Lemma D.3 allows us to choose an R0 > 0 so that every component of †\.CınBR0

/

is a multi-valued graph over fx3 D 0g with gradient bounded by �=4. Thus if we take
R > 2R0 then there is a point of †0 in CınBR0

; therefore, for the gradient estimates
at the point to be consistent, P must be close enough to fx3 D 0g so that we may
choose †0

0 � †0 such that it is a multi-valued graph over A0. Furthermore, the part of
†0

0 over the outer boundary of A0 is necessarily inside of CınBR0
and so Lemma D.3

allows us to extend it as desired. �
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