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Unknotting genus one knots
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Abstract. For any knot with genus one and unknotting number one, other than the figure-eight
knot, we prove that there is exactly one way to unknot it by means of a crossing change. In the
case of the figure-eight knot, we prove that there are precisely two unknotting crossing changes.
The proof uses sutured manifold theory and an analysis of the arc complex of the once-punctured
torus.

Mathematics Subject Classification (2010). 57M25, 57N10.

Keywords. Knot, crossing change, unknotting, genus.

1. Introduction

There is no known algorithm for determining whether a knot has unknotting number
one, practical or otherwise. Indeed, there are many explicit knots (11328 for example)
that are conjectured to have unknotting number two, but for which no proof of this fact
is currently available. For many years, the knot 810 was in this class, but a celebrated
application of Heegaard Floer homology by Ozsváth and Szabó [7] established that
its unknotting number is in fact two.

In this paper, we examine a related question: if a knot has unknotting number one,
are there only finitely many ways to unknot it, and if so, can one find them? This is
also a very difficult problem. However, we answer it completely here for knots with
genus one. We prove, in fact, that there is at most one way to unknot a genus one knot,
with the exception of the figure-eight knot, which admits precisely two unknotting
procedures.

We now make this statement more precise. To perform a crossing change to a
knot K, one proceeds as follows. A crossing circle is a simple closed curve C in the
complement of K which bounds a disc that intersects K transversely in two points
of opposite sign. If we perform ˙1 surgery along C , then K is transformed into a
new knot by changing a crossing. A crossing change is unknotting if the resulting
knot is the unknot. Two crossing changes are equivalent if the surgery coefficients
are the same and there is an ambient isotopy, keeping K fixed throughout, that takes
one crossing circle to the other.
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Theorem 1.1. Suppose that K is a knot with genus one and unknotting number one.
Then, if K is not the figure-eight knot, there is precisely one crossing change that
unknots K, up to equivalence. If K is the figure-eight knot, then there are precisely
two unknotting crossing changes, up to equivalence.

+1 surgery

along C

crossing
circle C

K

K

Figure 1. A crossing change.

It is possible to be rather more explicit about the crossing changes described above.
It is a theorem of Scharlemann and Thompson [9] that a knot has unknotting number
one and genus one if and only if it is a doubled knot. To construct the latter, one
starts with the knot in the solid torus shown in Figure 2, and then one embeds the
solid torus into the 3-sphere. The result is a doubled knot, provided it is non-trivial.
If the solid torus is unknotted, then the resulting knot is known as a twist knot, again
provided it is non-trivial.

Figure 2. A doubled knot.

Theorem 1.2. If K is a doubled knot, but not the figure-eight knot, then the unique
crossing circle that specifies an unknotting crossing change is as shown in Figure 3.
The two non-isotopic crossing circles that specify unknotting crossing changes for
the figure-eight knot are also shown in Figure 3.

Theorem 1.2 is a rapid consequence of Theorem 1.1. This is because the crossing
circles in Figure 3 do indeed result in unknotting crossing changes. In the case
of the figure-eight knot, the two crossing circles can easily be verified to be non-
isotopic. There are several ways to prove this. One method is to show that they
have distinct geodesic representatives in the hyperbolic structure on the figure-eight
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unknotting crossing circles

Figure 3

knot complement, and so are not even freely homotopic. Alternatively, observe that
the surgery coefficients are distinct for these two curves, and at most one choice of
surgery coefficient along a crossing circle can result in an unknotting crossing change
[8], Theorem 5.1. Hence, these crossing circles cannot be ambient isotopic, via an
isotopy that fixes the figure-eight knot throughout. Thus, by Theorem 1.1, these are
the only unknotting crossing circles.

The case of the trefoil knot might, at first, be slightly worrying. It appears to have
three crossing circles that specify unknotting crossing changes, as shown in Figure 4.
However, these are all, in fact, equivalent. This can be seen directly. It will also
follow from the analysis in Section 6.

Figure 4. Unknotting crossing circles for the trefoil.

Theorems 1.1 and 1.2 are proved by extending some of the known techniques
for detecting unknotting number one knots. It is a theorem of Scharlemann and
Thompson [9], Proposition 3.1, that if a knot has unknotting number one, then it has
a minimal genus Seifert surface that is obtained by plumbing two surfaces, one of
which is a Hopf band (see Figure 5). Moreover, the crossing change that unknots
the knot has the effect of untwisting this band. It is known that a knot K which
is not a satellite knot has, up to ambient isotopy that fixes K, only finitely many
minimal genus Seifert surfaces [12]. Thus, one is led to the following problem: can
a minimal genus Seifert surface be obtained by plumbing a Hopf band in infinitely
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many distinct ways, up to ambient isotopy that leaves the surface invariant? Slightly
surprisingly, the answer to this question is ‘yes’. However, it is quite possible for
different plumbings to result in the same crossing change. The analysis for arbitrary
knots quickly becomes difficult, but when the knot has genus one, then progress can
be made. In fact, for most doubled knots, it is fairly straightforward to show that
there is a unique way to unknot it. It turns out that the difficult case is when the knot
is fibred. There are precisely two fibred knots with genus one: the figure-eight and
the trefoil. To prove the theorem in these cases seems to require an analysis of the
arc complex of the once-punctured torus.

Given the finiteness result in Theorem 1.1, it is natural to enquire whether it
extends to higher genus knots. It seems reasonable to make the following conjecture.

Conjecture 1.3. For any given knot K, there are only finitely many crossing changes
that unknot K, up to equivalence.

Theorem 1.1 can be viewed as positive evidence for this. Further support comes
from the following result, of the second author (Theorem 1.1 of [3]). It deals with
generalised crossing changes of order q, where q 2 N, which are defined to be the
result of ˙1=q surgery along a crossing circle.

Theorem 1.4. For any given knot K, there are only finitely many generalised crossing
changes of order q, where q > 1, that unknot K, up to equivalence.

However, there is still some reason to cautious about Conjecture 1.3. It can be
viewed as the knot-theoretic analogue to the following problem: does a given closed
orientable 3-manifold admit only finitely many descriptions as surgery along a knot
in 3-sphere? Examples due to Osoinach [6] show that the answer to this question can
be ‘no’.

Acknowledgements. We would like to thank Peter Horn and Jessica Banks for
pointing out errors in early versions of this paper. The second author was supported
by an EPSRC Advanced Research Fellowship.

2. Plumbing and clean product discs

We now recall the operation of plumbing in detail. Suppose that S1 and S2 are compact
orientable surfaces embedded in 3-balls B1 and B2. Suppose that the intersection
of each Si with @Bi is a square I � I such that .I � I / \ @S1 D I � @I and
.I � I / \ @S2 D @I � I . Then the surface in S3 obtained by plumbing S1 and S2 is
constructed by gluing the boundaries of B1 and B2 so that the two copies of I � I

are identified in a way that preserves their product structures. (See Figure 5.)
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B1

S1

S2 B2

Figure 5. Plumbing.

Suppose that a surface S can be obtained by plumbing in two ways, by combining
S1 � B1 with S2 � B2, and by combining S 0

1 � B 0
1 with S 0

2 � B 0
2. We say that these

are equivalent if there exists an ambient isotopy of the 3-sphere, leaving S invariant
throughout, that takes Si to S 0

i (i D 1; 2) and Bi to B 0
i (i D 1; 2).

Suppose that S1 is a Hopf band, which is an unknotted annulus embedded in B1

with a full twist. Then we will focus on some associated structure. The associated
crossing disc D is a disc embedded in the interior of B1 which intersects S1 in a
single essential arc in the interior of D. The boundary of this disc is the associated
crossing circle. (See Figure 6.)

The following results are due to Scharlemann and Thompson [9], Proposition 3.1
and Corollary 3.2, and are proved using sutured manifold theory [8].

Theorem 2.1. Let C be a crossing circle for a non-trivial knot K such that perform-
ing a crossing change along C unknots K. Then K has a minimal genus Seifert
surface which is obtained by plumbing surfaces S1 and S2, where S1 is a Hopf band.
Moreover, there is an ambient isotopy, keeping K fixed throughout, that takes C to
the associated crossing circle for S1.
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Corollary 2.2. A knot has unknotting number one and genus one if and only if it is
a doubled knot.

We now introduce some terminology.
Let S be a Seifert surface for a knot K. Let N.S/ be a small product neighbour-

hood S � I . Let S� and SC denote the two components of S � @I .
A product disc is a disc properly embedded in S3 � int.N.S// that intersects

@S � I in two vertical arcs. It therefore intersects S� in an arc and SC in an arc. A
direction on a product disc D is a choice of one of the arcs D \S� or D \SC. When
such an arc is chosen, we say that the product disc is directed towards that arc, or just
directed.

A product disc D is clean if the projections of S�\D and SC\D to S have disjoint
interiors, up to ambient isotopy of S3 � int.N.S// that fixes @S � I throughout.

Note that if S is obtained by plumbing S1 and S2, where S1 is a Hopf band, then
there is an associated directed clean product disc D for S , defined as follows. The
intersection of N.S/ with B1 is an unknotted solid torus. There is a unique product
disc embedded within B1, as shown in Figure 7, which is clean and which intersects
S� and SC in essential arcs. We direct D by choosing the arc of D \ S� and D \ SC
that avoids S2. Note that D is essential, in the sense that it forms a compression
disc for @N.S/ in S3 � int.N.S//. Also note that if D is directed towards the arc ˛,
then the crossing circle associated with the plumbing runs along ˛ just above S , then
around K, then along ˛ just below S and then back around K.

The projection of D \ S� and D \ SC to S is two arcs ˛� and ˛C. We note
that they have the following behaviour near @S . A regular neighbourhood of ˛C
is a thickened arc, and we note that ˛� intersects both sides of this thickened arc.
Equivalently, ˛C intersects both sides of a regular neighbourhood of ˛�. When this
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is the case, we say that the arcs and the product disc are alternating (see Figure 8).
Note that a clean alternating product disc is automatically essential.

˛

S

K

�

C

K

˛

˛

�

Figure 8. Alternating arcs.

The following is the main result of this section.

Theorem 2.3. Let S be a Seifert surface for a knot K. Then there is a one-one
correspondence between the following:

(i) decompositions of S , up to equivalence, as the plumbing of two surfaces, where
the first surface is a Hopf band;

(ii) clean alternating directed product discs for S , up to ambient isotopy that leaves
N.S/ invariant and maintains the disc as a product disc throughout.

Proof. We have already described how a plumbing of two surfaces as in (i) determines
a clean alternating directed product disc. Let us now determine how a clean alternating
directed product disc D can be used to specify S as the plumbing of two surfaces,
the first of which is a Hopf band.
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Extend D a little so that its boundary is ˛� [ ˛C in S . Suppose that D is directed
towards ˛C. Let B be a small regular neighbourhood of ˛C in S3. (See Figure 9.)
We may ensure that B intersects S in a single disc DC, such that DC \ K is two
properly embedded arcs in B . We may also ensure that B \ D is a single disc, and
that cl.D � B/ is a disc D0. Note that D0 \ S is a sub-arc of ˛�. Thicken D0 a little
to form D0 � I . We may ensure that S \ @B is an I -fibre in D0 � I , because ˛�
and ˛C are alternating. Then, B [ .D0 � I / is a 3-ball B1. This will be one of the
3-balls involved in the plumbing operation. The other 3-ball B2 is the closure of the
complement of B1.

We now verify that this is indeed a plumbing construction. We must check that
@B1 \ S is a disc I � I with the correct properties. By construction, @B1 \ S is a
disc. Identify this with I � I , so that @I � I is the intersection with @B . Then, near
@I � I , S runs into B1, whereas near I � @I , S goes into B2. Thus, this is indeed a
plumbing operation.

We must check that B1 \ S is a Hopf band. Note that B1 \ S is .I � I / [ DC,
which is an annulus A. A regular neighbourhood of this annulus is a solid torus, the
boundary of which compresses in B1 via a subdisc of D. Thus, A is unknotted. It
has exactly one full twist because D intersects each component of A \ K in exactly
one point (which is one of the points of @˛C). Thus, this is indeed a plumbing of two
surfaces as described in (i).
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Figure 9

Finally, note that this does set up a one-one correspondence between (i) and (ii).
This is because an ambient isotopy of the clean product disc, that leaves S invariant,
clearly results in an equivalent plumbing. Conversely, equivalent plumbings result in
isotopic clean product discs. �
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Remark 2.4. This theorem implies that if a Seifert surface S for a knot K decomposes
as a plumbing of two surfaces, where the first surface is a Hopf band, then it does so
in two ways which are inequivalent. To see this, note that the plumbing determines a
clean alternating directed product disc D by (i) ! (ii) of the theorem. Now consider
the same disc D but with the opposite direction. By (ii) ! (i), we get a new way of
describing S as two plumbed surfaces. Associated with these two ways of constructing
S via plumbing, there are two crossing circles. These are actually ambient isotopic,
via an isotopy that fixes K throughout. This is verified as follows. The first crossing
circle runs along one arc ˛C of S \ D just above S , around K, then back along ˛C
below S , then back around K. The second crossing circle follows a similar route, but
following the other arc ˛� of S \ D. The arcs ˛C and ˛� are ambient isotopic, via
an isotopy keeping K fixed throughout, since one may slide ˛C across D onto ˛�.
This induces an isotopy taking the first crossing circle to the second.

3. Fibred knots

When K is a fibred knot, the following elementary observation allows us to translate
the existence of a clean product disc into information about the monodromy of the
fibration.

Proposition 3.1. Let K be a fibred knot with fibre S . Let h W S ! S be the mon-
odromy, where hj@S is the identity. Then, there is a one-one correspondence between
the following:

(i) clean essential product discs for S , up to ambient isotopy that leaves N.S/

invariant and maintains the disc as a product disc throughout;

(ii) properly embedded essential arcs ˛ in S , up to isotopy of ˛ in S , such that h.˛/

and ˛ can be ambient isotoped, keeping their boundaries fixed, so that their
interiors are disjoint.

Moreover, the product disc is alternating if and only if ˛ and h.˛/ are alternating.

Proof. Since K is fibred, the exterior of S is a copy of S�I , where S�@I D S�[SC.
It is straightforward that any essential product disc can be isotoped so that it respects
the product structure on S � I . In other words, it is of the form ˛ � I , for some
properly embedded essential arc ˛ in S . Thus, ˛ � f1g is identified with h.˛/ � f0g.
If the disc is clean, then these arcs can be isotoped so that their interiors are disjoint.
Conversely, from any properly embedded essential arc ˛ as in (ii), one can construct
a clean essential product disc from ˛ � I . �

We note the following consequence of Proposition 3.1.
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Corollary 3.2. Let K be a hyperbolic fibred knot with fibre S . Suppose that S is
obtained by plumbing two surfaces, the first of which is a Hopf band. Then it does so
in infinitely many inequivalent ways.

Proof. Let h be the monodromy of the fibration. Since S is obtained by plumbing two
surfaces, the first of which is a Hopf band, Theorem 2.3 states that it admits a clean
alternating product disc, which is automatically essential. Then, by Proposition 3.1,
there is a properly embedded essential arc ˛ in S such that h.˛/ and ˛ have disjoint
interiors, up to isotopy in S , and are alternating. But now consider the arcs hn.˛/

and hnC1.˛/, for each integer n. These also have disjoint interiors, up to isotopy in
S , and are alternating. Since K is hyperbolic, the monodromy h is pseudo-Anosov
and so the arcs hn.˛/ are all distinct, up to isotopy. Thus, by Theorem 2.3 and Propo-
sition 3.1, there are infinitely many distinct ways to decompose S as the plumbing of
two surfaces, the first of which is a Hopf band. �

As a consequence of the above proof, we make the following definitions.
Let h W S ! S be a homeomorphism of a compact surface S . We say that two

arcs ˛1 and ˛2 on S are h-equivalent if hn.˛1/ is ambient isotopic to ˛2 for some
integer n. This is clearly an equivalence relation.

Now let K be a fibred knot with fibre S , and let h be the monodromy. We say that
two arcs on S are monodromy-equivalent if they are h-equivalent. We say that two
clean essential directed product discs D1 and D2 are monodromy-equivalent if the
directed product disc .hn � id/.D1/ is ambient isotopic to D2, for some integer n, via
an isotopy that preserves direction. Here, hn�id is a homeomorphism S �I ! S �I .
If these directed product discs are alternating, each one determines, by Theorem 2.3, a
plumbing of S into two surfaces, the first of which is Hopf band. We also say that these
two plumbings are monodromy-equivalent. Note that there is an ambient isotopy,
leaving K fixed throughout, taking one plumbing decomposition to the other. This
isotopy slides S around the fibration. In particular, S is not invariant. Nevertheless,
we note that the associated crossing circles are ambient isotopic, via an isotopy that
leaves K fixed throughout.

4. Seifert surfaces for doubled knots

According to Theorem 2.1, if a knot K has unknotting number one, then some minimal
genus Seifert surface for K is of a special form. If, in addition, K has genus one,
then it is a doubled knot. It will therefore be useful to know the following.

Proposition 4.1. Let K be a doubled knot. Then K has a unique genus one Seifert
surface, up to ambient isotopy that fixes K throughout, that is constructed by plumbing
two surfaces, one of which is a Hopf band.



Vol. 86 (2011) Unknotting genus one knots 393

Note that we are not claiming that the doubled knot K has a unique genus one
Seifert surface. Indeed, this is not true in general, as Lyon showed in [5] that a certain
double of the .3; 4/ torus knot has two distinct Seifert surfaces with genus one.
However, by the above proposition, only one of these decomposes as the plumbing
of two surfaces, one of which is a Hopf band.

Proof. Suppose that K has a genus one Seifert surface S that is obtained by plumbing
surfaces S1 and S2, where S1 is a Hopf band. Then S2 is an annulus. Let D be the
clean product disc described in Section 2. Then a regular neighbourhood of N.S/[D

is a solid torus V , with boundary T that lies in the complement of K. Inside V , the
knot K is as shown in Figure 2. Note that V � int.N.K// is homeomorphic to the
exterior of the Whitehead link. This is hyperbolic, and so contains no essential tori
or annuli. We may assume that V is embedded in the 3-sphere in a knotted fashion.
Otherwise, K is a twist knot and by [4], twist knots have a unique genus one Seifert
surface, up to ambient isotopy that fixes the knot throughout. Thus, T is an essential
torus in the complement of K.

Suppose now that K has another genus one Seifert surface S 0 that is obtained
by plumbing two surfaces, one of which is a Hopf band. Then, we obtain another
solid torus V 0 containing K in the same way, with boundary T 0. Since T and T 0
are incompressible in the complement of K and since V � int.N.K// contains no
essential annuli, there is an ambient isotopy of T 0 in the complement of K which
renders it disjoint from T . By switching the roles of T and T 0 if necessary, we may
assume that T 0 lies in V . Since V � int.N.K// contains no essential tori, we deduce
that T 0 is parallel to T . Hence, after a further small isotopy, we can ensure that
V 0 D V . Then V contains both Seifert surfaces S and S 0.

The final step in the proof is to show that V contains a unique genus one Seifert
surface for K, up to ambient isotopy that keeps K fixed throughout. This is proved
in Sections 4 and 5 of [11], for example. Briefly, a proof runs as follows. Let D0
be a compression disc for T in V that intersects S in a single embedded arc ˛ in the
interior of D0, running between the two points of D0 \K. We may pick D0 so that it is
disjoint from the clean product disc D for S . By ambient isotoping S 0 in V , keeping
K fixed, we may arrange that D0 \ S 0 is a collection of properly embedded simple
closed curves and an arc ˛0 in the interior of D0 running between the two points of
D0 \ K. We may also ensure that the intersection between ˛ and S 0 is D0 \ K. Now,
by construction, ˛ is a properly embedded essential arc in S . Also, ˛0 is properly
embedded and essential in S 0. For if it were inessential, the resulting disc in S 0 could
be used to provide an ambient isotopy of K in V that would render it disjoint from
D0, which is impossible. The exterior of ˛0 in S 0 is therefore an annulus, since S 0 has
genus one. Any component of .S \S 0/�K lies in this annulus. We may arrange that
.S \ S 0/ � K is essential in S and S 0. Thus, if this intersection is non-empty, it is a
collection of parallel essential simple closed curves in S and S 0. Since S and S 0 are
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homologous in V � int.N.K//, the intersection S \ S 0 is homologically trivial in S .
Hence, we can find adjacent curves of S \ S 0 in S which have opposite orientations,
and which bound an annulus A. These are also parallel in S 0, although not necessarily
adjacent in S 0, and so we may ambient isotope the annulus between them in S 0 onto
A, and then eliminate these two intersection curves. Thus, repeating this procedure
if necessary, we may arrange that S 0 is disjoint from S .

Now consider the clean product disc D for S . We may arrange that S 0 \ D

consists of a single arc that is essential in S 0 and is not parallel in S 0 to ˛0. It therefore
cuts the annulus S 0 � int.N.˛0// into a disc. Perform an ambient isotopy of S 0 that
takes S 0 \ D into S , and takes ˛0 into S , but keeps the remainder of the interior of
S 0 disjoint from S . Hence, S 0 � S is the interior of a disc, and similarly S � S 0 is
the interior of a disc. These discs are parallel in V � K, and so there is an ambient
isotopy of V , leaving K fixed, taking S 0 onto S . �

5. Non-fibred genus one knots

Proposition 5.1. Let K be a non-fibred knot, with a genus one Seifert surfaceS . Then,
up to ambient isotopy of S3 � int.N.S//, it admits at most one essential product disc.

Proof. Suppose that, on the contrary, there are two non-isotopic essential product
discs D1 and D2. We may ambient isotope these discs so that each component of
D1 \ D2 is an arc running from S� to SC. Hence, a regular neighbourhood of
.@S �I /[D1 [D2 in S3 � int.N.S// is homeomorphic to F �I , for some compact
surface F , where F � @I lies in S� [ SC. If some component of @F � @I bounds a
disc in S� or SC, enlarge F � I by attaching on a ball D2 � I . Repeating this as far
as possible gives an embedding of F 0 � I into S3 � int.N.S//, for some compact
surface F 0, where F 0 �@I lies in S� [SC. Since S is a once-punctured torus, any two
non-isotopic essential arcs in S fill S , in the sense that the complement of their union
is a collection of discs. Hence, F 0 is all of S and so S3 � int.N.S// is homeomorphic
to S � I , the homeomorphism taking S� [ SC to S � @I . This implies that K is
fibred, which is contrary to hypothesis. �

Combining this with Theorems 2.1 and 2.3, Remark 2.4 and Proposition 4.1, we
deduce that there is at most one way to unknot a non-fibred genus one knot. Thus, to
complete the proof of Theorem 1.1, we must now consider fibred genus one knots.

6. Fibred genus one knots

There are exactly two fibred genus one knots: the figure-eight knot and the trefoil
[1], Proposition 5.14. The monodromy of the figure-eight knot is pseudo-Anosov,
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whereas the monodromy of the trefoil is periodic. Thus, the fibred case of Theorem 1.1
follows from Theorems 2.1 and 2.3, Remark 2.4, Propositions 3.1 and 4.1 and the
following.

Theorem 6.1. Let h W S ! S be an orientation-preserving homeomorphism of the
genus one surface with one boundary component, which is not isotopic to the identity.
Then, up to h-equivalence, there are at most two essential properly embedded arcs ˛

in S such that ˛ and h.˛/ can be isotoped to be disjoint. Moreover, if h is periodic,
then there is at most one such arc up to h-equivalence.

To prove this, we need to study the arc complex C of S . Recall that this is defined
as follows (see [2] for example). It has a vertex for each ambient isotopy class of
properly embedded essential unoriented arcs in S . A collection of vertices span a
simplex if and only if there are representatives of the associated isotopy classes of
arcs that are pairwise disjoint. The maximal number of disjoint non-parallel essential
arcs in S is three, and hence the complex is 2-dimensional.

There is a one-one correspondence between isotopy classes of properly embedded
essential arcs on S and Q [ f1g. Thus, each properly embedded essential arc has an
associated slope p=q, and conversely each slope determines a unique isotopy class
of properly embedded essential arc. Two distinct slopes p=q and p0=q0 (where these
fractions are expressed in their lowest terms) correspond to disjoint arcs if and only if
jpq0 � qp0j D 1. Thus, the 1-skeleton of the arc complex is exactly the Farey graph.

Moreover, if one removes the vertices from the complex, the resulting space can
be identified with the hyperbolic plane H2 as follows. If we use the upper-half space
model for H2, its space at infinity S11 is R [ f1g. We place each vertex of the Farey
graph at the corresponding point of Q [ f1g. We then realise each open 1-simplex
of C as a geodesic. These geodesics divide H2 into ideal triangles. The closure of
each such ideal triangle corresponds to a 2-simplex of C . (See Figure 10.)

There is an associated dual complex T , which has a vertex at the centre of each
ideal triangle, and where two vertices are joined by an edge if and only if their
associated ideal triangles share an edge. This complex is a tree.

We will also need to collate some information about the link of a vertex v of C .
By applying an automorphism to C , we may assume that v D 1. The vertices of C

adjacent to 1 are precisely the integers. These are ordered around S11 � f1g, and
successive integers are joined by an edge of C . Thus, the link of v in C is a copy of
the real line.

If x1, x2, x3, x4 are distinct points in S11 ordered that way around S11, then we
say that fx1; x3g is interleaved with fx2; x4g. Note that if the four points are vertices
of the arc complex C , then it cannot be the case both that x1 and x3 are adjacent in
C , and that x2 and x4 are adjacent in C . This is because the corresponding edges of
C would then intersect at a point in H2, which is impossible.
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Any orientation-preserving homeomorphism h of S induces an automorphism
of H1.S/, and hence is an element of SL.2; Z/. The image of this in PSL.2; Z/

corresponds to a Möbius map, which induces an orientation-preserving isometry of
H2. There are three types of orientation-preserving hyperbolic isometry: elliptic,
parabolic and loxodromic. These correspond to the three types of surface automor-
phism: periodic, reducible (with infinite order) and pseudo-Anosov.

The isometry of H2 leaves T invariant and induces a simplicial automorphism of
C . The automorphism of T either fixes a point or is fixed-point free. In the latter
case, Proposition 24 in [10] implies that the isometry of T has a unique invariant line,
known as the axis of the automorphism. The automorphism acts by translation along
this line, and therefore has infinite order. The case where there is a fixed point in T

occurs exactly when the hyperbolic isometry is elliptic and hence is periodic.

Case 1. h is periodic.
The induced automorphism of T therefore fixes a point in T , which is either a

vertex or a midpoint of an edge. Let us consider first where the fixed point is a vertex
of T . Then, dually, there is an invariant 2-simplex in C . Thus, h induces a rotation
of H2 about the centre of the corresponding ideal triangle �. We claim that the only
properly embedded essential arcs ˛ on S such that h.˛/ \ ˛ D ;, up to isotopy,
correspond to ideal vertices of �. To see this, note that, for any point x on S11 that is
not an ideal vertex of �, fh.x/; xg is interleaved with two ideal vertices of �. Since
the latter form the endpoints of an edge of C , we deduce that h.x/ and x do not. This
proves the claim. Note now that the three vertices of � are all h-equivalent. Hence,
Theorem 6.1 is proved in this case. Suppose now that h fixes a midpoint of an edge e
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of T that is dual to an edge Ne of C . It therefore acts as a rotation about this point.
Hence, the only properly embedded essential arcs ˛ on S such that h.˛/ \ ˛ D ;, up
to isotopy, correspond to endpoints of Ne. This is because, for any point x 2 S11 � @ Ne,
fx; h.x/g is interleaved with @ Ne. Thus, x and h.x/ cannot be joined by an edge of C .
Since the two endpoints of Ne are h-equivalent, Theorem 6.1 is proved in the periodic
case, and so there is a unique unknotting crossing change for the trefoil knot.

Case 2. h is reducible and has infinite order.
Then h leaves an essential arc invariant up to isotopy. Thus, the element of

SL.2; Z/ is conjugate to �˙1 n

0 ˙1

�
;

where n 2 Z�f0g. If we can establish Theorem 6.1 for an automorphism h W S ! S ,
then it also holds for any conjugate automorphism. Thus, we may assume that h is
given by the above matrix. It is then easy to see that, up to h-equivalence, the only
properly embedded essential arcs ˛ in S such that h.˛/ and ˛ can be made disjoint
are 1 and 0, and that the latter only arises if n D ˙1. In particular, Theorem 6.1
holds in this case.

Case 3. h is pseudo-Anosov.
Then the induced action on H2 is loxodromic. The fixed points on S11 cannot

be vertices of C , because h is not reducible. These are the endpoints A� and AC
of the axis A on S11. We may suppose that A� (respectively, AC) is the repelling
(respectively, attracting) fixed point.

We say that two distinct vertices of C are on the same side of A if they are not
interleaved with the endpoints of A. If x1 and x2 are distinct points on the same side
of A, then we say that x1 < x2 if fx1; ACg and fx2; A�g are interleaved. This is a
total order on points on one side of A, which h preserves.

We say that a vertex v of C is visible from some point x 2 A, and that x is visible
from v, if x lies on an edge of T that is dual to an edge of C that is incident to v.
We say that v is visible from A if it is visible from some point of A. An equivalent
condition is that some edge emanating from v is dual to an edge of A. Another
equivalent condition is that v is adjacent in C to a vertex that lies on the opposite side
of A.

Claim. Suppose that, for some vertex v of C , h.v/ and v are adjacent in C . Then, v

is visible from A, and moreover, any vertex of C that is visible from A and that lies
on the same side of A as v is h-equivalent to v.

The claim rapidly implies the theorem. This is because A has only two sides, and
so there are at most two h-equivalence classes of vertices v such that h.v/ and v are
adjacent in C .

To prove the first part of the claim, suppose that v is not visible from A. The
endpoints of the edges of C emanating from v are arranged in order around S11, and
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successive vertices in this ordering are adjacent in C . Since v is not visible, there
are two successive vertices v� and vC such that a cyclic ordering of vertices around
S11 is v, v�, A�, AC, vC. In other words, v� < v < vC. Now, h.vC/ > vC.
Since fv�; vCg and fh.v�/; h.vC/g both form the endpoints of edges, they are not
interleaved. Hence, h.v�/ � vC. Since v > v�, h.v/ > h.v�/ and so h.v/ > vC.
Hence, fh.v/; vg and fv�; vCg are interleaved, and therefore h.v/ and v are not
adjacent in C . This proves the first part of the claim.

To prove the second part, we will construct a fundamental domain for the action
of h on A, and will show that the only vertices on the v side of A that are visible from
this fundamental domain are v and h.v/. Hence, the only vertices that are visible
from A and that lie on the v side of A are h-equivalent to v.

By the first part of the claim, there is at least one vertex adjacent to v that does
not lie on the same side of A as v. There are only finitely many such vertices, and so
there is one v0 that is maximal. Let vC be the vertex incident to both v and v0, and that
lies on the v side of A, and which satisfies v < vC. Now, h.v/ cannot be greater than
vC, for otherwise fh.v/; vg and fvC; v0g would be interleaved. Also, h.v/ cannot
be less than vC, since then fh.v/; h.v0/g and fv; vCg would be interleaved. Hence,
h.v/ D vC.

v

v’

h(v’)

h(v) = v+

visible from
  v and h(v)

visible from h(v)

A

A

-

A+

Figure 11

The required fundamental domain in A is the interval that lies between the edge
fv; v0g and the edge fh.v/; h.v0/g. This interval is divided into two sub-intervals by
the edge fh.v/; v0g. For each point in the first sub-interval, the only visible vertices
on the v side of A are v and h.v/. For each point in the second sub-interval, the
only visible vertex on the v side of A is h.v/. This proves the claim, and hence the
theorem. �



Vol. 86 (2011) Unknotting genus one knots 399

Thus, we have proved that there are at most two ways to unknot the figure-eight
knot. This is the last step in the proof of Theorem 1.1. �
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