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On the centralizer of diffeomorphisms of the half-line

Hélène Eynard

Abstract. Let f be a smooth diffeomorphism of the half-line fixing only the origin and Zr its
centralizer in the group of C r diffeomorphisms. According to well-known results of Szekeres
and Kopell,Z1 is a one-parameter group. On the other hand, Sergeraert constructed an f whose
centralizer Zr , 2 � r � 1, reduces to the infinite cyclic group generated by f . We show that
Zr can actually be a proper dense and uncountable subgroup of Z1 and that this phenomenon
is not scarce.
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Let f be a smooth diffeomorphism of the closed half-line RC with a single fixed
point at the origin. In this article, we study the centralizer of f in the group Dr of
C r diffeomorphisms of RC, 1 � r � 1, that is, the (closed) subgroup Zr

f
of Dr

made up of all diffeomorphisms commuting with f . The first things to observe are
thatZr decreases with r , contains the infinite cyclic subgroup generated by f and is
quite small. Indeed, for r D 1, well-known theorems by G. Szekeres and N. Kopell
[7], [4] show that Z1

f
is always a one-parameter subgroup of D1 (see also Chapter

4 in [9] and Chapter 4 in [5] for complete proofs and more discussion). For r � 2,
the situation is more subtle, and for instance both of the limit cases permitted by the
inclusions

Z Š ff n; n 2 Zg � Zr
f � Z1

f Š R

can occur. According to F. Takens’ work [8], if f is not infinitely tangent to the
identity at 0 then Z1

f
consists of smooth diffeomorphisms and therefore coincides

with Z1
f

. On the other hand, in [6], F. Sergeraert builds a diffeomorphism f whose

centralizerZ2
f

is strictly contained inZ1
f

, and one can actually check [2] that, in this

example, Z2
f

reduces to the group spanned by f – and is hence as small as possible.
The following result says that there exist intermediate situations:

Theorem A. There exists a smooth diffeomorphism f of RC with a single fixed
point at the origin, whose centralizer Zr

f
, for 2 � r � 1, is a proper, dense and

uncountable subgroup of the one-parameter group Z1
f

.
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This theorem follows from the proposition below, where f is the flow at time one
of the vector field � coming out:

Proposition 1. There exists a complete C 1 vector field � on RC, vanishing only at
0, whose flow f t at time t is not C 2 at 0 for t D 1=2 but is smooth on RC for all
t 2 Z ˚ P

�2K �Z, where K � R n Q is a Cantor set.

A natural question to ask now is whether diffeomorphisms f whose centralizer
Zr

f
, r � 2, is neither the one-parameter group generated by f (namely, Z1

f
Š R)

nor the discrete group spanned by f (that is, ff n; n 2 Zg Š Z), are very peculiar or
not. At the end of the paper, Theorem B gives a partial answer to this question: every
diffeomorphism of RC which satisfies a certain oscillation condition and belongs to a
smooth flow (with the usual hypotheses on the unique fixed point) can be approximated
in a suitable sense by diffeomorphisms f whose centralizer Zr

f
is as in Theorem A.

The proof of this second theorem is very similar to that of the first one but involves
more technicalities. For this reason, we discuss the weaker statement in priority.

It would also be interesting to know whether the centralizer Zr
f

, when it is a
proper subgroup of R Š Z1

f
, can contain any Diophantine number. It turns out [2]

that the Cantor set we construct in our proof of Proposition 1 contains only Liouville
numbers.
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Proof of Proposition 1

1. Overview. The following proof combines the strategy used by F. Sergeraert in [6],
Section 4, with the method of approximation by conjugation introduced by D.Anosov
and A. Katok in [1] and later developped by many authors (see [3] and references
therein). We start with a particular smooth vector field �0 (the same as in [6]) and
build � as the limit of a sequence of deformations �k where each �k is the pullback
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h�
k
�0 of �0 by a smooth diffeomorphism hk . Thus, the flow f t

k
of �k is related to the

flow f t
0 of �0 by f t

k
D h�1

k
B f t

0 B hk . The point is to cook up the conjugations hk so
that the diffeomorphisms f t

k
, k � 1, converge in the C1 topology for a dense set of

times t but converge only in the C 1 topology for some other time. In particular, the
diffeomorphisms hk diverge in the C 2 topology. Here, the behaviour of the initial
vector field plays a crucial role: we take a vector field �0 presenting plateaux which
accumulate at the origin and whose heights tend to zero but with wild oscillations.
According to a theorem of F. Sergeraert [6], Section 3, these oscillations are necessary
if we want to create a non-smooth flow with small perturbations hk of the identity.
Furthermore, Theorem B at the end of this paper states an oscillation condition which
is sufficient for our construction to work.

Let us indicate now how these oscillations come into play. First of all, we pick
an initial vector field �0 vanishing only at the origin, and contracting: every point is
attracted by 0 in the future. Or, in other words, the function �0=@x is negative away
from 0. The graph of this function can then be depicted as an undersea landscape
consisting of a sequence of alternating lowlandsLk and highlandsHk whose respec-
tive altitudes �vk and �uk (measured from the water surface, so that 0 < uk < vk)
go to zero when k grows, but “oscillate wildly” in the sense that the ratios vk=uk

tend to infinity.

HkLkHkC1LkC1HkC2

�0

A consequence of this behaviour is that, if an element f t
0 of the flow takes a

segment S � Hk into Lk for some large k, then its restriction to S is an affine map
with big dilation factor vk=uk .

In our deformation process, the diffeomorphisms hk are defined inductively and
all coincide with the identity near 0. Each new perturbation is described by the
diffeomorphism gk D hk B h�1

k�1
and its role is to modify the flow of �0 locally at a

specific time 1=qk , in a fundamental segment Sk of f 1=qk

0 lying in the lowland Lk .

In other words, g�1
k

B f 1=qk

0 B gk agrees with f 1=qk

0 outside Sk . Furthermore, we
take gk close enough to the identity so that the C k norms of the maps

g�1
k B f t

0 B gk � f t
0 ; t 2 1

qk
Z \ Œ0; 1�;

and also

h�1
k B f t

0 B hk � h�1
k�1 B f t

0 B hk�1;

are all strictly bounded by 2�k , and we denote by Ik a compact neighbourhood of
1

qk
Z \ .0; 1/ such that the non-strict bounds still hold for all t 2 Ik . With a suitable
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choice of the sequence qk , we can arrange that the intersection of the compact sets
Ik is a Cantor set K consisting of irrational times t for which the diffeomorphisms
h�1

k
B f t

0 B hk , k � 1, converge in the C1 topology. Indeed, it suffices to pick qk at
each step in such a way that 1

qk
Z meets any component of Ik�1 in at least two points,

and also avoids the kth rational number (for an arbitrary enumeration of Q) so that
K D T

Ik has no rational point.
Although the action of the perturbation diffeomorphism gk on the map f 1=qk

0 is
local, its action on the vector field �0 and on general elements of its flow is not at all.
To see this, let us consider the difference �k D g�

k
�0 � �0. Since gk commutes with

f
1=qk

0 out of Sk and coincides with the identity near 0, it is actually the identity on
the whole interval Œ0;min Sk�. In particular, �k vanishes identically there. Inside Sk ,
our choice of gk gives �k the following shape of a C k-small wave:

On the other hand, the half-line ŒmaxSk;C1/ is tiled by the segments Sp

k
D

f
�p=qk

0 .Sk/, p � 1. The commutation property noted above now implies that, for
every p � 1,

�k jSp

k
D �

f
p=qk

0

��
.�k jSk

/: (1)

In other words, the wave �k jSk
is propagated to the right ofSk by the iterates off 1=qk

0 .
Let us look at the wave �k jSp

k
when Sp

k
sits on the highlandHk . As explained before,

the restriction of f p=qk

0 to Sp

k
for such a p is an affine map of the form

x 2 Sp

k
7! vk

uk

x C ck for some ck 2 R:

Then, according to (1),

�
�k jSp

k

�
.x/ D .�k jSk

/
�
f

p=qk

0 .x/
�

Df
p=qk

0 .x/
D

�
vk

uk

��1

.�k jSk
/

�
vk

uk

x C ck

�
;

and so, for any integer m � 1,

Dm
�
�k jSp

k

�
.x/ D

�
vk

uk

�m�1

Dm.�k jSk
/

�
vk

uk

x C ck

�
:

Thus, in the course of the propagation, the wave remainsC 1 small but its higher order
derivatives are amplified and can become big. As we already said, the difficulty is
then to adjust the perturbation diffeomorphisms gk so that the differences h�

k
�0 � �0
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(which are essentially the superpositions of the propagated waves �l , l � k) diverge
in the C 2 topology while the conjugates h�1

k
B f t

0 B hk , for t in the Cantor setK, still
converge in the C1 topology. Following Sergeraert, a solution is roughly to take
uk and vk respectively equal to 2�k4

and 2�k2
, while the size of the wave �k jSk

is

defined as 2�k3
.

2. Notation and toolbox. In this short section, we assume that all necessary condi-
tions are met so that the expressions we write make sense. For any C k map g defined
on an interval I � R (open or closed), we set

kgkk D sup fjDmg.x/j; 0 � m � k; x 2 I g 2 Œ0;C1�:

If f W I ! f .I / is an orientation-preserving C 2 diffeomorphism, we define Lf to
be

Lf D D logDf D D2f

Df
:

The non-linear differential operator L satisfies the following chain rule:

L.h B g/ D Lh B g �Dg C Lg: (2)

To compute higher order derivatives of compositions, we will also use Faà di Bruno’s
formula in the form

Dm.h B g/ D
X

�2…m

�
Dj�jh

� B g �
Y

B2�

DjBjg; (3)

where …m is the set of all partitions � of f1; : : : ; mg and jX j, for any finite set X , is
the number of its elements.

Let � be a vector field on an interval J . Throughout the paper, we will make no
difference between � and the function �=@x , where x is the underlying coordinate in
J , and in particular we will identify @x with 1. If J is both the source of g and the
target of h (where g and h are diffeomorphisms), we can define two new vector fields,
g�� and h��, which are the pushforward of � by g and its pullback by h, respectively.
Viewed as functions, these vector fields are given by

g�� D Dg B g�1 � � B g�1; (4)

h�� D � B h
Dh

(5)

and so we easily get the following expressions for the derivatives:

D.g��/ D D� B g�1 C Lg B g�1 � � B g�1; (6)

D.h��/ D D� B h � D2h

.Dh/2
� B h: (7)
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3. The initial vector field. The construction involves two smooth functions ˛,
ˇ W R ! Œ0; 1� satisfying the following conditions:

� ˛.x/ equals 0 if x � 1=6 and 1 if x � 1=3;

� ˇ.x/ equals 0 if x � 1=6 or x � 5=6, and 1 if 1=3 � x � 2=3;

1

11

0 01
6

1
6

1
3

1
3

2
3

5
6

˛ ˇ

Now, setting un D 2�n4
and vn D 2�n2

, we define the vector field �0 as in [6] by

�0.x/ D �unC1 � .un � unC1/ ˛.2
nC1x � 1/ � .vn � un/ ˇ.2

nC1x � 1/
for x 2 Œ2�n�1; 2�n�; �0.0/ D 0 and �0.x/ D �1 for x � 1.

2�n�1 2�n

un

vn

unC1

�0

From now on, we denote by ff t
0 ; t 2 Rg the flow of �0 and by  W R ! R�C the

diffeomorphism given by .t/ D f t
0 .1/ for all t 2 R. Note that, sinceD D �0 B ,

�0 D D B  �1 and D�0 D L B  �1: (8)

We also fix a forward orbit fal ; l � 0g of f0 D f 1
0 , where a0 D 1 and al D f0.al�1/

D  .l/ for all l � 1.
One easily checks that �0 is smooth, contracting, infinitely flat at the origin and

C 1-bounded – with 1 < k�0k1 < C1. Furthermore, �0 equals �vn identically on
the central third of Œ2�n�1; 2�n�, namely Œ2�n�1 C 2�n�1=3; 2�n � 2�n�1=3�, and
�un on Œ2�n � 2�n�1=6; 2�n C 2�n=6�. A simple computation of travel time at
constant speed shows that for all n � 4, there exist integers i.n/ and j.n/ such that

2�n � 1
6
2�n�1 � ai.n/C2 < ai.n/�1 � 2�n C 1

6
2�n (9)

and

2�n�1 C 1
3
2�n�1 � aj.n/C2 < aj.n/�1 � 2�n � 1

3
2�n�1: (10)

Thus �0 equals �vn on Œaj.n/C2; aj.n/�1�, and hence f t
0 induces on Œaj.n/C1; aj.n/�1�

the translation by �tvn for 0 � t � 1. Similarly, f t
0 induces the translation by �tun

in a neighbourhood of ai.n/.
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4. The deformation process. Our goal is now to produce a sequence hk of smooth
diffeomorphisms of RC such that the vector fields �k D h�

k
�0 converge in the C 1

topology to the vector field � of Proposition 1. In order to have regular perturbation
patterns (and easier computations), we actually work at time scale, i.e. we define hk

as the conjugate Bˆk B �1 of a smooth diffeomorphismˆk of R (which coincides
with the identity near C1 so that hk is also the identity near 0). Conforming to the
general scheme of the approximation by conjugation method (see [3]),ˆk is obtained
as a composition

ˆk D 'k B 'k�1 B � � � B '1

where the diffeomorphisms 'k are manufactured inductively from a fixed function
� and two adjustment integer parameters qk and nk . The details of the construction
follow.

� 1
4 � 1

20
1

20
1
4

1

�

Let � W R ! Œ0; 1� be a smooth function supported in Œ�1=4; 1=4� and satisfying
�.t/ D t2=2 around 0. Given positive integers q, n, set wn D 2�n3

and denote by
�q;n W R ! Œ0; 1� the smooth function defined by

�q;n.t/ D wn�
�
q
�
t � j.n/�� for all t 2 R. (11)

Clearly, �q;n is supported in
�
j.n/ � 1

4q
; j.n/ C 1

4q

�
. Moreover, for every integer

m � 1 and all t 2 R,

Dm�q;n.t/ D wnq
mDm�

�
q
�
t � j.n/��

and hence
k�q;nkm D wnq

mk�km:

In particular, by taking n large compared to q oncem is fixed, one can make the Cm

norm of �q;n arbitrarily small.
Now let Jq;n be the interval

�
j.n/ � 1

2q
; j.n/C 1

2q

�
and define 'q;n W R ! R as

the map meeting the following properties:
� 'q;n.t/ D t for t > j.n/C 1

2q
;

� 'q;n.t/ D t C �q;n.t/ for t 2 Jq;n;
� 'q;n commutes with the translation by 1

q
outside Jq;n, and so

'q;n.t/ D t C �q;n

�
t C p

q

�
if t 2

�
Jq;n � p

q

�
; p � 0:
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In short, we can write

'q;n.t/ D t C
X
p�0

�q;n

�
t C p

q

�
for all t 2 R; (12)

and similarly,

D'q;n.t/ D 1C
X
p�0

D�q;n

�
t C p

q

�
;

Dm'q;n.t/ D
X
p�0

Dm�q;n

�
t C p

q

�
for all m � 2.

Note that for every t 2 R, at most one term in each sum is nonzero since the support
of �q;n has length less than 1=q. These equations imply that

k'q;n � idkm D k�q;nkm (13)

and, in particular, 'q;n is a diffeomorphism provided k�q;nk1 < 1.
The following lemma will be used later (in the proof of Lemma 4) to show that

the limit flow coming out of our construction is not smooth at time 1=2:

Lemma 2. For all l � 1, let ql and nl be positive integers with ql odd and
wnl

qlk�k1 < 1. Then for every k � 1 the diffeomorphism ˆk defined by

ˆk D 'k B 'k�1 B � � � B '1; where 'l D 'ql ;nl
;

has the following behaviour on 1
2
Z:

� ˆk coincides with the identity in a neighbourhood of Z C 1
2

;

� ˆk is tangent to the identity on Z – meaning that ˆk.l/ D l and Dˆk.l/ D 1

for all l 2 Z;

� .Lˆk � Lˆk�1/.l/, for l 2 Z, equals wnk
q2

k
if l � j.nk/ and 0 otherwise.

Proof. Since �l D �ql ;nl
is supported in

� � 1
4ql
; 1

4ql

� C j.nl/ and

'l D id C
X
p�0

�l

�
t C p

ql

�
;

'l is the identity on the 1
4ql

-neighbourhood of 1
ql

Z C 1
2ql

. But ql is odd, say ql D
2sl C 1, so

1

2
D ql

2ql

D 2sl C 1

2ql

D sl

ql

C 1

2ql

2 1

ql

Z C 1

2ql

;
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and hence 1
ql

ZC 1
2ql

contains ZC 1
2

for all l � 1. Thereforeˆk D 'k B � � � B'1 is the

identity in a neighbourhood of Z C 1
2

. On the other hand, since �.0/ D D�.0/ D 0,
each 'l is C 1 tangent to the identity on 1

ql
Z � Z, soˆk is C 1 tangent to the identity

on Z.
Now, applying the chain rule (2) for the operatorL D D2=D toˆk D 'k Bˆk�1,

we get
Lˆk D L'k Bˆk�1 �Dˆk�1 C Lˆk�1:

For l 2 Z, we have seen above that ˆk�1.l/ D l and Dˆk�1.l/ D 1, so

.Lˆk � Lˆk�1/.l/ D L'k.l/:

If l > j.nk/ thenL'k.l/ D 0 just because 'k agrees with the identity on the interval
Œj.nk/C 1

2qk
;C1/. If l � j.nk/ then (11) and (12) give

L'k.l/ D D2'k.l/

D'k.l/
D D2'k.l/ D D2�k

�
j.nk/

� D wnk
q2

k;

which completes the proof. �

For the next lemma, we fix an enumeration of the rational numbers, Q D frkgk�1,
and set ˆ0 D id and I0 D Œ0; 1�. Moreover, as in Lemma 2, we will henceforth
abbreviate 'ql ;nl

as 'l (and similarly �ql ;nl
as �l and Jql ;nl

as Jl ).

Lemma 3. For suitably chosen increasing sequences of positive integers qk and nk ,
the diffeomorphisms ˆk D 'k B � � � B '1 and hk D  B ˆk B  �1, the vector fields
�k D h�

k
�0 and their flows f t

k
satisfy the following estimates for every k � 1:

kˆk �ˆk�1kkC1 � 2�k�1; (ik)

k�k � �k�1k1 � 2�k; (iik)

k�
f t

k � f t
k�1

� jŒ0;1�kk � 2�k for all t 2 Ik [ f1g; (iiik)

where Ik � Ik�1 is a compact set avoiding the kth rational number rk and consisting
of 2k disjoint segments of nonzero length, two in each component of Ik�1.

Proof. Let k � 1 and assume we already chose ql and nl for 1 � l � k � 1 in
such a way that estimates (il ), (iil ) and (iiil ) hold. In particular, since ˆ0 D id by
convention,

kˆk�1 � idk2 �
k�1X
lD1

kˆl �ˆl�1k2 �
k�1X
lD1

2�l�1 D 1

2
� 2�k � 1

2
: (14)
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Take an odd integer qk > qk�1 such that 1
qk

Z avoids rk and meets the interior of
each component of Ik�1 in at least two points. Then pick nk > nk�1 such that

k�kkkC1 � 2�k�4 vk�1
nk

j…kC1j kDˆk�1kkC1
k

k�0k1

; (15)

i.e.
wnk

vk�1
nk

� 2�k�4 q�k�1
k

j…kC1j k�kkC1 kDˆk�1kkC1
k

k�0k1

;

which is possible since

wn

vk�1
n

D 2�n3C.k�1/n2 D o.1/:

Note that inequality (15) clearly implies k�kk1 < 1, and so 'k is a diffeomorphism
(remember that k'k � idkm D k�kkm).

Let us first prove that this choice of nk implies (ik). Since ˆk D 'k Bˆk�1, Faà
di Bruno’s formula (3) gives, for 0 � m � k C 1,

Dm.ˆk �ˆk�1/ D
X

�2…m

Dj�j.'k � id/ Bˆk�1 �
Y

B2�

DjBjˆk�1:

But for every partition � 2 …m with m � k C 1,

kDj�j.'k � id/ Bˆk�1k0 D k�kkj�j � k�kkkC1

and Y
B2�

jDjBjˆk�1j � kDˆk�1kkC1
k

;

and so
kˆk �ˆk�1kkC1 � j…kC1j k�kkkC1 kDˆk�1kkC1

k
:

Thus, by the choice of nk in (15),

kˆk �ˆk�1kkC1 � 2�k�4 vk�1
nk

k�0k1

� 2�k�1;

which is the desired estimate (ik) (note that k�0k1 � 1).
To prove (iik), let us define

�k D ˆ�
k@t �ˆ�

k�1@t and 	k D '�
k@t � @t ;

so that

�k D ˆ�
k�1	k and �k � �k�1 D  ��k :



Vol. 86 (2011) On the centralizer of diffeomorphisms of the half-line 425

Viewing 	k as a function,

	k D 1

D'k

� 1 and D	k D � D2'k

.D'k/2
:

Given the choice of nk in (15),

kD'k � 1k0 D kD�kk0 � 2�k�4 k�0k�1
1 .and so

���� 1

D'k

����
0

� 2/;

and

kD2'kk0 D kD2�kk0 � 2�k�4 k�0k�1
1 ;

so
j	kj � 2�k�3 k�0k�1

1 and jD	kj � 2�k�2 k�0k�1
1 : (16)

Next, applying (5) and (7) to �k D ˆ�
k�1

	k ,

�k D 	k Bˆk�1

Dˆk�1

and D�k D D	k Bˆk�1 � D2ˆk�1

.Dˆk�1/2
	k Bˆk�1

so, according to (14) and (16),

j�kj � 2�k�2 k�0k�1
1 ;

jD�kj � 2�k�2 k�0k�1
1 C 4

2
2�k�3 k�0k�1

1 D 2�k�1 k�0k�1
1 :

Now, applying (4), (6) and (8) to �k � �k�1 D  ��k ,

j�k � �k�1j D j�k B  �1 � �0j � k�kk0 k�0k0 � 2�k�2;

jD.�k � �k�1/j D jD�k B  �1 CD�0 � �k B  �1j
� 2k�kk1 k�0k1 � 2�k :

Thus, k�k � �k�1k1 � 2�k as stated in estimate (iik).
Let us finally prove (iiik). Set '0 D id and denote by 
 t

l
the flow of '�

l
@t for

0 � l � k. Then 
 t
0 is just the translation by t and


 t
k D '�1

k B 
 t
0 B 'k :

Since

�k D  �ˆ�
k@t D  �ˆ�

k�1'
�
k@t and �k�1 D  �ˆ�

k�1@t ;

their flows are given by

f t
k D  Bˆ�1

k�1 B 
 t
k Bˆk�1 B  �1 and f t

k�1 D  Bˆ�1
k�1 B 
 t

0 Bˆk�1 B  �1:
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By definition,'k D 'qk ;nk
commutes with the translation
1=qk

0 outsideJk D Jqk ;nk
.

Consequently, 'k commutes with any iterate 
p=qk

0 , p � 1, outside the interval

	
j.nk/C 1

2qk

� p

qk

; j.nk/C 1

2qk



D

p�1[
qD0

�
Jk � q

qk

�
:

Therefore, 
p=qk

k
equals 
p=qk

0 outside this interval, and in particular, for 0 � p � qk ,
outside

Mk D
	
j.nk/ � 1C 1

2qk

; j.nk/C 1

2qk



:

On the other hand, for t 2 Jk ,



1=qk

k
.t/ D '�1

k

�
'k.t/C 1

qk

�

D '�1
k

�
t C �k.t/C 1

qk

�
by definition of 'k on Jk

D t C 1

qk

C �k.t/ because t C �k.t/C 1

qk

> j.nk/C 1

2qk

,

D 

1=qk

0 .t/C �k.t/:

Thus, 
1=qk

k
� 
1=qk

0 D �k . Similarly, for any p � 1,



p=qk

k
.t/�
p=qk

0 .t/ D
p�1X
qD0

�k

�
t C q

qk

�
for all t 2 R, (17)

so ��
p=qk

k
� 
p=qk

0

��
m

D k�kkm:

(again since at most one term of the sum is nonzero in (17)). Now, in the region Mk

where 
p=qk

k
and 
p=qk

0 disagree for 0 � p � qk , the diffeomorphism ˆk�1 is the
identity. Moreover,  .j.nk// D aj.nk/ and  .Mk/ � Œaj.nk/C1; aj.nk/�1� so, by
(10),  restricted to Mk is an affine map with slope �vnk

. As a consequence, the
derivatives of

f
p=qk

k
D  Bˆ�1

k�1 B 
p=qk

k
Bˆk�1 B  �1

have a simple expression on  .Mk/:

Dm
�
f

p=qk

k

� D .�vnk
/1�m Dm

�



p=qk

k

� B  �1:

Similarly, again on  .Mk/,

Dm
�
f

p=qk

k�1

� D .�vnk
/1�m Dm

�



p=qk

0

� B  �1:
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Therefore, for 0 � p � qk and 0 � m � k,
ˇ̌
Dm

�
f

p=qk

k
� f p=qk

k�1

�ˇ̌ � v1�m
nk

��
p=qk

k
� 
p=qk

0

��
m

D v1�m
nk

k�kkm � v1�k
nk

k�kkk � 2�k�4

according to our choice of nk in (15), and thus

��f t
k � f t

k�1

��
k

� 2�k�4 for all t 2 1

qk

Z \ Œ0; 1�:

Now let Tk be a subset of 1
qk

Z \ Ik�1 with exactly two points in each of the 2k�1

connected components of Ik�1 (remember that qk was chosen so that there are at
least two points there). Since both vector fields �k and �k�1 are smooth on RC, we
can find a compact neighbourhood Ik of Tk in Ik�1 n frkg consisting of 2k segments,
such that �� �

f t
k � f t

k�1

� jŒ0;1�

��
k

� 2�k for all t 2 Ik [ f1g
(in fact, the restriction to Œ0; 1� is not essential here: one can prove that the difference
f t

k
�f t

k�1
is 1-periodic on Œ1;1/, and Ik can thus be chosen so that the above bound

holds on all of RC). This completes the proof of (iiik), and thus of Lemma 3. �

5. The limit vector field

Lemma 4. The vector fields �k , k � 1, of Lemma 3 converge in the C 1 topology on
RC, and in the C1 topology on R�C, to a vector field � which satisfies all properties
stated in Proposition 1 with K D T

Ik .

Proof. The C 1 convergence of the vector fields �k on RC follows directly from
estimate (iik) in Lemma 3. Next, estimate (ik) shows that the diffeomorphisms ˆk

converge in theC1 topology to a smooth diffeomorphismˆ of R, so the vector fields
ˆ�

k
@t converge in the C1 topology to ˆ�@t . Now �k equals  �ˆ�

k
@t on R�C and  

is a smooth diffeomorphism from R to R�C. Given any compact set A � R�C and any
integer m � 0, the restriction of  to  �1.A/ is Cm-bounded, and hence the vector
fields �k converge Cm uniformly to � on A. Therefore, the vector fields �k converge
to � on R�C in the C1 (compact-open) topology.

The convergence of the vector fields �k implies a similar convergence of their
flows f t

k
to the flow f t of �. Furthermore, estimate (iiik) in Lemma 3 shows that, for

t 2 K [ f1g, the restrictions f t
k jŒ0;1�

converge in the Cm topology on Œ0; 1� for any

m � 0. In the end, the diffeomorphismsf t
k

, t 2 K[f1g, converge in theC1 topology
on RC, so f t is smooth for all t 2 K [ f1g, and hence for all t 2 Z ˚ P

�2K �Z.
Note here that each Ik , by construction, is a compact set avoiding the kth rational
number and consisting of 2k segments, two in each component of Ik�1, soK D T

Ik

is indeed a Cantor set.
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The last thing we have to prove is that f 1=2 is not C 2 at 0 or, equivalently, that
Lf 1=2 D D2f 1=2=Df 1=2 is not continuous at 0. Let us compute Lf 1=2 at a point
ai.nl /, as defined in (9), for l 2 N. Taking the limit of the maps

f
1=2

k
D  Bˆ�1

k B
�

id C 1

2

�
Bˆk B  �1;

we get

f 1=2 D  Bˆ�1 B
�

id C 1

2

�
Bˆ B  �1:

Let us set 
 D ˆ�1 B .id C 1
2
/ B ˆ, so that f 1=2 D  B 
 B  �1. Near ai.nl /, the

map  �1 is affine, with slope �u�1
nl

, so

Lf 1=2
�
ai.nl /

� D � 1

unl

L

�
i.nl/

�
:

On the other hand, by (2) applied twice,

L

�
i.nl/

� D Lˆ�1

�
ˆ

�
i.nl/

� C 1

2

�
�Dˆ�

i.nl/
� C Lˆ

�
i.nl/

�
:

According to Lemma 2, each ˆk , and hence ˆ, is tangent to the identity on 1
2
Z

provided all integers qk were chosen odd. Moreover, ˆk and ˆ�1
k

coincide with the
identity near Z C 1

2
, so Lˆ�1

�
i.nl/C 1

2

� D 0. Summing up, and using the third
property in Lemma 2, we get

L

�
i.nl/

� D Lˆ
�
i.nl/

� D
X
k�1

.Lˆk � Lˆk�1/
�
i.nl/

� D
X
k�l

wnk
q2

k : (18)

Therefore,

Lf 1=2
�
ai.nl /

� D � 1

unl

X
k�l

wnk
q2

k < �wnl

unl

! �1;

and so f 1=2 is not C 2 at 0. �

More examples

LetS denote the space of smooth diffeomorphisms of RC which are infinitely tangent
to the identity at the origin and have no other fixed point. We say that a diffeomorphism
f of RC is contracting if f .x/ < x for all x > 0, and we call Szekeres vector field
of f the unique C 1 vector field generating the one-parameter group Z1

f
[7], [4].
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As mentioned in the introduction, the question we discuss in this section is whether
the phenomenon presented in Theorem A is very peculiar or quite general. First of
all, because of Takens’ work [8], this phenomenon is limited to S . A difficulty then
is that there is no obviously relevant topology on S for our problem. In particular,
the C1 compact-open topology restricted to S is extremely coarse: given any two
diffeomorphisms f; g 2 S , which are both contracting, say, it is easy to construct
a sequence of diffeomorphisms fk 2 S which converge to f in the C1 topology
and whose germs at 0 are all equal to that of g. In other words, the C1 topology
does not see the germ at 0 while this germ precisely determines the smoothness of
the Szekeres vector field and hence the nature of the centralizers in the groupsDr for
r � 2. So we do not claim that the phenomenon described in Theorem A is generic
in any way, but the following result shows that it is at least not scarce:

Theorem B. Let f0 be a smooth contracting diffeomorphism of RC having a smooth
and C 1-bounded Szekeres vector field, and satisfying the following oscillation con-
dition:

lim sup
x!0

�
sup

0<y�x

j log.x � f0.x//j
j log.y � f0.y//j

�
D C1: (19)

Then, for every k � 0 and every " > 0, there exists a smooth diffeomorphism f of
RC which is close to f0 in the sense that

jDm.f � f0/.x/j � "jDm.f0 � id/.x/j for all m � k and all x 2 RC, (20)

and whose centralizer Z1
f

is a proper, dense and uncountable subgroup of Z1
f

.

Note that the oscillation condition (19) forces f0 to be infinitely tangent to the
identity at 0.

It is interesting to compare this result with Theorem 3.1 in [6]. Indeed, the latter
says that, if a smooth contracting diffeomorphism f does not oscillate much in the
sense that

sup
0<y�x

�
y � f .y/� D O

��
x � f .x/���

for some � >
r � 1
r

;

then the Szekeres vector field of f is C r . Theorem B can be thought of as a kind of
“partial converse”.

Proof. The idea of the proof is the same as for Theorem A: we start with a smooth
vector field, here the Szekeres vector field �0 of the given f0 instead of Sergeraert’s
vector field, and construct deformations �k of �0 which converge to the Szekeres
vector field � of the wanted f . We will just hint at how to adapt the arguments in this
more general setting. As before, we denote by f t

0 the flow of �0 (so that f0 D f 1
0 )

and by  the diffeomorphism from R to R�C given by  .t/ D f t
0 .1/ for all t 2 R.
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We also fix a forward orbit of f0, namely fal D f l
0 .1/ D  .l/; l � 0g, and we set

Vl D ŒalC2; al�2� for all l � 0.

Lemma 5. There exist two alternating sequences of integers i.n/ and j.n/, n � 0,
with i.n/ < j.n/ < i.nC 1/ < j.nC 1/ < � � � , such that

logun

log vn

����!
n!1 C1 (21)

where un D supVi.n/
j�0j and vn D infVj.n/

j�0j. In particular, Vi.n/ and Vj.n/ are
disjoint when n is large enough.

Proof of lemma 5. This proof is rather elementary. Still we give it for the reader’s con-
venience. The oscillation property (19) means that there exist decreasing sequences
.xn/n and .yn/n converging to 0, with yn < xn, satisfying

lim
n!1

log .xn � f0.xn//

log .yn � f0.yn//
D C1 (22)

(the numerator and denominator are negative whenn is large enough). We can assume
in addition that xnC1 � f 2

0 .yn/ for all n. Let

i.n/ D maxfk 2 N; ak � xng;
j.n/ D minfk 2 N; ak � yng:

Any fundamental interval .f0.x/; x� � Œ0; 1� of f0 contains exactly one element of
the forward orbit fai ; i 2 Ng of a0 D 1, so the definitions of i.n/ and j.n/ imply

xnC1 � ai.nC1/ < f
�1

0 .xnC1/ � f0.yn/ < aj.n/ � yn < xn � ai.n/;

and a fortiori i.n/ < j.n/ < i.nC 1/ for all n. Let us now prove that for this choice
of alternating sequences i.n/ and j.n/,

logun

log vn

����!
n!1 C1;

where un D supVi.n/
j�0j and vn D infVj.n/

j�0j. By definition of i.n/, j.n/, Vi.n/

and Vj.n/, there exist tn and sn in Œ�3; 3� such that

un D ˇ̌
�0

�
f

tn
0 .xn/

�ˇ̌
and vn D ˇ̌

�0

�
f

sn

0 .yn/
�ˇ̌
:

Now
d

dt
f t

0 .x/ D �0

�
f t

0 .x/
�

for all .t; x/ 2 R � RC;
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so

xn � f0.xn/ D f 0
0 .xn/ � f 1

0 .xn/

D ��0

�
f

�n

0 .xn/
� D ˇ̌

�0

�
f

�n

0 .xn/
�ˇ̌

for some �n 2 Œ0; 1�;
and similarly

yn � f0.yn/ D ��0

�
f

�n

0 .yn/
� D ˇ̌

�0

�
f

�n

0 .yn/
�ˇ̌

for some 
n 2 Œ0; 1�:
So

logun

log vn

D log
ˇ̌
�0

�
f

tn
0 .xn/

�ˇ̌
log

ˇ̌
�0

�
f

sn

0 .yn/
�ˇ̌ D

log.xn � f0.xn//C log
ˇ̌ˇ �0.f

tn
0

.xn//
�0.f

�n
0

.xn//

ˇ̌ˇ
log.yn � f0.yn//C log

ˇ̌ˇ �0.f
sn

0
.yn//

�0.f
�n

0
.yn//

ˇ̌ˇ
: (23)

The flow
�
f t

0

�
t2R

of �0 preserves �0, i.e.

�0

�
f t

0 .x/
� D Df t

0 .x/ �0.x/ for all .t; x/ 2 R � RC:

As a result,
�0

�
f

tn
0 .xn/

�
�0

�
f

�n

0 .xn/
� D D

�
f

.tn��n/
0

� �
f

�n

0 .xn/
�

and
�0

�
f

sn

0 .yn/
�

�0

�
f

�n

0 .yn/
� D D

�
f

.sn��n/
0

� �
f

�n

0 .yn/
�
:

One easily checks that

Df t
0 .0/ D etD�0.0/ for all t 2 R;

so since Df 1
0 .0/ D 1 (f 1

0 D f0 has to be infinitely tangent to the identity at 0 to
satisfy the oscillation condition (19)), D�0.0/ D 0 and

Df t
0 .0/ D 1 for all t 2 R:

Since �0 is C 1 on RC, both .t; x/ 7! f t
0 .x/ and .t; x/ 7! Df t

0 .x/ are uniformly
continuous on every compact subset of R � RC. Thus, since j�nj � 1, j
nj � 1,
jtn � �nj � 4, jsn � 
nj � 4, and xn and yn converge to 0,

D
�
f

.tn��n/
0

� �
f

�n

0 .xn/
� ! 1 and D

�
f

.sn��n/
0

� �
f

�n

0 .yn/
� ! 1:

This, together with (22), (23), and the fact that

log.xn � f0.xn// ! �1 and log.yn � f0.yn// ! �1
implies that

logun

log vn

! C1;

which concludes the proof. �
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We now choose a sequence wn with intermediate decay, i.e. satisfying wn D
o.vm

n / for all m and un D o.wn/ (one can take for instance wn D p
un). Then we

define the maps �q;n and 'q;n by formulae (11) and (12), using the same function
� but the new parameters wn and j.n/. Extending thence all other definitions and
notation of Subsection 4, our task is to show that Lemmas 3 and 4 still hold.

Proof of Lemma 3 in the general setting. We only insist here on the points that differ
from the proof in Subsection 4. Again, we proceed by induction. At step k, the choice
of qk is just the same, but we need to be more careful about nk . The reason is that
the map  is no longer affine on the regions we consider, and hence the computation
of higher derivatives of compositions is trickier.

First, using the fact that �0 is smooth and infinitely flat at 0, one can check that,
for any fixed m � 1,

sup fjDm .t/j; t 2 Œj.n/ � 1;1/g ����!
n!1 0

and

vmC1
n sup

˚jDm �1.x/j; x 2 �
aj.n/C1; aj.n/�1

� ����!
n!1 0:

(this is derived from the relations D D �0 B  and D �1 D 1=�0).
Then we pick an integer nk > nk�1 meeting the following three conditions:���D ˇ̌

Œj.nk/�1;1/

���
k�1

< 1; (24)
���Dm �1ˇ̌

Œaj.nk/C1;aj.nk/�1�

���
0
< v�m�1

nk
for 1 � m � k, (25)

and

k�kkkC1 � 2�k2�4 v2k
nk

j…kC1j2kDˆk�1kkC1
k

k�0k1

: (26)

Inequality (26) is stronger than (15) and thus implies (ik) and (iik) of Lemma 3 (the
arguments are strictly the same). The proof of (iiik) is more complicated but we still
have (with our former notation)

f t
k D  Bˆ�1

k�1 B 
 t
k Bˆk�1 B  �1 and f t

k�1 D  Bˆ�1
k�1 B 
 t

0 Bˆk�1 B  �1:

For t D p=qk , 0 � p � qk , again 
 t
k

D 
 t
0 outside

Mk D
	
j.nk/ � 1C 1

2qk

; j.nk/C 1

2qk



;

so f t
k

� f t
k�1

D 0 outside  .Mk/. Furthermore, ˆk�1 D id on Mk . Thus, on
 .Mk/,

f t
k D  B 
 t

k B  �1 and f t
k�1 D  B 
 t

0 B  �1
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or, equivalently,

f t
k � f t

k�1 D . B 
 t
k/ B  �1 � . B 
 t

0/ B  �1:

For m � k, Faà di Bruno’s formula gives

Dm
�
f t

k � f t
k�1

� D
X

�2…m

Dj�j� B 
 t
k �  B 
 t

0

� B  �1 �
Y

B2�

DjBj �1: (27)

According to inequality (25),ˇ̌ˇ Y
B2�

DjBj �1
ˇ̌ˇ < v�2k

nk
on  .Mk/ � �

aj.nk/C1; aj.nk/�1

�
: (28)

Now write

 B 
 t
k �  B 
 t

0 D . B 
 t
0/ B .
�t

0 B 
 t
k/ � . B 
 t

0/

and observe, using (17), that


�t
0 B 
 t

k D id C
p�1X
qD0

�k

�
id C q

qk

�
for t D p

qk

, 0 � p � qk .

For l � k, Faà di Bruno’s formula gives

Dl
�
 B 
 t

k �  B 
 t
0

� D Dl
��
 B 
 t

0

� B �

�t

0 B 
 t
k

� � �
 B 
 t

0

��
D

X
�2…l
j�j<l

Dj�j �
 B 
 t

0

� B �

�t

0 B 
 t
k

� �
Y

B2�

DjBj �

�t

0 B 
 t
k

�
:

Since 
 t
0 D id C t , it follows from (24) thatˇ̌

Dj�j. B 
 t
0/ B .
�t

0 B 
 t
k/

ˇ̌
< 1 on Mk :

Now for any partition � 2 …l with less than l blocks, i.e. j�j < l , one block B of
� has at least two elements, so at least one factor in the product

Y
B2�

DjBj �

�t

0 B 
 t
k

� D
Y

B2�

DjBj
�

id C
p�1X
qD0

�k

�
id C q

qk

��

is a derivative of order at least 2, and hence is bounded above by k�kkk , while
the others are all less than 2. So the product is bounded above by 2l�2k�kkk �
2k�2k�kkk . Therefore,ˇ̌

Dl. B 
 t
k �  B 
 t

0/
ˇ̌ � j…l j 2l�2k�kkk � j…kj 2k�2k�kkk :

In view of (27), (28) and (26) this implies that kf t
k

� f t
k�1

kk � 2�k�4 for all
t D p=qk , 0 � p � qk , and one completes the proof of Lemma 3 just as in
Subsection 4. �
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Proof of Lemma 4 in the general setting. The proof that the vector fields �k converge
and that the limit flow f t is smooth for t 2 Z ˚ P

�2K �Z is strictly the same as in
Subsection 5. Note that if we start our construction at step k0 instead of step 1, the
limit diffeomorphism f satisfies the condition (20) for l � k0 and " D 2�k0�1, so
one can construct f arbitrarily close to f0 in the sense of Theorem B.

The part of Lemma 4 that needs a little extra effort is the irregularity of f 1=2.
Again,

f 1=2 D  B 
 B  �1;

with 
 D ˆ�1 B .id C 1=2/ Bˆ. The computation of L

�
i.nl/

�
leading to (18) can

be integrally transposed here, and yields L

�
i.nl/

� D P
k�l wnk

q2
k

(with the new
wn). However, this time  is not affine on the involved region, so the computation
of Lf 1=2

�
i.nl/

�
is a bit longer. Formula (2) applied twice gives

Lf 1=2 D �
L B .
 B  �1/ �D.
 B  �1/

� C �
L
 B  �1 �D �1

� C L �1;

and hence, since D �1 D 1=�0,

Lf 1=2
�
ai.nl /

� D �
L B .
 B  �1/ �D.
 B  �1/C L �1

� �
ai.nl /

� C L

�
i.nl/

�
�0

�
ai.nl /

� :
Now, according to Lemma 2 (still valid in our new setting), the limit ˆ of the diffeo-
morphisms ˆk coincides with the translation by 1=2 at order one on Z, so the first
term of the above sum is equal to
	
L B

�
id C 1

2

�
B �1 �D

��
id C 1

2

�
B �1

�
CL �1


�
ai.nl /

� D Lf
1=2

0

�
ai.nl /

�
:

But when l grows, Lf 1=2
0

�
ai.nl /

�
tends to Lf 1=2

0 .0/ D 0. Therefore

Lf 1=2
�
ai.nl /

� 	
P

k�l wnk
q2

k

�0

�
ai.nl /

� < �wnl

unl

���!
l!1

�1;

so f 1=2 is notC 2 at 0. This concludes the proof of Lemma 4 and of Theorem B. �
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