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schemes, as well as adjunctions of the type (L f*, R fi) and (R fx, f!) (i.e. Grothendieck dual-
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separated noetherian schemes. We also establish fundamental theorems for these push-forwards
(e.g. base change and projection formula) and provide some computations.
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Introduction

Push-forwards, also known as transfers or norm maps, exist for many cohomology
theories over schemes, e.g. for K-theory, (higher) Chow groups and algebraic cobor-
dism. They are undoubtedly a useful tool for understanding and computing those
cohomology theories. The present article is about the construction of such push-
forward maps for the coherent Witt groups of schemes defined in the seminal work of
Balmer!. A reader familiar with cohomology theories might think that constructing
a push-forward is probably straightforward. He (or she) should be warned: Witt
groups are not an oriented cohomology theory. In particular, push-forwards are, in
some sense, only conditionally defined. For example, when X and Y are connected
noetherian schemes of finite Krull dimension, smooth over a field, the Witt groups
depend on a line bundle L used to define the duality and the push-forward takes the
form (see Theorem 6.7)

WitimX (¥ oy @ f*L) > WTImY(y 4y @ L)

'The modern definition of Witt groups using triangulated categories with dualities [2] can be applied either
to the derived category of complexes of locally free sheaves to obtain “locally free” Witt groups or to the derived
category of complexes with coherent cohomology to obtain “coherent” Witt groups. As with K-theory, it is the
latter that is naturally covariant along proper morphisms, as we prove in this article. All schemes considered
are over Z[1/2] so that the derived categories involved are Z[1/2]-linear and the machinery of triangular Witt
groups applies.
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where o is the canonical bundle (the highest nontrivial exterior power of the cotangent
bundle) and L is an arbitrary line bundle on Y. In particular, if we pick a line bundle
K over X, there is no push-forward starting from W* (X, K) if K is not isomorphic
to wy ® f*L for some L (up to a square M®2, as Wi (Y, K) = Wi (Y, K @ M®?)
so only the class of K in Pic(X)/2 really matters). This fundamental difference with
oriented cohomology theories, where the push-forward is always possible, signifi-
cantly changes classical computations, as one sees e.g. in [18], [39], [4]. The groups
Wdim X—i (X ")x) can be considered as a homology theory analogous to a non oriented
complex homology theory in topology, but the construction of the push-forward here
relies on triangulated monoidal methods.

Besides this article and its precursors on regular schemes [10] and [11], there are
already several articles available on the construction of push-forwards in special cases.
In [16], Gille defined push-forwards along finite morphisms in the affine case. His
approach is quite elementary in the sense that he uses direct computations involving
explicit injective resolutions etc. It is useful to get a hand on concrete forms. In [31]
and [32], Nenashev adapts the oriented cohomology techniques of Panin and Smirnov
to the non-oriented case of locally free Witt groups. He thus obtains push-forwards
along projective morphisms between smooth quasi-projective varieties over fields.
Still another approach using stable A !-representability of Witt groups can be found
in [24]. We understand that there is also some unpublished work of C. Walter on this
subject. Our approach is different, and it applies to a much larger class of situations:
it uses derived functors and Grothendieck duality, so the dualities that appear are
canonical and do not depend on choices as the other constructions mentioned above.
If necessary, choices can be made in order to compare our constructions with others
in the special cases where the latter are defined. Fundamental properties such as base
change are proved in a simple and conceptual way, and we furthermore obtain the
full generality of singular schemes. An example of how those properties can be used
for very concrete computations can be found in the computation of Balmer and the
first author of the Witt group of Grassmann varieties [4].

Let us now explain why we use triangulated monoidal methods, even though there
is no mention of a tensor product in the definition of Witt groups of triangulated cat-
egories. In fact, the proof of many results amounts to verifying that a certain number
of diagrams of morphisms of functors such as (2) below are commutative. It might
be possible to check this by hand in every concrete situation; however, it would be
extremely painful: try it for example in the simple case of a regular closed immersion.
Hence, some kind of systematic method is needed. Our solution to this problem is the
use of a convenient setting involving a tensor product, an adjoint internal Hom, func-
tors of the type f*, f« and f' and the adjunction relationships between them, that
is some variant of the so-called Grothendieck six functors formalism in an arbitrary
triangulated category. In this setting, we have shown in [12] that all the necessary
diagrams commute, whereas this article exploits the existence of this structure on
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various concrete triangulated categories. Here is a brief sketch of what is involved:
Witt groups are defined for triangulated categories € equipped with a duality, i.e. with
a contravariant endofunctor D on € together with a bidual isomorphism of functors
Id — D? = D o D satisfying D(w4) o wpy = Idpy for all objects A of €. A
morphism between Witt groups is naturally induced by an exact functor F: €; — €,
(both triangulated categories with dualities resp. (D1, @) and (D», @w>)) equipped
with an isomorphism of exact functors ¢: FDi — D, F which explains how F
“commutes” with the dualities. The fact that the isomorphism ¢ is not the identity
requires the analysis of its interactions with the other morphisms of functors involved.
It is the central problem to solve when proving the main theorems. To start with, this
morphism ¢ should make the diagram

F
F . FD,D;
@ F lq&D] (1)
D
D,D.F —22* . p,FD,

commutative. In [12], we discuss such morphisms of functors and diagrams in the
setting of closed symmetric monoidal categories. More precisely, let €; and €, be
closed symmetric monoidal categories, with tensor product denoted by ® and internal
Hom denoted by [—, —]. Given an object K, the functor Dg := [—, K] together with
the canonical natural transformation wg : Id — DIZ( defines a weak duality functor.
Starting with an exact functor fi: €; — €, which has a left adjoint f* (which is
monoidal) and a right adjoint f', there is a natural transformation

such that the diagram (1), which becomes

ST o1
S "X~ feDpigDpig
oK [« §D 1 g )
D 18
Di Dk fu —"> Dsig fx Dx

commutes, as shown in [12]. Therefore, provided wg, Wrg and ¢ are isomorphisms,
f+ induces a morphism of Witt groups

W(€1, Dyig, wyigx) — W(Cs, D, W)

The present article is a description of how to apply this abstract closed monoidal
setting to well-chosen derived categories of schemes, with the derived functors L f*,
R f, and its right adjoint /' constructed by Grothendieck duality theory.
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The main result of this article is the definition of a push-forward along a proper
morphism f: X — Y of separated noetherian schemes. In its most general form
(Theorem 4.4), this push-forward is a morphism

Wi (X, £'K) -2 WiY, K)

where K is a dualizing complex on Y. This push-forward is induced by the derived
functor R fi and a suitable morphism of functors {x : R fx Ds1g — DkR fi. This
means that a form on a complex A for the duality D1 is sent to a form on the
complex R fi A for the duality Dg. We further prove that this push-forward respects
composition (Theorem 5.3).

Similarly, for morphisms of finite tor-dimension f we define a pull-back (Theo-
rem 4.1), that is a morphism

Wi(Y,K) - Wi(X,Lf*K)

respecting composition (Theorem 5.2).

We also prove a flat base change theorem (5.5) relating the push-forward and
the pull-back in cartesian diagrams and a projection formula in the case of regular
schemes (Theorem 5.7). Some explicit computations of transfers are provided in the
last section.

We assume that schemes are separated and noetherian for the following technical
reasons: quasi-compact and separated are necessary to have an equivalence between
the derived category of quasi-coherent sheaves D(Qcoh(X)) and the subcategory
Dy (X) of complexes with quasi-coherent homology in the derived category of all
sheaves. Noetherian is used to ensure that the injectives in Qcoh(X ) remain injective
in the category of all Qx-modules. Working without those assumptions would prob-
ably require significant improvements in the theory of Grothendieck duality; this is
beyond the scope of this article which only intends to apply this theory to Witt groups.

Two main cases are discussed. The easier case is when all schemes considered are
regular. Then their derived category Dy, . of complexes with coherent and bounded
homology is preserved under the derived tensor product ®" and under RHom, the de-
rived internal Hom. This endows Dy, . with a natural structure of symmetric monoidal
category. The dualizing complexes (see Definition 2.1) are line bundles or shifted line
bundles. The coherent Witt groups are thus defined using the duality RHom(—, L)
for some line bundle L. Furthermore, the derived pull-back L f* for any morphism,
the derived push-forward R f; and its right adjoint f' for proper morphisms also
preserve Dy .. Hence the abstract formalism of [12] applies on the nose, and we
therefore obtain push-forwards and their classical properties of composition, base
change and projection.

The general case, when schemes are not assumed to be regular, is more com-
plicated. Indeed, in this case ®" or RHom do not necessarily preserve bounded
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homology and so there is no nice closed symmetric monoidal category structure on
the category Dy as the following affine example illustrates. Choose a field k and
set X = Spec(k[e]/€?). Then consider the complex with k concentrated in degree
zero. A projective resolution of k is given by

- —Zs k[e]/e2 —— k[e]/e2 —> k[e]/e2 — k — 0.

Thus k ®" k is the complex

k k k 0

which has unbounded homology. On the other hand, the unbounded derived cate-
gory D of complexes with quasi-coherent cohomology admits a closed symmetric
monoidal structure; this is not completely obvious, see Theorem 1.2. But this cate-
gory is not suitable to define Witt groups, because there is no obvious (strong) duality
on it and, anyway, as Eilenberg swindle type of arguments show for K-theory, un-
bounded categories are not the good framework to define cohomology theories. Still,
the closed symmetric monoidal structure on D is useful to prove systematically the
commutativity of diagrams such as (1). That is, we can use the framework of [12] to
prove this commutativity in the large closed symmetric monoidal category Dy and
then notice that all functors used in the definition of the duality (RHom(—, K) for
some suitable K) and the push-forward (R fi) actually restrict to Dy under mild
additional assumptions. Thus, the commutativity of the diagrams involved is proved
in large categories by general closed symmetric monoidal methods, but the diagrams
actually often live in a smaller category whose Witt groups are interesting.

A technical point arising is the construction of the functors involved in the sym-
metric monoidal structure as well as L f*, R fx and f' on the unbounded derived
category Dgyc. This relies on the work of Spaltenstein [35], the articles of Neeman
[29] and [30], and on the very useful notes of Lipman [28], which are a reference on
Grothendieck duality and contain very detailed explanations of all constructions.

The article is organized as follows. In Section 1, we recall the closed symmetric
monoidal structures of the different categories we use. In Section 2, we use these
structures to define triangulated categories with dualities and related Witt groups.
Section 3 contains results on the derived functors L f* and R f, and on Grothendieck
duality, i.e. the construction of the right adjoint /' of R fi. Section 4 contains the main
result of the paper, namely Theorem 4.4. We explain there explains how to use [12] to
obtain the definition of push-forwards for the coherent Witt groups of schemes. It also
contains a definition of the finite tor-dimension (e.g. flat) pull-back (Theorem 4.1).
Section 5 explains the behavior of the push-forward and the pull-back under compo-
sition, and proves a base change formula relating them. Section 6 explains possible
reformulations of the push-forward in different contexts and Section 7 studies in detail
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the push-forward in the case of finite field extensions, regular embeddings and pro-
jective bundles, which is useful for computations and also allows a comparison with
the transfer maps of other authors when they are defined. Everything except some
specific computations in the last section works both for Grothendieck—Witt groups
GW and Witt groups W. For simplicity, we stated all results for W only.

The present article is a generalization of the main results of the unpublished
preprints [10] and [11] on regular schemes. To keep this article short, some appli-
cations established in [11] (dévissage/localization, Witt motives and partial results
about their decomposition for cellular varieties) are not included here. Most impor-
tant, all the abstract theorems about triangulated symmetric monoidal functors and
adjunctions between them which are crucial for proving the theorems of this article
are proven in the long article [12].

We would like to thank Amnon Neeman for his precise explanations about his
approach to dualizing complexes; it enabled us to generalize earlier versions of the
results. We would also like to thank Paul Balmer and Bruno Kahn for their constant
support, and the referee for his careful reading and detailed comments.

1. Closed symmetric monoidal categories

Let Sch denote the category of separated noetherian schemes and Reg its full sub-
category of regular schemes. For any scheme X, let K(X) (resp. D(X)) denote the
homotopy (resp. derived) category of homological complexes of Ox-modules (with-
out any restriction). We then add subscripts + for bounded above, i.e. bounded where
the differentials go, — for bounded below, b for bounded, i.e. below and above, gc¢ for
quasi-coherent and ¢ for coherent to characterise the derived categories of complexes
whose homology is as the subscript. For example Dy, .(X) is the derived category
of complexes of Ox-modules with coherent and bounded homology, and Dy.(X)
is the derived category of complexes with quasi-coherent homology. Note that we
work with homological notation to be compatible with the literature on Witt groups,
but it is easy to switch to cohomological notation by moving bounding subscripts to
superscripts and exchanging + and —i.e. Dy = D™.

For any scheme X, the usual tensor product ® and internal Hom of complexes
together with the obvious structure morphisms coming from the corresponding ones
for sheaves turn K(X) into a suspended closed symmetric monoidal category in
the sense of Section 3 in [12]. This is completely classical and is detailed in [12],
Appendix, where a discussion on sign choices can be found. In particular, we have a
functor 7: K(X) — K(X) given by (TA), = T(An—1).
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Theorem 1.1. Let X be a scheme.

(1) The tensor product on K(X) admits a left derived functor
®": D(X) x D(X) — D(X)

together with unit, associativity and symmetry morphisms.

(2) It restricts to
Dge(X) X Dge(X) = Dge(X).

(3) When X € Reg, it furthermore restricts to

Db,c(X) X Db,c(X) g Db,c(X)‘

(4) The internal Hom on K(X) has a right derived functor RHom
D(X)° x D(X) — D(X)

which is a right adjoint to the derived tensor product in the usual special sense
(natural in the three variables).

(5) When X € Sch, RHom restricts to
Dy o(X)° x Dpo(X) = Do(X)

as the usual RHom (computed by replacing the second variable by a quasi-
isomorphic complex of injectives in Qcoh(X)).

(6) When X € Reg, this last restricted RHom arrives in Dy, ¢(X).

Proof. See Theorem A in [35] or [28], 2.5.7, for the existence of the derived tensor
product. It is based on the existence of a g-flat (also called K-flat) resolution for
any complex C, i.e. the existence of a quasi-isomorphism Q¢ — C where Q¢ is a
complex such that (— ® Q¢) preserves quasi-isomorphisms. These resolutions can
even be constructed functorially (see [28], 2.5.5). The derived tensor product can
then be constructed by taking g-flat resolutions of both variables. The former case
is used to define the unit morphism and the latter case to define the associativity and
symmetry morphisms directly from the ones of K(X) (see [35], Theorem A, or [28],
2.5.9). See [28], 2.5.8, for the fact that ®" restricts to Dgc. In the regular case, by
Point (3) of Proposition A.4, we can replace any complex in Dy, (X ) by a bounded
complex of locally free sheaves, in which case the derived tensor product obviously
maps to Dy ¢(X).

Similarly, the derived internal Hom is constructed using g-injective (also called K-
injective) resolutions: see Section 1 in [35] for the definition of a g-injective complex
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and [35], Theorem A, or [28], 2.4.5, for the existence of RHom. Adjointness is also
stated in [35], Theorem A (see also [28], 2.6.1, for more details).

We now consider RHom(4, B) with 4, B € Dy, (X) for X € Sch. By Corol-
lary A.6, the right derived functor RHom here is computed as the one in [23], Propo-
sition I1.3.3. This proves Point (5). In the regular case, we can compute RHom by a
locally free resolution of the first variable and then, up to isomorphism, also replace
the second variable by a complex of locally free sheaves. As explained above, both
these complexes can be chosen to be bounded, and since #Hom(A4, B) is coherent
when A and B are [19], 5.3.5, this proves Point (6). O

Now the subtle point is that RHom(M, N) is not necessarily an object in Dy (X)
when M and N are. To fix this, we use the quasicoherator Q : Mod(X) — Qcoh(X)
as introduced in Lemma 3.2, p. 187 in [8], which is right adjoint to the inclusion
Qcoh(X) C Mod(X). On an affine space X = Spec(A), it takes a sheaf of Ox-
modules to the quasi-coherent sheaf associated to the A-module of its global sections
by the tilde construction. Its right derived functor is denoted by RQ, as considered
in [1], Remark 0.4, [28], Exercises 4.2.3, or B.16 in [36]. It is a right adjoint to the
inclusion Dyc(X) € D(X),and A = RQ(A) when A € D_ .(X) (in particular for
A € Dy (X)) by [8], Exposé II, Proposition 3.5.2. An alternative construction of
R Q can be obtained from Theorem 4.1 in [29].

Theorem 1.2. Let X be a scheme.

(1) The derived tensor product @ together with the obvious morphisms turns D(X)
into a symmetric monoidal category, closed by the RHom, and suspended in the
sense of Section 3 in [12].

(2) If X € Sch, the functor
RQ o RHom: Dyc(X)? X Dge(X) = Dye(X)

is a right adjoint (in the usual special way, see [26], (v), p. 97) to the restricted
tensor product ®" on Dc. This turns D (X)) into a suspended closed symmetric
monoidal category.

(3) If X € Reg, the usual RHom is a right adjoint (in the usual special way) to
the restricted tensor product ®" on Dy, .. This turns Dy, o(X) into a suspended
closed symmetric monoidal category.

Proof. The closed symmetric monoidal structure on D (X) easily follows from Theo-
rem 1.1. The fact that it is suspended follows, as explained in [12], Section 3, from
the suspended bifunctor structure of RHom. The symmetric monoidal structure on
Dyc(X) simply follows from the fact that ®" restricts to it. The fact that it is closed
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is a formal consequence of the fact that D(X) is closed and that R Q is a right adjoint
to the (monoidal) inclusion t: Dgy.(X) € D(X):

Homy(A ®"“ B,C) = Hom(1(4 ®" B),1C) ~ Hom(14 ®" (B,.C)
~ Hom(tA,RHom(:B,:C)) >~ Homy.(4,RQ RHom(t4, (B)).

(The closedness — that is the existence of the right adjoint to the derived tensor prod-
uct — can also be deduced from Brown representability, in the spirit of the examples
following [29], Theorem 4.1.) Point (3) follows from the same considerations, using
Theorem 1.1 (3) and (6). O

Notation 1.3. To shorten the notation, let [—, —] denote the functor RHom, right
adjoint to the tensor product on the derived category D and let [—, —]" denote the
functor RQ o RHom, right adjoint to the tensor product on the derived category D .

Since the derived quasi-coherator is the identity on D_ ¢ (see above), if [4, B] €
D_ 4 then [A4, B] = [A, B]'.

We finish this section by pointing out a comment of Neeman: exploiting the fact
that for X € Sch, there are enough flat objects in Dy and his representability result
more extensively gives an alternative approach for constructing a closed symmetric
monoidal structure on Dy (X) directly without passing through D(X).

2. Witt groups

From now on, we assume that all schemes are defined over Z[1/2].

To define a Witt group, we need a strong duality on a triangulated category. Using
the previous framework of triangulated closed symmetric monoidal categories, we
recall how [—, K] and [—, K]’ define dualities. The purpose of this section is to
compare the restrictions of these dualities to the subcategory Dy and to discuss
when these dualities are strong on it. For any object K, let fix (resp. %) denote the
contravariant exact functor [—, K] (resp. [—, K]').

Following [12], Section 3.2, applied to the closed symmetric monoidal structure
on D(X) with X an arbitrary scheme, we may define the bidual morphism

wK . Id — nKﬁK

as a morphism of triangulated endofunctors of D(X). From Corollary 3.2 in [12], we
obtain that (D(X), ik, wk) is a triangulated category with weak duality (in the sense
of [12], Definition 2.1.1, so wk is not necessarily an isomorphism). Similarly, when
X € Sch, we obtain a triangulated category with weak duality (Dgc(X), iy, @g).
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Definition 2.1. Let K be an object of Dy (X). It is a dualizing complex (or it is
dualizing) if

— the functor [—, K] preserves Dy .(X) and
— the bidual morphism wk is an isomorphism on Dy, ¢(X).

If furthermore it has finite injective dimension, i.e. it is quasi-isomorphic to a finite
complex of injectives, we say it is an injectively bounded dualizing complex.

In the terminology of Definition 2.1.1 in [12], the second condition says that fix
is a strong duality on the subcategory Dy, o(X).

Note that for any X € Sch, a dualizing complex K is automatically in Dy o(X)
since the natural morphism K — [Ox, K] coming from the monoidal structure is an
isomorphism and Oy is coherent. In particular, our definition is exactly the “modern”
(Definition 3.1, [30]) by Lemma 3.5 of loc. cit. Also note that our injectively bounded
dualizing complexes are the “old” dualizing complexes of [23], V. §2.

Proposition 2.2. Let X € Sch and K € Dy.(X) be a dualizing complex. Then the
functors fix and i coincide and the bidual morphisms wk and @y are equal on
the subcategory Dy o(X).

Proof. Since [A, K] € Dy (X) forany A € Dy (X), we have [4, K| = [A, K] by
the remark after Notation 1.3 which proves that #f, = fix. The bidual morphisms are
then equal by the large commutative diagram considered in the proof of Theorem 4.1.2
in [12], in which the f* should be replaced by the inclusion Dy (X) C D(X), which
is monoidal by definition of the tensor product on Dy (X). |

Example 2.3. (1) A dualizing complex tensored by a shifted line bundle is still a
dualizing complex. In fact, this is the only freedom: by Lemma 3.9 in [30] (see
also [23], Theorem V.3.1, for the injectively bounded case), a dualizing complex is
unique up to tensoring by shifted line bundles (the shift can be different on different
connected component of X).

(2) On a Gorenstein scheme X (e.g. regular), Oy itself is dualizing, so by the
previous point, the only dualizing complexes are the shifted line bundles.

Note that on a regular scheme, the category Dy, .(X) itself is closed symmetric
monoidal. It follows that dualizing complexes are dualizing objects in the sense of
Definition 3.2.2 in [12] in the category Dy, (X), for X € Sch.

Theorem 2.4. Let X € Sch and K be dualizing. Then (Dy(X), ik, @k) is a
triangulated category with strong duality in the sense of Definition 2.1.1 in [12]. Let
it be denoted by €k and its Witt groups by W' (X, K), i € Z ([12], Definition 2.1.5).



Vol. 86 (2011) Push-forwards for Witt groups of schemes 447

Proof. The functor g = ff) is a contravariant endofunctor of Dy, ((X) and wgx =
@ is anisomorphism on this category by definition of dualizing complexes by Propo-
sition 2.2. The necessary commutative diagrams that {f and @ must satisfy simply
follow from the fact that they are already satisfied in Dgc(X) since (Dgc(X), 1%, @g)
is a triangulated category with weak duality. O

We may thus think of the triangulated category with duality (Dy (X), ik, @k)
as being restricted from (D(X), fix, wk) or from (Dy.(X), %, @k ), both structures
coinciding on Dy, ((X).

Remark 2.5. In [2], all dualities considered are strict, i.e. they strictly commute
with the suspension, but this assumption is only there for simplicity. Instead, in
Definition 2.1.1 of [12], we only assume commutativity up to a natural isomorphism,
and all theorems in [2] are still true in this more general situation.

Remark 2.6. Recall (see e.g. [40], Definition 10.5.1) that for a left exact functor f
between exact categories, the right derived functor really is a couple (R f, s) with
s:qf — (Rf)q and g the morphism from the homotopy category to the derived
category. It is only the couple (R f, s) which is unique up to unique isomorphism
and therefore deserves being called the right derived functor, despite the standard
abbreviated notation R /. Consequently, the various derived functors, for example
RHom(—, K) (used to define the duality) and R f, (used below to define the push-
forward) together with all the morphisms of functors defining the symmetric monoidal
structure can be considered as abstract exact functors and morphisms of exact func-
tors. With them, it is possible to define coherent Witt groups and push-forwards by
the methods discussed in this article, since these methods only involve the abstract
triangulated categories and functors, i.e. the framework of [12]. But as such, there
is no uniqueness of all these constructions. It is only if we keep as extra data all
the structural morphisms of the derived functors (the s part of the couples), and thus
the relationship between the closed symmetric monoidal structure on K(X) and the
one on D(X), that the whole derived construction becomes unique up to unique
isomorphism, thus in particular the induced dualities, pull-backs and push-forwards.

3. The functors L f*,R f, and f*

We now introduce the functors L £ *, R f; and f' associated to a morphism of schemes
f and explain how they behave with respect to the monoidal structures. The first
two functors are derived functors, whereas the third one is right adjoint to R f at the
level of derived categories, but is not the derived functor of some underlying functor
on the category of Ox-modules. The construction of /" is the heart of Grothendieck
duality theory, for which we refer the reader to [23], [37], [29], [13] or [28].
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Proposition 3.1. Let f: X — Y be a morphism of schemes.

(1) The functor f* admits a left derived functor L f*: D(Y) — D(X) which
restricts to Dgc(Y) — Dy (X).

(2) If f is of finite tor-dimension (see e.g. Examples (2.7.6), [28)) orif X, Y € Reg,
then L f* restricts to Dy (Y) — Dy (X).

Proof. For existence, see [35], Theorem A (iii) or Proposition 6.7, or Example 2.7.3
in [28]. For the fact that it restricts to Dy, see [28], 3.9.1. It restricts to Dy ¢ in the
finite tor-dimension case because L f* is then bounded and it respects the coherence
of the cohomology by [23], Proposition I1.4.4, bearing in mind Proposition A.7. The
case X, Y € Reg follows from Point (3) of Proposition A.4 and PropositionA.7. O

Proposition 3.2. The usual isomorphism f*(A® B) — f*A® f*B induces an
isomorphism of triangulated bifunctors (in the sense of [12], Definition 1.4.14)

a:Lf*(—®—-) > Lf*(—)®Lf*(-)

which turns L f* into a suspended symmetric monoidal functor in the sense of [12],
Section 4.

Proof. See [35], Proposition 6.8. The morphism « is defined as the corresponding
one on K(X) after having replaced both variables by g-flat resolutions. It is already
an isomorphism on K(X). The commutative diagrams required (compatibility with
the associativity, unit and symmetry of the monoidal structures) then easily follow
from the corresponding ones on K (X), using Proposition A.3, Points (1) and (3). O

By Proposition 4.1.1 in [12] applied to the symmetric monoidal structure and L f*
on D(X), there is a natural morphism

B:Lf* [ —1—>[Lf* (=), Lf* )]
We also obtain a morphism
B Lf* =~ = [Lf*=).Lf )N
using D (X) instead of D(X).

Proposition 3.3. Let X,Y € Schand A, B € Dy (Y). Assuming [A, B] € Dg.(Y)
and [L f*A,Lf*B] € Dy (X), the morphisms B4,p and ,31’4’3 coincide. In particu-
lar, when K and L f* K are dualizing, Bx and B coincide.
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Proof. This follows from the commutative diagram

Lf*(A. B —2~ [Lf*A.Lf*BY

Lo,

Lf*[A,B] ——=[Lf*A,Lf*B]

in which the vertical maps become identities under the assumptions. This diagram
is formally obtained from the definitions of 8 and B’ out of the closed monoidal
structures. O

Proposition3.4. When X, Y € Schand f: X — Y is of finite tor-dimension or when
X,Y € Reg and for any f: X — Y, the natural morphism B is an isomorphism on
objects in Dy .

Proof. This follows from [28], Proposition 4.6.6, for f of finite tor-dimension, the
first variable coherent and the second in D_, so in particular for both in Dy . Note
that the p of loc. cit. coincides with our 8 by definition (compare [28], (3.5.4.5), and
[12], Proposition 4.1.1). In the regular case, by Point (3) of Proposition A.4, we can
assume our objects are bounded complexes of locally free sheaves, in which case the
result follows from [28], Proposition 4.6.7. O

Proposition 3.5. Let f: X — Y be a morphism of schemes.
(1) The functor f. admits a right derived functor R f,.: D(X) — D(Y).

(2) The functor R f; restricts to Dy.(X) — Dqc(Y') when f is quasi-compact and
separated, in particular if X and Y are in Sch, see Corollary 6.1.10 in [22].

(3) The functor R fy restricts to Dy o(X) — Dy (Y) when f is proper and Y is
quasi-compact.

Proof. For existence, see Theorem A (iii) in [35] or Examples 2.7.3 in [28]. For
the fact that it restricts to Dy.(—) see [28], 3.9.2. In the proper case with ¥ quasi-
compact, it restricts to Dy, oc(—) by [28], 3.9.2, and it then preserves coherence of the
cohomology by Theorem 3.2.1 in [21]. Note that we use Definition 5.3.1 in [19] to
define coherent modules on non necessarily noetherian schemes. O

Proposition 3.6. For any morphism f of schemes, the functor R f is a right adjoint
to L f* on D(—) and consequently on all full subcategories to which both functors

restrict.

Proof. See see Theorem A (iii) in [35] or Proposition 3.2.1 in [28]. O
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By Proposition 4.2.5, [12] applied to the monoidal structure and the functors on
the categories D(—), we obtain the projection morphism

T:Rft(-)® — = Rfa(—RLf*(—))

Theorem 3.7. Let f: X — Y be quasi-compact and quasi-separated e.g. proper.
Then the projection morphism t is an isomorphism on D .

Proof. This is Proposition 3.9.4 in [28]. O

Theorem 3.8. For any separated morphism f: X — Y with X and Y separated
and quasi-compact, the functor R fy: Dy(X) — Dy (Y) has a right adjoint f L

Proof. See Example 4.2 in [29] and use that Dy.(—) and D(Qcoh(—)) are equivalent
for separated quasi-compact schemes by Proposition A.4 (1). O

Proposition 3.9. Let f: X — Y be a proper morphism of separated noetherian
schemes and let K be a dualizing complex on' Y. Then f'K is a dualizing complex
on X. If K is an injectively bounded dualizing complex i.e. dualizing in the sense of
[23], V. §2, then f 'K is injectively bounded too.

Proof. For the case of injectively bounded complexes, see [23],V, §8, or Corollary 3,
[37]. For the general case, we reproduce here a proof of Neeman. Since the question
of whether f'K is dualizing is local on X, we may assume Y is affine and restrict
to an affine open set U of X. As f is of finite type, we have a factorization U —
A" x Y — Y for some n where the left arrow is a closed embedding. Taking the
closure of U in P” x Y, we see that U can be embedded as an open subset of a closed
subset of some Y x P”. Hence we only have to show that closed immersions, open
immersions and projections ¥ x P” — Y respect dualizing complexes. The case
of closed immersions is done in [30], see Theorem 3.14, Remark 3.17 and Lemma
3.18; closed immersions are finite. The case of open immersions is Theorem 3.12
in [30]. For projective morphisms f: Py — Y, one uses that RHom(A4, f 'K) =~
RHom(4, f'O® f*K) =~ RHom(4, f*K)® f'O, using Lemma 5.6 below and that
f 'O is a shifted line bundle by [23], Section VIL.4. Then one checks the conditions of
Definition 2.1 on objects of the form f* B and O (i) which by a theorem of Beilinson
[7] generate Dy, .(IPy) as a thick triangulated category. O

4. Pull-back and push-forward for Witt groups

We can now state the main result of this article: the definition of the push-forward
for coherent Witt groups along proper morphisms (Theorem 4.4). This section also
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contains a definition of the pull-backs for morphisms of finite tor-dimension (Theo-
rem 4.1).

Let f: X — Y be a morphism of schemes. By [12], Theorem 4.1.2, applied
to the monoidal categories D(—), Bx: L f*fx — HLs+xLf* defines a duality
preserving functor {L f*, Bk} between triangulated categories with weak dualities,
from (D(Y), g, wk) to (D(X), #L r+k. @1 s+ k), for any object K of Dyc(Y).

Theorem 4.1. Let f: X — Y be a morphism of schemes such that
— the objects K and L f*K are dualizing.
— L f* preserves Dy,

— Bk is an isomorphism on Dy (Y),

Then {L f*, Bk} induces a morphism on Witt groups,
f* WY, K) - WI(X,Lf*K),

which we call pull-back. This pull-back therefore exists in particular if K and L f* K
are dualizing and

— [ is of finite tor-dimension and X,Y € Sch or

— forany f and X,Y € Reg in which case K dualizing implies L f* K dualizing
by Example 2.3.

Proof. This follows from Theorem 4.1.2 and Lemma 2.2.6 (1) in [12]. The theorem
of loc. cit. ensures the existence of the appropriate commutative diagrams in D(X).
The requirements in the lemma of loc. cit. that the dualities given by K and f*K
restrict as strong dualities to Dy, ¢ are satisfied by assumption, and the requirement
that Sk is an isomorphism when restricted to Dy, . follows from Proposition 3.4. O

Remark 4.2. Note that we obtain the very same pull-back when starting with the
monoidal structure on D instead of D. This follows from Proposition 3.3.

Remark 4.3. In Theorem 3.12 of [30] it is proved that if f is an open immersion,
then L f* K is automatically dualizing if K is dualizing.

Let X,Y € Sch,let K € Dy(Y) and let f: X — Y be a separated morphism.
From [12], Theorem 4.2.9, applied to the closed monoidal category Dy.(X ), we obtain
a morphism of functors (x : Rf*ﬁ}!K — %R f«. By loc. cit., the pair {R f, (g} is
duality preserving, i.e. Diagram (1) commutes.
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Theorem 4.4. Let X,Y € Sch and f: X — Y be a separated morphism such
that R f preserves Dy.. Let K and f'K be dualizing. Then {R f.,(k} induces a
morphisms of Witt groups

fu: WH(X, f'K) > WY, K)

which we call push-forward. This push-forward is therefore defined in particular if
f is proper and K is dualizing (see Proposition 3.9).

Proof. This follows from Theorem 4.2.9 and Lemma 2.2.6.(1) in [12]. For the
theorem of loc. cit., consider the triangulated closed monoidal category D.. The fact
that x is an isomorphism follows from Proposition 4.3.3 in [12] using Theorem 3.7.
Then, apply the Lemma of loc. cit. to the subcategories Dy, ¢, to which the dualities
restrict by definition of a dualizing object. Note that when X and Y are regular,
the complete proof works using directly Dy as the triangulated closed monoidal
category in Theorem 4.2.9 of [12]. O

5. Properties

We now show that both push-forwards and pull-backs respect composition and that
they commute in an appropriate way (‘“base change”) provided certain standard con-
ditions hold. We also prove a projection formula for regular schemes.

Theorem 5.1. Forany f: X - Y andg: Y — Z,

(1) there is an isomorphism L f* o Lg* — L(g o f)* between functors on D(—)
which is associative in the usual sense.

(2) There is an isomorphism R(g o f)« — Rgx o R fx between functors on D(—)
which is associative in the usual sense, and respects the adjoint couple
(L(—)*,R(—)«) in the sense of Definition 5.1.5 of [12].

(3) When the schemes are separated and quasi-compact, and both f and g are
separated, there is an isomorphism f' o g' — (g o f)' between functors on
D y.(—) which is associative in the usual sense, and which respects the adjoint
couple (R(=)«, (—)") in the sense of Definition 5.1.5 of [12].

Proof. For the functors L f* on D, the isomorphism is in Theorem A (iii), [35] or
[28], 3.6.4. For a proof that it is associative, see Scholium 3.6.10 in [28]. The other
points follow from the first one by Lemma 5.1.6 in [12]. O
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Theorem 5.2. The pull-back respects composition: the diagram

Wi(Z, K) — > Wi(Y,Lg*K) —> Wi(X.Lf*Lg*K)

8

@f)*
W (X, L(gf)*K)

commutes, under the conditions for the existence of the pull-backs f* and g* of
Theorem 4.1.

Proof. This follows from [12], Theorem 5.1.3 and Corollary 5.1.4, applied to the
structures on D(—). |

Theorem 5.3. The push-forward respects composition: the diagram
1 [ f* 1 ! f* 1

WX, [ g K)—=W'(Y,g K) —=W(Z.K)

2

Wi (X, (gf)'K)

(&)«

commutes, under the conditions for the existence of the push-forward of Theorem 4.4.

Proof. This follows from [12], Theorem 5.1.9 and Corollary 5.1.10, applied to the
structures on Dg.(—). O

We now prove a base change formula. Let us consider a pull-back diagram

y —5 sy
; lf
X——7Z7.

By Section 5.2, [12], we obtain a morphism of functors
e:Lf*Rgs = RGLf*
between functors on D(X).

Proposition 5.4. If all schemes are in Sch and the diagram is tor-independent, e.g.
[ flat, the morphism ¢ is an isomorphism on Dg.(X).
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Proof. The case where f is flatis Proposition 3.9.5 in [28] (all maps between schemes
in Sch are “concentrated” in the sense of loc. cit.). The more general case is Theo-
rem 3.10.3 in [28]. O

Then, when the schemes are in Sch, still by Section 5.2 of [12], ¢ induces a
morphism B
y:Lf*g' - g'Lsf”
between functors on Dg.(X). It is an isomorphism on the subcategory D_ 4. by

Corollary 4.4.3, [28]. In particular, yx is an isomorphism when K is dualizing (and
thus in Dy, (Z)).

Theorem 5.5 (Base change). Under the assumptions of Proposition 5.4 and the
ones for the pull-backs along f and f and the push-forwards along g and g to
exist (Theorems 4.1 and 4.4), the pull-back and push-forward satisfy a base change
formula: the diagram

WiV, 2'Lf*K) 2> Wi(Y,Lf*K)

o

Wi(V,Lf*g'K) r*
7|
Wi(X, ¢g'K) - Wi(Z,K)

commutes.

Proof. This follows from [12], Theorem 5.2.1 and Corollary 5.2.2, applied to the
structures on Dy (—), keeping in mind Remark 4.2. O

We conclude this section with a projection formula for Witt groups, in the case of
regular schemes. For this, we first need to introduce another natural morphism that
will anyway be of some use even in the case of non regular schemes.

When f: X — Y is a separated morphism in Sch, using the functors L f*
(monoidal), R f; and f' between the categories Dy (X) and Dy (Y), and the fact
that the projection morphism  is an isomorphism by Theorem 3.7, we obtain a
morphism of functors

0: f{() QL () = fl(=&"-)
by Proposition 4.3.1 in [12].

Lemma 5.6. The morphism 0: f'A®“Lf*B — f'(A ®" B) is an isomorphism
when B is a perfect complex.
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Proof. The morphism 6 is compatible with open immersions by Diagram 41 of Propo-
sition 5.2.5 in [12], and so we can restrict to the case of bounded complexes of vector
bundles, then to vector bundles, then again using open immersions to the trivial bun-
dle Oy. In that case, one can show that 64 ¢, coincides with the unit morphism of
the monoidal structure f'(4) " Ox — f'(A), and is therefore an isomorphism.
By this coincidence we mean that the left diagram

FlARLf*0y —> f(A®"Oy) RfB&" Oy —=Rfi(B ®"Lf*Oy)
14 4 14 0
flA® O ——— f'4 RfiB ————R fi(B ®" Ox)

is commutative, in which the left vertical morphism is the fact that L /* is monoidal
and in particular respects units, and the bottom and right maps are unit morphisms of
the monoidal structures. By following the definition of 6 given in Proposition 4.3.1
of [12] the commutativity of the left diagram follows from the one of the right hand
side, which is in turn implied, using the definition of 7 in Proposition 4.2.5 of [12],
by the compatibility of the unit and monoidal structure morphisms for L f*. (]

For any scheme X in Reg, the derived tensor product preserves Dy o(X) (The-
orem 1.1 (3)). This gives two different products on Witt groups by the formalism
of [18], using Proposition 4.4.6 and Corollary 4.4.7 in [12] applied to the closed
monoidal structure of Dy, (X). We fix one of these products (say, the left one) for the
following results. When K and L are shifted line bundles, thus dualizing complexes,
the product is a pairing

WX, K) x W/(X,L) > Wt/ (X, K® L).

Theorem 5.7 (Projection formula). For any proper morphism f: X — Y with
X,Y € Reg, the pull-back and push-forward satisfy a projection formula: If K,
L are shifted line bundles on Y, x € W (X, f'K) and y € W/(Y,L), then
fed(x.f*y) = fu(x).y in Wit/ (Y, K ® L) with I the isomorphism from
Wi(X, f'K® f*L) to W/(X, f/(K ® L)) induced by 6k ..

Proof. First note that L being a shifted line bundle explains the absence of deriva-
tions in the pull-back and tensor products above. Then, the morphism k7, is an
isomorphism by Lemma 5.6, thus the result follows from [12], Theorem 5.5.1 and
Corollary 5.5.2, applied to the closed monoidal structure on Dy, . O

6. Reformulations in special cases

In this section, we give other canonical ways of writing the push-forward, under
additional assumptions.
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Notation 6.1. For an equidimensional morphism f: X — Y of relative dimension
n, let wy denote the object FH(Oy)[-n] =T f1(Oy).

This notation is motivated by the fact that in several cases, this object can be
identified with a geometric object called a relative dualizing sheaf and usually denoted
wy: see Sections 7.2 and 7.3 for the examples of regular embeddings and projective
spaces.

6.1. Relative dualizing sheaf

Theorem 6.2. Let f: X — Y be a proper morphism in Sch, K a dualizing com-
plex on'Y such that f'K is a dualizing complex and assume that 0o, g : f'Oy ®"
Lf*K — f'K is an isomorphism. Then we can rewrite the push-forward of Theo-
rem 4.4 as

fur W (X, 0 @ Lf*K) - W(Y, K).

In particular, the hypotheses and therefore the conclusion hold if K is dualizing and
either of the two following conditions hold.

— [ is quasi-perfect (see below, e.g. of finite tor-dimension) and f'K is dualizing.

— Y is a Gorenstein scheme, e.g. regular.

Proof. The reformulation of the push-forward is Definitions 6.1.3 and 6.1.4, [12].
When f is quasi-perfect, Proposition 2.1 in [27] shows that 6 is an isomorphism on
all Dgc(Y'). Example 2.2 in loc. cit. shows that if f is of finite tor-dimension, it is
quasi-perfect. When Y is Gorenstein, the only dualizing complexes are shifted line
bundles, for which 6 is an isomorphism by Lemma 5.6. O

Let g: Y — Z be another proper morphisms in Sch and M a dualizing complex
on Z and let
gt of LS (0g ® Lg*M) — wgr @ L(gf)*M
be the morphism defined in Theorem 6.1.5 of [12].

Theorem 6.3. The push-forward of Theorem 6.2 respects composition: the morphism
Lf,g 1s anisomorphism and if I denotes the isomorphism of Witt groups induced by L, g,
then the push-forward on Witt groups defined above satisfies that g« f« = (gf)«1.

Proof. This follows from Theorem 6.1.5 and Lemma 2.2.6 (2) in [12]. Note that ¢,
is an isomorphism because it is a composition of isomorphisms under the assumptions
for the reformulated push-forward to exist. O
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Theorem 6.4. In the situation of Theorem 5.5 and under the assumptions of the
reformulation of the push-forward above for the morphisms g and g, the base change
theorem 5.5 becomes

8w = gxl fo
where I is the isomorphism of Witt groups induced by the isomorphism

1 Lf*(wg ® Lg*K) - wz ®“LZ*Lf*K.

Proof. This follows from Theorem 6.1.7 in [12]. Note that ye_, is an isomorphism
(see before Theorem 5.5). O

In the regular case, the projection formula 5.7 becomes the following.

Theorem 6.5. Let f: X — Y be a proper equidimensional morphism of relative
dimension d with X,Y € Reg. Then the push-forward of Theorem 6.2 and the pull-
back of Theorem 4.1 satisfy fl(x.f*(y)) = fu(x).y in Wt (Y, L ® K) for any
x € W (X, 0 ® f*L) and y € W/ (Y, K).

Proof. See [12], Theorem 6.1.9 and Corollary 6.1.10. O

6.2. Smooth schemes over a base. We now fix a base scheme S € Sch with a
dualizing complex Kg and consider the category SmPr/S of schemes in Sch that are
smooth, equidimensional and proper over S. For such a scheme X, let the structural
morphism be denoted by px: X — S and its relative dimension over S by dy.
Note that any separated morphism between schemes in SmPr/S is proper, being the
composition of a closed embedding, its graph, and a proper projection.

Notation 6.6. Let X € SmPr/S. We set wy = p}!((KS)[—dX]. Observe that
wyx = wpy if Kg = Og.

Theorem 6.7. Let f: X — Y be a separated morphism, X,Y € SmPr/S and let
L be aline bundle on Y. The push-forward can be written

e WX (X 0y @ f*L) > WY (Y, 0y ® L)

Proof. First, let us note that when pulling back or tensoring by a line bundle, there
is nothing to derive. This is why no L appear in front of f* and ®. We then use the
definitions in [12] (Definitions 6.3.3 and 6.3.4). We need to check that the morphism

wx L~ floy ® f*L - f'(wy ® L)

is an isomorphism. This is the case by Lemma 5.6. O
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Theorem 6.8. The push-forward of Theorem 6.7 respects composition.

Proof. See [12], Theorem 6.3.5 and Corollary 6.3.6. O
Theorem 6.9. The push-forward of Theorem 6.7 satisfies flat base change.

Proof. See [12], Theorem 6.3.7 and Corollary 6.3.8. U

7. Examples

Note that /' is unique up to unique isomorphism whenever it is defined, because it
is always defined as a right adjoint to R f%. This allows us to use computations of f"
from [23] and other sources in the examples below.

7.1. Finite field extensions. The simplest example of a proper morphism is the case
of a finite field extension E/F giving rise to a finite morphism

f: X = Spec(E) — Spec(F) =Y.

The tilde construction gives equivalences of categories Mod(F) >~ Qcoh(Y) and
Mod(E) =~ Qcoh(X), and the subcategories of finite dimensional vector spaces
correspond to coherent sheaves of modules. We thus describe all objects and functors
through these equivalences of categories. The only dualizing complex (up to shifts
and isomorphisms) on Y is F itself. The functors f* = (— ®f E) and f« = (—)|F
are exact, there is nothing to derive. The functor f Yis given by III, §6, of [23] as
Homp (E, —) (mapping to E-vector spaces) and the unit and counit of the adjunction
(fx. ) are respectively given by

V — Homp(E,V|F), Homp(E, V)| =V,
aw (e~ e.a), ¢ — ¢(1),

for an E-vector space V' and an F-vector space V. For fields, the only nonzero Witt
group modulo 4 is W® which is the classical Witt group of the field. So we are reduced
to study push-forward for forms on vector spaces, i.e. complexes concentrated in
degree zero. Following the construction, it is easy to check that for any E-vector space
V, the morphism ¢: fi[V, f'F] — [f+V, F] coincides with the Cartan isomorphism
of F-vector spaces

Hompg (V, Homp (E, F))|Fp ~ Homp(V|F, F)

which sends a morphism ¢: V' — Homp (E, F) to the morphism (a — ¢(a)(1)).
Thus, the push-forward fi: WO(E, #Homp (E, F)) — WO(F) is a Scharlau transfer
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(see [34], p. 48) with respect to the usual trace Tr: E — F. To see this, note

that Tr factors as E — Jfom r(E, F) — F where the isomorphism is given by
e — (x — Tr(e.x)) and Homp (E, F) — F is the evaluation at 1.

7.2. Regular embeddings. Let F be a vector bundle of rank d > 0 over X with a
regular section s: Ox — F, i.e. such that the corresponding embedding f: Z C X
of the zero locus is a closed regular embedding of codimension d. In this case the
augmented Koszul resolution is exact, see Proposition 3.1 (IV, §2) in [14], and thus
yields a quasi-isomorphism

Kp = (0 —= AdFY —= Ad=1FY —= -+ —> [V —> Oy —>0)

q,-sl l 3)

f*(92=( 0*>f*(92*>0)

from the Koszul complex K r to f«@z concentrated in degree 0. Since f is a closed
embedding, thus finite, fi is exact and coincides with R fx. Let Ar = A?F be
the determinant of F. In this situation, we have f'A = f*Ap[—d] ® Lf*A for
all A € Dy o(X); this may be extracted from III, §7, [23], see also Proposition 1
in [37], after applying Lemma 5.6 and using that F is dual to the cotangent sheaf.
By tensoring the augmented Koszul resolution with Ar and using the canonical
isomorphisms A’F¥Y @ Ar =~ A?7'F and f,Oz ® Ar = fif*AF, we obtain
the trace map fi f'Ox — Ox (counit of the adjunction (R fix, ")) in the derived
category as the composition of a usual map of complexes followed by the inverse of
a quasi-isomorphism (Oy is in degree 0 and fi f*AF in degree —d):

S f'Ox= (0 0 0 fuf*Ap —=0)

Ju

(O*>F4>—>AF—>f*f*AF—>O)

Ts

Ox (0—0Ox 0 0 0)

Now assume Z is Gorenstein. Then @z is dualizing, and the isomorphism @z —
[0z, 0z] adjoint to Oz " Oz ~ Oz defines a form on @z, denoted by 1. On the
other hand, there is a well-known form 0r : Kr — Hom(K g, AY.[d]) (see §4 in
[6]) given by the canonical isomorphism A’ FY ~ (A9~ FV)V ® A?FV in degree
i, with a sign chosen so that when FF = @L; is a direct sum of line bundles, this
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form is the tensor product of forms 67, on Koszul complexes of length one

4

X1, - (0 LY oy 0)
el - l @
Fom(Ky, . LY[1]) = (0 LY = gy 0)

representing elements in W! (X, L}). The following proposition can be considered
as a concrete description of the push-forward of 1z along f.

Proposition 7.1. Let Z and X be Gorenstein schemes and f: Z — X be a closed
regular embedding of codimension d defined as the zero locus of a regular section of
a vector bundle F of rank d whose determinant A4 F is denoted by Af. Then the

image of the form 1z: Oz 5 [0z, 07] (adjoint to Oz @ Oz ~ Oz) under the
composition

S
W(Z,02) ~WU(Z, f'AY) ——= W9 (X, AY)

is a form ¢ such that the following diagram in D(X) commutes.

K o fe0z

o| o

Hom(Kr, Ap[d]) ——[f+0z, Apld]]

Proof. Letér: Kr @ Kr — KF in D(X) be the composition

isQqis ~ is— 1
Kr®Kp —s £,0,8" f,07 2> £(078"07) —> fuO7 —

Kr

where A is the morphism from Proposition 4.2.1 in [12]. Note that §z is in fact
represented by a morphism of complexes (not just a fraction): one can check that the
map from Kr ® K to K indegree is a sum of the canonical morphisms AF®
A"k F — A'F with appropriate signs. We also consider the map or: Kr —
AY.[d] given by

J{F = (0 AdFv Ad—va FVv (9X 0)
g
AY[d]= (0 AY 0 )

The following three lemmas together clearly imply the proposition.
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Lemma 7.2. The morphism of complexes xp: Kr — Hom(Kfg, A} [d]) defined
as the composition

(SF)* (O'F)* v
K = Hom(Kfr, Kr @ Krp) —— Hom(Kf, Kp) —— Hom(KFp,AL[d])

coincides with the form 6 where the first map is the unit of the adjunction of the tensor
product and the internal Hom in the homotopy category.

Lemma 7.3. The form ¢: Oz — [ fxOz, AY.[d]] coincides with the composition

[0z ——[fu0z. [0z ®" £,07] 2> [£u0z. fu(Oz & O2)]

Sy

[0z, Ald]l <— [/sOz. fu [ A} [d]] <———— [/+Oz. f+0z]

where the first map is the unit of the adjunction of the tensor product and the internal
Hom in D(X), the penultimate one is the identification Oz ~ f !A} [d] and the last
one is induced by the counit of the adjunction (fx, "), i.e. the trace map described
above.

Lemma 7.4. The composition of Lemma 7.2 coincides with the one of Lemma 7.3
when f, Oz is identified with X using qis.

Proof of Lemma 7.2. As we are dealing with honest morphisms of complexes we may
first reduce to open subsets on which F is a sum of line bundles L; (note that two
morphisms in D (X)) are not necessarily equal if they are equal when restricted to all
open sets of an affine covering, see for example [5]). We then reduce to the case of
codimension d = 1, by multiplicativity of Koszul complexes: let d = dy + d» and
let F = F; & F, where F; (resp. F») is the sum of the first d; line bundles (resp.
last d5). Let fi: Oz, — X (resp. fo: Oz, — X) be the corresponding regular
subschemes. Then Ar ~ Ap, ® Ap, and Kr >~ K, @ Kfg,. We leave it to the
reader to show that the diagram

J{Fl ®JCF2 = Kr ki t%om(JCFsA\[«/*[d])

XF®XF, ~

Hom(K gy, AY[d1]) @ Hom(K g, AY [da]) T Hom(KF, ® Kr,, AY[d1] ® AY [da])

commutes, where t is the morphism defined as in [12] (Definition 4.4.1), using the
monoidal structure on the homotopy category. By definition, 6, 0, and 6, make
the same diagram commutative when they replace xr, x, and xr,. Hence it suffices
to show the lemma for one line bundle L and its associated Koszul complex of length
one, which can be checked by hand. O
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Proof of Lemma 7.3. By definition, the form ¢ is given by the composition

£e07 L2 £107.02] == £,107. f'AYLd] —— [£:0z, AL[d])].

One proves using the closed monoidal structure that it coincides with the composition

FuO7 —== £, ' AN d] —> fulO7. [ ALLd] —— [fsOz, A%[d]

where the second map is adjoint to the unit morphism of the monoidal structure. Then,
looking back at the definition of ¢ and w in Proposition 4.2.2 and Theorem 4.2.9 of
[12], one sees that ¢ is the composition around the lower left corner of the commutative
diagram

[+O7 ——————————> [/+0z, [xO0z Q" [, 0z] ————————> [/ 0z, [:(Oz @ Oz)] ————> [+ 0z. [+ OZ]

i | | |

S TAYId] ———— [+ Oz [+ ' AL @' f10z] —————> [/xOz. [ (/' AR1d] Q" Oz)] ——> [/+Oz. [+ /' A [d]]

| | ,_— |

SulOz. STAYIAN —=>= [iOz. [ulOz. [T ALIAN ®F fuOz] —>= [/xOz. [«([Oz. [ A} [d]] ®" O2)] [f+0z. A% Ld]]

which thus proves the lemma (all squares in this diagram are commutative by obvious
functorial reasons, and the triangle by adjunction). O

Proof of Lemma 7.4. This follows from the computation of the resolution of f,Oz
by Kr when computing the derived functors [ /@7, —] and — ®" f,.O7. O

This finishes the proof of Proposition 7.1. |

Remark7.5. If F = F'®L,,with L, alinebundle,s = (s’, s1), s’ and s; transverse,
the push-forward of 1 is zero: decompose the inclusion Z C X as Z C Z(s') C X
where Z(s') is the zero locus of s’. Push-forwards respect composition and the push-
forward of 1z along Z C Z(s’) is already zero since it is the form (4) which is the
cone of a (degenerate) form s: L} — Ox.

On the other hand, an example when this push-forward is nonzero can be extracted
from [4]. Let k be a field and let Grg (2, 4) be the Grassmannian of 2-planes in A;.
A nonzero map from A,‘i to A induces a section of the dual W of the universal
subbundle W C A,‘i of rank 2. Its zero locus is a copy of P? regularly embedded
in Gr(2, 4). The push-forward of the unit form of P2 to Gr(2, 4) is nonzero by [4]
where it is proved that it is an element of a basis of the total Witt group of Gr(2, 4)
as a W(k)-module.
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7.3. Projective spaces. Let Y € Sch be a Gorenstein scheme, let & be a vector
bundle of rank  + 1 on Y and let us examine when the unit form on X = Py (&)
can be pushed forward to Y along f: X — Y. Since f is smooth (thus flat), we
can use Section 6.1. In the case of a smooth morphism f, the object ws of 6.1 is
a line bundle, and it is the maximal exterior power of the relative cotangent bundle
(see Chapter VII §4 in [23]). Here, since f is a projective bundle, it is given by
wr = f*(Ag)Y ® O(—r — 1) (see e.g. [15], Appendix B.5.8). If r + 1 is even, we
can push-forward the unit form 1y : Oy ~ [Ox, Ox] from W°(X, Ox) by using the
composition

WX, 0x) ~ WO(X,0(-r — 1)) = W(X,0r ® f*(Ag)) = W (Y, Ag)

where the first isomorphism is given by tensoring with the canonical form ¢, =
[O(—(r+1)/2) = O((r+1)/2)Q@0O(—(r+1)) = Home(O(—(r+1)/2), O(—(r+
1))] and the last map is the push-forward in the form of Theorem 6.2. Computing the
image of 1y through this composition means therefore computing the image of ¢,
by the push-forward. The complex on which fx(¢;) lives is R £ (O(—(r + 1)/2)).
But this complex is zero by [20], 2.1.15, so f«(¢r) = 0. If r + 1 is odd, there is
no push-forward induced by f with source W°(X, Ox) because then there is no line
bundle K on Y such that Oy isequalto f*(A{)®O(—r—1)® f*(K) up to a square
in Pic(Y). In other words, pushing forward the unit form of Py (§) to Y is not very
interesting: whenever it is possible, we get zero. Of course, there are other forms
on P” (&) not mapping to 0 under the push-forward, as we will see in the following
remark.

Remark 7.6. Let us explain a potential source of confusion. Leti: Speck — P/
be a rational point and L a line bundle on ;. Since Pic(Speck) = 0, using first
an isomorphism Oy ~ w; ® i*(L), we can push-forward from W (Spec k, Oy) to
W' (P/, L) for any L. But for different L, we get very different push-forwards.
Indeed, for example W" (P/, O(—r)) = 0 for odd r (by [39] or [3]) so any push-
forward to there is obviously zero, whereas since wg >~ O the push-forward (written
as in Theorem 6.7)

WO(Speck, Ox) ~ W(Speck, w) — W' (B[, wpr)

is certainly nonzero, because we can further compose it by a push-forward back to
WO (Spec k, wy) and since the push-forward respects composition, the composite is
the identity. Note that this last case also gives an example of a form on I’} whose push-
forward to Spec k is not zero. More generally, this phenomenon of different push-
forwards starting from the same group can happen whenever f*: Pic(Y) — Pic(X)
is not injective.
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A. g-flat and q-injective resolutions

For the convenience of the reader, we include here well-known facts on g-flat or g-
injective objects that are repeatedly used in the proofs of this article. Most of them
are due to Spaltenstein.

Definition A.1. Let X be a scheme and let A be an object in the homotopy category
K(X). We say that A is g-flat (or K-flat) if the triangulated functor
(—® A): K(X) — K(X) preserves quasi-isomorphisms. We say that A4 is -
injective (or K-injective) if the triangulated functor #ome(—, A): K(X)? — K(X)
preserves quasi-isomorphisms.

Example A.2. A bounded above complex of flat Ox-modules is g-flat. A bounded
below complex of injectives is g-injective.

A discussion of g-flat and g-injective complexes can be found in Sections 1 and 5
of [35]. See in particular Propositions 1.5 and 5.3.

Proposition A.3. Let A and B be objects in K(X) or K(Y) andlet f: X — Y be
a morphism of schemes.

(1) If A and B are g-flat, then sois A @ B.
(2) If A is g-flat and B is g-injective, then JHome(A, B) is g-injective.
(3) If A is g-flat, then f*A is g-flat.

Proof. See [35], Proposition 5.3 and 5.4. O

The following two propositions summarize the equivalences of categories and the
properties of injectives that we need. Let Qcoh(X) denote the abelian category of
quasi-coherent sheaves on X and C,(Vect(X)) (resp. Cp(Coh(X))) the category of
bounded complexes of locally free (resp. coherent) sheaves on X.

Proposition A.4. Let X € Sch.

(1) The natural functor D(Qcoh(X)) — Dy (X) is an equivalence of categories
and thus the same is true for their homologically bounded, bounded below or
bounded above subcategories and the subcategories with coherent homology.

(2) The natural functor Dy(Coh(X)) — Dy (Qcoh(X)) is an equivalence.

(3) If X € Reg, then the natural functor D(Cyp(Vect(X))) — Dy o(X) is an equiv-
alence of categories.
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Proof. Point (1) is Corollary 5.5 in [9]. In Point (2), fully faithful follows from The-
orem 12.1 in [25], second part: For affine schemes, use Example 12.3 in [25]. In
general, take a finite affine cover of the noetherian scheme X and then take the direct
sum over the coherent sheaves on X obtained by extending the coherent sheaves
on the affine subschemes using [22], 1.6.9.7. Essentially surjective can be found
in [17], Example 2.5.2, which follows from Lemme 2.1.2.c) of [38] and an in-
duction argument. Point (3) can then be proved as follows. Let Cp(Coh(X)) be
the category of bounded complexes of coherent sheaves. Decompose the functor
D(Cp(Vect(X))) = Dy (X) as

D(Cp(Vect(X))) — D(Cy(Coh(X))) — Dy(Coh(X))
—_— Db,c(QCOh(X)) E—— Db,c(X)'

All these functors are equivalences of categories: the first one by the fact since X is
regular, every coherent sheaf has a finite resolution by locally free sheaves by [33],
§7, Point 1, the second one by Lemma 11.7 of [25], the third one by Point (2) and
the fourth by Point (1). O

Proposition A.5. Let X € Sch.
(1) The category Qcoh(X) has enough injectives by [36], B.3.
(2) The natural inclusion Qcoh(X) — Mod(X) preserves injectives by [36], B.4.
(3) Every bounded below complex of quasi-coherent Ox-modules admits a quasi-
isomorphism into a complex of Qcoh(X)-injectives by (1) and [23], 1.4.6.

(4) Every bounded below complex of Qcoh(X)-injectives is g-injective in both
K(Qcoh(X)) and K(X) by (2).

CorollaryA.6. Let X € Sch. Onobjectsin D_ ((X) or D_(X), the unbounded right
derived functors computed by g-injective resolutions (as in [35]) coincide with the
more classical bounded below right derived functors computed by using resolutions
by bounded below complexes of injectives (as in [23]).

Proof. By the proposition, any object A € D_ (X)) is quasi-isomorphic to abounded
below complex of Qcoh(X)-injectives which are also Mod(X )-injective (resp. a
bounded below complex of Mod (X )-injectives) and this complex is g-injective. [

Similarly, for g-flat resolutions, we have a weaker statement, sufficient for our
purposes.

Proposition A.7. Let X € Sch. On objects in Dy 4(X) or D (X), the unbounded
left derived functors computed using q-flat resolutions can be computed by using
bounded above resolutions consisting of flat Ox -modules.
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Proof. This follows from the fact that any Oy -module is a quotient of a flat one (see
[28], 2.5.5). |
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