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Abstract. We characterize the possible asymptotic behaviors of the compression associated to a
uniform embedding into someLp-space, with 1 < p < 1, for a large class of groups including
connected Lie groups with exponential growth and word-hyperbolic finitely generated groups.
In particular, the Hilbert compression exponent of these groups is equal to 1. This also provides
new and optimal estimates for the compression of a uniform embedding of the infinite 3-regular
tree into some Lp-space. The main part of the paper is devoted to the explicit construction of
affine isometric actions of amenable connected Lie groups on Lp-spaces whose compressions
are asymptotically optimal. These constructions are based on an asymptotic lower bound of the
Lp-isoperimetric profile inside balls. We compute the asymptotic behavior of this profile for all
amenable connected Lie groups and for all 1 � p < 1, providing new geometric invariants of
these groups. We also relate the Hilbert compression exponent with other asymptotic quantities
such as volume growth and probability of return of random walks.
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1. Introduction

The study of uniform embeddings of locally compact groups into Banach spaces and
especially of those associated to proper affine isometric actions plays a crucial role
in various fields of mathematics ranging from K-theory to geometric group theory.



500 R. Tessera CMH

Recall that a locally compact group is called a-T-menable if it admits a proper affine
action by isometries on a Hilbert space (for short: a proper isometric Hilbert action).
An amenable � -compact locally compact group is always a-T-menable [CCJJV]; but
the converse is false since for instance non-amenable free groups are a-T-menable.
However, if a locally compact, compactly generated group G admits a proper iso-
metric Hilbert action whose compression � satisfies

�.t/ � t1=2;

then G is amenable1. On the other hand, in [CTV], we prove that non-virtually
abelian polycyclic groups cannot have proper isometric Hilbert actions with linear
compression. These results motivate a systematic study of the possible asymptotic
behaviors of compression functions, especially for amenable groups.

In this paper, we “characterize” the asymptotic behavior of the Lp-compression,
with 1 < p < 1, for a large class of groups including all connected Lie groups
with exponential growth. Some partial results in this direction for p D 2 had been
obtained in [GK] and [BrSo] by completely different methods.

1.1. Lp-compression: optimal estimates. Let us recall some basic definitions.
Let G be some locally compact compactly generated group. Equip G with the word
length function j � jS associated to a compact symmetric generating subset S and
consider a uniform embedding F of G into some Banach space. The compression �
of F is the nondecreasing function defined by

�.t/ D inf
jg�1hjS �t

kF.g/ � F.h/k:

Let f; g W RC ! xRC be nondecreasing, nonzero functions. We write respectively
f � g, f � g if there exists C > 0 such that f .t/ D O.g.C t//, resp. for all c > 0,
f .t/ D o.g.ct// when t ! 1. We write f � g if both f � g and g � f . The
asymptotic behavior of f is its class modulo the equivalence relation �.

Note that the asymptotic behavior of the compression of a uniform embedding
does not depend on the choice of S .

In the sequel, an Lp-space denotes a Banach space of the form Lp.X;m/ where
.X;m/ is a measure space. AnLp-representation ofG is a continuous linearG-action
on some Lp-space. Let � be an isometric Lp-representation of G and consider a
1-cocycle b 2 Z1.G; �/, or equivalently an affine isometric action of G with linear
part � : see the preliminaries for more details. The compression of b is defined by

�.t/ D inf
jgjS �t

kb.g/kp:

1This was proved for finitely generated groups in [GK]. In [CTV], we give a shorter argument that applies to
all locally compact compactly generated groups.
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In this paper, we mainly focus our attention on groups in the two following classes.
Denote .L/ the class of groups including

(1) polycyclic groups and connected amenable Lie groups;

(2) semidirect products ZŒ 1
mn
� Ì m

n
Z, with m, n co-prime integers with2 jmnj 	 2

(if n D 1 this is the Baumslag–Solitar group BS.1;m/); semidirect products
.R ˚ L

p2P Qp/ Ì m
n

Z with m, n coprime integers and P a finite family of
primes dividing mn;

(3) wreath products F o Z for F a finite group.

Denote .L0/ the class of groups including groups in the class .L/ and

(1) connected Lie groups and their cocompact lattices;

(2) irreducible lattices in semisimple groups of rank 	 2;

(3) hyperbolic finitely generated groups.

Let � be a left Haar measure on the locally compact groupG and writeLp.G/ D
Lp.G;�/. The groupG acts by isometry onLp.G/ via the left regular representation
�G;p defined by

�G;p.g/' D '.g�1�/:

Theorem 1. Fix some 1 � p < 1. Let G be a group of the class .L/ and let f be
an increasing function f W RC ! RC satisfying

Z 1

1

�
f .t/

t

�p dt

t
< 1: (Cp)

Then there exists a 1-cocycle b 2 Z1.G; �G;p/ whose compression � satisfies

� 
 f:

Corollary 2. Fix some 1 � p < 1. Let G be a group of the class .L0/ and let f be
an increasing function f W RC ! RC satisfying Property .Cq/, with q D maxfp; 2g.
Then there exists a uniform embedding ofG into some Lp-space whose compression
� satisfies

� 
 f:

Let us sketch the proof of the corollary. First, recall [W], III.A.6, that for 1 �
p � 2, L2.Œ0; 1�/ is isomorphic to a subspace of Lp.Œ0; 1�/. It is thus enough to
prove the theorem for 2 � p < 1. This is an easy consequence of Theorem 1 since
every group of class .L0/ quasi-isometrically embeds into a group of .L/. Indeed,
any connected Lie group admits a closed cocompact connected solvable subgroup.

2This condition guaranties that the group is compactly generated.
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On the other hand, irreducible lattices in semisimple groups of rank 	 2 are quasi-
isometrically embedded [LMR]. Finally, any hyperbolic finitely generated group
quasi-isometrically embeds into the real hyperbolic space Hn for n large enough
[BoS] which is itself quasi-isometric to SO.n; 1/.

The particular case of nonabelian free groups, which are quasi-isometric to 3-
regular trees, can also be treated by a more direct method. More generally that
method applies to any simplicial3 tree with possibly infinite degree.

Theorem 3 (see Theorem 7.3). Let T be a simplicial tree. For every increasing
function f W RC ! RC satisfying

Z 1

1

�
f .t/

t

�p dt

t
< 1; (Cp)

there exists a uniform embedding F of T into `p.T / with compression � 
 f .

Remark 1.1. In [BuSc1], [BuSc2], it is shown that real hyperbolic spaces and word
hyperbolic groups quasi-isometrically embed into finite products of (simplicial) trees.
Thus the restriction of Corollary 2 to word hyperbolic groups and to simple Lie groups
of rank 1 can be deduced from Proposition 7.3. Nevertheless, not every connected
Lie group quasi-isometrically embeds into a finite product of trees. Namely, a finite
product of trees is a CAT(0) space, and in [Pau] it is proved that a non-abelian simply
connected nilpotent Lie group cannot quasi-isometrically embed into any CAT(0)
space.

Theorem 4. Let TN be the binary rooted tree of depth N . Let � be the compression
of some 1-Lipschitz map from TN to some Lp-space for 1 < p < 1. Then there
exists C < 1, depending only on p, such that

Z 2N

1

�
�.t/

t

�q dt

t
� C;

where q D maxfp; 2g.

Although this result is a strengthening (see Corollary 6.3) of Theorem 1 in [Bou],
its proof is based on the same arguments. As a consequence, we have

Corollary 5. Assume that the 3-regular tree quasi-isometrically embeds into some
metric space X . Then, the compression � of any uniform embedding of X into any
Lp-space for 1 < p < 1 satisfies .Cq/ for q D maxfp; 2g.

3By simplicial, we mean that every edge has length 1.
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In [BeSc], Theorem 1.5, it is proved that the 3-regular tree quasi-isometrically
embeds into any graph with bounded degree and positive Cheeger constant (e.g. any
non-amenable finitely generated group). On the other hand, in a work in preparation
with Cornulier [CT], we prove that finitely generated linear groups with exponential
growth, and finitely generated solvable groups with exponential growth admit quasi-
isometrically embedded free non-abelian sub-semigroups. Together with the above
corollary, they lead to the optimality of Theorem 1 (resp. Corollary 2) when the group
has exponential growth and when 2 � p < 1 (resp. 1 < p < 1).

Corollary 6. Let G be a finitely generated group with exponential growth which is
either virtually solvable or non-amenable. Let ' be a uniform embedding of G into
some Lp-space for 1 < p < 1. Then its compression � satisfies Condition .Cq/ for
q D maxfp; 2g.

Corollary 7. Let G be a group of class .L0/ with exponential growth. Consider
an increasing map f and some 1 < p < 1; then f satisfies Condition .Cq/ with
q D maxfp; 2g if and only if there exists a uniform embedding of G into some
Lp-space whose compression � satisfies � 
 f .

Note that the 3-regular tree cannot uniformly embed into a group with subex-
ponential growth. So the question of the optimality of Theorem 1 for non-abelian
nilpotent connected Lie groups remains open.

About Condition .Cp/. First, note that if p � q, then .Cp/ implies .Cq/: this
immediately follows from the fact that a nondecreasing function f satisfying .Cp/

also satisfies f .t/=t D O.1/.
Let us give examples of functions f satisfying Condition .Cp/. Clearly, if f and

h are two increasing functions such that f � h and h satisfies .Cp/, then f satisfies
.Cp/. The function f .t/ D ta satisfies .Cp/ for every a < 1 but not for a D 1. More
precisely, the function

f .t/ D t

.log t /1=p

does not satisfy .Cp/ but

f .t/ D t

..log t /.log log t /a/1=p

satisfies .Cp/ for every a > 1. In comparison, in [BrSo], the authors construct a
uniform embedding of the free group of rank 2 into a Hilbert space with compression
larger than

t

..log t /.log log t /2/1=2
:
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As t=.log t /1=p does not satisfy .Cp/, one may wonder if .Cp/ implies

�.t/ � t

.log t /1=p
:

The following proposition answers negatively to this question. We say that a function
f is sublinear if f .t/=t ! 0 when t ! 1.

Proposition 8 (see Proposition 7.5). For any increasing sublinear function h W RC !
RC and every 1 � p < 1, there exists a nondecreasing function f satisfying .Cp/,
a constant c > 0 and an increasing sequence of integers .ni / such that

f .ni / 	 ch.ni / 8i 2 N:

In particular, it follows from Theorem 1 that the compression � of a uniform em-
bedding of a 3-regular tree in a Hilbert space does not satisfy any a priori majoration
by any sublinear function.

1.2. Isoperimetry and compression. To prove Theorem 1, we observe a general
relation between theLp-isoperimetry inside balls and theLp-compression. LetG be
a locally compact compactly generated group and consider some compact symmetric
generating subset S . For every g 2 G, write4

j zr'j.g/ D sup
s2S

j'.sg/ � '.g/j:

Let 2 � p < 1 and let us call the Lp-isoperimetric profile inside balls the nonde-
creasing function J b

G;p defined by

J b
G;p.t/ D sup

'

k'kp

kzr'kp

;

where the supremum is taken over all measurable functions inLp.G/with support in
the ball B.1; t/. Note that the groupG is amenable if and only if limt!1 J b

G;p.t/ D
1. Theorem 1 results from the two following theorems.

Theorem 9 (see Theorem 5.1). Let G be a group of class .L/. Then J b
G;p.t/ � t .

Theorem 10 (see Corollary 4.6). Let G be a locally compact compactly generated
group and let f be a nondecreasing function satisfyingZ 1

1

�
f .t/

J b
G;p.t/

�p
dt

t
< 1 (CJp)

4We write zr instead of r because this is not a“metric” gradient. The gradient associated to the metric
structure would be the right gradient: jr'j.g/ D sups2S j'.gs/ � '.g/j. This distinction is only important
when the group is non-unimodular.
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for some 1 < p < 1. Then there exists a 1-cocycle b 2 Z1.G; �G;p/ whose
compression � satisfies � 
 f .

Theorem 9 may sound as a “functional” property of groups of class .L/. Never-
theless, our proof of this result is based on a purely geometric construction. Namely,
we prove that these groups admit controlled Følner pairs (see Definition 4.8). In
particular, when p D 1 we obtain the following corollary of Theorem 9, which has
its own interest.

Theorem 11 (see Remark 4.10 and Theorem 5.1). Let G be a group of class .L/
and let S be some compact generating subset of G. Then G admits a sequence of
compact subsets .Fn/n2N satisfying the two following conditions:

(i) there is a constant c > 0 such that

�.sFn M Fn/ � c�.Fn/=n 8s 2 S;8n 2 NI
(ii) for every n 2 N, Fn is contained 5 in Sn.

In particular, G admits a controlled Følner sequence in the sense of [CTV].

This theorem is a strengthening of the well-known construction by Pittet [Pit].
It is stronger first because it does not require the group to be unimodular, second
because the control (ii) of the diameter is really a new property that was not satisfied
in general by the sequences constructed in [Pit].

1.3. Compression, subexponential growth, and random walks. Let � be an iso-
metric Lp-representation of G. Denote by B�.G/ the supremum of all ˛ such that
there exists a 1-cocycle b 2 Z1.G; �/ whose compression � satisfies �.t/ 
 t˛ .
Denote by Bp.G/ the supremum of B�.G/ over all isometric Lp-representations � .
For p D 2, B2.G/ D B.G/ has been introduced in [GK] where it was called the
equivariant Hilbert compression rate (we suggest that the term exponent would be
more appropriate here than the term rate). On the other hand, define

˛G;p D lim inf
t!1

logJ b
G;p.t/

log t
:

As a corollary of Theorem 1, we have

Corollary 12. For every 1 � p < 1, and every group G of the class .L/, we have
Bp.G/ D 1.

The following result is a corollary of Theorem 10.

5Actually, they also satisfy S Œcn� � Fn for a constant c > 0.
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Corollary 13 (see Corollary 4.6). Let G be a locally compact compactly generated
group. For every 0 < p < 1, we have

B�G;p
.G/ 	 ˛G;p:

The interest of this corollary is illustrated by the two following propositions.
Recall the volume growth of G is the � equivalence class VG of the function r 7!
�.B.1; r//.

Proposition 14 (see Proposition 7.1). Assume that there exists ˇ < 1 such that
VG.r/ � erˇ

. Then

˛G;p 	 1 � ˇ:

As an example we obtain that B.G/ 	 0; 19 for the first Grigorchuk’s group (see
[Ba] for the best known upper bound of the growth function of this group).

Let G be a finitely generated group and let � be a symmetric finitely supported
probability measure on G. Write �.n/ D � � � � � � � (n times). Recall that �.n/.1/ is
the probability of return of the random walk starting at 1whose probability transition
is given by �.

Proposition 15 (see Proposition 7.2). Assume that there exists 	 < 1 such that
�.n/.1/ 
 e�n�

. Then

˛G;2 	 .1 � 	/=2:

In [PS], it is proved that if G is a finitely generated extension

1 ! K ! G ! N ! 1

where K is abelian and N is abelian with Q-rank d . Then

lim sup
n

log.� log.�.n/.1/// � 1 � 2=.d C 2/

for any symmetric finitely supported probability on G.

Corollary 16. Assume that G is a finitely generated extension 1 ! K ! G !
N ! 1 where K is abelian and N is abelian with Q-rank d . Then

B.G/ 	 1=.d C 2/:

In particular, B.G/ > 0 for any finitely generated metabelian group G.
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1.4. The case of Z o Z. Combining the construction of Theorem 1 forC2 oZ with the
cocycle induced by the morphism of Z.Z/ ! `p.Z/, we obtain (see Proposition 7.6
for the details).

Theorem 17. Fix some 1 � p < 1. Let G D Z o Z and let f be an increasing
function f W RC ! RC satisfying

Z 1

1

�
f .t/

tp=.2p�1/

�p
dt

t
< 1: (Cp)

Then there exists a 1-cocycle b 2 Z1.G; �G;p/ whose compression � satisfies

� 
 f:

In particular,

Bp.Z o Z/ 	 p

2p � 1:

In a previous version of this paper, we stated the lower bound B.Z o Z/ 	 2=3,
but the proof that we gave relied on a wrong version of Proposition 15 (we stated
˛G;2 	 1�	 , which is wrong as shown by a counter-example in [NP]). The mistake,
together with a proof of the full statement Bp.Z o Z/ 	 p

2p�1
(see [NP], Lemma 7.8)

was communicated to us by Naor and Peres. The proof that we propose here is
essentially the same as the one of [NP], but it was actually also known by the author.

1.5. Questions

Question 1.2 (Condition .Cp/ for nilpotent connected Lie groups.). Let N be a
simply connected non-abelian nilpotent Lie group and let � be the compression of a
1-cocycle with values in some Lp-space (resp. of a uniform embedding into some
Lp-space) for 2 � p < 1. Does � always satisfies Condition .Cp/?

A positive answer would lead to the optimality of Theorem 1. On the contrary,
one should wonder if it is possible, for any increasing sublinear function f , to find a
1-cocycle (resp. a uniform embedding) in Lp with compression � 
 f . This would
also be optimal since we know [Pau] that N cannot quasi-isometrically embed into
any uniformly convex Banach space. Namely, the main theorem in [Pau] states that
such a group cannot quasi-isometrically embed into any CAT(0)-space. So this only
directly applies to Hilbert spaces, but the key argument, consisting in a comparison
between the large scale behavior of geodesics (not exactly in the original spaces but
in tangent cones of ultra-products of them) is still valid if the target space is a Banach
space with unique geodesics, a property satisfied by uniformly convex Banach spaces.
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Question 1.3 (Quasi-isometric embeddings into L1-spaces.). Which connected Lie
groups quasi-isometrically embed into some L1-space?

It is easy to quasi-isometrically embed a simplicial tree T into `1 (see for instance
[GK]). In [BuSc1], [BuSc2], it is proved that every semisimple Lie group of rank 1
quasi-isometrically embeds into a finite product of simplicial trees, hence into a
`1-space. The above question is of particular interest for simply-connected non-
abelian nilpotent Lie groups since they do not quasi-isometrically embed into any
finite product of trees. Kleiner and Cheeger recently announced a proof that the
Heisenberg group cannot quasi-isometrically embed into any L1-space.

Question 1.4. If G is an amenable group, is it true that

Bp.G/ D ˛G;p‹

We conjecture that this is true for Z o Z, i.e. that B.Z o Z/ D 2=3. A first step to
prove this is done by Proposition 3.9 which, applied to G D Z o Z says that

B.Z o Z/ D B�G;2
.Z o Z/:

As a variant of the above question, we may wonder if the weaker equalityB�G;p
.G/ D

˛G;p holds, in other words if Corollary 13 is optimal for all amenable groups. Possible
counterexamples would be wreath products of the form G D Z o H where H has
non-linear growth (e.g. H D Z2).

Question 1.5. Does there exist an amenable group G with B.G/ D 0?

A candidate would be the wreath product Z o.Z oZ/ since the probability of return
of any non-degenerate random walk in this group satisfies

�.n/.1/ � e�n�

for every 	 < 1 ([Er], Theorem 2). It is proved in [AGS] that B.Z o .Z o Z// � 1=2.

Question 1.6. Let G be a compactly generated locally compact group. If G admits
an isometric action on some Lp-space, p 	 2, with compression �.t/ � t1=p , does
it imply that G is amenable?

Recall that this was proved in [GK], [CTV] forp D 2. The generalization to every
p 	 2 would be of great interest. For instance, this would prove the optimality of a
recent result of Yu [Yu] saying that every finitely generated hyperbolic group admits
a proper isometric action on some `p-space for large p enough, with6 compression
�.t/ � t1=p .

6This is clear in the proof.
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2. Preliminaries

2.1. Compression. Let us recall some definitions. Let .X; dX / and .Y; dY / be
metric spaces. A map F W X ! Y is called a uniform embedding of X into Y if

dX .x; y/ ! 1 () dY .F.x/; F.y// ! 1:

Note that this property only concerns the large-scale geometry. A metric space
.X; d/ is called quasi-geodesic if there exist ı > 0 and 	 	 1 such that for all
x; y 2 X , there exists a chain x D x0; x1; : : : ; xn D y satisfying:

nX
kD1

d.xk�1; xk/ � 	d.x; y/;

8k D 1; : : : ; n; d.xk�1; xk/ � ı:

If X is quasi-geodesic and if F W X ! Y is a uniform embedding, then it is easy to
see that F is large-scale Lipschitz, i.e. there exists C 	 1 such that

8x; y 2 X; dY .F.x/; F.y// � CdX .x; y/C C:

Nevertheless, such a map is not necessarily large scale bi-Lipschitz (in other words,
quasi-isometric).

Definition 2.1. We define the compression � W RC ! Œ0;1� of a map F W X ! Y

by
8t > 0; �.t/ D inf

dX .x;y/�t
dY .F.x/; F.y//:

Clearly, if F is large-scale Lipschitz, then �.t/ � t .
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2.2. Length functions on a group. Now, let G be a group. A length function on
G is a function L W G ! RC satisfying L.1/ D 0, L.gh/ � L.g/ C L.h/, and
L.g/ D L.g�1/. If L is a length function, then d.g; h/ D L.g�1h/ defines a left-
invariant pseudo-metric on G. Conversely, if d is a left-invariant pseudo-metric on
G, then L.g/ D d.1; g/ defines a length function on G.

LetG be a locally compact compactly generated group and let S be some compact
symmetric generating subset of G. Equip G with a proper, quasi-geodesic length
function by

jgjS D inffn 2 N W g 2 Sng:
Denote dS the associated left-invariant distance. Note that any proper, quasi-geodesic
left-invariant metric is quasi-isometric to dS , and so belongs to the same “asymptotic
class”.

2.3. Affine isometric actions and first cohomology. Let G be a locally com-
pact group, and � an isometric representation (always assumed continuous) on a
Banach space E D E� . The space Z1.G; �/ is defined as the set of continu-
ous functions b W G ! E satisfying, for all g, h in G, the 1-cocycle condition
b.gh/ D �.g/b.h/C b.g/. Observe that, given a continuous function b W G ! H ,
the condition b 2 Z1.G; �/ is equivalent to saying that G acts by affine isometries
on H by ˛.g/v D �.g/vCb.g/. The spaceZ1.G; �/ is endowed with the topology
of uniform convergence on compact subsets.

The subspace of coboundaries B1.G; �/ is the subspace (not necessarily closed)
ofZ1.G; �/ consisting of functions of the form g 7! v ��.g/v for some v 2 E. In
terms of affine actions, B1.G; �/ is the subspace of affine actions fixing a point.

The first cohomology space of � is defined as the quotient space

H 1.G; �/ D Z1.G; �/=B1.G; �/:

Note that ifb 2 Z1.G; �/, the map .g; h/ ! kb.g/�b.h/k defines a left-invariant
pseudo-distance on G. Therefore the compression of a 1-cocycle b W .G; dS / ! E

is simply given by

�.t/ D inf
jgjS �t

kb.g/k:

The compression of an affine isometric action is defined as the compression of the
corresponding 1-cocycle.

Remark 2.2. When the spaceE is a Hilbert space7, it is well known [HV], §4.a, that
b 2 B1.G; �/ if and only if b is bounded on G.

7The same proof holds for uniformly convex Banach spaces.
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3. The maximal Lp-compression functions M�G;p and M��G;p

3.1. Definitions and general results. Let .G; dS ; �/ be a locally compact com-
pactly generated group, generated by some compact symmetric subsetS and equipped
with a left Haar measure�. Denote byZ1.G; p/ the collection of all 1-cocycles with
values in any Lp-representation of G. Denote by �b the compression function of a
1-cocycle b 2 Z1.G; p/.

Definition 3.1. We call maximal Lp-compression function of G the nondecreasing
function M�G;p defined by

M�G;p.t/ D sup
n
�b.t/ W b 2 Z1.G; p/; sup

s2S

kb.s/k � 1
o
:

We call maximal regular Lp-compression function of G the nondecreasing function
M��G;p

defined by

M��G;p
D sup

n
�b.t/ W b 2 Z1.G; �G;p/; sup

s2S

kb.s/k � 1
o
:

Note that the asymptotic behaviors of bothM�G;p andM��G;p
do not depend on

the choice of the compact generating set S . Moreover, we have

M��G;p
.t/ � M�G;p.t/ � t:

Let ' be a measurable function on G such that ' � �.s/' 2 Lp.G/ for every
s 2 S . For every t > 0, define

Varp.'; t/ D inf
jgjS �t

k' � �.g/'kp:

The function ' and p being fixed, the map t 7! Varp.'; t/ is nondecreasing.

Proposition 3.2. We have

M��G;p
.t/ D sup

kzr'kp�1

Varp.'; t/:

Proof. We trivially have

M��G;p
.t/ 	 sup

kzr'kp�1

Varp.'; t/:

Let b be an element of Z1.G; �G;p/. By convoluting b.g/, for every g, on the
right by a Dirac approximation, one can approximate b by a cocycle b0 such that
x ! b0.g/.x/ is continuous for every g in G. Hence, we can assume that b.g/ is
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continuous for every g in G. Now, setting '.g/ D b.g/.g/, we define a measurable
function satisfying

b.g/ D ' � �.g/':
So we have

�.t/ D Varp.'; t/ � M��G;p
.t/

where � is the compression of b. �

Remark 3.3. It is not difficult to prove that the asymptotic behavior of M��G;p
is

invariant under quasi-isometry between finitely generated groups.

Proposition 3.4. The group G admits a proper8 1-cocycle with values in some Lp-
representation if and only ifM�G;p.t/ goes to infinity as t ! 1.

Proof. The “only if” part is trivial. Assume that M�G;p.t/ goes to infinity. Let .tk/
be an increasing sequence growing fast enough so that

X
k2N

1

t
p

k

< 1:

For every k 2 N, choose some bk 2 Z1.G; p/ whose compression �k satisfies

�k.tk/ 	 M�G;p.tk/

2

and such that
sup
s2S

kbk.s/k � 1:

Clearly, we can define a 1-cocycle b 2 Z1.G; p/ by

b D L`p

k
1
tk
bk :

That is, if for every k, bk takes values in the representation �k , then b takes values
in the direct sum ˚`p

k
�k . Now, observe that for jgj 	 tk and j � k, we have

kbj .g/k 	 1=2, so that
kb.g/kp 	 k=2p:

Thus the cocycle b is proper. �

The following proposition, which is a quantitative version of the previous one,
plays a crucial role in the sequel.

8For p D 2, this means that G is a-T-menable if and only if M�G;2 goes to infinity. It should be compared
to the role played by the H-metric (see § 2.6 in [C], and § 7.4) for Property (T).
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Proposition 3.5. Let f W RC ! RC be a nondecreasing map satisfying

Z 1

1

�
f .t/

M�G;p.t/

�p dt

t
< 1; (CMp)

Then,
(1) there exists a 1-cocycle b 2 Z1.G; p/ such that

� 
 f I
(2) if one replacesM�G;p byM��G;p

in Condition .CMp/, then b can be chosen
in Z1.G; �G;p/.

Proof. (1): For every k 2 N, choose some bk 2 Z1.G; p/ (for (2), we take bk 2
Z1.G; �G;p/) whose compression �k satisfies

�k.2
kC1/ 	 M�G;p.2

kC1/

2

and such that
sup
s2S

kbk.s/k � 1:

Then define another sequence of cocycles Qbk 2 Z1.G; p/ by

Qbk D f .2k/

M�G;p.2kC1/
bk :

Since M�G;p and f are nondecreasing, for any 2k � t � 2kC1, we have

f .2k/

M�G;p.2kC1/
� f .t/

M�G;p.t/
:

Hence, for s 2 S ,

X
k

k Qbk.s/kp
p �

X
k

�
f .2k/

M�G;p.2kC1/

�p

� 2

Z 1

1

�
f .t/

M�G;p.t/

�p dt

t
< 1

So we can define a 1-cocycle on b 2 Z1.G; p/ by

b D L
k

Qbk : (3.1)
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On the other hand, if jgjS 	 2kC1, then

kb.g/kp 	 k Qbk.g/kp

	 f .2k/

M��G;p
.2kC1/

�k.2
kC1/

	 f .2k/:

So if � is the compression of the 1-cocycle b, we have � 
 f .

(2): We keep the previous notation. Assume that f satisfiesZ 1

1

�
f .t/

M��G;p
.t/

�p dt

t
< 1:

The cocycle b provided by the proof of (1) has the expected compression but it takes
values in an infinite direct sum of regular representation �G;p . Now, we would like
to replace the direct sum b D ˚kbk by a mere sum, in order to obtain a cocycle in
Z1.G; �G;p/. Since G is not assumed unimodular, the measure � is not necessarily
right-invariant. However, one can define an isometric representation rG;p onLp.G/,
called the right regular representation by

rG;p.g/' D 
.g/�1'.�g/ 8' 2 Lp.G/;

where
 is the modular function ofG. We will use the following well-known property
of the representation rG;p , forp > 1. To simplify, let us write r.g/ instead of rG;p.g/.
For every .';  / 2 Lp.G/ � Lp.G/, we have

lim
jgj!1

kr.g/' C  kp
p D k'kp

p C k kp
p : (3.2)

Moreover, this limit is uniform on compact subsets of .Lp.G//2. As rG;p and �G;p

commute, rG;p acts by isometries on Z1.G; �G;p/.

Lemma 3.6. There exists a sequence .gk/ of elements ofG such that b0 D P
r.gk/bk

defines a cocycle in Z1.G; �G;p/ and such that

ˇ̌ˇkb0.g/kp
p �

���
k�1X
j D0

r.gj /bj .g/
���p

p
�

X
j �k

kbj .g/kp
p

ˇ̌ˇ � 1 (3.3)

for any k large enough and every g 2 B.1; 2kC2/.

Proof of Lemma 3.6. By an immediate induction, using (3.2), we construct a se-
quence .gk/ 2 GN satisfying, for every K 	 0, s 2 S ,

���
KX

kD0

r.gk/bk.s/
���p

p
�

KX
kD0

kbk.s/kp
p C

KX
kD0

2�k�1 � 1;
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which implies that b0 is a well-defined 1-cocycle inZ1.G; �G;p/. Similarly, one can
choose .gk/ satisfying the additional property that, for every k 2 N, jgj � 2kC2,

ˇ̌
ˇ
���

kX
j D0

r.gj /bj .g/
���p

p
�

���
k�1X
j D0

r.gj /bj .g/
���p

p
� kbk.g/kp

p

ˇ̌
ˇ � 2�k�1:

Fixing k 2 N, an immediate induction over K shows that for every jgj � 2kC2 and
every K 	 k,

ˇ̌ˇ���
KX

j D0

r.gj /bj .g/
���p

p
�

���
k�1X
j D0

r.gj /bj .g/
���p

p
�

KX
j Dk

kbj .g/kp
p

ˇ̌ˇ �
KX

j Dk

2�j �1:

This proves (3.3). �

By the lemma, for jgj � 2kC2,

kb0.g/kp
p 	 kbk.g/kp

p � 1:

Then, for 2kC1 � jgj � 2kC2, we have

kb0.g/kp
p 	 f .2k/ � 1

Therefore, the compression �0 of b0 satisfies

�0 
 f

and we are done. �

We have the following immediate consequence.

Corollary 3.7. For every 1 � p < 1,

B.G; p/ D lim inf
t!1

logM�G;p.t/

log t
:

Example 3.8. Let Fr be the free group of rank r 	 2 and let A.Fr/ be the set of
edges of the Cayley graph of Fr associated to the standard set of generators. The
standard isometric affine action of Fr on `p.A.Fr//, whose linear part is isomorphic
to a direct sum �G;p ˚`p � � � ˚`p �G;p of r copies of �G;p has compression � t .
This shows that M��Fr ;p

.t/ 
 t1=p .
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3.2. Reduction to the regular representation for p D 2. In the Hilbert case,
we prove that if a group admits a 1-cocycle with large enough compression, then
M�G;2 D M��G;2

. This result is mainly motivated by Question 1.4 since it implies
that

B.Z o Z/ D B�G;2
.Z o Z/:

Proposition 3.9. Let � be a unitary representation of the groupG on a Hilbert space
H and let b 2 Z1.G; �/ be a cocycle whose compression � satisfies

�.t/ � t1=2:

Then9

� � M��G;2
:

In particular,
M�2 D M��G;2

:

combining with Proposition 3.5, we obtain

Corollary 3.10. With the same hypotheses, we have

B.G/ D B.G; �G;2/ D lim inf
t!1

logM��G;2
.t/

log t
:

Proof of Proposition 3.9. For every t > 0, define

't .g/ D e�kb.g/k2=t2

:

By Schoenberg’s Theorem (Appendix C in [BHV]), 't is positive definite. It is
easy to prove that 't is square-summable (see [CTV], Theorem 4.1). By [Dix],
Théorème 13.8.6, it follows that there exists a positive definite, square-summable
function  t on G such that 't D  t � t , where � denotes the convolution product.
In other words, 't D h�.g/ t ;  t i. In particular,

't .1/ D 1 D k tk2
2

and for every s 2 S ,

k t � �.s/ tk2
2 D 2.k tk2

2 � h�.s/ t ;  t i/
D 2.1 � 't .s//

D 2.1 � e�kb.s/k2=t2

/

� 1=t2

9Note that the hypotheses of the proposition also imply that G is amenable [CTV] (Theorem 4.1), [GK].
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On the other hand, for g such that �.jgjS / 	 t , we have

k t � �.g/ tk2
2 D 2.1 � e�kb.g/k2=t2

/

	 2.1 � e��.jgjS /2=t2

/

	 2.1 � 1=e/:
So, we have

k t � �.g/ tk2

kzr tk2

	 ct

where c is a constant. In other words,

Var2. t ; �
�1.t// 	 ct:

It follows from the definitions that M��G;2

 �. �

4. Lp-isoperimetry inside balls

4.1. Comparing J b
G;p

and M��G;p
. Let G be a locally compact compactly gen-

erated group and let S be a compact symmetric generating subset of G. Let A be a
subset of the group G. One defines the Lp-isoperimetric profile inside A by

Jp.A/ D sup
'

k'kp

kzr'kp

where the supremum is taken over nonzero functions inLp.G/with support included
in A.

Definition 4.1. The Lp-isoperimetric profile inside balls is the nondecreasing func-
tion J b

G;p defined by

J b
G;p.t/ D Jp.B.1; t//:

Remark 4.2. The usual Lp-isoperimetric profile of G (see for example [Cou]) is
defined by

jG;p.t/ D sup
�.A/Dt

Jp.A/:

Note that our notion of isoperimetric profile depends on the diameter of the subsets
instead of their measure.

Remark 4.3. The asymptotic behavior of J b
p;G is invariant under quasi-isometry

between compactly generated groups [T]. In particular, it is also invariant under
passing to a cocompact lattice [CS].
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Remark 4.4. Using basic Lp-calculus, one can easily prove [Cou] that if p � q,
then

.J b
G;p/

p=q � J b
G;q � J b

G;p:

Now let us compare J b
p;G and M��G;p

introduced in § 3.

Proposition 4.5. For every 2 � p < 1, we have

M��G;p

 J b

G;p:

Proof. Fix some t > 0 and choose some ' 2 Lp.X/ whose support lies in B.1; t/
such that k'kp

kzr'kp

	 J b
G;p.t/=2:

Take g 2 G satisfying jgjS 	 3t . Note that B.1; t/ \ �.g/B.1; t/ D ;. So ' and
�.g/' have disjoint supports. In particular,

k' � �.g/'kp 	 k'kp

and
kzr.' � �.g/'/kp D 21=pkzr'kp:

This clearly implies the proposition. �

Combining with Proposition 3.5, we obtain

Corollary 4.6. Let f W RC ! RC a nondecreasing map be satisfying

Z 1

1

�
f .t/

J b
G;p.t/

�p
dt

t
< 1 (CJp)

for some 1 � p < 1. Then there exists a 1-cocycle b in Z1.G; �G;p/ such that

� 
 f:

Question 4.7. For which groups G do we have M��G;p
� J b

G;p?

We show that the question has positive answer for groups of class .L/. On the
contrary, note that the group G is nonamenable if and only if J b

G;p is bounded. But
we have seen in the previous section that for a free group of rank 	 2, M��G;p

.t/ 

t1=p . More generally, the answer to Question 4.7 is no for every nonamenable group
admitting a proper 1-cocycle with values in the regular representation. This question
is therefore only interesting for amenable groups.
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4.2. Sequences of controlled Følner pairs. In this section, we give a method,
adapted10 from [CGP] to estimate J b

p .

Definition 4.8. Let G be a compactly generated, locally compact group equipped
with a left invariant Haar measure �. Let ˛ D .˛n/ be a nondecreasing sequence of
integers. A sequence of ˛-controlled Følner pairs of G is a family .Hn;H

0
n/ where

Hn and H 0
n are nonempty compact subsets of G satisfying for some constant C > 0

the following conditions:

(1) S˛nHn 
 H 0
n

(2) �.H 0
n/ � C�.Hn/;

(3) H 0
n 2 B.1; Cn/

If ˛n � n, we call .Hn;H
0
n/ a controlled sequence of Følner pairs.

Proposition 4.9. Assume that G admits a sequence of ˛-controlled Følner pairs.
Then

J b
G;p 
 ˛:

Proof. For every n 2 N, consider the function 'n W G ! RC defined by

'n.g/ D minfk 2 N W g 2 Sk.H 0
n/

cg
where Ac D G X A. Clearly, 'n is supported in H 0

n. It is easy to check that

kzr'nkp � .�.H 0
n//

1=p

and that
k'nkp 	 ˛n.�.Hn//

1=p:

Hence by (2),
k'nkp 	 C�1=p˛nkzr'nkp;

so we are done. �

Remark 4.10. Note that if H and H 0 are subsets of G such that SkH 
 H 0 and
�.H 0/ � C�.H/, then there exists by pigeonhole principle an integer 0 � j � k�1
such that

�.@SjH/ D �.Sj C1H X SjH/ � C

k
�.SjH/:

So in particular if .Hn;H
0
n/ is a ˛-controlled sequence of Følner pairs, then there

exists a Følner sequence .Kn/ such that Hn 
 Kn 
 H 0
n and

�.@Kn/

�.Kn/
� C=˛n:

Moreover, if ˛n � n, then one obtains a controlled Følner sequence in the sense of
[CTV], Definition 4.8.

10In [CGP], the authors are interested in estimating the L2-isoperimetric profile of a group.
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5. Isoperimetry in balls for groups of class .L/

The purpose of this section is to prove the following theorem.

Theorem 5.1. Let G be a group belonging to the class .L/. Then, G admits a
controlled sequence of Følner pairs. In particular, J b

G;p.t/ � t .

Note that Theorem 1 follows from Theorem 5.1 and Corollary 4.6.

5.1. Wreath products F o Z . LetF be a finite group. Consider the wreath product
G D F o Z D Z Ë F .Z/, the group law being defined as .n; f /.m; g/ D .n C m;

�mf Cg/where �mf .x/ D f .mCx/. As a set,G is a Cartesian product Z�U where
U is the direct sum F .Z/ D L

n2Z Fn of copies Fn of F . The set S D SF [ SZ,
where SF D F0 and SZ D f�1; 0; 1g is clearly a symmetric generating set for G.
Define

Hn D In � Un

and
H 0

n D I2n � Un

where Un D F Œ�2n;2n� and In D Œ�n; n�.
Let us prove that .Hn;H

0
n/n is a sequence of controlled Følner pairs. We therefore

have to show that

(1) SnHn 
 H 0
n

(2) jH 0
nj � 2jHnj;

(3) there exists C > 0 such that H 0
n 
 B.1; Cn/

Property (2) is trivial. To prove (1) and (3), recall that the length of an element of
g D .k; u/ ofG equalsL.	/C P

h2Z ju.h/jF whereL.	/ is the length of a shortest
path 	 from 0 to k in Z passing through every element of the support of u (see [Par],
Theorem 1.2). In particular,

j.u; k/jS � 2L.	/:

Thus, if g 2 Hn, then L.	/ � 30n. So (3) follows. On the other hand, if g D
.k; u/ 2 Sn, then

jkjZ � L.	/ � n

and
Supp.u/ 
 In:

So Hng 
 H 0
n. �

Remark 5.2. Note that the proof still works replacing Z by any group with linear
growth. On the other hand, replacing it by a group of polynomial growth of degree
d yields a sequence of n1=d -controlled Følner pairs. For instance, as a corollary, we
obtain that B.F o Zd / 	 1=d .
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5.2. Semidirect products .R ˚ L
p2P Qp/ Ì m

n
Z. Note that discrete groups of

type (2) of the class .L/ are cocompact lattices of a group of the form

G D Z Ë m
n

�
R ˚

M
p2P

Qp

�

withm, n coprime integers andP a finite set of primes (possibly infinite) dividingmn.
To simplify notation, we will only consider the case when P D fpg is reduced to one
single prime, the generalization presenting no difficulty. The case where p D 1 will
result from the case of connected Lie groups (see next section) since ZË m

n
R embeds

as a closed cocompact subgroup of the group of positive affine transformations RËR.
So consider the group G D Z Ë1=p Qp . Define a compact symmetric generating

set by S D SQp
[ SZ where SQp

D Zp and SZ D f�1; 0; 1g. Define .Hk;H
0
k
/ by

Hk D Ik � p�2kZp

and
H 0

k D I2k � p�2kZp;

where Ik D Œ�k; k�. Using the same kind of arguments as previously for F o Z, one
can prove easily that .Hk;H

0
k
/ is a controlled sequence of Følner pairs. �

5.3. Amenable connected Lie groups. Let G be a solvable simply connected Lie
group. Let S be a compact symmetric generating subset. In [Gu] (see also [O]), it is
proved thatG admits a maximal normal connected subgroup such that the quotient of
G by this subgroup has polynomial growth. This subgroup is called the exponential
radical and is denoted Exp.G/. We have Exp.G/ 
 N , where N is the maximal
nilpotent normal subgroup ofG. Let T be a compact symmetric generating subset of
Exp.G/. An element g 2 G is called strictly exponentially distorted if the S -length
of gn grows as log jnj. The subset of strictly exponentially distorted elements of G
coincides with Exp.G/. That is,

Exp.G/ D fg 2 G W jgnjS � log jnjg [ f1g:
Moreover, Exp.G/ is strictly exponentially distorted inG in the sense that there exists
ˇ 	 1 such that for every h 2 Exp.G/ n f1g,

ˇ�1 log.jhjT C 1/ � ˇ � jhjS � ˇ log.jhjT C 1/C ˇ (5.1)

where T is a compact symmetric generating subset of Exp.G/.
We will need the following two lemmas.

Lemma 5.3. LetG be a locally compact group. LetH be a closed normal subgroup.
Let � and � be respectively left Haar measures ofH andG=H . Let i be a measurable
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left-section of the projection � W G ! G=H , i.e. G D tx2G=H i.x/H . Identify G
with the cartesian product G=H �H via the map .x; h/ 7! i.x/h. Then the product
measure � ˝ � is a left Haar measure on G.

Proof. We have to prove that � ˝ � is left-invariant on G. Fix g in G. Define a
measurable map �g from G=H to H by

�g.x/ D .i.�.g/x/�1gi.x/:

In other words, �g.x/ is the unique element of H such that

gi.x/ D i.�.g/x/�g.x/:

Let ' W G ! R be a continuous, compactly supported function. We haveZ
G=H�H

'Œgi.x/h�d�.x/d�.h/ D
Z

G=H�H

'Œi.�.g/x/�g.x/h�d�.x/d�.h/:

As � and � are respectively left Haar measures on G=H and H , the Jacobian of the
transformation .x; h/ 7! .�.g/x; �g.x/h/ is equal to 1. Hence,

Z
G=H�H

'Œi.�.g/x/�g.x/h�d�.x/d�.h/ D
Z

G=H�H

'Œi.x/h�d�.x/d�.h/:

Thus � ˝ � is left-invariant. �

Lemma 5.4. LetG be a connected Lie group andH be a normal subgroup. Consider
the projection � W G ! G=H . There exists a compact generating set S of G and a
� -compact cross-section � of G=H inside G such that �.�.S/n/ 
 SnC1.

Proof. Since � is a submersion, there exists a compact neighborhood S of 1 in G
such that �.S/ admits a continuous cross-section �1 in S . Now, let X be a minimal
(discrete) subset of G=H satisfying G=H D S

x2X x�.S/. Since this covering is
locally finite and�.S/ is compact, one can construct by induction a partition .Ax/x2X

of G=H such that every Ax is a constructible, and therefore � -compact subset of
x�.S/. Let �2 W X ! G be a cross-section of X satisfying �2.X \ �.S/n/ 
 Sn.
Now, for every z 2 Ax , define

�.z/ D �2.x/�1.x
�1z/:

Clearly, � satisfies to the hypotheses of the lemma. �

Equip the group P D G=Exp.G/ with a Haar measure � and with the symmetric
generating subset �.S/, where � is the projection on P . Assume that S satisfies to
the hypotheses of Lemma 5.4 and let � be a � -compact cross-section of P inside G
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such that �.�.S/n/ 
 SnC1. For every n 2 N, write Fn D �.�.S/n/. Let ˛ be
some large enough positive number that we will determine later. Denote by bxc the
integer part of a real number x. Define, for every n 2 N,

Hn D SnT bexp.˛n/c

and
H 0

n D S2nT bexp.˛n/c:
Note that H 0

n D SnHn. On the other hand, since Exp.G/ is strictly exponentially
distorted, there exists a 	 1 only depending on ˛ and ˇ such that, for every n 2 N,

SnT bexp.˛n/c 
 San:

Hence, to prove that .Hn;H
0
n/ is a sequence of controlled Følner pairs, it suffices to

show that �.H 0
n/ � C�.Hn/. Consider another sequence .An; A

0
n/ defined by, for

every n 2 N�,
An D Fn�1T

bexp.˛n/c

and
A0

n D F2nT
2bexp.˛n/c:

As Fn is � -compact, An and A0
n are measurable. To compute the measures of An

and A0
n, we choose a normalization of the Haar measure � on Exp.G/ such that

the measure � disintegrates over � and the pull-back measure of � on �.P / as in
Lemma 5.3. We therefore obtain

�.An/ D �.�.S/n�1/�.T bexp.˛n/c/

and
�.A0

n/ D �.�.S/2n/�.T 2bexp.˛n/c/:
Since P and Exp.G/ have both polynomial growth, there is a constant C such that,
for every n 2 N�,

�.A0
n/ � C�.An/:

So now, it suffices to prove that

An 
 Hn 
 H 0
n 
 A0

n;

where the only nontrivial inclusion is H 0
n 
 A0

n. Let g 2 S2n; let f 2 F2n be such
that �.g/ D �.f /. Since F2n 
 S2nC2 
 S3n,

gf �1 2 S6n \ Exp.G/:

On the other hand, by (5.1),

S6n \ Exp.G/ 
 T 2bexp.6ˇn/c:
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Therefore, for every n 2 N�,

H 0
n 
 F2nT

2bexp.6ˇn/cT bexp.˛n/c D F2nT
2bexp.6ˇn/cCbexp.˛n/c:

Hence, choosing ˛ 	 6ˇ C log 2, we have

H 0
n 
 F2nT

2bexp.˛n/c D A0
n;

and we are done. �

6. On embedding of finite trees into uniformly convex Banach spaces

Definition 6.1. A Banach space X is called q-uniformly convex (q > 0) if there
is a constant a > 0 such that for any two points x, y in the unit sphere satisfying
kx � yk 	 ", we have ����x C y

2

���� � 1 � a"q:

Note that by a theorem of Pisier [Pis], every uniformly convex Banach space is
isomorphic to some q-uniformly convex Banach space.

In this section, we prove that the compression of a Lipschitz embedding of a finite
binary rooted tree into a q-uniformly convex spaceX always satisfies condition .Cq/.
Theorem 4 follows from the fact that an Lp-space is maxfp; 2g-uniformly convex.

Theorem 6.2. Let TJ be the binary rooted tree of depth J and let 1 < q < 1. Let
F be a 1-Lipschitz map from TJ to some q-uniformly convex Banach space X and
let � be the compression of F . Then there exists C D C.q/ < 1 such that

Z 2J

1

�
�.t/

t

�q dt

t
� C: (6.1)

Corollary 6.3. Let F be any uniform embedding of the 3-regular tree T into some
q-uniformly convex Banach space. Then the compression � of F satisfies Condi-
tion .Cq/. �

As a corollary, we also reobtain the theorem of Bourgain.

Corollary 6.4 ([Bou], Theorem 1). With the notation of Theorem 6.2, there exists at
least two vertices x and y in TJ such that

kF.x/ � F.y/k
d.x; y/

�
�
C

logJ

�1=q

:
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Proof. For every 1 � t � 2J , there exist z; z0 2 TJ , d.z; z0/ 	 t such that:

�.t/

t
D kF.z/ � F.z0/k

t
	 kF.z/ � F.z0/k

d.z; z0/
:

Therefore

min
z¤z02TJ

kF.z/ � F.z0/k
d.z; z0/

� min
1�u�2J

�.u/

u
:

But by (6.1)

�
min

1�u�2J

�.u/

u

�q Z 2J

1

1

t
dt �

Z 2J

1

�
�.t/

t

�q dt

t
� C:

We then have

min
z¤z02TJ

kF.z/ � F.z0/k
d.z; z0/

�
�
C

logJ

�1=q

:
�

Proof of Theorem 6.2. Since the proof follows closely the proof of Theorem 1
in [Bou], we keep the same notation to allow the reader to compare them. For
j D 1; 2; : : : , denote�j D f�1; 1gj and Tj D S

j 0�j �j 0 . Thus Tj is the finite tree
with depth j . Denote d the tree-distance on Tj .

Lemma 6.5 ([Pis], Proposition 2.4). There exists C D C.q/ < 1 such that if
.
s/s2N is an X -valued martingale on some probability space �, then

X
s

k
sC1 � 
skq
q � C sup

s
k
skq

q (6.2)

where k kq stands for the norm in Lq
X .�/.

Lemma 6.5 is used to prove

Lemma 6.6. If x1; : : : ; xJ , with J D 2r , is a finite system of vectors in X , then

rX
sD1

2�qs min
2s<j �J �2s

k2xj � xj �2s � xj C2s kq � C sup
1�j �J �1

kxj C1 � xj kq: (6.3)

Denote D0 
 D1 
 � � � 
 Dr the algebras of intervals on Œ0; 1� obtained by
successive dyadic refinements. Define the X -valued function


 D
X

1�j �J �1

1
Œ j

J ; j C1
J Œ

.xj C1 � xj /
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and consider expectations 
s D E Œ
jDs� for s D 1; : : : ; r . Since 
s form a martingale
ranging in X , it satisfies inequality (6.2). On the other hand

k
sC1 � 
skq
q D 2�rCs2qs

rX
1<t�2r�s

2�qsk2xt2s � x.t�1/2s � x.tC1/2s kq

� 2�qs min
2s<j �J �2s

k2xj � xj �2s � xj C2s kq:

So (6.3) follows from the fact that

k
skq
q � k
sC1 � 
skq1 D sup

j

kxj C1 � xj kq: �

Lemma 6.7. If f1; : : : ; fJ , with J D 2r , is a finite system of functions in L1
X .�/.

Then

rX
sD1

2�qs min
2s<j �J �2s

k2fj � fj �2s � fj C2s kq � C sup
1�j �J �1

kfj C1 � fj kq1: (6.4)

Proof. Replace X by Lq
X .�/, for which (6.2) remains valid, and use (6.3). �

Lemma 6.8. Let f1; : : : ; fJ , with J D 2r , be a sequence of functions on f1;�1gJ

where fj only depends on "1; : : : ; "j . Then

rX
sD1

2�qs min
2s<j �J �2s

� Z
�j ��2s ��2s

kfj C2s ."; ı/ � fj C2s ."; ı0/kqd"dıdı0
�

� 2qC sup
1�j �J �1

kfj C1 � fj kq1:

Proof. For every d < j � J � d , using the triangle inequality, we obtain

k2fj � fj �d � fj Cd kq
q D

Z
�j ��d

k2fj � fj �d � fj Cd kqd"dı

	 2�q

Z
�j ��d ��d

kfj C2s ."; ı/ � fj C2s ."; ı0/kqd"dıdı0:

The lemma then follows from (6.4). �

Now, let us prove Theorem 6.2. Fix J and consider a 1-Lipschitz map F W TJ !
X . Apply Lemma 6.8 to the functions f1; : : : ; fJ defined by

8˛ 2 �j ; fj .˛/ D F.˛/:
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By definition of the compression, we have

�
�
d

�
."; ı/; ."; ı0/

�� � kfj C2s ."; ı/ � fj C2s ."; ı0/k (6.5)

where " 2 �j and ı; ı0 2 �2s .
But, on the other hand, with probability 1=2, we have

d
�
."; ı/; ."; ı0/

� D 2:2s:

So combining this with Lemma 6.8, (6.5) and with the fact that F is 1-Lipschitz, we
obtain

rX
sD1

2�qs�.2s/q � 2qC1C

But since � is decreasing, we have

2�qs�.2s/q 	 2�q�1

Z 2s

2s�1C1

1

t

�
�.t/

t

�q

dt:

So (6.1) follows. �

7. Applications and further results

7.1. Hilbert compression, volume growth and random walks. LetG be a locally
compact group generated by a symmetric compact subset S containing 1. Let us
denote V.n/ D �.Sn/ and S.n/ D V.nC 1/ � V.n/ D �.SnC1 X Sn/. Extend V
as a piecewise linear function on RC such that V 0.t/ D S.n/ for t 2�n; nC 1Œ.

Proposition 7.1. Let G be a compactly generated locally compact group. For any
2 � p < 1,

JG;p.t/ � t

logV.t/
:

Proof. For every n 2 N, define

k.n/ D supfk; V .n � k/ 	 V.n/=2g
and

j.n/ D sup
1�j �n

k.j /:

For every positive integer l � n=j.n/,

V.n/ 	 2lV.n � lj.n//:
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Hence, as V.0/ D 1,
V.n/ 	 2n=.j.n/C1/:

Thus, there is a constant c > 0 such that

j.n/ 	 cn

logV.n/
:

Let qn � n be such that j.n/ D k.qn/. Now define

'n D
qn�1X
kD1

1B.1;k/:

Note that the subsets SB.1; k/ M B.1; k/ D B.1; k C 1/ X B.1; k/, for k 2 N, are
piecewise disjoint. Thus, an easy computation shows that

kzr'nkp � V.qn/
1=p:

On the other hand

k'nkp 	 j.n/V .qn � j.n//1=p 	 cn

logV.n/
.V .qn/=2/

1=p:

Since J b
G;p.n/ 	 k'nkp=kzr'nkp , we conclude that J b

G;p.n/ 
 n= logV.n/. �

Now, consider a symmetric probability measure � on a finitely generated group
G, supported by a finite generating subset S . Given an element ' of `2.G/, a simple
calculation shows that

1

2

“
j'.sx/ � '.x/j2d�.2/.s/d�.x/ D

Z
.' � �.2/ � '/'d� D k'k2

2 � k� � 'k2
2

where � denotes the counting measure on G. Let us introduce a (left) gradient on G
associated to �. Let ' be a function on G; define

j zr'j22.g/ D
Z

j'.sg/ � '.g/j2d�.2/.s/:

This gradient satisfies

kjzr'j2k2
2 D 2.k'k2

2 � k� � 'k2
2/:

We have
�.S/�1=2j zr'j2 � jzr'j � jzr'j2:

Proposition 7.2. Assume that �.n/.1/ 
 e�C nb
for some b < 1. Then

J b
G;2.t/ 
 Ct1�b:
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Proof. Let us prove that there exists a constant C 0 < 1 such that for every n 2 N,
there exists n � k � 2n such that

k jzr�.2k/j2 k2
2

k �.2k/ k2
2

� C 0nb�1:

Since �.2k/ is supported in S2k 
 S4n, this will prove the proposition. Let Cn be
such that for every n � q � 2n,

k jzr�.2q/j2 k2
2

k �.2q/ k2
2

	 Cnn
b�1:

Since the function defined by  .q/ Dk �.2q/ k2
2 satisfies

 .q C 1/ �  .q/ D �1
2

k jzr�.2q/j2 k2
2;

we can extend  as a piecewise linear function on RC such that

 0.t/ D 1

2
k jzr�.2q/j2 k2

2

for every t 2 Œq; q C 1Œ. Then, for every n � t � 2n we have

� 
0.t/
 .t/

	 Cnn
b�1

which integrates in

� log
�
 .2n/

 .n/

�
	 Cnn

b:

Since  .n/ < 1, this implies

 .2n/ � e�Cnnb

:

But on the other hand,

 .2n/ 	k �.4n/ k2
2	 �.8n/.1/ 	 e�8C nb

:

So Cn � 8C . �

7.2. A direct construction to embed trees. Here, we propose to show that the
method used in [Bou], [GK], [BrSo] to embed trees inLp-spaces can also be exploited
to obtain optimal estimates (i.e. a converse to Theorem 6.2). Moreover, no hypothesis
of local finitude is required for this construction.
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Theorem 7.3. Let T be a simplicial tree. For every increasing function f W RC !
RC satisfying, for 1 � p < 1 Z 1

1

�
f .t/

t

�p dt

t
< 1; (Cp)

there exists a uniform embedding F of T into `p.T / with compression � 
 f .

Proof. Let us start with a lemma.

Lemma 7.4. For every nonnegative sequence .
n/ such thatX
n

j
nC1 � 
njp < 1;

there exists a Lipschitz map F W T ! `p.T / whose compression � satisfies

8n 2 N; �.n/ 	
� nX

j D0



p
j

�1=p

:

Proof. The following construction is a generalization of those carried out in [GK] and
[BrSo]. Fix a vertex o. For every y 2 T , denote ıy the element of `p.T / that takes
value 1 on y and 0 elsewhere. Let x be a vertex of T and let x0 D x; x1; : : : ; xl D o

be the minimal path joining x to o. Define

F.x/ D
lX

iD1


iıxi
:

To prove that F is Lipschitz, it suffices to prove that kF.x/ � F.y/kp is bounded
for neighbor vertices in T . So let x and y be neighbor vertices in T such that
d.o; y/ D d.x; o/C 1 D l C 1. We have

kF.y/ � F.x/kp
p � 


p
0 C

lX
j D0

j
nC1 � 
njp:

On the other hand, let x and y be two vertices in T . Let z be the last common vertex
of the two geodesic paths joining o to x and y. We have

d.x; y/ D d.x; z/C d.z; y/

and

kF.x/ � F.y/kp
p D kF.x/ � F.z/kp

p C kF.z/ � F.y/kp
p

	 maxfkF.x/ � F.z/kp
p ; kF.z/ � F.y/kp

p g:
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Let k D d.z; x/; we have

kF.x/ � F.z/kp
p 	

kX
j D0



p
j ;

which proves the lemma. �

Now, let us prove the theorem. Define .
j / by


0 D 
1 D 0I

8j 	 1; 
j C1 � 
j D 1

j p

f .j /

j

and consider the associated Lipschitz map F from T to `p.T /. Clearly, we haveX
j
nC1 � 
njp < 1

and

nX
j D0



p
j 	

nX
j DŒn=2�

� j �1X
kD0

j
kC1 � 
kj
�p 	 n=2

� Œn=2��1X
kD0

j
kC1 � 
kj
�p 	 cf .Œn=2�/

using the fact that f is nondecreasing. So the theorem now follows from the lemma.
�

7.3. Cocycles with lacunar compression

Proposition 7.5. For any increasing sublinear function h W RC ! RC and every
2 � p < 1, there exists a function f satisfying .Cp/, a constant c > 0 and an
increasing sequence of integers .ni / such that

8i 2 N; f .ni / 	 ch.ni /:

Proof. Choose a sequence .ni / such that

X
i2N

�
h.ni /

ni

�p

< 1

Define
8i 2 N; ni � t < niC1; f .t/ D h.ni /

We haveZ 1

1

1

t

�
f .t/

t

�p

dt �
X

i

.h.ni //
p

Z niC1

ni

dt

tpC1
� .p C 1/

X
i

�
h.ni /

ni

�p

< 1

So we are done. �
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7.4. The case of Z o Z. The proof of Theorem 17 follows from Proposition 3.5 and
from the following observation.

Proposition 7.6. For all 1 � p < 1, the maximal `p-compression function of the
group G D Z o Z satisfies

M�G;p.t/ 
 tp=.2p�1/:

Proof. Denote by � the projection Z o Z ! C2 o Z. Fix two word lengths on Z o Z
and C2 o Z, which for simplicity, we will both denote by jgj.

Consider the unique cocycle b W ZoZ ! `p.Z/which extends the natural injective
morphism Z.Z/ ! `p.Z/. For any g D .k; u/ 2 Z o Z D Z Ë Z.Z/, we therefore
have kb.g/k D kukp . Taking the `p-direct sum of this cocycle with every cocycle
of Z o Z factorizing through � , and since M�C2oZ;p.t/ � t , we obtain

M�ZoZ;p.t/ 
 inf
g2ZoZ; jgj�t

maxfjp.g/j; kb.g/kg: (7.1)

Up to multiplicative constants, (see [Par], Theorem 1.2), the word length of an
element g D .k; u/ 2 Z o Z is given by

L.	/C
X
h2Z

ju.h/j D L.	/C kuk1;

whereL.	/ is the length of a shortest path 	 from 0 tok passing through every element
of the support of u. Similarly, jp.g/j � L.	/C jSupp.u/j. Hence by (7.1), we can
assume that L.	/ � jgj=2, so that kuk1 	 jgj=2. By Hölder’s inequality, we have
kuk1 � kukpjSupp.u/j1�1=p , which is less than a constant times kb.g/kjp.g/j1�1=p .
Therefore

M�ZoZ;p.t/ 
 inf
g2ZoZ; jgj�t

max
˚jp.g/j; jgj=jp.g/j1�1=p

	
;

which immediately implies the proposition. �

7.5. H-metric. LetG be a locally compact, compactly generated group and let S be
a compact symmetric generating set. A Hilbert length function is a length function
associated to some Hilbert 1-cocycle b, i.e.L.g/ D kb.g/k. Consider the supremum
of all Hilbert length functions on G, bounded by 1 on S : it defines a length function
on G which in general is no longer a Hilbert length function. This length function
has been introduced by Cornulier [C], § 2.6, who called the corresponding metric
“H-metric”. Observe that if the group G satisfies M�G;2.t/ � t , then the H-metric
of G is quasi-isometric to the word length. As a consequence of Theorem 5.1 and
Proposition 4.5, we get

Proposition 7.7. For every group in the class .L/, the H-metric is quasi-isometric
to the word length.
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