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Abstract. We adapt the theory of currents in metric spaces, as developed by the first-mentioned
author in collaboration with B. Kirchheim, to currents with coefficients in Zp . We obtain
isoperimetric inequalities mod.p/ in Banach spaces and we apply these inequalities to provide a
proof of Gromov’s filling radius inequality which applies also to nonorientable manifolds. With
this goal in mind, we use the Ekeland principle to provide quasi-minimizers of the mass mod.p/

in the homology class, and use the isoperimetric inequality to give lower bounds on the growth
of their mass in balls.
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Our aim is the extension of the theory of rectifiable currents in metric and infinite-
dimensional Banach spaces to the case of coefficients in Zp . Such an extension can
be applied to give transparent proofs of Gromov’s filling radius and filling volume
inequalities which apply to nonorientable manifolds, as well.

1. Current history

Following the classical paper by H. Federer and W. Fleming [21], as well as Federer’s
treatise [20] on the theory of currents, in the last few years the theory has undergone
two important developments:

– B. White’s theory [46], inspired by Fleming’s paper [23], of rectifiable flat chains
with coefficients in a general group, in Euclidean spaces;

– the theory developed by the first author and B. Kirchheim in [3], and inspired
by E. De Giorgi [13], of real and integer rectifiable currents in general metric
spaces.

�M. G. Katz was supported by the Israel Science Foundation (grant no. 1294/06).
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A unified picture (general coefficients in general spaces) seemed to be still miss-
ing, but after the completion of this paper we learned of the paper by T. De Pauw and
R. Hardt [16] and the earlier paper by T. Adams [1], developed in the same spirit of
the Fleming–White theory (but with no discussion of isoperimetric inequalities). An-
other valuable contribution to the literature came even more recently with S. Wenger’s
papers [44], [45] on the isoperimetric inequalities. The classical approach [21] to
proving these inequalities in arbitrary dimension and codimension goes back to the
deformation theorem. A different technique was introduced by M. Gromov [24] and
fully exploited in [3]. It is based on the fact that, in finite-dimensional spaces, one can
prove isoperimetric inequalities independent not only of the codimension, but also of
the norm in the space. Such a technique allows one to prove the inequality in suit-
able metric spaces and in infinite-dimensional spaces, provided a finite-dimensional
approximation scheme exists.

Wenger [44] introduced a new “global” technique, based on covering arguments
and independent of deformation theorems and finite-dimensional schemes. His tech-
nique allows one to treat also the case of Banach spaces to which the results in [3] do
not apply. White’s isoperimetric inequality [48] applies to chains in finite-dimensional
Banach spaces with coefficients in general groups. However, White’s inequality is
based on the deformation theorem in the corresponding Euclidean space, and there-
fore does not provide universal constants depending only on the dimension of the
chain.

In the present text, we follow the approach of [20] (see also W. Ziemer [49]
for the case p D 2, still in Euclidean space) to achieve an extension of the metric
theory of [3] to currents with coefficients in Zp: the initial idea is simply to identify
currents which differ by pT , with T integer rectifiable. But then, since we want
this equivalence to be stable under the action of the boundary operator, it turns out
that larger equivalence classes and a suitable topology (induced by the so-called flat
distances) are needed. In any case, our currents arise as quotient classes ŒT � of
currents T akin to those considered in [3], which extend to general spaces those of
the Federer–Fleming theory.

In the simplest case p D 2, it is well-known that one can use currents mod-
ulo 2 to describe possibly nonorientable manifolds. In particular, we will prove
in Theorem 13.1 that to any compact n-dimensional Riemannian manifold without
boundary M one can associate a canonical equivalence class�

ŒŒM ��
�

(notice that the current ŒŒM �� itself is by no means canonical) whose boundary is zero,
still mod.2/. In particular, after embedding M in a linear space, we can consider
chains whose boundary mod.2/ coincides with the image of ŒŒM ��.
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2. Gromov’s inequalities

A quarter century ago, M. Gromov [24] initiated the modern period in systolic ge-
ometry by proving a curvature-free 1-systolic lower bound for the total volume of an
essential Riemannian manifold M of dimension n. Recall that the 1-systole, denoted
“Sys”, of a space is the least length of a loop that cannot be contracted to a point in
the space. Here the term “curvature-free” refers to a bound independent of curvature
invariants, with a constant depending on the dimension of M (and possibly on the
topology of M ), but not on its geometry. Such a bound is given by the inequality
between the leftmost and the rightmost terms in (2.2) below, and can be thought of
as a far-reaching generalisation of Loewner’s classical torus inequality

Sys2 � 2p
3

Area; (2.1)

satisfied by every metric on the 2-torus, cf. [42]. It is conjectured that the bound (2.1)
is satisfied by every surface of negative Euler characteristic, see [30] for a detailed
discussion. Recent publications in systolic geometry include [5], [8], [9], [10], [11],
[19], [30], [35], [36], [43], [27], [31], [26].

The main ingredient in the proof of the inequality is Gromov’s filling inequality.
There is a certain amount of confusion in the literature as to what constitutes Gromov’s
“filling inequality”. Gromov actually proved several inequalities:

– an inequality relating the filling radius and the volume. It is this inequality that’s
immediately relevant to Gromov’s systolic inequality;

– the inequality between the filling volume (an .nC1/-dimensional invariant) and
the volume (n-dimensional invariant) of M . Such an inequality can be more
appropriately referred to as an isoperimetric inequality.

Marcel Berger performed a great deal of propaganda for systolic geometry (see
most recently [7], [8]). The success of the field is certainly due to his efforts. In one
of his popularisation talks, he presented the following string of three inequalities:

Sys � 6 Fillrad � Const � FillVol1=.nC1/ � Const � Vol1=n: (2.2)

(Here the last inequality corresponds to the isoperimetric inequality, while the first
one is sharp [33].) Berger’s presentation was intended for pedagogic purposes, but
eventually led to a slight confusion. Namely, this string of inequalities gave the
impression that the proof breaks up into three stages, each requiring separate treat-
ment. In reality, the last two inequalities are proved simultaneously. The technique
is essentially a more precise version of Federer–Fleming’s deformation theorem.

As a matter of fact, proving the isoperimetric inequality alone does not directly
lead to any simplification of the proof. Consider, for example, the familiar picture
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of the pseudosphere in R3, with a cusp along an asymptote given by the z-axis. We
think of it as a “filling” of the unit circle in the .x; y/-plane. Alternatively, truncate
the pseudosphere at large height z D H , to obtain a filling which is topologically a
disk. One immediately realizes that the filling volume stays uniformly bounded, but
the filling radius (with respect to this particular filling) tends to infinity.

Gromov’s original proof starts by imbedding the manifold M into the space
L1.M/ of bounded Borel functions on M . Here a point x 2 M is sent to the
function fx defined by

fx.y/ D dist.x; y/; (2.3)

where “dist” is the Riemannian distance function in M . The fact that the space L1.M/

is infinite-dimensional has given some readers the impression that infinite-dimen-
sionality of the imbedding is an essential aspect of Gromov’s proof of the systolic
inequality. In fact, this is not the case. Indeed, we can choose a maximal �-net N � M

with jN j < 1 points. We choose � satisfying � < 1
10

Sys.M/. This results in an
imbedding

M ! `1.N / (2.4)

where the systole goes down by a factor at most 5, see [34], p. 97. Thus the systolic
problem can easily be reduced to finite-dimensional imbeddings. Similarly, by choos-
ing a sufficiently fine �-net, one can force the map (2.4) to be .1 C �/–bi-Lipschitz,
for all � > 0 (see [31] and Proposition 5.1 below). Hence finite-dimensional approx-
imations work well for our filling radius, as well, provided the estimates one proves
are independent of N .

Gromov’s original proof is difficult (a recent generalisation is provided by L. Guth
in [25]; see also [26] and [32]). Only the experts possess a complete understanding
of the proof. It would thus be desirable to write down a detailed proof of Gromov’s
influential theorem, and to sort out some of the confusion in the literature.

3. Summary of main results

In Section 6, we introduce flat currents and flat currents modulo p, following the
traditional procedure in [49], [20]. The only difference is that the initial objects
we complete with respect to the flat topology are the currents of [3], whose main
properties are recalled in the appendix. Then, we see that in this class a slice operator

ŒT � 7! hŒT �; u; ri
and a boundary operator ŒT � 7! @ŒT � are well defined. This allows us to state a
list of properties that a suitable class of currents, together with a suitable notion of
mass, should satisfy, as in [45], in order to obtain the isoperimetric inequality. The
idea is to start from the 1-dimensional isoperimetric inequality, which needs to be
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directly checked, and then make a bootstrap argument based on a clever covering
argument. Actually, as in [44], we use the covering argument even to establish the
1-dimensional isoperimetric inequality (trivial in the case of Lipschitz images of 1-
dimensional simplexes considered in [45], but not trivial in our case). Then, we show
in Section 5 and Section 6 that our class of currents, together with a suitable notion
of p-mass, denoted by Mp , do satisfy the list of properties, so that an isoperimetric
inequality holds in this class.

Definition 3.1. The filling radius

r.ŒL�; M/

of a n-dimensional cycle mod.2/ in a space M is the infimum of the numbers r > 0

such that, for all Banach spaces F and all isometric embedding i of M into F there
exists an .n C 1/ current ŒT � mod.2/ in F such that @ŒT � D i]ŒL� and the support
of ŒT � is contained in the r-neighbourhood of the support of i]ŒL�.

Of course this definition makes sense only specifying the cycles we are dealing
with: they are equivalence classes mod.2/ of currents L 2 �n.E/ whose boundary
is zero, still mod.2/. Analogously, the admissible fillings T are equivalence classes
mod.2/ of currents in �nC1.E/ whose boundary is equivalent mod.2/ to L (see
Section 10 for a precise definition of the additive group �n.E/ of integer rectifiable
n-currents in E).

One of the main result of our paper, achieved as a particular case of our Theo-
rem 11.1 below, is the universal upper bound

r.ŒL�; M/ � c.n/
�
M2.ŒL�/

�1=n
:

When M is a compact Riemannian manifold without boundary, applying this result
to the canonical n-cycle ŒL� D �

ŒŒM ��
�

in M and setting

r.M/ D r
�
M;

�
ŒŒM ��

��
(3.1)

we obtain the following result.

Theorem 3.2. For any compact n-dimensional Riemannian manifold without bound-
ary the universal upper bound r.M/ � c.n/ŒVol.M/�1=n holds.

Remark 3.3. Up to the proof of the isoperimetric inequalities no completeness of our
spaces of currents is really needed (closure under the action of the slicing operator
suffices). However, the proof of the universal upper bound seems really to require
some form of completeness, and justifies the whole mathematical apparatus developed
in this paper (however, we left out many mathematical questions concerning currents
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with coefficients in Zp that we plan to investigate in the forthcoming paper [4]). In
order to prove our result we use as in [3] the Ekeland principle (valid in complete
metric spaces, see Section 12 for a precise statement) to find “quasi-minimizers” of
the Mp-mass in the homology class

fŒT � W @ŒT � D i]ŒL�g
and prove, using the isoperimetric inequality, that any such minimizer has support
close to the support of i]ŒL�. Notice also that the same argument, based on the
isoperimetric inequalities, applies to orientable manifolds: in this case the filling
radius invariant (possibly a larger one) could also be defined using the currents in [3]
and no quotient mod.p/ is needed.

4. Filling radius and systole

The invariant defined in (3.1) is related to the systole by means of the following
inequality of Gromov’s [24], which turns out to be sharp [33]. Recall that a closed
manifold M is called essential if it admits a continuous map an Eilenberg–MacLane
space K.�; 1/ such that the induced homomorphism in top-dimensional homology
sends the fundamental homology class of M to a nonzero class.

Theorem 4.1 (M. Gromov). Every essential M satisfies r.M/ � 1
6

Sys.M/.

Proof. The idea of Gromov’s proof is to build a retraction skeleton-by-skeleton.
We will outline the essential idea of the argument first, so as not to overburden the
presentation with technical details, which will be explained later.

By a strongly isometric imbedding we mean an imbedding of metric spaces
M ! V such that the instrinsic distance in M coincides with the ambient distance
in V among points of M .

We can assume without loss of generality that a piecewise linear strongly isometric
(up to epsilon) imbedding M ! `1 satisfies dim.`1/ < 1 (see Remark 4.3 and
Proposition 5.1). If 6r.M/ < Sys, we set

� D 1

10
.Sys � 6r.M//: (4.1)

Consider a triangulation, extending that of (the image of) M , of `1 so each simplex
has diameter at most �. If C is a current with support in the neighborhood UrM ,
let Cfat be the union of all simplices meeting the support of C . Then Cfat lies in
the .r C �/-neighborhood of M . Let

C
.k/
fat � Cfat
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be its k-skeleton. A map
f .0/ W C

.0/
fat ! M

on the 0-skeleton is constructed by sending each vertex to a nearest point of M . Next,
we extend f .0/ to a map

f .1/ W C
.1/
fat ! M

by sending each edge to a shortest path joining the images of its endpoints under f .0/,
in such a way that f .1/ is the identity on each edge contained in M itself (here we
are assuming that the edges of the triangulation of M are minimizing paths). Since
the distances in M coincide with the ambient distances in `1, each edge of C

.1/
fat is

mapped to a path of length at most .r C �/ C � C .r C �/ D 2r C 3�. Next, given
a 2-simplex abc in C

.2/
fat , note that its boundary is mapped to a loop Labc of length

at most
3.2r C 3�/ D 6r C 9� < Sys;

by (4.1), and hence Labc is contractible by definition of the systole. We can therefore
extend f .1/ to a map

f .2/ W C
.2/
fat ! M

whose restriction to the intersection M .2/ \ Cfat is the identity. Every essential
manifold M (see [24]) by definition admits a classifying map

g W M ! B�

to the classifying space B� D K.�; 1/, such that

� � D �1.M/;

� �i .B�/ D 0 for i � 2,

� g�.ŒM �/ 6D 0, where ŒM � is the fundamental class.

Therefore the composed map

g B f .2/ W C
.2/
fat ! B�

extends to a map

h W Cfat ! B�

in such a way that h coincides with g on M � C
.2/
fat (see Lemma 4.2 for a more

detailed statement in the simplicial category). Since

h�.ŒM �/ D g�.ŒM �/ 6D 0;

we conclude that the neighborhood Cfat cannot contain a current filling M , proving
the inequality. �
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The proof above is formulated in the category of continuous maps, which is
the most convenient one in the context of classifying spaces. On the other hand, a
simplicial approximation can easily be constructed if one works with finite skeleta of
the classifying space. The following essential lemma is standard.

Lemma 4.2. Consider finite dimensional simplicial complexes M , Y , Z, where
M � Y is a subcomplex, dim.Y / D N , andg W M ! Z is continuous and simplicial,
where �i .Z/ D 0 for i D 2; : : : ; N � 1. Then given a simplicial map f .2/ W Y .2/ !
M which is the identity on M .2/, the composition g B f .2/ extends to a simplicial
map h W Y ! Z whose restriction to M � Y satisfies hjM D g.

Remark 4.3. Let N be a maximal �-net in M , and consider the finite dimensional
imbedding � W M ! `1.N / whose coordinate functions are the distance functions fp

from points p 2 N . The imbedding is not quite strongly isometric, since d.p; q/ D
kfp � fqk but the functions fp and fq only occur as coordinates in `1 if p, q belong
to the net. However, choosing nearby points p0, q0 of the maximal net, we obtain by
the triangle inequality

d.p; q/ � d.p0; q0/ C 2� D kfp0
� fq0

k C 2� � k�.p/ � �.q/k C 4�:

Thus upper bounds on distances in `1 entail upper bounds on intrinsic distances
in M , up to arbitrarily small error. A more detailed discussion may be found in
Proposition 5.1.

Remark 4.4 (Gromov’s scheme). Gromov’s scheme, outlined in Berger [6], p. 298,
is to fill a manifold M D M d in `1 by a minimal .d C 1/-submanifold N . Next, N

contains a point x at distance at least r from each point of M . Since N is minimal,
the volume of the distance spheres from x grows sufficiently fast. Finally, the total
volume of N is at least that of a ball of radius r in N , hence at least a constant
times rdC1. But Vol.M/ � Const � Vold=dC1.N / by the isoperimetric inequality
for minimal submanifolds (with boundary) in `1. Combined with the inequality of
Theorem 4.1, this would complete the proof of Gromov’s systolic inequality.

Of course, lacking a completeness result, no notion of minimal submanifold in
Banach space was available at the time, which accounts in part for the complications
in Gromov’s original proof [24]. In some sense, the scheme outlined by Berger is
made rigorous in the present text, where we do have completeness, cf. Remark 3.3.

5. Approximation by finite-dimensional imbeddings

Proposition 5.1. Let M be a compact Riemannian manifold without boundary. For
every " > 0, there exists a .1 C "/–bi-Lipschitz finite-dimensional imbedding of M ,
approximating its isometric imbedding in L1.M/.
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Proof. For each n 2 N, choose a maximal 1
n

-separated net

Mn � M;

and imbed M in `1 by the distance functions from the points in the net by the
1-Lipschitz map

�n W M ! `1.Mn/: (5.1)

If there exists a real " > 0 such that the inverse of �n is not .1 � "/�1–Lipschitz, then
there is a pair of points xn; yn 2 M such that the distance d.xn; yn/ satisfies

j�n.xn/ � �n.yn/j � .1 � "/d.xn; yn/; (5.2)

meaning

jd.xn; z/ � d.yn; z/j � .1 � "/d.xn; yn/ for all z 2 Mn: (5.3)

Since M is compact, we can assume with no loss of generality that xn ! x and
yn ! y, and if x ¤ y we can contradict (5.3) by choosing zn 2 Mn at distance less
than 1=n from x and n large enough. So, x D y and we denote sn D d.xn; yn/ ! 0.

Since M is compact and locally bi-Lipschitz to an Euclidean space (with Lipschitz
constant close to 1 provided we choose sufficiently small neighbourhoods), for any
ı > 0 we can find Nb > 0 such that all (geodesic) triangles in M with side lengths less
than Nb have sum of the internal angles less 2� C ı; we choose ı in such a way that
1 � "=2 < cos ı and we assume with no loss of generality that Nb � InjRad.M/.

Let vn 2 Txn
M be the unit vector such that yn D expxn

.snvn/, set qn WD
expxn

.1
2

Nbvn/ and denote by an 2 Mn a point of the maximal net nearest to qn.
Denoting by ˛n be the angle at xn of the geodesic triangle having an, yn, xn as
vertices,

˛n WD † anxnyn;

we have the Taylor expansion

d.an; expxn
.svn// D d.an; xn/ � s cos ˛n C s!n.s/ (5.4)

where, thanks to the smoothness of d in both variables, supn j!n.s/j is infinitesimal
as s # 0. We claim that ˛n < ı for n large enough; indeed, the angle at yn in the
geodesic triangle having an, yn, qn as vertices tends to 0 because the length of the
side from qn to an tends to 0, while the length of the other two sides does not. As
a consequence the angle at yn in the geodesic triangle having an, yn, xn as vertices
tends to � . Since all sides of the latter triangle are shorter than Nb for n large enough,
our choice of Nb ensures that the angle ˛n is less than ı for n large enough. Putting
s D sn in (5.4) we get

jd.an; yn/ � d.an; xn/j D sn cos ˛n C o.sn/ > .1 � "=2/sn C sn!n.sn/

D .1 � "=2/sn C o.sn/

contradicting (5.3) for n large. �
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6. Preliminary definitions

Let .E; dE / be a metric space and k � 0 integer. We assume, since this suffices for
our purposes, that .E; dE / is separable; this assumption is needed to avoid subtle
measurability problems (assuming that the cardinality of E is an Ulam number this
assumption could be avoided, see [20], 2.1.6, and Lemma 2.9 in [3]). We use the
standard notation Br.x/ for the open balls in E, Lip.E/ for the space of Lipschitz
real-valued functions, relative to dE , and Lipb.E/ for bounded Lipschitz functions.

We consider, as in [3], the space MFk.E/ of k-dimensional currents in E. We
denote by M.T / the mass of T 2 MFk.E/, possibly infinite. We recall the basic
definitions of mass, support, push-forward, restriction, boundary in the appendix.

Spaces of currents in E are defined as in [3], with the same notation, we will
only use �k.E/ (integer rectifiable currents with finite mass) and Ik.E/ (currents in
�k.E/ whose boundary belongs to �k�1.E/), see Section 10. In the sequel p � 2 is
a given integer.

6.1. Flat integer currents. We shall denote by Fk.E/ the currents in MFk.E/ that
can by written as R C @S with R 2 �k.E/ and S 2 �kC1.E/. It is obviously an
additive (Abelian) group and

T 2 Fk.E/ H) @T 2 Fk�1.E/: (6.1)

Fk.E/ is a metric space when endowed with the distance d.T1; T2/ D F .T1 � T2/,
where

F .T / WD inf fM.R/ C M.S/ W R 2 �k.E/; S 2 �kC1.E/; T D R C @Sg :

The subadditivity of F , namely F .nT / � nF .T /, ensures that d is a distance,
and the completeness of the groups �k.E/, when endowed with the mass norm,
ensures that Fk.E/ is complete. Also, whenever Ik.E/ is dense in �k.E/ (see
Proposition 14.7 for sufficient conditions), the subset

fR C @S W R 2 Ik.E/; S 2 IkC1.E/g � Ik.E/

is dense in Fk.E/. For the special class of currents T in Fk.E/ with finite mass the
density result can be strengthened: indeed, if T D Ti C Ri C @Si with Ti 2 Ik.E/,
Ri 2 �k.E/, Si 2 �kC1.E/ and M.Ri / C M.Si / ! 0, then Theorem 10.2 gives
Si 2 IkC1.E/ (because @Si has finite mass) hence Ti C @Si 2 Ik.E/. So, T can be
approximated in the stronger mass norm by the currents Ti C @Si and this yields

fT 2 Fk.E/ W M.T / < 1g D �k.E/: (6.2)

Notice also that

F .@T / � F .T / for all T 2 Fk.E/: (6.3)
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In addition, since @.']S/ D '].@S/ we get

F .']T / � ŒLip.'/�kF .T / (6.4)

for all T 2 Fk.E/, ' 2 Lip.E; Rk/.
It should also be emphasized that the concepts introduced in this section are

sensitive to the ambient space, namely if E embeds isometrically in F then, for
T 2 Fk.E/, F .i]T / can well be strictly smaller than F .T /; the same remark applies
to the Mp mass, built in Section 9. This is not the case for the concepts of mass, a
genuine isometric invariant, see [3].

6.2. Flat distance modulo p. For T 2 Fk.E/ we define

Fp.T / WD inf fF .T � pQ/ W Q 2 Fk.E/g :

The definition of F gives

Fp.T / D inf
˚
M.R/ C M.S/ W T D R C @S C pQ; R 2 �k.E/;

S 2 �kC1.E/; Q 2 Fk.E/
�
:

Furthermore, whenever Ik.E/ is dense Fk.E/, both infima are unchanged if Q runs
in Ik.E/.

Obviously Fp.T / � F .T /, and (6.3) together with (6.1) give

Fp.@T / � Fp.T /; T 2 Fk.E/; (6.5)

while (6.4) gives
Fp.']T / � ŒLip.'/�kFp.T / (6.6)

for all T 2 Fk.E/, ' 2 Lip.E; Rk/.
We now introduce an equivalence relation mod.p/ in Fk.E/, compatible with

the group structure, by saying that T D zT mod.p/ if Fp.T � zT / D 0, and denote
by Fp;k.E/ the quotient group. Clearly T D 0 mod.p/ if T D pQ for some
Q 2 Fk.E/, but the converse implication is not known, not even in Euclidean spaces.

The equivalence classes are closed in Fk.E/ and by (6.5) the boundary operator
can be defined also in the quotient spaces Fp;k.E/ in such a way that

@ŒT � D Œ@T � 2 Fp;k�1.E/ for all T 2 Fk.E/:

The same holds, thanks to (6.6), for the push-forward operator, defined in such a way
to commute with the equivalence relation mod.p/. We emphasize that Fp;k.E/, when
endowed with the distance induced by Fp , is a complete metric space: to see this, let
.ŒTh�/ � Fp;k.E/ be a Cauchy sequence and assume with no loss of generality thatX

h

Fp.ThC1 � Th/ < 1I
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we can find Rh 2 �k.E/, Sh 2 �kC1.E/ and Qh 2 Fk.E/ such that

ThC1 D Th C Rh C @Sh C pQh and
1X

hD1

M.Rh/ C M.Sh/ < 1:

Setting zTh WD Th � p
Ph�1

0 Qh it follows that zTh D Th mod.p/ and since zThC1 �
zTh D Rh C @Sh it follows that . zTh/ is a Cauchy sequence in Fk.E/. Denoting by T

its limit, by the inequality Fp � F we infer ŒTh� D Œ zTh� ! ŒT � in Fp;k.E/.

7. Restriction, slicing

The restriction and slicing operators can be easily extended to the set F �
k

.E/, defined
as the closure in Fk.E/ of currents in Ik.E/, using a completion argument. In the
cases considered in Proposition 14.7, this closure coincides with the whole of Fk.E/

and, in any case, it is easily seen that @ maps F �
k

.E/ into F �
k�1

.E/.
Recall from [3] that, for u 2 Lip.E/ and T having finite mass and boundary of

finite mass, the slice operator hT; u; ri 2 MFk�1.E/ is defined by

hT; u; ri WD @.T fu < rg/ � .@T / fu < rg:
Notice that @hT; u; ri D �h@T; u; ri. It turns out that for L1-a.e. r 2 R hT; u; ri has
finite mass, and

M.hT; u; ri/ � Lip.u/
d

dr
kT k.fu < rg/: (7.1)

Now, let T be with finite mass; since T D RC@S with R 2 �k.E/ and S 2 �kC1.E/

imply that @S has finite mass we can apply the slicing operator to S to obtain

T fu < rg D R fu < rg C .@S/ fu < rg
D R fu < rg C @.S fu < rg/ � hS; u; ri:

Since hS; u; ri belongs to �k.E/ for L1-a.e. r 2 R, thanks to Proposition 10.3, by
integration between m and ` we obtainZ �`

m

F .T fu < rg/ dr �
Z `

m

M.R fu < rg/
C M.S fu < rg/ dr C Lip.u/kSk.fu < `g/

� .` � m/M.R/ C .` � m C Lip.u//M.S/

where
R � denoted the upper integral (we use it to avoid the discussion of the measur-

ability of the map r 7! F .T fu < rg/). Since R and S are arbitrary we getZ �`

m

F .T fu < rg/ dr � .` � m C Lip.u//F .T /: (7.2)
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Now, let T 2 Fk.E/, assume that there exist Tn 2 Fk.E/ with finite mass convergent
to T in Fk.E/ (this surely holds if T 2 F �

k
.E/), with

P
n F .Tn � T / < 1, and let

u 2 Lip.E/. By adding the inequalities (7.2) relative to TnC1 � Tn, and taking into
account the subadditivity of the outer integral and the fact that ` and m are arbitrary,
we obtain that .TnC1 fu < rg/ is a Cauchy sequence in Fk.E/ for L1-a.e. r 2 R.

It follows that for any such T we can define

T fu < rg WD lim
n!1 Tn fu < rg 2 Fk.E/ (7.3)

whenever the limit exists. By construction the operator T 7! T fu < rg is additive
and (7.2) still holds when T 2 Fk.E/. A similar argument shows that this definition
is independent, up to Lebesgue negligible sets, on the chosen approximating sequence
.Tn/, provided the “fast convergence” condition

P
n F .Tn � T / < 1 holds.

Having defined the restriction, the slice operator, mapping currents in F �
k

.E/ into
currents in F �

k�1
.E/, can be again defined by

hT; u; ri WD @.T fu < rg/ � .@T / fu < rg/
whenever the right hand side is defined. We still have the property @hT; u; ri D
�h@T; u; ri.

From (7.2) we immediately getZ �`

m

Fp.T fu < rg/ dr � .` � m C Lip.u//Fp.T /: (7.4)

In particular Fp.T / D 0 implies Fp.T fu < rg/ D 0 for L1-a.e. r 2 R, so that
the restriction operator can also be viewed as an operator in the quotient spaces

F �
p;k.E/ WD fŒT � W T 2 F �

k .E/g;
with the property

ŒT � fu < rg D ŒT fu < rg� for L1-a.e. r 2 R.

Hence, the same holds for the slice operator, satisfying @hŒT �; u; ri D �h@ŒT �; u; ri
and

hŒT �; u; ri D ŒhT; u; ri� for L1-a.e. r 2 R.

8. Isoperimetric inequalities

In this section we discuss the validity of isoperimetric inequalities mod.p/ in suitable
subspaces Cp;k.E/ � F �

p;k
.E/ analogous to those valid in the case of currents with

integer coefficients. We follow, as in [45], an axiomatic approach: we assume the
existence, given these subspaces Cp;k.E/, of a notion of p-mass Mp W Cp;k.E/ ! R
satisfying the following property:
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Definition 8.1 (Additivity). For all ŒT � 2 Cp;k.E/ there exists a � -additive Borel
measure kT kp satisfying

Mp.ŒT � fu < rg/ D kT kp.fu < rg/ for L1-a.e. r 2 R

for all u 2 Lip.E/.

Strictly speaking, we should use the notation kŒT �k to emphasize that the measure
depends only on the equivalence class of T , but we opted for a simpler notation.

Then, we assume that Cp;k.E/ and Mp are well-behaved with respect to the slice
operator, and satisfy the isoperimetric inequality for 1-dimensional currents and the
homogeneous version of the isoperimetric inequality (typically achieved by a simple
cone construction):

(i) For k � 1 the slice operator hŒT �; u; ri maps Cp;k.E/ into Cp;k�1.E/ and

Lip.u/
d

dr
Mp.ŒT � fu < rg/ � Mp.hŒT �; u; ri/ for L1-a.e. r 2 R. (8.1)

(ii) For some constant c� the following holds: for all ŒL� 2 Cp;1.E/ with @ŒL� D 0

and bounded support there exists ŒT � 2 Cp;2.E/ with @ŒT � D ŒL� and

Mp.ŒT �/ � c��
Mp.ŒL�/

�2
:

In addition, if ŒL� is supported in a ball B , we may choose ŒT � supported in the
same ball.

(iii) For some constant ck the following holds: for all ŒL� 2 Cp;k.E/ with @ŒL� D 0

and support contained in a ball with radius R there exists ŒT � 2 Cp;kC1.E/

supported in the same ball with @ŒT � D ŒL� and

Mp.ŒT �/ � ckRMp.ŒL�/:

(iv) For some constant Ak > 0, the following holds: for all ŒT � 2 Cp;k.E/ we have

lim inf
r#0

kT kp.Br.x//

rk
� Ak; kT kp-a.e.

Given these properties, the nice and constructive decomposition argument in [44],
[45] (that we reproduce in part in Theorem 10.6 to prove the initial isoperimetric
inequality (ii)) provides the following result:

Theorem 8.2 (Isoperimetric inequality mod.p/). Assume that E, Cp;k.E/ and Mp

fulfil the additivity property and conditions (i), (ii), (iii), (iv). Then, for k � 1 there
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exist constants �k such that, if ŒL� 2 Cp;k.E/ has bounded support and satisfies
@ŒL� D 0, there exists ŒT � 2 Cp;kC1.E/ with @ŒT � D ŒL� and

Mp.ŒT �/ � �k

�
Mp.ŒL�/

�.kC1/=k
:

For k � 2 the constant �k depends on �k�1, ck , Ak .

Proof. The proof is by induction on k � 1; in order to apply the construction of
[45] one needs to assume inductively that ŒT � can be chosen with support in a ball B

whenever ŒL� is supported in the ball. The case k D 1 being covered by assumption
(i) and the induction step goes exactly as in [45]. �

9. Definition of Mp

For T 2 Fk.E/, its (relaxed) mass modulo p is defined by

Mp.T / WD inf
˚

lim inf
h!1

M.Th/ W Th 2 �k.E/; Fp.Th � T / ! 0
�

(9.1)

with the convention Mp.T / D C1 if no approximating sequence .Th/ with finite
mass exists. If Ik.E/ is dense in �k.E/ in mass norm then, as we already observed,
F �

k
.E/ D Fk.E/ and flat chains with finite mass can be approximated in mass by

currents in Ik.E/. Therefore, under this assumption, the infimum is unchanged is we
require the approximating currents Th to be in Ik.E/.

Obviously Mp � M and Mp. zT / D Mp.T / if Fp. zT � T / D 0; finally, T 7!
Mp.T / is lower semicontinuous with respect to Fp-convergence. Actually, it is easy
to check that Mp is the largest functional, among those bounded above by M, with
all these properties: it follows in particular that Mp.T / � Fp.T /. We can think
of Mp also as a map defined in the quotient groups Fp;k.E/ and we shall not use a
distinguished notation for it.

Theorem 9.1. Assume that E is compact. For all ŒT � 2 Fp;k.E/ with Mp.ŒT �/ < 1
there exists a finite, nonnegative and � -additive Borel measure kT kp such that

Mp.ŒT � fu < rg/ D kT kp.fu < rg/ for L1-a.e. r 2 R (9.2)

for all u 2 Lip.E/.

Proof. Let .Ti / � �k.E/ be such that M.Ti / ! Mp.T / and Fp.Ti � T / ! 0.
Possibly extracting a subsequence we can assume without loss of generality thatX

i

Fp.Ti � T / < 1
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and that kTik weakly converge, in the duality with C.E/, to some finite, nonnegative
and � -additive Borel measure �. Obviously �.E/ D Mp.T / and we claim that �

fulfills (9.2). Indeed, let u 2 Lip.E/ be fixed and let us adopt the notation

R fu > rg
for R f�u < �rg; by (7.4) we infer that for L1-a.e. r 2 R, one has that .Ti fu <

rg/ and .Ti fu > rg/ are Cauchy sequences with respect to Fp and the sum of their
limits is T (indeed, since Th have finite mass,

Th D Th fu < rg C Th fu > rg
with at most countably many exceptions). Then, denoting by T fu < rg and
T fu > rg the respective limits, the lower semicontinuity of Mp gives

Mp.T fu < rg/ � lim inf
i!1 kTik.fu < rg/;

and

Mp.T fu > rg/ � lim inf
i!1 kTik.fu > rg/:

The subadditivity of Mp yields

Mp.T / � Mp.T fu < rg/ C Mp.T fu > rg/
� lim inf

i!1 kTik.fu < rg/ C lim inf
i!1 kTik.fu > rg/

� lim sup
i!1

kTik.fu < rg/ C lim inf
i!1 kTik.fu > rg/

� lim sup
i!1

kTik.E/ D Mp.T /:

It follows that all inequalities are equalities. Hence,

kTik.fu > rg/ ! Mp.T fu > rg/
for L1-a.e. r 2 R. But, thanks to the weak convergence of kTik to �, we have also

kTik.fu > rg/ ! �.fu > rg/
with at most countably many exceptions (corresponding to the numbers r such that
�.fu D rg/ > 0, see for instance [2]), Proposition 1.62 (b). This proves (9.2). �

Using the measure kT kp we can define the support of T 2 F �
p;k

.E/, when T has
finite Mp mass.

Definition 9.2 (Support). Assume that E is compact and that ŒT � 2 F �
p;k

.E/ has
finite Mp mass. We denote by supp ŒT � the support of the measure kT kp , namely
x 2 supp ŒT � if and only if kT kp.Br.x// > 0 for all r > 0.
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10. Definitions of Ip;k.E/

In this section we define classes Ip;k.E/ in such a way that the properties listed in
Section 8 hold with Cp;k.E/ D Ip;k.E/, so that the isoperimetric inequality holds
in Cp;k.E/.

10.1. Currents ŒŒ���. Recall that, for 	 2 L1.Rk/, ŒŒ	 �� 2 MFk.Rk/ is the k-
current in Rk defined by

ŒŒ	 ��.f0 d�1 ^ � � � ^ d�k/ D
Z

Rk
	f0detr� dx:

The change of variables formula for Lipschitz maps immediately gives

f]ŒŒ	 �� D ŒŒ.�	/ B f �1�� (10.1)

whenever f is a Lipschitz and injective map from ff ¤ 0g � Rk to Rk . Here
�.x/ 2 f�1; 1g is the sign of the jacobian determinant of rf .x/ (recall that points x

where �.x/ is not defined, i.e. rf .x/ is singular, are mapped to a Lebesgue negligible
set, and so they are irrelevant).

10.2. Countably H k-rectifiable sets and integer rectifiable currents. Denoting
by H k the Hausdorff k-dimensional measure in E, we recall also that a set S � E is
said to be countably H k-rectifiable if we can find countably many Borel sets Bi � Rk

and Lipschitz maps fi W Bi ! E such that

H k
�
S n S

i fi .Bi /
� D 0:

More precisely, we can also find by an exhaustion argument compact sets Ki � Rk

and Lipschitz maps fi W Ki ! E such that fi .Ki / are pairwise disjoint and
H k.S n S

i fi .Ki // D 0. Furthermore, possibly refining once more the partition,
one can assume that fi W Ki ! fi .Ki / are invertible with a Lipschitz inverse (in
short, bi-Lipschitz), see [3], Lemma 4.1. In the case k D 0 we identify countably
H k-rectifiable sets with finite or countable sets.

Definition 10.1 (Rectifiable and integer rectifiable currents). We say that T in
MFk.E/ with finite mass is rectifiable if kT k vanishes on H k-negligible sets and it
is concentrated on a countably H k-rectifiable set. We say that T is integer rectifiable
if, in addition, for all ' 2 Lip.E; Rk/ and all Borel sets A it holds '].T A/ D ŒŒ	 ��

for some integer valued 	 2 L1.Rk/.

In the case k D 0 rectifiable currents are finite or countable series of Dirac masses,
with integer coefficients in the integer case, see Theorem 4.3 in [3]. In this latter case,
finiteness of mass implies that the sum is finite.
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We shall denote by �k.E/ the space of integer rectifiable currents. We shall also
denote by Ik.E/ the subspace

Ik.E/ WD fT 2 �k.E/ W @T 2 �k�1.E/g :

In connection with integer rectifiable currents, let us recall the following important
result (see [3], Theorem 8.6):

Theorem 10.2 (Boundary rectifiability). If T is integer rectifiable and has boundary
with finite mass, then @T is integer rectifiable.

If E is a closed convex subset of a Banach space the slicing operator makes sense
in �k.E/, thanks to Proposition 14.7, and it enjoys the following properties (see [3],
Theorem 5.7):

Proposition 10.3 (Slices of integer rectifiable currents). Let E be a closed convex
subset of a Banach space, T 2 �k.E/ and u 2 Lip.E/. Then hT; u; ri 2 �k�1.E/

for L1-a.e. r 2 R and

T du D
Z

R
hT; u; ri dr; kT duk D

Z
R

khT; u; rik dr:

It turns out that the minimal (in H k-measure) set S on which T is concentrated
is

ST WD ˚
x 2 E W lim inf

r#0
r�kkT k.Br.x// > 0

�
: (10.2)

10.3. Multiplicity of integer rectifiable currents and reductions mod.p/. The
multiplicity 	 of a rectifiable current T 2 MFk.E/ can be defined as follows: when
E D Rk the multiplicity of ŒŒ	 �� is 	 ; in general, let us represent a Borel set S on which
kT k is concentrated (i.e. kT k.E n S/ D 0) as

S
i fi .Ki / with Ki � Rk compact,

fi W Ki ! fi .Ki / bi-Lipschitz and fi .Ki / pairwise disjoint. Then, denoting by
gi W E ! Rk Lipschitz maps such that gi B fi .x/ D x on Ki , we define 	.y/ at
y 2 fi .Ki / as the multiplicity of .gi /].T fi .Ki // at gi .y/ 2 Ki . Using (10.1) it
is not difficult to check that this definition is well posed on S up to the sign and up to
H k-negligible sets, i.e. that j	 j does not depend on the chosen partition and on the
Lipschitz maps fi up to H k-negligible sets (when E is a linear space see also §9 of
[3] for a definition of multiplicity closer to the one of the Federer–Fleming theory;
since this definition uses the quite technical concept of approximate tangent space
here we avoid it). Notice also that we allow, for simplicity, the multiplicity to vanish:
but the multiplicity is nonzero H k-a.e. on the set ST .

If m 2 Z we call reduction of m mod.p/ an integer zm which minimizes jqj among
all q 2 Œ�p=2; p=2� with m � q 2 pZ. The integer zm is possibly not unique if p
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is even (for instance f�1 D �1 or f�1 D 1 if p D 2), nevertheless j zmj is uniquely
determined, and je�mj D j zmj.

We define reduction of T mod.p/ a current obtained from T by taking the reduc-
tion of its multiplicity mod.p/, namely

T p WD
1X

iD1

.fi /]ŒŒ. Q	 B fi /
Ki
��

whenever T D P
i .fi /]ŒŒ.	 B fi /
Ki

��. Obviously any reduction T p has integer
multiplicity in Œ�p=2; p=2� and it is equivalent to T mod.p/. The reduction is not
unique, because of the ambiguity on the sign of the multiplicity and on the choice of
the reduction from Z to Œ�p=2; p=2�, but since je�mj D j zmj it turns out that j Q	 j is
nonzero and uniquely determined by T on ST , up to H k-negligible sets.

The following proposition shows that elements of Fp;0.E/ are equivalence classes
of currents in �0.E/ and provides a basic lower semicontinuity property.

Proposition 10.4 (Characterization of Fp;0.E/). Let E be a compact length space,
let ŒR� 2 Fp;0.E/ and let Th 2 �0.E/ be such that ŒTh� ! ŒR� in Fp;0.E/ and
suph kThk.E/ is finite. Then there exists T 2 �0.E/ such that ŒT � D ŒR� and
lim inf kT

p

h
k.E/ � kT k.E/.

Proof. We assume without loss of generality that the lim inf is a finite limit and write

Th D
NhX
iD1

	h;iıx.h;i/

with 	h;i 2 Z n f0g. We can also assume, possibly replacing Th by their reductions,
that 	h;i 2 Œ�p=2; p=2�, so that Th D T

p

h
. We have Nh � suph kThk.E/ and we can

assume (possibly extracting once more a subsequence) that Nh D N is independent
of h. Furthermore, we can also assume that x.h; i/ ! x.i/ as h ! 1 and

	h;i D 	i 2 Œ�p=2; p=2� n f0g for h large enough

for all i D 1; : : : ; N . Since E is a length space we can find currents Gh;i 2 I1.E/

(induced by geodesics joining x.h; i/ to xi ) with @Gh;i D ıx.h;i/ � ıx.i/ and
M.Gh;i / ! 0, for i D 1; : : : ; N . Since Th � P

i 	iıxi
D P

@Gh;i , it turns out
that

F .Th �
NX

iD1

	iıx.i// ! 0;

whence ŒR� D Œ
PN

1 	iıxi
� mod.p/. Also, it follows that

k
NX

iD1

	iıxi
k.E/ �

NX
iD1

j	i j � lim inf
h!1

NX
iD1

j	h;i j D lim inf
h!1

kThk.E/: �
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In the next theorem we characterize Mp on �k.E/.

Theorem 10.5. Let T 2 �k.E/, with E compact length space. Then Mp.T / D
kT pk.E/, where T p is any reduction of T modulo p. In particular, the additivity
property holds with kT kp D kT pk.

Proof. The inequality Mp.T / � kT pk.E/ is obvious, because T p D T mod.p/. We
shall prove the converse inequality by induction on k. Without loss of generality we
can assume that E is a compact convex subset of a Banach space (indeed, an isometric
embedding does not increase the Mp mass, while leaving kT pk.E/ unchanged). The
inequality is equivalent to the lower semicontinuity of T 7! kT pk.E/ under Fp-
convergence. More generally, we shall prove by induction on k that

kT pk.A/ � lim inf
h!1

kT
p

h
k.A/

for all open sets A � E whenever Fp.Th � T / ! 0.

k D 0. Let T 2 �0.E/ and let Th 2 �0.E/ be satisfying Fp.Th �T / ! 0; we fix
an open set A � E and we assume with no loss of generality that the lim inf above is
a limit and that Th D T

p

h
. Then, we are allowed to extract further subsequences and

we can assume that the fast convergence condition
P

h Fp.Th � T / < 1 holds. Let
u be the distance function from E n A and apply for L1-a.e. r > 0 Proposition 10.4
to Th fu > rg and ŒT fu > rg� to obtain the existence of Sr 2 �0.E/ with
Sr D T fu > rg mod.p/ and

kSrk.E/ � lim inf
h!1

kThk.fu > rg/:

Since Sr D T p fu > rg mod.p/ as well, it follows that

kT pk.fu > rg/ � kSrk.E/ � lim inf
h!1

kThk.fu > rg/ � lim inf
h!1

kThk.A/:

Letting r # 0 the lower semicontinuity property on A follows.

Induction step. Let us prove that the induction assumption gives

lim inf
h

kT
p

h
duk.A/ � kT p duk.A/

whenever Th ! T in Fp;k.E/. Indeed, assuming with no loss of generality thatX
h

Fp.Th � T / < 1;

we know from the definition of the slice operator and (7.4) that

lim
h!1

hTh; u; ri D hT; u; ri in Fp;k.E/
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for L1-a.e. r 2 R, hence Proposition 10.3 gives

lim inf
h!1

kT
p

h
duk.A/ D lim inf

h!1

Z
R

khT p

h
; u; rik.A/ dr

�
Z

R
lim inf
h!1

khT p

h
; u; rik.A/ dr

�
Z

R
khT p; u; rik.A/ dr

D kT p duk.A/:

By applying Proposition 14.8 to T p A we have

kT pk.A/ D sup
n NX

iD1

kT p d� ik.Ai /
o
;

where the supremum runs among all finite disjoint families of open sets A1; : : : ; AN �
A and all N -ples of 1-Lipschitz maps � i . By the previous step all the finite sums are
lower semicontinuous with respect to Fp convergence, whence the lower semiconti-
nuity of T 7! kT pk.A/ follows.

This concludes the proof of the equality Mp.T / D kT pk.E/. Since for T 2
�k.E/ and u 2 Lip.E/ it holds

.T fu < rg/p D T p fu < rg for L1-a.e. r 2 R;

it follows that the additivity property is fulfilled with kT kp WD kT pk. �

10.4. Isoperimetric inequalities mod.p/. Having defined �k.E/, we define

�p;k.E/ WD fŒT � W T 2 �k.E/g :

An open problem, in connection with the Mp , mass is the validity of the analogous
of (6.2), namely ˚

ŒT � 2 Fp;k.E/ W Mp.ŒT �/ < 1� D �p;k.E/:

We plan to investigate this in [4].
We also define

Ip;k.E/ WD ˚
ŒT � W ŒT � 2 �p;k.E/; Œ@T � 2 �p;k.E/

�
: (10.3)

Theorem 10.6. Let E be a compact convex subset of a separable Banach space.
Then Mp and Ip;k.E/, as defined in (9.1) and (10.3) respectively, satisfy conditions
(i), (ii), (iii), (iv) of Section 8 with constants depending on k only.
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Proof. (i) The fact that the slice operator maps �p;k.E/ into �p;k�1.E/ follows by the
fact the slice preserves integer rectifiability, see Proposition 10.3. Since the boundary
operator and the slice commute (up to a change of sign) the slice operator maps also
Ip;k.E/ into Ip;k�1.E/. In order to prove (8.1) we consider the inequality in an
integral form, namelyZ �b

a

Mp

�hŒT �; u; ri� dr � Lip.u/
�kT kp.fu < bg/ � kT kp.fu < ag/�;

�1 < a � b < C1:

(10.4)

For S 2 Ik.E/ we can apply Theorem 5.6 of [3] to obtainZ b

a

M
�hS; u; ri� dr � Lip.u/

�kSk.fu < bg/ � kSk.fu < ag/�:
Now, let .Si / � Ik.E/ be such that

P
i Fp.Si � T / < 1 and M.Si / ! Mp.ŒT �/;

we have seen in the proof of Theorem 9.1 that there exists an at most countable set
N such that M.Si fu < rg/ ! kT kp.fu < rg/ for all r 2 R n N ; in addition, the
fast convergence assumption ensures that Fp.hSi ; u; ri � hT; u; ri/ ! 0 for L1-a.e.
r > 0. So, passing to the limit in the previous inequality with S D Si , Fatou’s lemma
and the lower semicontinuity of Mp provide (10.4) when a; b … N . In the general
case the inequality can be recovered by monotone approximation.

(ii) In the proof of this property we shall use properties (i), (iii) and (iv) which
are established independently of (ii). In the case k D 1, property (iv) holds with the
explicit constant Ak D 2; furthermore (iii) holds with c� D 2. For all ŒL� 2 Ip;1.E/

with @ŒL� D 0 we shall be able to construct a family of currents ŒLi � with the same
properties satisfying

Mp

�
ŒL� �

1X
iD1

ŒLi �
�

D 0; Mp.ŒL�/ D
1X

iD0

Mp.ŒLi �/ (10.5)

and diam.supp.ŒLi �// � 8Mp.ŒLi �/. Given this decomposition, an application of
property (iii) to all ŒLi � provides currents ŒTi � with @ŒTi � D ŒLi � and Mp.ŒTi �/ �
16ŒMp.ŒLi �/�

2 and we can apply the property (iii) to find ŒSN � with @SN D ŒL� �PN
1 ŒLi � and Mp.ŒSN �/ ! 0; it turns that for N large enough the current

ŒT � WD
NX

iD1

ŒTi � C SN

has the required property.
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In order to achieve the decomposition (10.5) it suffices to find finitely many, say
N , currents ŒLi � with diam.supp.ŒLi �// � 8Mp.ŒLi �/,

Mp.ŒL� �
NX

iD1

ŒLi �/ � 4

5
Mp.ŒL�/; Mp.ŒL�/ D Mp.ŒL� �

NX
iD1

ŒLi �/ C
NX

iD1

Mp.ŒLi �/

(10.6)
and then iterate this decomposition (first to ŒL��PN

1 ŒLi � and so on) countably many
times. In order to obtain the decomposition (10.6) we apply Lemma 3.2 of [44]
with F D 1=2 and � D kT pk (since A1 D 2 > F this choice ensures that for
�-a.e. x there exists r > 0 such that �.Br.x// � F r) to obtain finitely many points
y1; : : : ; yN and corresponding radii ri > 0 satisfying:

(a) �.Bri
.yi // � F ri and �.Bs.yi // < F s for all s > ri ;

(b) the balls B2ri
.yi / are disjoint;

(c) 5
PN

1 �.Bri
.yi // � �.E/.

Since (a) givesZ �2ri

ri

Mp.hŒL�; d.�; yi /; ri/ dr � Mp.ŒL� B2ri
.yi // < 2F ri D ri

we know that Mp.hŒL�; d.�; yi /; ri/ < 1 in a set of positive L1-measure in .ri ; 2ri /.
But since the slices belong to Ip;0.E/ it follows that Mp.hŒL�; d.�; yi /; ri/ D 0 in a
set of positive L1-measure in .ri ; 2ri /. Choosing �i 2 .ri ; 2ri / in such a way that
hŒL�; d.�; yi /; �i i/ D 0 we can define

ŒLi � WD ŒL� fd.�; yi / < �ig; 1 � i � N:

Our choice of �i ensures that @ŒLi � D 0 and property (b) ensures that the supports of
these chains are pairwise disjoint. Also,

diam.supp.ŒLi �// � 2�i � 4ri � 8�.Bri
.yi // � 8Mp.ŒLi �/:

Property (c) ensures that 5
PN

1 Mp.ŒLi �/ � Mp.ŒL�/, so that (10.6) holds.
(iii) This can be easily achieved by a cone construction as, for instance, in [3],

Proposition 10.2. This construction provides the constant c� D 2.
(iv) If T 2 �k.E/ and T p is a reduction mod.p/, since its multiplicity is at least 1

we know by [3], Theorem 9.5, that

kT pk � H k S;

where S D S.T p/ is defined in (10.2) with T p in place of T and  is an “area
factor” depending only on S . In addition, Lemma 9.2 in [3] provides the universal
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lower bound  � k�k=2. Finally, taking into account (see [37]) that any countably
H k-rectifiable set with finite H k-measure S satisfies

lim inf
r#0

H k.S \ Br.x//

!krk
D 1 for H k-a.e. x 2 S ,

with !k equal to the Lebesgue measure of the unit ball in Rk , we obtain that (iv)
holds with Ak D k�k=2!k . �

As a consequence, we can obtain isoperimetric inequalities in the case when the
cycle belongs to Ip;k.E/ (resp. Fp;k.E/) and the filling belongs to IkC1.E/ (resp.
Fp;kC1.E/). In this connection, notice that in the class of integer multiplicity currents
we have that L 2 Fk.E/ with finite mass and @L D 0 implies L 2 Ik.E/: indeed,
writing L D A C @B with A 2 �k.E/ and B 2 �kC1.E/, we have @A D 0 and so
A D @R for some R 2 IkC1.E/. Since L D @.R C B/ the boundary rectifiability
theorem gives that L 2 Ik.E/. We plan to investigate the boundary rectifiability
theorem and further properties of currents mod.p/ in [4].

Corollary 10.7 (Isoperimetric inequality mod.p/ in Ip;k.E/ and Fp;k.E/). Let E

be a compact convex subset of a separable Banach space. For k � 1 there exist
constants ık such that, if ŒL� 2 Ip;k.E/ is a non zero current with bounded support
and @ŒL� D 0 then

inf

´
Mp.ŒT �/�

Mp.ŒL�/
�.kC1/=k

W ŒT � 2 Ip;kC1.E/; @ŒT � D ŒL�

μ
� ık :

The same property holds when ŒL� 2 Fp;k.E/, taking the infimum among all ŒT � 2
Fp;kC1.E/ with @ŒT � D ŒL�.

Proof. If ŒL� 2 Ip;k.E/, we want to apply Theorem 8.2. To this aim, it suffices to
combine Theorem 10.6 and Theorem 10.5. In the general case ŒL� 2 Fp;k.E/, let
Pi 2 Ik.E/ be satisfying Fp.Pi � L/ ! 0 and M.Pi / ! Mp.L/. Let us write

Pi D L C Ai C @Bi C pQi

with Ai 2 �k.E/, Bi 2 �kC1.E/, Qi 2 Fk.E/ and M.Ai /CM.Bi / ! 0. We have
Œ@Pi � D Œ@Ai �, and since ŒPi � Ai � 2 Ip;k.E/ we can find currents ŒP 0

i � 2 Ip;kC1.E/

with @ŒP 0
i � D ŒPi � Ai � and

Mp.ŒP 0
i �/ � ık

�
Mp.ŒPi � Ai �/

�.kC1/=k � ık

�
Mp.ŒL�/

�.kC1/=k C !i

with !i infinitesimal. It is now immediate to check that @ŒP 0
i � Bi � D ŒL�, so that

ŒP 0
i � Bi � 2 Fp;kC1.E/, and that

lim sup
i!1

Mp.ŒP 0
i � Bi �/ � ık

�
Mp.ŒL�/

�.kC1/=k
: �
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11. Filling radius inequality

In this section we investigate the validity of a filling radius inequality, which comple-
ments the isoperimetric inequality of Corollary 10.7. To this aim, for ŒL� 2 Ip;k.E/

with @ŒL� D 0 we consider the subspace M defined by

M WD ˚
ŒT � 2 Fp;kC1.E/ W @ŒT � D ŒL�; Mp.ŒT �/ < 1�

: (11.1)

By Corollary 10.7 M contains Œ NT �2 Ip;kC1.E/ with Mp.Œ NT �/ � ıkŒMp.ŒL�/�.kC1/=k .

Theorem 11.1. Assume that E is a compact convex subset of a separable Banach
space. Let ŒL� 2 Ip;k.E/ with Mp.ŒL�/ < 1 and @ŒL� D 0. Then, the infimum of the
numbers r such that there exists ŒT � 2 Ip;kC1.E/ satisfying@ŒT � D ŒL�whose support
is contained in the r-neighbourhood of supp ŒL� is not greater than CkŒMp.ŒL�/�1=k .

The constant Ck depends only on k and on the constant ık in Corollary 10.7.

Proof. We claim that the infimum is unchanged if we look for fillings in the more
general class Fp;kC1.E/. Indeed, let ŒS� 2 Fp;kC1.E/ with @ŒS� D ŒL� whose
support is contained in the r-neighbourhood of K, and let u be the distance function
from K, the support of ŒL�. We now consider a sequence .Si / � IkC1.E/ withP

i Fp.Si � S/ < 1 and r 0 > r . We know that for L1-a.e. � 2 .r; r 0/ we still
have ŒSi fu < �g� ! ŒS fu < �g� in Fp;kC1.E/, and since ŒS fu < �g� D
ŒS� fu < �g D ŒS� we see that, possibly replacing Si by Si fu < �g, there
is no loss of generality in assuming that the supports of Si are contained in the
�-neighbourhood of K, for some � < r 0. Now, let us fix i and write

S � Si D A C @B C pQ

with A 2 �kC1.E/, B 2 �kC2.E/, Q 2 FkC1.E/. For L1-a.e. t 2 .�; r 0/ we can
restrict both sides to fu < tg to obtain

S � Si D A fu < tg � hB; u; ti C @.B fu < tg/ C pQ fu < tg:

It follows that the current ŒSi C A fu < tg � hB; u; ti� 2 Ip;kC1.E/ has boundary
ŒL� and support contained in the r 0-neighbourhood of K. Since r 0 > r is arbitrary,
this proves the claim. �

So, from now on we look for ŒS� 2 Fp;kC1.E/ with @ŒS� D ŒL� and we set

c WD ıkŒMp.ŒL�/�.kC1/=k :
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12. Ekeland principle

Let us recall the Ekeland variational principle [17] (see also the proof in [18], us-
ing only the countable axiom of choice): If .X; d/ is a complete metric space and
f W X ! R [ fC1g is lower semicontinuous and bounded from below, then for all
" > 0 there exists y 2 X such that x 7! f .x/ C "d.x; y/ attains its minimum value
at x D y. Since Mp � Fp and is Fp lower semicontinuous, we know that M is a
complete metric space, when endowed with the distance induced by Mp . Let " > 0

be fixed; the lower semicontinuity of ŒT � 7! Mp.ŒT �/ ensures that we can apply the
Ekeland variational principle to find ŒS� 2 M such that

ŒT � 7! Mp.ŒT �/ C "Mp.ŒT � � ŒS�/; ŒT � 2 M;

is minimal at ŒT � D ŒS�. If " � 1=2, the minimality of ŒS� gives

Mp.ŒS�/ � 1 C "

1 � "
Mp.Œ NT �/ � 3c: (12.1)

Let us now prove the density lower bound

kSkp.B%.x// � .3ık/�k

.k C 1/kC1
%kC1 for all % 2 .0; �.x// (12.2)

for any x 2 supp ŒS� n K; here �.x/ D dist.x; K/ > 0. In order to prove (12.2)
we use a standard comparison argument based on the isoperimetric inequalities: let
x 2 supp ŒS� n K: for L1-a.e. % > 0 the slice

ŒS%� WD hŒS�; d.�; x/; %i D @.ŒS� fd.�; x/ < %g/ � .@ŒS�/ fd.�; x/ < %g
belongs to Fp;k.E/ and has no boundary, because the conditions � < �.x/ and
@ŒS� D ŒL� imply

.@ŒS�/ fd.�; x/ < %g D 0:

By Corollary 10.7 we can find ŒR� 2 Fp;kC1.E/ with @ŒR� D ŒS%� and

Mp.ŒR�/ � ık

�
Mp.ŒS%�/

�.kC1/=k
: (12.3)

Comparing ŒS� with
ŒS 0� WD ŒS�

�
E n B%.x/

� C ŒR�

we find

Mp.ŒS�/ � Mp.ŒS 0�/ C "Fp.ŒS� B%.x/ � R/

� Mp.ŒR�/ C Mp.ŒS� .E n B%.x/// C "Mp.ŒS� B%.x// C "Mp.ŒR�/;
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so that

Mp.ŒS� B%.x// � 1 C "

1 � "
Mp.ŒR�/ � 3Mp.ŒR�/: (12.4)

By (12.3) and (12.4) it follows that

kSkp.B%.x// � 3ık

	
d

d%
kSkp.B%.x//


.kC1/=k

for L1-a.e. % > 0. Since kSkp.B%.x// > 0 for any % > 0 (because x 2 supp ŒS�),
this proves that

% 7! �kSkp.B%.x///1=.kC1/ � .3ık/�k=.kC1/%=.k C 1/

nondecreasing, and hence nonnegative, in .0; �.x//.
To obtain the estimate on the support of ŒS� it suffices to take a sequence %i " �.x/

and to use the inequalities

kT kp.B%.x// � Mp.ŒS�/ � 3c � 3ıkMp.ŒL�/�.kC1/=k

to obtain that �.x/ can be bounded by a multiplicative constant times ŒMp.ŒL�/�1=k .
Since x is arbitrary this proves that the support of ŒS� is contained in the r-neighbour-
hood of K, with r � CkŒMp.ŒL�/�1=k . �

Remark 12.1 (Extension to Fp;k.E/). The same property holds, with the same proof,
in the classes Fp;k.E/, namely: for all ŒL� 2 Fp;k.E/ with Mp.ŒL�/ < 1 and
@ŒL� D 0 the infimum of the numbers r such that there exists ŒT � 2 Fp;kC1.E/

satisfying @ŒT � D ŒL� whose support is contained in the r-neighbourhood of supp ŒL�

is not greater than CkŒMp.ŒL�/�1=k :

13. Nonorientable manifolds and currents mod.2/

Let .M; g/ be a compact n-dimensional Riemannian manifold without boundary
and let � be a Borel orientation of M , i.e. a Borel choice of unit vectors �1; : : : ; �n

spanning the tangent space and mutually orthogonal (the construction can be easily
achieved in local coordinates and gluing, by the minimal Borel regularity imposed
on � , is not a problem), possibly up to H n-negligible sets. Here H n is the Hausdorff
n-dimensional measure induced by the Riemannian distance. Of course, when M is
not orientable any orientation � is necessarily discontinuous and it is by no means
canonical. In any case, given this orientation, we can define a current ŒŒM �� 2 �n.M/

as follows:

ŒŒM ��.fd�1 ^ � � � ^ d�k/ WD
Z

M

f det
�

@�i

@�j

�
dH n:



584 L. Ambrosio and M. G. Katz CMH

While ŒŒM �� is not canonical, its equivalence class mod.2/ obviously is, because
different orientations induce currents ŒŒM �� equivalent mod.2/. In connection with
mass measures, it is not difficult to check that

kŒŒM ��k.B/ D H n.B/ for all B � M Borel

(or, it suffices to apply Lemma 9.2 and Theorem 9.5 of [3], valid in a much more
general context). In turn, H n coincides with the Riemannian volume measure, see
for instance [20], 3.2.46. Passing to the equivalence class the same is true, because
ŒŒM �� is already reduced mod.2/, hence kŒŒM ��k2 D kŒŒM ��k and their total mass is
Vol.M/.

We are now going to show that @ŒŒM �� D 0 mod.2/, and we prove this fact building
a “nice” current on M as the image of the exponential map ExpO at some base point
O 2 M . As the referee pointed out, for the purpose of proving @ŒŒM �� D 0 mod.2/

simpler proofs are possible, which apply to Lipschitz manifolds as well; on the other
hand, we believe that this global construction (which uses some properties of the cut
locus established only recently) might have an independent interest.

Theorem 13.1. Let .M; g/ be a compact n-dimensional Riemannian manifold with
no boundary. Then @

�
ŒŒM ��

� D 0 and, in particular,
�
ŒŒM ��

� 2 I2;n.M/.

Proof. We fix a base point O 2 M and consider the distance function u from O . We
consider the tangent cut locus T C at O , namely v 2 TOM belongs to T C if and
only if expO.tv/ is the unique minimizing geodesic in Œ0; �� for all � < 1, and it is
nonminimizing in Œ0; �� for all � > 1. It turns out that T C is locally a Lipschitz graph
[28], [39], and that the boundary of the star-shaped region

� WD ftv W v 2 T C; t 2 Œ0; 1�g
is contained in T C . Of course the exponential map ExpO maps T C into the cut
locus, that we shall denote by C .

Next, we consider some additional regularity properties of u, besides 1-Lipschitz
continuity: this function is locally semiconcave out of O , namely in local coordinates
its second derivatives are locally bounded from above in M n fOg. This implies, by
standard results about semiconcave functions and viscosity solutions to the Hamilton–
Jacobi equation gx.ru; ru/ D 1 the following facts (for (i), (ii), (iii) see for instance
[40]; for the more delicate property (iv) see [41], Theorem 4.12, or the appendix
of [22]):

(i) for all x ¤ O the set of supergradients

@Cu.x/ WD fv 2 TxM W u.expx.w// � u.x/ C gx.v; w/ C o.jwj/g
is convex and not empty, and u is differentiable at x if and only if @Cu.x/ is a
singleton;



Vol. 86 (2011) Flat currents modulo p in metric spaces and filling radius inequalities 585

(ii) for all x ¤ O the closed convex hull of @Cu.x/ \ fv 2 TxM W gx.v; v/ D 1g
coincides with @Cu.x/ and the former set is in 1-1 correspondence with final
speeds of minimizing unit speed geodesics joining O to x;

(iii) for j integer the set fx 2 M W dim.@Cu.x// � j g has � -finite H n�j -measure;

(iv) the set of points x 2 C where u is differentiable is H n�1-negligible.

Now, we fix an orientation of TOM and we consider the canonical (Euclidean)
n-current ŒŒ��� 2 �n.TOM/, with multiplicity 1 on � and 0 on TOM n � induced
by this orientation; since

H n�1.@�/ � H n�1.T C / < 1
we know that ŒŒ��� 2 In.TOM/ and its boundary is supported on T C . Then, we
consider its image T D .expO/]ŒŒ��� 2 In.M/ via the exponential map. We are
going to prove that:

(a) T D ŒŒM �� for some orientation of M ;

(b) @T D 2R for some R 2 In�1.M/.

These two facts imply the stated properties of ŒŒM ��. In connection with (a), notice first
that expO.�/ D M , because for each point x 2 M there is at least one minimizing
geodesic to O , and it is unique before reaching x. Moreover, Rademacher’s theorem
implies that H n-a.e. point x 2 M is a differentiability point of u, so that @uC.x/ D
fru.x/g is a singleton and there is a unique minimizing constant speed geodesic
between O and x (since its final speed is uniquely determined, ODE uniqueness
applies); if v is the initial speed of this geodesic, it turns out that x D expO.d.O; x/v/

and td.O; x/v 2 � for all t < 1, hence d.O; x/v 2 �. This proves that expO has
a unique inverse H n-a.e.; these facts imply that T D ŒŒM �� provided we choose as
orientation of M the one induced by TOM via the exponential map expO .

In connection with (b), we know that @T D .expO/].@ŒŒ���/ and that @ŒŒ��� is a
current with unit multiplicity H n�1-a.e. on @�, because T C is locally a Lipschitz
graph. We claim that for H n�1-a.e. x 2 C the pre-image exp�1

O .x/ contains exactly
two points. Since the multiplicity of @T at x can be obtained adding the properly
multiplicities of @ŒŒ��� at exp�1

O .x/, this proves that @T has an even multiplicity. To
prove the claim, we know by (iv) that for H n�1-a.e. x 2 C the number of minimizing
geodesics is strictly greater than 1; on the other hand, (iii) with j D 2 gives that for
H n�1-a.e. x 2 C the dimension of @Cu.x/ is at most 1, hence the extreme points
are at most two: therefore there exist precisely two minimizing geodesics from O to
x at H n�1-a.e. x 2 C . �

Proof ofTheorem 3.2. It suffices to apply Theorem 11.1 with k D n. To this aim, we
consider the canonical current

�
ŒŒM ��

�
associated to M . By Theorem 13.1 this current

belongs to I2;n.M/ and it is a cycle mod.2/. Then, given an isometric embedding i of
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M into a (separable) Banach space F , we consider the closed convex hull E of i.M/

(which is a compact set, by the compactness of i.M/), and apply Theorem 11.1 to
the cycle ŒL� D i]

�
ŒŒM ��

� 2 I2;n.E/, whose M2 mass is (by the isometric invariance
of the M2-mass of rectifiable currents) equal to M2.ŒŒM ��/ D Vol.M/.

14. Appendix

In this appendix we recall the basic definitions of the metric theory developed in [3].

Definition 14.1. Let k � 1 be an integer. We denote by Dk.E/ the set of all
.k C 1/-ples ! D .f; �1; : : : ; �k/ of Lipschitz real valued functions in E with the
first function f in Lipb.E/. In the case k D 0 we set D0.E/ D Lipb.E/.

Definition 14.2 (Metric functionals). We call k-dimensional metric current any func-
tion T W Dk.E/ ! R satisfying the following three axioms:

(a) T is multilinear;

(b) T .f; �n
1 ; : : : ; �n

k
/ ! T .f; �1; : : : ; �k/ whenever �n

i ! �i pointwise and
supn Lip.�n

i / is finite, for 1 � i � k;

(c) T .f; �1; : : : ; �k/ D 0 if, for some i 2 f1; : : : ; kg, �i is constant in a neighbour-
hood of the support of f .

We denote by MFk.E/ the vector space of k-dimensional metric currents.

A consequence of these axioms is that T is alternating in .�1; : : : ; �k/, so the
differential forms notation fd�1 ^ � � � ^ d�k can be used. We can now define an
“exterior differential”

d! D d.fd�1 ^ � � � ^ d�k/ WD df ^ d�1 ^ � � � ^ �k

mapping Dk.E/ into DkC1.E/ and, for ' 2 Lip.E; F /, a pull back operator

']! D '].fd�1 ^ � � � ^ d�k D f B 'd�1 B ' ^ � � � ^ d�k B '

mapping Dk.F / on Dk.E/. These operations induce in a natural way a boundary
operator and a push forward map for metric functionals.

Definition 14.3 (Boundary). Let k � 1 be an integer and let T 2 MFk.E/. The
boundary of T , denoted by @T , is the .k �1/-dimensional metric current in E defined
by @T .!/ D T .d!/ for any ! 2 Dk�1.E/.

Definition 14.4 (Push-forward). Let ' W E ! F be a Lipschitz map and let T 2
MFk.E/. Then, we can define a k-dimensional metric current in F , denoted by
']T , setting ']T .!/ D T .']!/ for any ! 2 Dk.F /.
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We notice that, by construction, '] commutes with the boundary operator, i.e.

'].@T / D @.']T /: (14.1)

Definition 14.5 (Restriction). Let T 2 MFk.E/ and let ! D gd�1 ^ � � � ^ d�m 2
Dm.E/, with m � k (! D g if m D 0). We define a .k � m/-dimensional metric
current in E, denoted by T !, setting

T !.fd�1 ^ � � � ^ d�k�m/ WD T .fgd�1 ^ � � � ^ d�m ^ d�1 ^ � � � ^ d�k�m/:

Definition 14.6 (Currents with finite mass). Let T 2 MFk.E/; we say that T has
finite mass if there exists a finite Borel measure � in E satisfying

jT .fd�1 ^ � � � ^ d�k/j �
kY

iD1

Lip.�i /

Z
E

jf j d� (14.2)

for any fd�1 ^ � � � ^ d�k 2 Dk.E/, with the convention
Q

i Lip.�i / D 1 if k D 0.

It can be shown that there is a minimal measure � satisfying (14.2), which will be
denoted by kT k (indeed one checks, using the subadditivity of T with respect to the
first variable, that if f�igi2I � M.E/ satisfy (14.3) also their infimum satisfies the
same condition). We call mass of T the total mass of kT k, namely M.T / D kT k.E/.

By the density of Lipb.E/ in L1.E; kT k/, which contains the class of bounded
Borel functions, any T 2 MFk.E/ with finite mass can be uniquely extended to
forms f d� with f bounded Borel, in such a way that

jT .fd�1 ^ � � � ^ d�k/j �
kY

iD1

Lip.�i /

Z
E

jf j dkT k (14.3)

for any f bounded Borel, �1; : : : ; �k 2 Lip.E/. Since this extension is unique we
do not introduce a distinguished notation for it.

Functionals with finite mass are well behaved under the push-forward map: in
fact, if T 2 MFk.E/ the functional ']T has finite mass, satisfying

k']T k � ŒLip.'/�k']kT k : (14.4)

If either ' is an isometry or k D 0 it is easy to check, using (14.6) below, that equality
holds in (14.4). It is also easy to check that the identity

']T .fd�1 ^ � � � ^ d�k/ D T .f B 'd�1 B ' ^ � � � ^ d�k B '/

remains true if f is bounded Borel and �i 2 Lip.E/.
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Functionals with finite mass are also well behaved with respect to the restriction
operator: in fact, the definition of mass easily implies

kT !k � sup jgj
mY

iD1

Lip.�i /kT k with ! D gd�1 ^ � � � ^ d�m: (14.5)

For metric functionals with finite mass, the restriction operator T ! can be defined
even though ! D .g; �1; : : : ; �m/ with g bounded Borel, and still (14.5) holds; the
restriction will be denoted by T A in the special case m D 0 and g D 
A.

Finally, we will use the following approximation results.

Proposition 14.7. Let E be a closed convex set of a Banach space. Then Ik.E/ is
dense in �k.E/ in mass norm. As a consequence Ik.E/ is dense in Fk.E/ in flat
norm. The same holds in metric spaces F that are Lipschitz retracts of E.

Proof. We argue as in Theorem 4.5 of [3], reducing ourselves to the approximation
of currents T 2 �k.E/ of the form f]ŒŒ	 �� with 	 2 L1.Rk; Z/, B � Rk Borel,
f W B ! E Lipschitz and 	 D 0 Lk-a.e. out of B . Since E is closed and convex,
the construction of [29] provides a Lipschitz extension of f to the whole of Rk ,
still with values in E. For " > 0 given, we can choose 	 0 2 BV.RkI Z/ such
that

R
Rk j	 � 	 0j dx < " to obtain that the current zT WD f]ŒŒ	

0�� 2 Ik.E/ satisfies
M.T � zT / < "Œ Lip.f /�k .

If T 2 �k.F / and i W E ! F is a Lipschitz retraction, then we can find a sequence
.Tn/ � Ik.E/ converging in mass to T . Then, the sequence .i]Tn/ � Ik.F / provides
the desired approximation. �

Proposition 14.8 (Characterization of mass). Let T 2 MFk.E/ with finite mass.
Then kT k.E/ is representable by

sup
n NX

iD1

kT d� ik.Ai /
o
; (14.6)

where the supremum runs among all finite disjoint families of open sets A1; : : : ; AN

and all N -ples of 1-Lipschitz maps � i .

Proof. In [3], Proposition 2.7, it is proved that

kT k.E/ D sup
n NX

iD1

kT d� i
1 ^ � � � ^ d� i

kk.Ai /
o
;

where the supremum runs among all finite disjoint families .Ai / of Borel sets and
1-Lipschitz maps � i

j , 1 � i � N and 1 � j � k. Approximating Borel sets from
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inside with compact sets, and then compacts sets from outside with open sets, one
can see that the supremum is the same if .Ai / runs among all finite disjoint families
of open sets. By the inequalities

kT dq1 ^ � � � ^ dqkk � kT dq1k � kT k
with qj 1-Lipschitz we obtain (14.6). �
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